1
|
Wibbe N, Ebnet K. Cell Adhesion at the Tight Junctions: New Aspects and New Functions. Cells 2023; 12:2701. [PMID: 38067129 PMCID: PMC10706136 DOI: 10.3390/cells12232701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/17/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Tight junctions (TJ) are cell-cell adhesive structures that define the permeability of barrier-forming epithelia and endothelia. In contrast to this seemingly static function, TJs display a surprisingly high molecular complexity and unexpected dynamic regulation, which allows the TJs to maintain a barrier in the presence of physiological forces and in response to perturbations. Cell-cell adhesion receptors play key roles during the dynamic regulation of TJs. They connect individual cells within cellular sheets and link sites of cell-cell contacts to the underlying actin cytoskeleton. Recent findings support the roles of adhesion receptors in transmitting mechanical forces and promoting phase separation. In this review, we discuss the newly discovered functions of cell adhesion receptors localized at the TJs and their role in the regulation of the barrier function.
Collapse
Affiliation(s)
- Nicolina Wibbe
- Institute-Associated Research Group "Cell Adhesion and Cell Polarity", Institute of Medical Biochemistry, ZMBE, University of Münster, Von-Esmarch-Str. 56, D-48149 Münster, Germany
| | - Klaus Ebnet
- Institute-Associated Research Group "Cell Adhesion and Cell Polarity", Institute of Medical Biochemistry, ZMBE, University of Münster, Von-Esmarch-Str. 56, D-48149 Münster, Germany
- Cells-in-Motion Cluster of Excellence (EXC 1003-CiM), University of Münster, D-48419 Münster, Germany
| |
Collapse
|
2
|
Wauford N, Patel A, Tordoff J, Enghuus C, Jin A, Toppen J, Kemp ML, Weiss R. Synthetic symmetry breaking and programmable multicellular structure formation. Cell Syst 2023; 14:806-818.e5. [PMID: 37689062 PMCID: PMC10919224 DOI: 10.1016/j.cels.2023.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 04/14/2023] [Accepted: 08/02/2023] [Indexed: 09/11/2023]
Abstract
During development, cells undergo symmetry breaking into differentiated subpopulations that self-organize into complex structures.1,2,3,4,5 However, few tools exist to recapitulate these behaviors in a controllable and coupled manner.6,7,8,9 Here, we engineer a stochastic recombinase genetic switch tunable by small molecules to induce programmable symmetry breaking, commitment to downstream cell fates, and morphological self-organization. Inducers determine commitment probabilities, generating tunable subpopulations as a function of inducer dosage. We use this switch to control the cell-cell adhesion properties of cells committed to each fate.10,11 We generate a wide variety of 3D morphologies from a monoclonal population and develop a computational model showing high concordance with experimental results, yielding new quantitative insights into the relationship between cell-cell adhesion strengths and downstream morphologies. We expect that programmable symmetry breaking, generating precise and tunable subpopulation ratios and coupled to structure formation, will serve as an integral component of the toolbox for complex tissue and organoid engineering.
Collapse
Affiliation(s)
- Noreen Wauford
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Akshay Patel
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jesse Tordoff
- Program in Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Casper Enghuus
- Department of Microbiology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Andrew Jin
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Jack Toppen
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Melissa L Kemp
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Ron Weiss
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Electrical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
3
|
Mijanović L, Weber I. Adhesion of Dictyostelium Amoebae to Surfaces: A Brief History of Attachments. Front Cell Dev Biol 2022; 10:910736. [PMID: 35721508 PMCID: PMC9197732 DOI: 10.3389/fcell.2022.910736] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/13/2022] [Indexed: 12/23/2022] Open
Abstract
Dictyostelium amoebae adhere to extracellular material using similar mechanisms to metazoan cells. Notably, the cellular anchorage loci in Amoebozoa and Metazoa are both arranged in the form of discrete spots and incorporate a similar repertoire of intracellular proteins assembled into multicomponent complexes located on the inner side of the plasma membrane. Surprisingly, however, Dictyostelium lacks integrins, the canonical transmembrane heterodimeric receptors that dominantly mediate adhesion of cells to the extracellular matrix in multicellular animals. In this review article, we summarize the current knowledge about the cell-substratum adhesion in Dictyostelium, present an inventory of the involved proteins, and draw parallels with the situation in animal cells. The emerging picture indicates that, while retaining the basic molecular architecture common to their animal relatives, the adhesion complexes in free-living amoeboid cells have evolved to enable less specific interactions with diverse materials encountered in their natural habitat in the deciduous forest soil. Dissection of molecular mechanisms that underlay short lifetime of the cell-substratum attachments and high turnover rate of the adhesion complexes in Dictyostelium should provide insight into a similarly modified adhesion phenotype that accompanies the mesenchymal-amoeboid transition in tumor metastasis.
Collapse
Affiliation(s)
| | - Igor Weber
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
4
|
Vasquez CG, de la Serna EL, Dunn AR. How cells tell up from down and stick together to construct multicellular tissues - interplay between apicobasal polarity and cell-cell adhesion. J Cell Sci 2021; 134:272658. [PMID: 34714332 DOI: 10.1242/jcs.248757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Polarized epithelia define a topological inside and outside, and hence constitute a key evolutionary innovation that enabled the construction of complex multicellular animal life. Over time, this basic function has been elaborated upon to yield the complex architectures of many of the organs that make up the human body. The two processes necessary to yield a polarized epithelium, namely regulated adhesion between cells and the definition of the apicobasal (top-bottom) axis, have likewise undergone extensive evolutionary elaboration, resulting in multiple sophisticated protein complexes that contribute to both functions. Understanding how these components function in combination to yield the basic architecture of a polarized cell-cell junction remains a major challenge. In this Review, we introduce the main components of apicobasal polarity and cell-cell adhesion complexes, and outline what is known about their regulation and assembly in epithelia. In addition, we highlight studies that investigate the interdependence between these two networks. We conclude with an overview of strategies to address the largest and arguably most fundamental unresolved question in the field, namely how a polarized junction arises as the sum of its molecular parts.
