1
|
Zhi Y, Yu J, Zhong Y, Fu H, Zhou X, Yi W, Yuan L, Xu Z, Xu D. WDR62 controls cortical radial migration and callosal projection of neurons in the developing cerebral cortex. Neurobiol Dis 2025; 211:106951. [PMID: 40349858 DOI: 10.1016/j.nbd.2025.106951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 05/07/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025] Open
Abstract
WD repeat domain 62 (WDR62) was identified as the second most causative gene of autosomal recessive primary microcephaly (MCPH) frequently associated structural abnormalities such as lissencephaly, polymicrogyria as well as hypoplasia of the corpus callosum, however, underlining mechanism behind these abnormality remains unknown. Here we show that either ablation of WDR62 in neural progenitor cells (NPCs) or post-mitotic neurons both impedes cortical neuronal radial migration in the developing brain. WDR62 modulates the transition from multipolar to bipolar states in migrating neurons and ensures the accurate formation of contralateral projections of callosal neurons. Our results further indicated that ASD-related mutations in WDR62 are associated with a reduced capacity for neuronal migration in the developing brain. Finally, we provide the molecular evidence that the levels of Reelin, a key modulator of neuronal migration and high confidence ASD candidate gene, were significantly reduced in the brains of Wdr62 deficient mice. These finding define critical roles for WDR62 in cortical neuronal radial migration and callosal projection which provides insights into the pathogenesis of WDR62 deficiency-related brain dysplasia.
Collapse
Affiliation(s)
- Yiqiang Zhi
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350005, China
| | - Jurui Yu
- College of Biological Science and Engineering, Institute of Life Sciences, Fuzhou University, Fuzhou 350108, China
| | - Yilin Zhong
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350005, China
| | - Honggao Fu
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350005, China
| | - Xiaokun Zhou
- College of Biological Science and Engineering, Institute of Life Sciences, Fuzhou University, Fuzhou 350108, China
| | - Wenxiang Yi
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350005, China
| | - Ling Yuan
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410028, China
| | - Zhiheng Xu
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Dan Xu
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350005, China.
| |
Collapse
|
2
|
Deng H, Tong S, Shen D, Zhang S, Fu Y. The characteristics of excitatory lineage differentiation and the developmental conservation in Reeler neocortex. Cell Prolif 2024; 57:e13587. [PMID: 38084819 PMCID: PMC11056708 DOI: 10.1111/cpr.13587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/21/2023] [Accepted: 11/29/2023] [Indexed: 04/30/2024] Open
Abstract
The majority of neocortical projection neurons are generated indirectly from radial glial cells (RGCs) mediated by intermediate progenitor cells (IPCs) in mice. IPCs are thought to be a great breakthrough in the evolutionary expansion of the mammalian neocortex. However, the precise ratio of neuron production from IPCs and characteristics of RGC differentiation process are still unclear. Our study revealed that direct neurogenesis was seldom observed and increased slightly at late embryonic stage. Besides, we conducted retrovirus sparse labelling combined carboxyfluorescein diacetate succinimide ester (CFSE) and Tbr2-CreER strain to reconstruct individual lineage tree in situ. The lineage trees simulated the output of RGCs at per round of division in sequence with high temporal, spatial and cellular resolution at P7. We then demonstrated that only 1.90% of neurons emanated from RGCs directly in mouse cerebral neocortex and 79.33% of RGCs contributed to the whole clones through IPCs. The contribution of indirect neurogenesis was underestimated previously because approximately a quarter of IPC-derived neurons underwent apoptosis. Here, we also showed that abundant IPCs from first-generation underwent self-renewing division and generated four neurons ultimately. We confirmed that the intermediate proliferative progenitors expressed higher Cux2 characteristically at early embryonic stage. Finally, we validated that the characteristics of neurogenetic process in lineages and developmental fate of neurons were conserved in Reeler mice. This study contributes to further understanding of neurogenesis in neocortical development.