Collapse
Affiliation(s)
- Claudia G Vasquez
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Eva L de la Serna
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Alexander R Dunn
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA.,Biophysics Program, Stanford University, Stanford, CA 94305, USA.,Stanford Cardiovascular Institute, Stanford School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
5
|
Vernale A, Prünster MM, Marchianò F, Debost H, Brouilly N, Rocher C, Massey-Harroche D, Renard E, Le Bivic A, Habermann BH, Borchiellini C. Evolution of mechanisms controlling epithelial morphogenesis across animals: new insights from dissociation-reaggregation experiments in the sponge Oscarella lobularis. BMC Ecol Evol 2021; 21:160. [PMID: 34418961 PMCID: PMC8380372 DOI: 10.1186/s12862-021-01866-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/18/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The ancestral presence of epithelia in Metazoa is no longer debated. Porifera seem to be one of the best candidates to be the sister group to all other Metazoa. This makes them a key taxon to explore cell-adhesion evolution on animals. For this reason, several transcriptomic, genomic, histological, physiological and biochemical studies focused on sponge epithelia. Nevertheless, the complete and precise protein composition of cell-cell junctions and mechanisms that regulate epithelial morphogenetic processes still remain at the center of attention. RESULTS To get insights into the early evolution of epithelial morphogenesis, we focused on morphogenic characteristics of the homoscleromorph sponge Oscarella lobularis. Homoscleromorpha are a sponge class with a typical basement membrane and adhaerens-like junctions unknown in other sponge classes. We took advantage of the dynamic context provided by cell dissociation-reaggregation experiments to explore morphogenetic processes in epithelial cells in a non-bilaterian lineage by combining fluorescent and electron microscopy observations and RNA sequencing approaches at key time-points of the dissociation and reaggregation processes. CONCLUSIONS Our results show that part of the molecular toolkit involved in the loss and restoration of epithelial features such as cell-cell and cell-matrix adhesion is conserved between Homoscleromorpha and Bilateria, suggesting their common role in the last common ancestor of animals. In addition, sponge-specific genes are differently expressed during the dissociation and reaggregation processes, calling for future functional characterization of these genes.
Collapse
Affiliation(s)
- Amélie Vernale
- Aix Marseille Univ, CNRS, IRD, IMBE UMR 7263, Avignon Université, Institut Méditerranéen de Biodiversité et d'Ecologie Marine et Continentale, Station Marine d'Endoume, Marseille, France
- Aix Marseille Univ, CNRS, UMR 7288, Developmental Biology Institute of Marseille Luminy (IBDM), Marseille, France
| | - Maria Mandela Prünster
- Aix Marseille Univ, CNRS, UMR 7288, Developmental Biology Institute of Marseille Luminy (IBDM), Marseille, France
- Aix Marseille Univ, CNRS, UMR 7288, Developmental Biology Institute of Marseille Luminy (IBDM), Turing Center for Living Systems (CENTURI), Marseille, France
| | - Fabio Marchianò
- Aix Marseille Univ, CNRS, UMR 7288, Developmental Biology Institute of Marseille Luminy (IBDM), Turing Center for Living Systems (CENTURI), Marseille, France
| | - Henry Debost
- Aix Marseille Univ, CNRS, UMR 7288, Developmental Biology Institute of Marseille Luminy (IBDM), Marseille, France
| | - Nicolas Brouilly
- Aix Marseille Univ, CNRS, UMR 7288, Developmental Biology Institute of Marseille Luminy (IBDM), Marseille, France
| | - Caroline Rocher
- Aix Marseille Univ, CNRS, IRD, IMBE UMR 7263, Avignon Université, Institut Méditerranéen de Biodiversité et d'Ecologie Marine et Continentale, Station Marine d'Endoume, Marseille, France
| | - Dominique Massey-Harroche
- Aix Marseille Univ, CNRS, UMR 7288, Developmental Biology Institute of Marseille Luminy (IBDM), Marseille, France
| | - Emmanuelle Renard
- Aix Marseille Univ, CNRS, IRD, IMBE UMR 7263, Avignon Université, Institut Méditerranéen de Biodiversité et d'Ecologie Marine et Continentale, Station Marine d'Endoume, Marseille, France
- Aix Marseille Univ, CNRS, UMR 7288, Developmental Biology Institute of Marseille Luminy (IBDM), Marseille, France
| | - André Le Bivic
- Aix Marseille Univ, CNRS, UMR 7288, Developmental Biology Institute of Marseille Luminy (IBDM), Marseille, France
| | - Bianca H Habermann
- Aix Marseille Univ, CNRS, UMR 7288, Developmental Biology Institute of Marseille Luminy (IBDM), Marseille, France.
- Aix Marseille Univ, CNRS, UMR 7288, Developmental Biology Institute of Marseille Luminy (IBDM), Turing Center for Living Systems (CENTURI), Marseille, France.
| | - Carole Borchiellini
- Aix Marseille Univ, CNRS, IRD, IMBE UMR 7263, Avignon Université, Institut Méditerranéen de Biodiversité et d'Ecologie Marine et Continentale, Station Marine d'Endoume, Marseille, France.
| |
Collapse
|
6
|
Punovuori K, Malaguti M, Lowell S. Cadherins in early neural development. Cell Mol Life Sci 2021; 78:4435-4450. [PMID: 33796894 PMCID: PMC8164589 DOI: 10.1007/s00018-021-03815-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 03/04/2021] [Accepted: 03/18/2021] [Indexed: 11/12/2022]
Abstract
During early neural development, changes in signalling inform the expression of transcription factors that in turn instruct changes in cell identity. At the same time, switches in adhesion molecule expression result in cellular rearrangements that define the morphology of the emerging neural tube. It is becoming increasingly clear that these two processes influence each other; adhesion molecules do not simply operate downstream of or in parallel with changes in cell identity but rather actively feed into cell fate decisions. Why are differentiation and adhesion so tightly linked? It is now over 60 years since Conrad Waddington noted the remarkable "Constancy of the Wild Type" (Waddington in Nature 183: 1654-1655, 1959) yet we still do not fully understand the mechanisms that make development so reproducible. Conversely, we do not understand why directed differentiation of cells in a dish is sometimes unpredictable and difficult to control. It has long been suggested that cells make decisions as 'local cooperatives' rather than as individuals (Gurdon in Nature 336: 772-774, 1988; Lander in Cell 144: 955-969, 2011). Given that the cadherin family of adhesion molecules can simultaneously influence morphogenesis and signalling, it is tempting to speculate that they may help coordinate cell fate decisions between neighbouring cells in the embryo to ensure fidelity of patterning, and that the uncoupling of these processes in a culture dish might underlie some of the problems with controlling cell fate decisions ex-vivo. Here we review the expression and function of cadherins during early neural development and discuss how and why they might modulate signalling and differentiation as neural tissues are formed.
Collapse
Affiliation(s)
- Karolina Punovuori
- Helsinki Institute of Life Science, Biomedicum Helsinki, University of Helsinki, 00290, Helsinki, Finland
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland
| | - Mattias Malaguti
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Little France Drive, Edinburgh, EH16 4UU, UK
| | - Sally Lowell
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Little France Drive, Edinburgh, EH16 4UU, UK.
| |
Collapse
|
7
|
Young KA, Biggins L, Sharpe HJ. Protein tyrosine phosphatases in cell adhesion. Biochem J 2021; 478:1061-1083. [PMID: 33710332 PMCID: PMC7959691 DOI: 10.1042/bcj20200511] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 02/07/2023]
Abstract
Adhesive structures between cells and with the surrounding matrix are essential for the development of multicellular organisms. In addition to providing mechanical integrity, they are key signalling centres providing feedback on the extracellular environment to the cell interior, and vice versa. During development, mitosis and repair, cell adhesions must undergo extensive remodelling. Post-translational modifications of proteins within these complexes serve as switches for activity. Tyrosine phosphorylation is an important modification in cell adhesion that is dynamically regulated by the protein tyrosine phosphatases (PTPs) and protein tyrosine kinases. Several PTPs are implicated in the assembly and maintenance of cell adhesions, however, their signalling functions remain poorly defined. The PTPs can act by directly dephosphorylating adhesive complex components or function as scaffolds. In this review, we will focus on human PTPs and discuss their individual roles in major adhesion complexes, as well as Hippo signalling. We have collated PTP interactome and cell adhesome datasets, which reveal extensive connections between PTPs and cell adhesions that are relatively unexplored. Finally, we reflect on the dysregulation of PTPs and cell adhesions in disease.
Collapse
Affiliation(s)
- Katherine A. Young
- Signalling Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, U.K
| | - Laura Biggins
- Bioinformatics, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, U.K
| | - Hayley J. Sharpe
- Signalling Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, U.K
| |
Collapse
|
8
|
Abstract
Cadherin-based cell-cell junctions help metazoans form polarized sheets of cells, which are necessary for the development of organs and the compartmentalization of functions. The components of the protein complexes that generate cadherin-based junctions have ancient origins, with conserved elements shared between animals as diverse as sponges and vertebrates. In invertebrates, the formation and function of epithelial sheets depends on classical cadherin-containing adherens junctions, which link actin to the plasma membrane through α-, β- and p120 catenins. Vertebrates also have a new type of cadherin-based intercellular junction called the desmosome, which allowed for the creation of more complex and effective tissue barriers against environmental stress. While desmosomes have a molecular blueprint that is similar to that of adherens junctions, desmosomal cadherins - called desmogleins and desmocollins - link intermediate filaments (IFs) rather than actin to the plasma membrane through protein complexes comprising relatives of β-catenin (plakoglobin) and p120 catenin (plakophilins). In turn, desmosomal catenins interact with members of the IF-binding plakin family to create the desmosome-IF linking complex. In this Minireview, we discuss when and how desmosomal components evolved, and how their ability to anchor the highly elastic and tough IF cytoskeleton endowed vertebrates with robust tissues capable of not only resisting but also properly responding to environmental stress.
Collapse
Affiliation(s)
- Kathleen J Green
- Departments of Pathology and Dermatology, Feinberg School of Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA.
| | - Quinn Roth-Carter
- Departments of Pathology and Dermatology, Feinberg School of Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| | - Carien M Niessen
- Department of Dermatology, Cologne Excellence Cluster on Stress Responses in Aging-associated Diseases (CECAD), Center for Molecule Medicine Cologne, University of Cologne, Cologne, Germany
| | - Scott A Nichols
- Department of Biological Sciences, 2101 E. Wesley Ave. SGM 203, University of Denver, CO 80210, USA.
| |
Collapse
|
9
|
Abstract
Eph receptor (Eph) and ephrin signaling regulate fundamental developmental processes through both forward and reverse signaling triggered upon cell-cell contact. In vertebrates, they are both classified into classes A and B, and some representatives have been identified in many metazoan groups, where their expression and functions have been well studied. We have extended previous phylogenetic analyses and examined the presence of Eph and ephrins in the tree of life to determine their origin and evolution. We have found that 1) premetazoan choanoflagellates may already have rudimental Eph/ephrin signaling as they have an Eph-/ephrin-like pair and homologs of downstream-signaling genes; 2) both forward- and reverse-downstream signaling might already occur in Porifera since sponges have most genes involved in these types of signaling; 3) the nonvertebrate metazoan Eph is a type-B receptor that can bind ephrins regardless of their membrane-anchoring structure, glycosylphosphatidylinositol, or transmembrane; 4) Eph/ephrin cross-class binding is specific to Gnathostomata; and 5) kinase-dead Eph receptors can be traced back to Gnathostomata. We conclude that Eph/ephrin signaling is of older origin than previously believed. We also examined the presence of protein domains associated with functional characteristics and the appearance and conservation of downstream-signaling pathways to understand the original and derived functions of Ephs and ephrins. We find that the evolutionary history of these gene families points to an ancestral function in cell-cell interactions that could contribute to the emergence of multicellularity and, in particular, to the required segregation of cell populations.