Collapse
Affiliation(s)
- Huan‐Huan Deng
- Jing'an District Central Hospital of Shanghai, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain ScienceFudan UniversityShanghaiChina
| | - Shi‐Yuan Tong
- Jing'an District Central Hospital of Shanghai, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain ScienceFudan UniversityShanghaiChina
| | - Dan Shen
- Jing'an District Central Hospital of Shanghai, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain ScienceFudan UniversityShanghaiChina
| | - Shu‐Qing Zhang
- Jing'an District Central Hospital of Shanghai, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain ScienceFudan UniversityShanghaiChina
| | - Yinghui Fu
- Jing'an District Central Hospital of Shanghai, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain ScienceFudan UniversityShanghaiChina
| |
Collapse
|
3
|
Elorriaga V, Pierani A, Causeret F. Cajal-retzius cells: Recent advances in identity and function. Curr Opin Neurobiol 2023; 79:102686. [PMID: 36774666 DOI: 10.1016/j.conb.2023.102686] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/29/2022] [Accepted: 01/08/2023] [Indexed: 02/12/2023]
Abstract
Cajal-Retzius cells (CRs) are a transient neuronal type of the developing cerebral cortex. Over the years, they have been shown or proposed to play important functions in neocortical and hippocampal morphogenesis, circuit formation, brain evolution and human pathology. Because of their short lifespan, CRs have been pictured as a purely developmental cell type, whose production and active elimination are both required for correct brain development. In this review, we present some of the findings that allow us to better appreciate the identity and diversity of this very special cell type, and propose a unified definition of what should be considered a Cajal-Retzius cell, especially when working with non-mammalian species or organoids. In addition, we highlight a flurry of recent studies pointing to the importance of CRs in the assembly of functional and dysfunctional cortical networks.
Collapse
Affiliation(s)
- Vicente Elorriaga
- Université Paris Cité, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, F-75015 Paris, France; Université Paris Cité, INSERM U1266, Institute of Psychiatry and Neuroscience of Paris, F-75014 Paris, France
| | - Alessandra Pierani
- Université Paris Cité, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, F-75015 Paris, France; Université Paris Cité, INSERM U1266, Institute of Psychiatry and Neuroscience of Paris, F-75014 Paris, France; GHU-Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, F-75014 Paris, France.
| | - Frédéric Causeret
- Université Paris Cité, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, F-75015 Paris, France; Université Paris Cité, INSERM U1266, Institute of Psychiatry and Neuroscience of Paris, F-75014 Paris, France.
| |
Collapse
|
4
|
Mezheritskiy MI, Dyakonova VE. Direct and Inherited Epigenetic Changes in the Nervous System Caused by Intensive Locomotion: Possible Adaptive Significance. Russ J Dev Biol 2022. [DOI: 10.1134/s1062360422050058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Abstract
This review is devoted to the analysis of works that investigated the long-term effects of species-specific forms of intensive locomotion on the cognitive functions of animals and humans, which can be transmitted to the next generation. To date, the anxiolytic and cognitive-enhancing long-term effects of intensive locomotion have been demonstrated in humans, rodents, fish, insects, mollusks, and nematodes. In rodents, changes in the central nervous system caused by intense locomotion can be transmitted through the maternal and paternal line to the descendants of the first generation. These include reduced anxiety, improved spatial learning and memory, increased levels of brain neurotrophic factor and vascular endothelial growth factor in the hippocampus and frontal cortex. The shift of the balance of histone acetylation in the hippocampus of rodents towards hyperacetylation, and the balance of DNA methylation towards demethylation manifests itself both as a direct and as a first-generation inherited effect of motor activity. The question about the mechanisms that link locomotion with an increase in the plasticity of a genome in the brain of descendants remains poorly understood, and invertebrate model organisms can be an ideal object for its study. Currently, there is a lack of a theoretical model explaining why motor activity leads to long-term improvement of some cognitive functions that can be transmitted to the next generation and why such an influence could have appeared in evolution. The answer to these questions is not only of fundamental interest, but it is necessary for predicting therapeutic and possible side effects of motor activity in humans. In this regard, the article pays special attention to the review of ideas on the evolutionary aspects of the problem. We propose our own hypothesis, according to which the activating effect of intensive locomotion on the function of the nervous system could have been formed in evolution as a preadaptation to a possible entry into a new environment.
Collapse
|
5
|
Ossola C, Kalebic N. Roots of the Malformations of Cortical Development in the Cell Biology of Neural Progenitor Cells. Front Neurosci 2022; 15:817218. [PMID: 35069108 PMCID: PMC8766818 DOI: 10.3389/fnins.2021.817218] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/14/2021] [Indexed: 12/13/2022] Open
Abstract
The cerebral cortex is a structure that underlies various brain functions, including cognition and language. Mammalian cerebral cortex starts developing during the embryonic period with the neural progenitor cells generating neurons. Newborn neurons migrate along progenitors’ radial processes from the site of their origin in the germinal zones to the cortical plate, where they mature and integrate in the forming circuitry. Cell biological features of neural progenitors, such as the location and timing of their mitoses, together with their characteristic morphologies, can directly or indirectly regulate the abundance and the identity of their neuronal progeny. Alterations in the complex and delicate process of cerebral cortex development can lead to malformations of cortical development (MCDs). They include various structural abnormalities that affect the size, thickness and/or folding pattern of the developing cortex. Their clinical manifestations can entail a neurodevelopmental disorder, such as epilepsy, developmental delay, intellectual disability, or autism spectrum disorder. The recent advancements of molecular and neuroimaging techniques, along with the development of appropriate in vitro and in vivo model systems, have enabled the assessment of the genetic and environmental causes of MCDs. Here we broadly review the cell biological characteristics of neural progenitor cells and focus on those features whose perturbations have been linked to MCDs.