Collapse
Affiliation(s)
- Aida Arcas
- Instituto de Neurociencias (CSIC-UMH), Avda, San Juan de Alicante, Spain
| | - David G Wilkinson
- Neural Development Laboratory, The Francis Crick Institute, London, United Kingdom
| | - M Ángela Nieto
- Instituto de Neurociencias (CSIC-UMH), Avda, San Juan de Alicante, Spain
| |
Collapse
|
10
|
Wong E, Mölter J, Anggono V, Degnan SM, Degnan BM. Co-expression of synaptic genes in the sponge Amphimedon queenslandica uncovers ancient neural submodules. Sci Rep 2019; 9:15781. [PMID: 31673079 PMCID: PMC6823388 DOI: 10.1038/s41598-019-51282-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 09/28/2019] [Indexed: 12/13/2022] Open
Abstract
The synapse is a complex cellular module crucial to the functioning of neurons. It evolved largely through the exaptation of pre-existing smaller submodules, each of which are comprised of ancient sets of proteins that are conserved in modern animals and other eukaryotes. Although these ancient submodules themselves have non-neural roles, it has been hypothesized that they may mediate environmental sensing behaviors in aneural animals, such as sponges. Here we identify orthologues in the sponge Amphimedon queenslandica of genes encoding synaptic submodules in neural animals, and analyse their cell-type specific and developmental expression to determine their potential to be co-regulated. We find that genes comprising certain synaptic submodules, including those involved in vesicle trafficking, calcium-regulation and scaffolding of postsynaptic receptor clusters, are co-expressed in adult choanocytes and during metamorphosis. Although these submodules may contribute to sensory roles in this cell type and this life cycle stage, total synaptic gene co-expression profiles do not support the existence of a functional synapse in A. queenslandica. The lack of evidence for the co-regulation of genes necessary for pre- and post-synaptic functioning in A. queenslandica suggests that sponges, and perhaps the last common ancestor of sponges and other extant animals, had the ability to promulgate sensory inputs without complete synapse-like functionalities. The differential co-expression of multiple synaptic submodule genes in sponge choanocytes, which have sensory and feeding roles, however, is consistent with the metazoan ancestor minimally being able to undergo exo- and endocytosis in a controlled and localized manner.
Collapse
Affiliation(s)
- Eunice Wong
- School of Biological Sciences, University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Jan Mölter
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, 4072, Australia
- School of Mathematics and Physics, University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Victor Anggono
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, 4072, Australia
- Clem Jones Centre for Ageing Dementia Research, University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Sandie M Degnan
- School of Biological Sciences, University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Bernard M Degnan
- School of Biological Sciences, University of Queensland, Brisbane, Queensland, 4072, Australia.
| |
Collapse
|
11
|
Mitchell JM, Nichols SA. Diverse cell junctions with unique molecular composition in tissues of a sponge (Porifera). EvoDevo 2019; 10:26. [PMID: 31687123 PMCID: PMC6820919 DOI: 10.1186/s13227-019-0139-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 09/19/2019] [Indexed: 02/08/2023] Open
Abstract
The integrity and organization of animal tissues depend upon specialized protein complexes that mediate adhesion between cells with each other (cadherin-based adherens junctions), and with the extracellular matrix (integrin-based focal adhesions). Reconstructing how and when these cell junctions evolved is central to understanding early tissue evolution in animals. We examined focal adhesion protein homologs in tissues of the freshwater sponge, Ephydatia muelleri (phylum Porifera; class Demospongiae). Our principal findings are that (1) sponge focal adhesion homologs (integrin, talin, focal adhesion kinase, etc.) co-precipitate as a complex, separate from adherens junction proteins; (2) that actin-based structures resembling focal adhesions form at the cell–substrate interface, and their abundance is dynamically regulated in response to fluid shear; (3) focal adhesion proteins localize to both cell–cell and cell–extracellular matrix adhesions, and; (4) the adherens junction protein β-catenin is co-distributed with focal adhesion proteins at cell–cell junctions everywhere except the choanoderm, and at novel junctions between cells with spicules, and between cells with environmental bacteria. These results clarify the diversity, distribution and molecular composition of cell junctions in tissues of E. muelleri, but raise new questions about their functional properties and ancestry.
Collapse
Affiliation(s)
- Jennyfer M Mitchell
- 1Department of Biological Sciences, University of Denver, 2101 E. Wesley Ave. SGM 203, Denver, CO 80208 USA.,2Present Address: University of Colorado, Anschutz Medical Campus, 12801 E. 17th Ave. RC1S, 11401G, Aurora, CO 80045 USA
| | - Scott A Nichols
- 1Department of Biological Sciences, University of Denver, 2101 E. Wesley Ave. SGM 203, Denver, CO 80208 USA
| |
Collapse
|
12
|
Dudin O, Ondracka A, Grau-Bové X, Haraldsen AA, Toyoda A, Suga H, Bråte J, Ruiz-Trillo I. A unicellular relative of animals generates a layer of polarized cells by actomyosin-dependent cellularization. eLife 2019; 8:49801. [PMID: 31647412 PMCID: PMC6855841 DOI: 10.7554/elife.49801] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 10/23/2019] [Indexed: 12/30/2022] Open
Abstract
In animals, cellularization of a coenocyte is a specialized form of cytokinesis that results in the formation of a polarized epithelium during early embryonic development. It is characterized by coordinated assembly of an actomyosin network, which drives inward membrane invaginations. However, whether coordinated cellularization driven by membrane invagination exists outside animals is not known. To that end, we investigate cellularization in the ichthyosporean Sphaeroforma arctica, a close unicellular relative of animals. We show that the process of cellularization involves coordinated inward plasma membrane invaginations dependent on an actomyosin network and reveal the temporal order of its assembly. This leads to the formation of a polarized layer of cells resembling an epithelium. We show that this stage is associated with tightly regulated transcriptional activation of genes involved in cell adhesion. Hereby we demonstrate the presence of a self-organized, clonally-generated, polarized layer of cells in a unicellular relative of animals.