Collapse
|
6
|
Nelson MM, Hoff JD, Zeese ML, Corfas G. Poly (ADP-Ribose) Polymerase 1 Regulates Cajal-Retzius Cell Development and Neural Precursor Cell Adhesion. Front Cell Dev Biol 2021; 9:693595. [PMID: 34708032 PMCID: PMC8542860 DOI: 10.3389/fcell.2021.693595] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 09/16/2021] [Indexed: 11/13/2022] Open
Abstract
Poly (ADP-ribose) polymerase 1 (PARP1) is a ubiquitously expressed enzyme that regulates DNA damage repair, cell death, inflammation, and transcription. PARP1 functions by adding ADP-ribose polymers (PAR) to proteins including itself, using NAD+ as a donor. This post-translational modification known as PARylation results in changes in the activity of PARP1 and its substrate proteins and has been linked to the pathogenesis of various neurological diseases. PARP1 KO mice display schizophrenia-like behaviors, have impaired memory formation, and have defects in neuronal proliferation and survival, while mutations in genes that affect PARylation have been associated with intellectual disability, psychosis, neurodegeneration, and stroke in humans. Yet, the roles of PARP1 in brain development have not been extensively studied. We now find that loss of PARP1 leads to defects in brain development and increased neuronal density at birth. We further demonstrate that PARP1 loss increases the expression levels of genes associated with neuronal migration and adhesion in the E15.5 cerebral cortex, including Reln. This correlates with an increased number of Cajal–Retzius (CR) cells in vivo and in cultures of embryonic neural progenitor cells (NPCs) derived from the PARP1 KO cortex. Furthermore, PARP1 loss leads to increased NPC adhesion to N-cadherin, like that induced by experimental exposure to Reelin. Taken together, these results uncover a novel role for PARP1 in brain development, i.e., regulation of CR cells, neuronal density, and cell adhesion.
Collapse
Affiliation(s)
- Megan M Nelson
- Kresge Hearing Research Institute and Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, MI, United States.,Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, United States
| | - J Damon Hoff
- Single Molecule Analysis in Real-Time Center, Department of Biophysics, University of Michigan, Ann Arbor, MI, United States
| | - Mya L Zeese
- Kresge Hearing Research Institute and Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, MI, United States.,Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Gabriel Corfas
- Kresge Hearing Research Institute and Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, MI, United States.,Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
7
|
Liu Y, Wang Y, Yuan W, Dong F, Zhen F, Liu J, Yang L, Qu X, Yao R. Reelin promotes oligodendrocyte precursors migration via the Wnt/β-catenin signaling pathway. Neurol Res 2021; 43:543-552. [PMID: 33616025 DOI: 10.1080/01616412.2021.1888604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/07/2021] [Indexed: 10/22/2022]
Abstract
Objectives: The extracellular matrix glycoprotein Reelin plays an important role in the development of the central nervous system and is involved in neurogenesis, neuronal polarization and migration. Although it has been reported that Reelin and its receptor are expressed in oligodendrocyte precursors (OPCs), the main functions and possible mechanism of Reelin in OPCs remain unclear.Methods: In this study, immunofluorescence staining was used to detect the expressions of A2B5, PDGFRα, Reelin, VLDLR and Dab1 in OPCs. The expression of p-Dab1 in OPCs which was treated with Reelin at different concentrations was assayed by western blot. Effects of Reelin on the proliferation of OPCs was measured by EdU and CCK-8. Annexin V-FITC/PI assayed the effect of Reelin on the apoptosis of OPCs. Effects of Reelin on the migration ability of OPCs were detected by the scratch test and transwell experiments. Immunoblotting was used to measure the activation of Wnt/β-catenin signaling with Reelin, while transwell experiments were performed to verify the migration of OPCs under the activation of Wnt/β-catenin signaling.Results: Results showed that the receptor of Reelin, very-low-density lipoprotein receptor (VLDLR), and its adaptor protein, Dab1, are highly expressed in A2B5/PDGFRα double-positive OPCs. Recombinant Reelin protein promoted OPCs migration in vitro but had no obvious effects on proliferation or apoptosis. Reelin also promoted the phosphorylation of Dab1 and increased the expression of β-catenin in OPCs. WIKI4, an inhibitor of Wnt/β-catenin signaling, suppressed the migration of OPCs induced by Reelin.Conclusion: The present study indicated that Reelin promotes OPCs migration via the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Yaping Liu
- Laboratory of National Experimental Teaching and Demonstration Center of Basic Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, PRC
| | - Yuanyuan Wang
- Pediatrics, Nanjing Tongren Hospital, Nanjing, Jiangsu, PRC
| | - Wen Yuan
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu, PRC
| | - Fuxing Dong
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu, PRC
| | - Fei Zhen
- Department of Pathology, Hongze District People's Hospital, Huai 'an, Jiangsu, PRC
| | - Jing Liu