Collapse
Affiliation(s)
- Omaya Dudin
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Andrej Ondracka
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Xavier Grau-Bové
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain.,Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Arthur Ab Haraldsen
- Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Atsushi Toyoda
- Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Japan
| | - Hiroshi Suga
- Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Hiroshima, Japan
| | - Jon Bråte
- Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Iñaki Ruiz-Trillo
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain.,Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain.,ICREA, Barcelona, Spain
| |
Collapse
|
13
|
Newman SA. Inherency and homomorphy in the evolution of development. Curr Opin Genet Dev 2019; 57:1-8. [DOI: 10.1016/j.gde.2019.05.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/15/2019] [Accepted: 05/24/2019] [Indexed: 02/06/2023]
|
14
|
Raza Q, Choi JY, Li Y, O’Dowd RM, Watkins SC, Chikina M, Hong Y, Clark NL, Kwiatkowski AV. Evolutionary rate covariation analysis of E-cadherin identifies Raskol as a regulator of cell adhesion and actin dynamics in Drosophila. PLoS Genet 2019; 15:e1007720. [PMID: 30763317 PMCID: PMC6375579 DOI: 10.1371/journal.pgen.1007720] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 12/07/2018] [Indexed: 12/17/2022] Open
Abstract
The adherens junction couples the actin cytoskeletons of neighboring cells to provide the foundation for multicellular organization. The core of the adherens junction is the cadherin-catenin complex that arose early in the evolution of multicellularity to link actin to intercellular adhesions. Over time, evolutionary pressures have shaped the signaling and mechanical functions of the adherens junction to meet specific developmental and physiological demands. Evolutionary rate covariation (ERC) identifies proteins with correlated fluctuations in evolutionary rate that can reflect shared selective pressures and functions. Here we use ERC to identify proteins with evolutionary histories similar to the Drosophila E-cadherin (DE-cad) ortholog. Core adherens junction components α-catenin and p120-catenin displayed positive ERC correlations with DE-cad, indicating that they evolved under similar selective pressures during evolution between Drosophila species. Further analysis of the DE-cad ERC profile revealed a collection of proteins not previously associated with DE-cad function or cadherin-mediated adhesion. We then analyzed the function of a subset of ERC-identified candidates by RNAi during border cell (BC) migration and identified novel genes that function to regulate DE-cad. Among these, we found that the gene CG42684, which encodes a putative GTPase activating protein (GAP), regulates BC migration and adhesion. We named CG42684 raskol (“to split” in Russian) and show that it regulates DE-cad levels and actin protrusions in BCs. We propose that Raskol functions with DE-cad to restrict Ras/Rho signaling and help guide BC migration. Our results demonstrate that a coordinated selective pressure has shaped the adherens junction and this can be leveraged to identify novel components of the complexes and signaling pathways that regulate cadherin-mediated adhesion. The establishment of intercellular adhesions facilitated the genesis of multicellular organisms. The adherens junction, which links the actin cytoskeletons of neighboring cells, arose early in the evolution of multicellularity and selective pressures have shaped its function and molecular composition over time. In this study, we used evolutionary rate covariation (ERC) analysis to examine the evolutionary history of the adherens junction and to identify proteins that coevolved with the core adherens junction protein Drosophila E-cadherin (DE-cad). ERC analysis of DE-cad revealed a collection of proteins with similar evolutionary histories. We then tested the role of ERC-identified candidates in border cell migration in the fly egg chamber, a process that requires the coordinated regulation of cell-cell adhesion and cell motility. Among these, we found that a previously uncharacterized gene CG42684, which encodes a putative GTPase activating protein (GAP), regulates the collective cell migration of border cells, stabilizes cell-cell adhesions and regulates the actin dynamics. Our results demonstrate that components of the adherens junction share an evolutionary history and that ERC analysis is a powerful method to identify novel components of cell adhesion complexes in Drosophila.
Collapse
Affiliation(s)
- Qanber Raza
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Jae Young Choi
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, United States of America
| | - Yang Li
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Roisin M. O’Dowd
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Simon C. Watkins
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Maria Chikina
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Yang Hong
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Nathan L. Clark
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Adam V. Kwiatkowski
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
15
|
Tiwari P, Mrigwani A, Kaur H, Kaila P, Kumar R, Guptasarma P. Structural-Mechanical and Biochemical Functions of Classical Cadherins at Cellular Junctions: A Review and Some Hypotheses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1112:107-138. [DOI: 10.1007/978-981-13-3065-0_9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
16
|
Rübsam M, Broussard JA, Wickström SA, Nekrasova O, Green KJ, Niessen CM. Adherens Junctions and Desmosomes Coordinate Mechanics and Signaling to Orchestrate Tissue Morphogenesis and Function: An Evolutionary Perspective. Cold Spring Harb Perspect Biol 2018; 10:a029207. [PMID: 28893859 PMCID: PMC6211388 DOI: 10.1101/cshperspect.a029207] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Cadherin-based adherens junctions (AJs) and desmosomes are crucial to couple intercellular adhesion to the actin or intermediate filament cytoskeletons, respectively. As such, these intercellular junctions are essential to provide not only integrity to epithelia and other tissues but also the mechanical machinery necessary to execute complex morphogenetic and homeostatic intercellular rearrangements. Moreover, these spatially defined junctions serve as signaling hubs that integrate mechanical and chemical pathways to coordinate tissue architecture with behavior. This review takes an evolutionary perspective on how the emergence of these two essential intercellular junctions at key points during the evolution of multicellular animals afforded metazoans with new opportunities to integrate adhesion, cytoskeletal dynamics, and signaling. We discuss known literature on cross-talk between the two junctions and, using the skin epidermis as an example, provide a model for how these two junctions function in concert to orchestrate tissue organization and function.
Collapse
Affiliation(s)
- Matthias Rübsam
- University of Cologne, Department of Dermatology, Cologne Excellence Cluster on Stress Responses in Aging Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC) at the CECAD Research Center, 50931 Cologne, Germany
| | - Joshua A Broussard
- Northwestern University Feinberg School of Medicine, Departments of Pathology and Dermatology, the Robert H Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois 60611
| | - Sara A Wickström
- Paul Gerson Unna Group, Skin Homeostasis and Ageing, Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
| | - Oxana Nekrasova
- Northwestern University Feinberg School of Medicine, Departments of Pathology and Dermatology, the Robert H Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois 60611
| | - Kathleen J Green
- Northwestern University Feinberg School of Medicine, Departments of Pathology and Dermatology, the Robert H Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois 60611
| | - Carien M Niessen
- University of Cologne, Department of Dermatology, Cologne Excellence Cluster on Stress Responses in Aging Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC) at the CECAD Research Center, 50931 Cologne, Germany
| |
Collapse
|
17
|
Belahbib H, Renard E, Santini S, Jourda C, Claverie JM, Borchiellini C, Le Bivic A. New genomic data and analyses challenge the traditional vision of animal epithelium evolution. BMC Genomics 2018; 19:393. [PMID: 29793430 PMCID: PMC5968619 DOI: 10.1186/s12864-018-4715-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 04/23/2018] [Indexed: 11/16/2022] Open
Abstract
Background The emergence of epithelia was the foundation of metazoan expansion. Epithelial tissues are a hallmark of metazoans deeply rooted in the evolution of their complex developmental morphogenesis processes. However, studies on the epithelial features of non-bilaterians are still sparse and it remains unclear whether the last common metazoan ancestor possessed a fully functional epithelial toolkit or if it was acquired later during metazoan evolution. Results To investigate the early evolution of animal epithelia, we sequenced the genome and transcriptomes of two new sponge species to characterize epithelial markers such as the E-cadherin complex and the polarity complexes for all classes (Calcarea, Demospongiae, Hexactinellida, Homoscleromorpha) of sponges (phylum Porifera) and compare them with their homologues in Placozoa and in Ctenophora. We found that Placozoa and most sponges possess orthologues of all essential genes encoding proteins characteristic of bilaterian epithelial cells, as well as their conserved interaction domains. In stark contrast, we found that ctenophores lack several major polarity complex components such as the Crumbs complex and Scribble. Furthermore, the E-cadherin ctenophore orthologue exhibits a divergent cytoplasmic domain making it unlikely to interact with its canonical cytoplasmic partners. Conclusions These unexpected findings challenge the current evolutionary paradigm on the emergence of epithelia. Altogether, our results raise doubt on the homology of protein complexes and structures involved in cell polarity and adhesive-type junctions between Ctenophora and Bilateria epithelia. Electronic supplementary material The online version of this article (10.1186/s12864-018-4715-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hassiba Belahbib
- Structural and Genomic Information Laboratory, Aix-Marseille Université & CNRS UMR 7256, Mediterranean Institute of Microbiology (IMM FR 3479), Marseille, France
| | - Emmanuelle Renard
- Aix Marseille Univ, Univ Avignon, CNRS, IRD, UMR 7263, Mediterranean Institute of Marine and Continental Biodiversity and Ecology (IMBE), Station Marine d'Endoume, Marseille, France
| | - Sébastien Santini
- Structural and Genomic Information Laboratory, Aix-Marseille Université & CNRS UMR 7256, Mediterranean Institute of Microbiology (IMM FR 3479), Marseille, France
| | - Cyril Jourda
- Structural and Genomic Information Laboratory, Aix-Marseille Université & CNRS UMR 7256, Mediterranean Institute of Microbiology (IMM FR 3479), Marseille, France
| | - Jean-Michel Claverie
- Structural and Genomic Information Laboratory, Aix-Marseille Université & CNRS UMR 7256, Mediterranean Institute of Microbiology (IMM FR 3479), Marseille, France.
| | - Carole Borchiellini
- Aix Marseille Univ, Univ Avignon, CNRS, IRD, UMR 7263, Mediterranean Institute of Marine and Continental Biodiversity and Ecology (IMBE), Station Marine d'Endoume, Marseille, France.
| | - André Le Bivic
- Aix-Marseille University, CNRS, UMR 7288, Developmental Biology Institute of Marseille Luminy (IBDM), Marseille, France.
| |
Collapse
|
18
|
Manjunath GP, Ramanujam PL, Galande S. Structure function relations in PDZ-domain-containing proteins: Implications for protein networks in cellular signalling. J Biosci 2018; 43:155-171. [PMID: 29485124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Protein scaffolds as essential backbones for organization of supramolecular signalling complexes are a recurrent theme in several model systems. Scaffold proteins preferentially employ linear peptide binding motifs for recruiting their interaction partners. PDZ domains are one of the more commonly encountered peptide binding domains in several proteins including those involved in scaffolding functions. This domain is known for its promiscuity both in terms of ligand selection, mode of interaction with its ligands as well as its association with other protein interaction domains. PDZ domains are subject to several means of regulations by virtue of their functional diversity. Additionally, the PDZ domains are refractive to the effect of mutations and maintain their three-dimensional architecture under extreme mutational load. The biochemical and biophysical basis for this selectivity as well as promiscuity has been investigated and reviewed extensively. The present review focuses on the plasticity inherent in PDZ domains and its implications for modular organization as well as evolution of cellular signalling pathways in higher eukaryotes.
Collapse
Affiliation(s)
- G P Manjunath
- Indian Institute of Science Education and Research, Pune 411 008, India
| | | | | |
Collapse
|
19
|
Structure function relations in PDZ-domain-containing proteins: Implications for protein networks in cellular signalling. J Biosci 2017. [DOI: 10.1007/s12038-017-9727-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
20
|
Abstract
The evolution of a nervous system as a control system of the body's functions is a key innovation of animals. Its fundamental units are neurons, highly specialized cells dedicated to fast cell-cell communication. Neurons pass signals to other neurons, muscle cells, or gland cells at specialized junctions, the synapses, where transmitters are released from vesicles in a Ca2+-dependent fashion to activate receptors in the membrane of the target cell. Reconstructing the origins of neuronal communication out of a more simple process remains a central challenge in biology. Recent genomic comparisons have revealed that all animals, including the nerveless poriferans and placozoans, share a basic set of genes for neuronal communication. This suggests that the first animal, the Urmetazoan, was already endowed with neurosecretory cells that probably started to connect into neuronal networks soon afterward. Here, we discuss scenarios for this pivotal transition in animal evolution.
Collapse
Affiliation(s)
- Frederique Varoqueaux
- Département des Neurosciences Fondamentales, Université de Lausanne, Lausanne, CH-1005 Switzerland; ,
| | - Dirk Fasshauer
- Département des Neurosciences Fondamentales, Université de Lausanne, Lausanne, CH-1005 Switzerland; ,
| |
Collapse
|
21
|
Bachir AI, Horwitz AR, Nelson WJ, Bianchini JM. Actin-Based Adhesion Modules Mediate Cell Interactions with the Extracellular Matrix and Neighboring Cells. Cold Spring Harb Perspect Biol 2017; 9:9/7/a023234. [PMID: 28679638 DOI: 10.1101/cshperspect.a023234] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cell adhesions link cells to the extracellular matrix (ECM) and to each other and depend on interactions with the actin cytoskeleton. Both cell-ECM and cell-cell adhesion sites contain discrete, yet overlapping, functional modules. These modules establish physical associations with the actin cytoskeleton, locally modulate actin organization and dynamics, and trigger intracellular signaling pathways. Interplay between these modules generates distinct actin architectures that underlie different stages, types, and functions of cell-ECM and cell-cell adhesions. Actomyosin contractility is required to generate mature, stable adhesions, as well as to sense and translate the mechanical properties of the cellular environment into changes in cell organization and behavior. Here, we review the organization and function of different adhesion modules and how they interact with the actin cytoskeleton. We highlight the molecular mechanisms of mechanotransduction in adhesions and how adhesion molecules mediate cross talk between cell-ECM and cell-cell adhesion sites.