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu, PRC
| | - Lihua Yang
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu, PRC
| | - Xuebin Qu
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu, PRC
| | - Ruiqin Yao
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu, PRC
| |
Collapse
|
8
|
Cederquist GY, Tchieu J, Callahan SJ, Ramnarine K, Ryan S, Zhang C, Rittenhouse C, Zeltner N, Chung SY, Zhou T, Chen S, Betel D, White RM, Tomishima M, Studer L. A Multiplex Human Pluripotent Stem Cell Platform Defines Molecular and Functional Subclasses of Autism-Related Genes. Cell Stem Cell 2021; 27:35-49.e6. [PMID: 32619517 DOI: 10.1016/j.stem.2020.06.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/26/2020] [Accepted: 06/05/2020] [Indexed: 01/12/2023]
Abstract
Autism is a clinically heterogeneous neurodevelopmental disorder characterized by impaired social interactions, restricted interests, and repetitive behaviors. Despite significant advances in the genetics of autism, understanding how genetic changes perturb brain development and affect clinical symptoms remains elusive. Here, we present a multiplex human pluripotent stem cell (hPSC) platform, in which 30 isogenic disease lines are pooled in a single dish and differentiated into prefrontal cortex (PFC) lineages to efficiently test early-developmental hypotheses of autism. We define subgroups of autism mutations that perturb PFC neurogenesis and are correlated to abnormal WNT/βcatenin responses. Class 1 mutations (8 of 27) inhibit while class 2 mutations (5 of 27) enhance PFC neurogenesis. Remarkably, autism patient data reveal that individuals carrying subclass-specific mutations differ clinically in their corresponding language acquisition profiles. Our study provides a framework to disentangle genetic heterogeneity associated with autism and points toward converging molecular and developmental pathways of diverse autism-associated mutations.
Collapse
Affiliation(s)
- Gustav Y Cederquist
- The Center for Stem Cell Biology, Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA; Weill-Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10065, USA
| | - Jason Tchieu
- The Center for Stem Cell Biology, Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Scott J Callahan
- The Center for Stem Cell Biology, Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA; Cancer Genetics and Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA; Gerstner Graduate School of Biomedical Sciences, Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Kiran Ramnarine
- The Center for Stem Cell Biology, Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Sean Ryan
- The Center for Stem Cell Biology, Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Chao Zhang
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA; Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Chelsea Rittenhouse
- The Center for Stem Cell Biology, Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Nadja Zeltner
- The Center for Stem Cell Biology, Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA; Center for Molecular Medicine, Department of Cellular Biology, Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Sun Young Chung
- The Center for Stem Cell Biology, Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Ting Zhou
- The Center for Stem Cell Biology, Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA; Department of Surgery, Weill Cornell Medical College, New York, NY 10065, USA
| | - Shuibing Chen
- Department of Surgery, Weill Cornell Medical College, New York, NY 10065, USA
| | - Doron Betel
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA; Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Richard M White
- Cancer Genetics and Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Mark Tomishima
- The Center for Stem Cell Biology, Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Lorenz Studer
- The Center for Stem Cell Biology, Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA.
| |
Collapse
|
9
|
A Highly Conserved Circular RNA Is Required to Keep Neural Cells in a Progenitor State in the Mammalian Brain. Cell Rep 2021; 30:2170-2179.e5. [PMID: 32075758 DOI: 10.1016/j.celrep.2020.01.083] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 11/19/2019] [Accepted: 01/23/2020] [Indexed: 11/22/2022] Open
Abstract
circSLC45A4 is the main RNA splice isoform produced from its genetic locus and one of the highest expressed circRNAs in the developing human frontal cortex. Knockdown of this highly conserved circRNA in a human neuroblastoma cell line is sufficient to induce spontaneous neuronal differentiation, measurable by increased expression of neuronal marker genes. Depletion of circSlc45a4 in the developing mouse cortex causes a significant reduction of the basal progenitor pool and increases the expression of neurogenic regulators. Furthermore, knockdown of circSlc45a4a induces a significant depletion of cells in the cortical plate. In addition, deconvolution of the bulk RNA-seq data with the help of single-cell RNA-seq data validates the depletion of basal progenitors and reveals an increase in Cajal-Retzius cells. In summary, we present a detailed study of a highly conserved circular RNA that is necessary to maintain the pool of neural progenitors in vitro and in vivo.