Collapse
Affiliation(s)
- Alexia I Bachir
- Protein and Cell Analysis, Biosciences Division, Thermo Fisher Scientific, Eugene, Oregon 97402
| | - Alan Rick Horwitz
- Protein and Cell Analysis, Biosciences Division, Thermo Fisher Scientific, Eugene, Oregon 97402
| | - W James Nelson
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22903
| | - Julie M Bianchini
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22903
| |
Collapse
|
22
|
Biswas KH, Zaidel-Bar R. Early events in the assembly of E-cadherin adhesions. Exp Cell Res 2017; 358:14-19. [PMID: 28237244 DOI: 10.1016/j.yexcr.2017.02.037] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 02/20/2017] [Indexed: 12/30/2022]
Abstract
E-cadherin is a calcium dependent cell adhesion molecule that is key to the organization of cells in the epithelial tissue. It is a multidomain, trans-membrane protein in which the extracellular domain forms the homotypic, adhesive interaction while the intracellular domain interacts with the actin cytoskeleton through the catenin family of adaptor proteins. A number of recent studies have provided novel insights into the mechanism of adhesion formation by this class of adhesion proteins. Here, we describe an updated view of the process of E-cadherin adhesion formation with an emphasis on the role of molecular mobility, clustering, and active cellular processes.
Collapse
Affiliation(s)
- Kabir H Biswas
- Mechanobiology Institute, National University of Singapore, Singapore.
| | - Ronen Zaidel-Bar
- Mechanobiology Institute, National University of Singapore, Singapore; Department of Biomedical Engineering, National University of Singapore, Singapore.
| |
Collapse
|
23
|
Babonis LS, Martindale MQ. Phylogenetic evidence for the modular evolution of metazoan signalling pathways. Philos Trans R Soc Lond B Biol Sci 2017; 372:20150477. [PMID: 27994120 PMCID: PMC5182411 DOI: 10.1098/rstb.2015.0477] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2016] [Indexed: 12/12/2022] Open
Abstract
Communication among cells was paramount to the evolutionary increase in cell type diversity and, ultimately, the origin of large body size. Across the diversity of Metazoa, there are only few conserved cell signalling pathways known to orchestrate the complex cell and tissue interactions regulating development; thus, modification to these few pathways has been responsible for generating diversity during the evolution of animals. Here, we summarize evidence for the origin and putative function of the intracellular, membrane-bound and secreted components of seven metazoan cell signalling pathways with a special focus on early branching metazoans (ctenophores, poriferans, placozoans and cnidarians) and basal unikonts (amoebozoans, fungi, filastereans and choanoflagellates). We highlight the modular incorporation of intra- and extracellular components in each signalling pathway and suggest that increases in the complexity of the extracellular matrix may have further promoted the modulation of cell signalling during metazoan evolution. Most importantly, this updated view of metazoan signalling pathways highlights the need for explicit study of canonical signalling pathway components in taxa that do not operate a complete signalling pathway. Studies like these are critical for developing a deeper understanding of the evolution of cell signalling.This article is part of the themed issue 'Evo-devo in the genomics era, and the origins of morphological diversity'.
Collapse
Affiliation(s)
- Leslie S Babonis
- Whitney Lab for Marine Bioscience, University of Florida, St. Augustine, FL 32080, USA
| | - Mark Q Martindale
- Whitney Lab for Marine Bioscience, University of Florida, St. Augustine, FL 32080, USA
| |
Collapse
|
24
|
Abstract
Cell types are the basic building blocks of multicellular organisms and are extensively diversified in animals. Despite recent advances in characterizing cell types, classification schemes remain ambiguous. We propose an evolutionary definition of a cell type that allows cell types to be delineated and compared within and between species. Key to cell type identity are evolutionary changes in the 'core regulatory complex' (CoRC) of transcription factors, that make emergent sister cell types distinct, enable their independent evolution and regulate cell type-specific traits termed apomeres. We discuss the distinction between developmental and evolutionary lineages, and present a roadmap for future research.
Collapse
|
25
|
García-Weber D, Millán J. Parallels between single cell migration and barrier formation: The case of RhoB and Rac1 trafficking. Small GTPases 2016; 9:332-338. [PMID: 27598909 DOI: 10.1080/21541248.2016.1231655] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The appearance of multicellularity implied the adaptation of signaling networks required for unicellular life to new functions arising in this remarkable evolutionary transition. A hallmark of multicellular organisms is the formation of cellular barriers that compartmentalize spaces and functions. Here we discuss recent findings concerning the role of RhoB in the negative control of Rac1 trafficking from endosomes to the cell border, in order to induce membrane extensions to restore endothelial barrier function after acute contraction. This role closely resembles that proposed for RhoB in controlling single cell migration through Rac1, which has also been observed in cancer cell invasion. We highlight these similarities as a signaling paradigm that shows that endothelial barrier integrity is controlled not only by the formation of cell-cell junctions, but also by a balance between ancestral mechanisms of cell spreading and contraction conserved from unicellular organisms and orchestrated by Rho GTPases.
Collapse
Affiliation(s)
| | - Jaime Millán
- a Centro de Biología Molecular Severo Ochoa, CSIC-UAM , Madrid , Spain
| |
Collapse
|
26
|
Clarke DN, Miller PW, Lowe CJ, Weis WI, Nelson WJ. Characterization of the Cadherin-Catenin Complex of the Sea Anemone Nematostella vectensis and Implications for the Evolution of Metazoan Cell-Cell Adhesion. Mol Biol Evol 2016; 33:2016-29. [PMID: 27189570 PMCID: PMC4948710 DOI: 10.1093/molbev/msw084] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The cadherin-catenin complex (CCC) mediates cell-cell adhesion in bilaterian animals by linking extracellular cadherin-based adhesions to the actin cytoskeleton. However, it is unknown whether the basic organization of the complex is conserved across all metazoans. We tested whether protein interactions and actin-binding properties of the CCC are conserved in a nonbilaterian animal, the sea anemone Nematostella vectensis We demonstrated that N. vectensis has a complete repertoire of cadherin-catenin proteins, including two classical cadherins, one α-catenin, and one β-catenin. Using size-exclusion chromatography and multi-angle light scattering, we showed that α-catenin and β-catenin formed a heterodimer that bound N. vectensis Cadherin-1 and -2. Nematostella vectensis α-catenin bound F-actin with equivalent affinity as either a monomer or an α/β-catenin heterodimer, and its affinity for F-actin was, in part, regulated by a novel insert between the N- and C-terminal domains. Nematostella vectensis α-catenin inhibited Arp2/3 complex-mediated nucleation of actin filaments, a regulatory property previously thought to be unique to mammalian αE-catenin. Thus, despite significant differences in sequence, the key interactions of the CCC are conserved between bilaterians and cnidarians, indicating that the core function of the CCC as a link between cell adhesions and the actin cytoskeleton is ancestral in the eumetazoans.