Collapse
|
10
|
Atkins A, Xu MJ, Li M, Rogers NP, Pryzhkova MV, Jordan PW. SMC5/6 is required for replication fork stability and faithful chromosome segregation during neurogenesis. eLife 2020; 9:e61171. [PMID: 33200984 PMCID: PMC7723410 DOI: 10.7554/elife.61171] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 11/16/2020] [Indexed: 12/21/2022] Open
Abstract
Mutations of SMC5/6 components cause developmental defects, including primary microcephaly. To model neurodevelopmental defects, we engineered a mouse wherein Smc5 is conditionally knocked out (cKO) in the developing neocortex. Smc5 cKO mice exhibited neurodevelopmental defects due to neural progenitor cell (NPC) apoptosis, which led to reduction in cortical layer neurons. Smc5 cKO NPCs formed DNA bridges during mitosis and underwent chromosome missegregation. SMC5/6 depletion triggers a CHEK2-p53 DNA damage response, as concomitant deletion of the Trp53 tumor suppressor or Chek2 DNA damage checkpoint kinase rescued Smc5 cKO neurodevelopmental defects. Further assessment using Smc5 cKO and auxin-inducible degron systems demonstrated that absence of SMC5/6 leads to DNA replication stress at late-replicating regions such as pericentromeric heterochromatin. In summary, SMC5/6 is important for completion of DNA replication prior to entering mitosis, which ensures accurate chromosome segregation. Thus, SMC5/6 functions are critical in highly proliferative stem cells during organism development.
Collapse
Affiliation(s)
- Alisa Atkins
- Biochemistry and Molecular Biology Department, Johns Hopkins University Bloomberg School of Public HealthBaltimoreUnited States
| | - Michelle J Xu
- Biochemistry and Molecular Biology Department, Johns Hopkins University Bloomberg School of Public HealthBaltimoreUnited States
| | - Maggie Li
- Biochemistry and Molecular Biology Department, Johns Hopkins University Bloomberg School of Public HealthBaltimoreUnited States
| | - Nathaniel P Rogers
- Biochemistry and Molecular Biology Department, Johns Hopkins University Bloomberg School of Public HealthBaltimoreUnited States
| | - Marina V Pryzhkova
- Biochemistry and Molecular Biology Department, Johns Hopkins University Bloomberg School of Public HealthBaltimoreUnited States
| | - Philip W Jordan
- Biochemistry and Molecular Biology Department, Johns Hopkins University Bloomberg School of Public HealthBaltimoreUnited States
| |
Collapse
|
11
|
Hatakeyama J, Shimamura K. The Pace of Neurogenesis Is Regulated by the Transient Retention of the Apical Endfeet of Differentiating Cells. Cereb Cortex 2020; 29:3725-3737. [PMID: 30307484 DOI: 10.1093/cercor/bhy252] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 09/08/2018] [Accepted: 09/13/2018] [Indexed: 01/08/2023] Open
Abstract
The development of the mammalian cerebral cortex involves a variety of temporally organized events such as successive waves of neuronal production and the transition of progenitor competence for each neuronal subtype generated. The number of neurons generated in a certain time period, that is, the rate of neuron production, varies across the regions of the brain and the specific developmental stage; however, the underlying mechanism of this process is poorly understood. We have recently found that nascent neurons communicate with undifferentiated progenitors and thereby regulate neurogenesis, through a transiently retained apical endfoot that signals via the Notch pathway. Here, we report that the retention time length of the neuronal apical endfoot correlates with the rate of neuronal production in the developing mouse cerebral cortex. We further demonstrate that a forced reduction or extension of the retention period through the disruption or stabilization of adherens junction, respectively, resulted in the acceleration or deceleration of neurogenesis, respectively. Our results suggest that the apical endfeet of differentiating cells serve as a pace controller for neurogenesis, thereby assuring the well-proportioned laminar organization of the neocortex.
Collapse
Affiliation(s)
- Jun Hatakeyama
- Department of Brain Morphogenesis, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, Japan
| | - Kenji Shimamura
- Department of Brain Morphogenesis, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, Japan
| |
Collapse
|
12
|
Li X, Fan W, Yao A, Song H, Ge Y, Yan M, Shan Y, Zhang C, Li P, Jia L. Downregulation of reelin predicts poor prognosis for glioma. Biomark Med 2020; 14:651-663. [PMID: 32613843 DOI: 10.2217/bmm-2019-0609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aim: In the present study, we studied the relationship between RELN and prognosis in glioma. Materials & methods: Expression profiles and methylation data of RELN were obtained from bioinformatic datasets. Correlations between RELN and clinicopathological features and overall survival were respectively assessed using chi-square test and Kaplan-Meier analysis. Results: RELN was downregulated in glioma, and its downregulation correlated well with glioma malignancy and overall survival. Meanwhile, hypermethylation of RELN was significantly correlated with low RELN expression. Additionally, gene set enrichment analysis demonstrated that low expression of RELN correlated with many key cancer pathways, possibly highlighting the importance of RELN in carcinogenesis of brain. Conclusion: RELN may serve as a potential prognostic marker and promising target molecule for new therapy of glioma.
Collapse
Affiliation(s)
- Xueli Li
- Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Wange Fan
- Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Anhui Yao
- Department of Neurosurgery, The General Hospital of PLA, Beijing, China.,Department of Neurosurgery, 988th Hospital of Chinese People's Liberation Army, Zhengzhou, Henan Province, PR China
| | - Huiling Song
- Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yunxiao Ge
- Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Mengyao Yan
- Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yubo Shan
- Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Chujie Zhang
- Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Pu Li
- Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Liyun Jia
- Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| |
Collapse
|
13
|
The Reeler Mouse: A Translational Model of Human Neurological Conditions, or Simply a Good Tool for Better Understanding Neurodevelopment? J Clin Med 2019; 8:jcm8122088. [PMID: 31805691 PMCID: PMC6947477 DOI: 10.3390/jcm8122088] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/26/2019] [Accepted: 11/28/2019] [Indexed: 12/25/2022] Open
Abstract
The first description of the Reeler mutation in mouse dates to more than fifty years ago, and later, its causative gene (reln) was discovered in mouse, and its human orthologue (RELN) was demonstrated to be causative of lissencephaly 2 (LIS2) and about 20% of the cases of autosomal-dominant lateral temporal epilepsy (ADLTE). In both human and mice, the gene encodes for a glycoprotein referred to as reelin (Reln) that plays a primary function in neuronal migration during development and synaptic stabilization in adulthood. Besides LIS2 and ADLTE, RELN and/or other genes coding for the proteins of the Reln intracellular cascade have been associated substantially to other conditions such as spinocerebellar ataxia type 7 and 37, VLDLR-associated cerebellar hypoplasia, PAFAH1B1-associated lissencephaly, autism, and schizophrenia. According to their modalities of inheritances and with significant differences among each other, these neuropsychiatric disorders can be modeled in the homozygous (reln−/−) or heterozygous (reln+/−) Reeler mouse. The worth of these mice as translational models is discussed, with focus on their construct and face validity. Description of face validity, i.e., the resemblance of phenotypes between the two species, centers onto the histological, neurochemical, and functional observations in the cerebral cortex, hippocampus, and cerebellum of Reeler mice and their human counterparts.
Collapse
|
14
|
Mao R, Deng R, Wei Y, Han L, Meng Y, Xie W, Jia Z. LIMK1 and LIMK2 regulate cortical development through affecting neural progenitor cell proliferation and migration. Mol Brain 2019; 12:67. [PMID: 31319858 PMCID: PMC6637558 DOI: 10.1186/s13041-019-0487-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/02/2019] [Indexed: 02/06/2023] Open
Abstract
LIMK1 and LIMK2 are key downstream targets to mediate the effects of the Rho family small GTPases and p21-activated kinases (PAK) in the regulation of the actin cytoskeleton. LIMKs are also critical for synaptic transmission, plasticity and memory formation. Changes in LIMK signaling are associated with several neurodevelopmental and neurodegenerative diseases, including autism, intellectual disability and Alzheimer's disease. However, the role of LIMK signaling in brain development remains unknown. In this study, we used LIMK1 KO and LIMK2 KO mice to investigate the role of LIMK signaling in the cerebral cortical development. We found that these KO mice are reduced in the number of pyramidal neurons in upper cortical layers and this reduction is accompanied by a smaller pool of neural progenitor cells and impaired neuronal migration. These results are similar to those found in PAK1 KO mice and suggest that LIMK-dependent actin regulation may play a key role in mediating the effects of PAK1 and Rho signaling in the regulation of cortical development.
Collapse
Affiliation(s)
- Rui Mao
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, 2 Sipailou Road, Nanjing, 210096, China
| | - Rui Deng
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, 2 Sipailou Road, Nanjing, 210096, China
| | - Yan Wei
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, 2 Sipailou Road, Nanjing, 210096, China
| | - Lifang Han
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, 2 Sipailou Road, Nanjing, 210096, China
| | - Yanghong Meng
- Neurosciences & Mental Health, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 1X8, Canada
| | - Wei Xie
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, 2 Sipailou Road, Nanjing, 210096, China.