Collapse
Affiliation(s)
| | - Phillip W Miller
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine
| | | | - William I Weis
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine Department of Structural Biology, Stanford University School of Medicine
| | - William James Nelson
- Department of Biology, Stanford University Department of Molecular and Cellular Physiology, Stanford University School of Medicine
| |
Collapse
|
27
|
Choanoflagellate models - Monosiga brevicollis and Salpingoeca rosetta. Curr Opin Genet Dev 2016; 39:42-47. [PMID: 27318693 DOI: 10.1016/j.gde.2016.05.016] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 05/23/2016] [Accepted: 05/26/2016] [Indexed: 11/21/2022]
Abstract
Choanoflagellates are the closest single-celled relatives of animals and provide fascinating insights into developmental processes in animals. Two species, the choanoflagellates Monosiga brevicollis and Salpingoeca rosetta are emerging as promising model organisms to reveal the evolutionary origin of key animal innovations. In this review, we highlight how choanoflagellates are used to study the origin of multicellularity in animals. The newly available genomic resources and functional techniques provide important insights into the function of choanoflagellate pre- and postsynaptic proteins, cell-cell adhesion and signaling molecules and the evolution of animal filopodia and thus underscore the relevance of choanoflagellate models for evolutionary biology, neurobiology and cell biology research.
Collapse
|
28
|
Murata A, Hayashi SI. Notch-Mediated Cell Adhesion. BIOLOGY 2016; 5:biology5010005. [PMID: 26784245 PMCID: PMC4810162 DOI: 10.3390/biology5010005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 01/12/2016] [Accepted: 01/13/2016] [Indexed: 02/06/2023]
Abstract
Notch family members are generally recognized as signaling molecules that control various cellular responses in metazoan organisms. Early fly studies and our mammalian studies demonstrated that Notch family members are also cell adhesion molecules; however, information on the physiological roles of this function and its origin is limited. In this review, we discuss the potential present and ancestral roles of Notch-mediated cell adhesion in order to explore its origin and the initial roles of Notch family members dating back to metazoan evolution. We hypothesize that Notch family members may have initially emerged as cell adhesion molecules in order to mediate multicellularity in the last common ancestor of metazoan organisms.
Collapse
Affiliation(s)
- Akihiko Murata
- Department of Molecular and Cellular Biology, Division of Immunology, School of Life Science, Faculty of Medicine, Tottori University, Yonago, Tottori 683-8503, Japan.
| | - Shin-Ichi Hayashi
- Department of Molecular and Cellular Biology, Division of Immunology, School of Life Science, Faculty of Medicine, Tottori University, Yonago, Tottori 683-8503, Japan.
| |
Collapse
|
29
|
Jack of all trades: functional modularity in the adherens junction. Curr Opin Cell Biol 2015; 36:32-40. [DOI: 10.1016/j.ceb.2015.06.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 05/20/2015] [Accepted: 06/30/2015] [Indexed: 11/22/2022]
|
30
|
Nam HJ, Kim I, Bowie JU, Kim S. Metazoans evolved by taking domains from soluble proteins to expand intercellular communication network. Sci Rep 2015; 5:9576. [PMID: 25923201 PMCID: PMC4894438 DOI: 10.1038/srep09576] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 03/09/2015] [Indexed: 12/15/2022] Open
Abstract
A central question in animal evolution is how multicellular animals evolved from unicellular ancestors. We hypothesize that membrane proteins must be key players in the development of multicellularity because they are well positioned to form the cell-cell contacts and to provide the intercellular communication required for the creation of complex organisms. Here we find that a major mechanism for the necessary increase in membrane protein complexity in the transition from non-metazoan to metazoan life was the new incorporation of domains from soluble proteins. The membrane proteins that have incorporated soluble domains in metazoans are enriched in many of the functions unique to multicellular organisms such as cell-cell adhesion, signaling, immune defense and developmental processes. They also show enhanced protein-protein interaction (PPI) network complexity and centrality, suggesting an important role in the cellular diversification found in complex organisms. Our results expose an evolutionary mechanism that contributed to the development of higher life forms.
Collapse
Affiliation(s)
- Hyun-Jun Nam
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, 790-784, Korea
| | - Inhae Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 790-784, Korea
| | - James U Bowie
- Department of Chemistry and Biochemistry, UCLA-DOE Institute of Genomics and Proteomics, Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California 90095-1570, United States
| | - Sanguk Kim
- 1] School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, 790-784, Korea [2] Department of Life Sciences, Pohang University of Science and Technology, Pohang, 790-784, Korea
| |
Collapse
|
31
|
Wu Y, Kanchanawong P, Zaidel-Bar R. Actin-delimited adhesion-independent clustering of E-cadherin forms the nanoscale building blocks of adherens junctions. Dev Cell 2015; 32:139-54. [PMID: 25600236 DOI: 10.1016/j.devcel.2014.12.003] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 10/20/2014] [Accepted: 12/01/2014] [Indexed: 11/16/2022]
Abstract
E-cadherin is the major adhesion receptor in epithelial adherens junctions, which connect cells to form tissues and are essential for morphogenesis and homeostasis. The mechanism by which E-cadherin monomers cluster and become organized in adherens junctions remains poorly understood. Here, using superresolution microscopy techniques in combination with structure-informed functional mutations, we found that loosely organized clusters of approximately five E-cadherin molecules that form independently of cis or trans interactions, and that are delimited by the cortical F-actin meshwork, are the precursors of trans-ligated adhesive clusters that make up the adherens junction. The density of E-cadherin clusters was wide ranged, and notably, we could detect densities consistent with the crystal lattice structure at the core of adhesive clusters, which were dependent on extracellular domain interactions. Thus, our results elucidate the nanoscale architecture of adherens junctions, as well as the molecular mechanisms driving its assembly.
Collapse
Affiliation(s)
- Yao Wu
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - Pakorn Kanchanawong
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore; Department of Biomedical Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Ronen Zaidel-Bar
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore; Department of Biomedical Engineering, National University of Singapore, Singapore 117575, Singapore.
| |
Collapse
|