| | - Zhengping Jia
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, 2 Sipailou Road, Nanjing, 210096, China. .,Neurosciences & Mental Health, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 1X8, Canada. .,Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
15
|
Dlugosz P, Tresky R, Nimpf J. Differential Action of Reelin on Oligomerization of ApoER2 and VLDL Receptor in HEK293 Cells Assessed by Time-Resolved Anisotropy and Fluorescence Lifetime Imaging Microscopy. Front Mol Neurosci 2019; 12:53. [PMID: 30873003 PMCID: PMC6403468 DOI: 10.3389/fnmol.2019.00053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 02/12/2019] [Indexed: 01/12/2023] Open
Abstract
The canonical Reelin signaling cascade regulates correct neuronal layering during embryonic brain development. Details of this pathway are still not fully understood since the participating components are highly variable and create a complex mixture of interacting molecules. Reelin is proteolytically processed resulting in five different fragments some of which carrying the binding site for two different but highly homologous receptors, apolipoprotein E receptor 2 (ApoER2) and very low density lipoprotein receptor (VLDLR). The receptors are expressed in different variants in different areas of the developing brain. Binding of Reelin and its central fragment to the receptors results in phosphorylation of the intracellular adapter disabled-1 (Dab1) in neurons. Here, we studied the changes of the arrangement of the receptors upon Reelin binding and its central fragment at the molecular level in human embryonic kidney 293 (HEK293) cells by time-resolved anisotropy and fluorescence lifetime imaging microscopy (FLIM). In the off-state of the pathway ApoER2 and VLDLR form homo or hetero-di/oligomers. Upon binding of full length Reelin ApoER2 and VLDLR homo-oligomers are rearranged to higher order receptor clusters which leads to Dab1 phosphorylation. When the central fragment of Reelin binds to the receptors the cluster size of homo-oligomers is not affected and Dab1 is not phosphorylated. Hetero-oligomerization, however, can be induced, but does not lead to Dab1 phosphorylation. Cells expressing only ApoER2 or VLDLR change their shape when stimulated with the central fragment. Cells expressing ApoER2 produce filopodia/lamellipodia and cell size increases, whereas VLDLR-expressing cells decrease in size. These findings demonstrate that the primary event in the canonical Reelin pathway is the rearrangement of preformed receptor homo-oligomers to higher order clusters. In addition the possibility of yet another signaling mechanism which is mediated by the central Reelin fragment independent of Dab1 phosphorylation became apparent.
Collapse
Affiliation(s)
- Paula Dlugosz
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University Vienna, Vienna, Austria
| | - Roland Tresky
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University Vienna, Vienna, Austria
| | - Johannes Nimpf
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University Vienna, Vienna, Austria
| |
Collapse
|
16
|
Shah B, Lutter D, Tsytsyura Y, Glyvuk N, Sakakibara A, Klingauf J, Püschel AW. Rap1 GTPases Are Master Regulators of Neural Cell Polarity in the Developing Neocortex. Cereb Cortex 2018; 27:1253-1269. [PMID: 26733533 DOI: 10.1093/cercor/bhv341] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
During the development of the mammalian neocortex, the generation of neurons by neural progenitors and their migration to the final position are closely coordinated. The highly polarized radial glial cells (RGCs) serve both as progenitor cells to generate neurons and as support for the migration of these neurons. After their generation, neurons transiently assume a multipolar morphology before they polarize and begin their migration along the RGCs. Here, we show that Rap1 GTPases perform essential functions for cortical organization as master regulators of cell polarity. Conditional deletion of Rap1 GTPases leads to a complete loss of cortical lamination. In RGCs, Rap1 GTPases are required to maintain their polarized organization. In newborn neurons, the loss of Rap1 GTPases prevents the formation of axons and leading processes and thereby interferes with radial migration. Taken together, the loss of RGC and neuronal polarity results in the disruption of cortical organization.
Collapse
Affiliation(s)
- Bhavin Shah
- Institut für Molekulare Zellbiologie, Westfälische Wilhelms-Universität, D-48149 Münster, Germany.,Cells-in-Motion Cluster of Excellence, University of Münster, D-48149 Münster, Germany
| | - Daniela Lutter
- Institut für Molekulare Zellbiologie, Westfälische Wilhelms-Universität, D-48149 Münster, Germany
| | | | - Natalia Glyvuk
- Institute of Medical Physics and Biophysics, D-48149 Münster, Germany
| | - Akira Sakakibara
- College of Life and Health Sciences, Chubu University, Kasugai 487-8501, Japan.,Department of Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Jürgen Klingauf
- Cells-in-Motion Cluster of Excellence, University of Münster, D-48149 Münster, Germany.,Institute of Medical Physics and Biophysics, D- 48149 Münster, Germany
| | - Andreas W Püschel
- Institut für Molekulare Zellbiologie, Westfälische Wilhelms-Universität, D-48149 Münster, Germany.,Cells-in-Motion Cluster of Excellence, University of Münster, D-48149 Münster, Germany
| |
Collapse
|
17
|
Schulze M, Violonchi C, Swoboda S, Welz T, Kerkhoff E, Hoja S, Brüggemann S, Simbürger J, Reinders J, Riemenschneider MJ. RELN signaling modulates glioblastoma growth and substrate-dependent migration. Brain Pathol 2018; 28:695-709. [PMID: 29222813 DOI: 10.1111/bpa.12584] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 11/24/2017] [Accepted: 11/30/2017] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma (GBM) represents the most common and most malignant type of primary brain tumor and significantly contributes to cancer morbidity and mortality. Invasion into the healthy brain parenchyma is a major feature of glioblastoma aggressiveness. Reelin (RELN) is a large secreted extracellular matrix glycoprotein that regulates neuronal migration and positioning in the developing brain and sustains functionality in the adult brain. We here show that both RELN and its main downstream effector DAB1 are silenced in glioblastoma as compared to non-neoplastic tissue and mRNA expression is inversely correlated with malignancy grade. Furthermore, RELN expression is positively correlated with patient survival in two large, independent clinically annotated datasets. RELN silencing occurs via promoter hypermethylation as shown by both database mining and bisulfite sequencing of the RELN promoter. Consequently, treatment with 5'-Azacytidine and trichostatin A induced RELN expression in vitro. On the functional level, we found RELN to regulate glioblastoma cell migration both in a DAB1 (tyrosine phosphorylation)-dependent and -independent fashion, depending on the substrate provided. Moreover, stimulation of RELN signaling strongly reduced proliferation in glioblastoma cells. This phenotype depends on DAB1 stimulation by RELN, as a mutant that lacks all RELN induced tyrosine phosphorylation sites (DAB1-5F) failed to induce a growth arrest. Proteomic analyzes revealed that these effects are mediated by a reduction in E2F targets and dephosphorylation of ERK1/2. Taken together, our data establish a relevance of RELN signaling in glioblastoma pathology and thereby might unearth novel, yet unrecognized treatment options.
Collapse
Affiliation(s)
- Markus Schulze
- Department of Neuropathology, Regensburg University Hospital, Regensburg, Germany
| | - Christ Violonchi
- Department of Neuropathology, Heinrich-Heine University, Düsseldorf, Germany
| | - Stefan Swoboda
- Department of Neuropathology, Regensburg University Hospital, Regensburg, Germany
| | - Tobias Welz
- Molecular Cell Biology Laboratory, Department of Neurology, Regensburg University Hospital, Regensburg, Germany
| | - Eugen Kerkhoff
- Molecular Cell Biology Laboratory, Department of Neurology, Regensburg University Hospital, Regensburg, Germany
| | - Sabine Hoja
- Department of Neuropathology, Regensburg University Hospital, Regensburg, Germany
| | - Susanne Brüggemann
- Department of Neuropathology, Regensburg University Hospital, Regensburg, Germany
| | - Johann Simbürger
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Jörg Reinders
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Markus J Riemenschneider
- Department of Neuropathology, Regensburg University Hospital, Regensburg, Germany.,Wilhelm Sander-NeuroOncology Unit, Regensburg University Hospital, Regensburg, Germany
| |
Collapse
|
18
|
The functions of Reelin in membrane trafficking and cytoskeletal dynamics: implications for neuronal migration, polarization and differentiation. Biochem J 2017; 474:3137-3165. [PMID: 28887403 DOI: 10.1042/bcj20160628] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 07/27/2017] [Accepted: 08/01/2017] [Indexed: 02/06/2023]
Abstract
Reelin is a large extracellular matrix protein with relevant roles in mammalian central nervous system including neurogenesis, neuronal polarization and migration during development; and synaptic plasticity with its implications in learning and memory, in the adult. Dysfunctions in reelin signaling are associated with brain lamination defects such as lissencephaly, but also with neuropsychiatric diseases like autism, schizophrenia and depression as well with neurodegeneration. Reelin signaling involves a core pathway that activates upon reelin binding to its receptors, particularly ApoER2 (apolipoprotein E receptor 2)/LRP8 (low-density lipoprotein receptor-related protein 8) and very low-density lipoprotein receptor, followed by Src/Fyn-mediated phosphorylation of the adaptor protein Dab1 (Disabled-1). Phosphorylated Dab1 (pDab1) is a hub in the signaling cascade, from which several other downstream pathways diverge reflecting the different roles of reelin. Many of these pathways affect the dynamics of the actin and microtubular cytoskeleton, as well as membrane trafficking through the regulation of the activity of small GTPases, including the Rho and Rap families and molecules involved in cell polarity. The complexity of reelin functions is reflected by the fact that, even now, the precise mode of action of this signaling cascade in vivo at the cellular and molecular levels remains unclear. This review addresses and discusses in detail the participation of reelin in the processes underlying neurogenesis, neuronal migration in the cerebral cortex and the hippocampus; and the polarization, differentiation and maturation processes that neurons experiment in order to be functional in the adult brain. In vivo and in vitro evidence is presented in order to facilitate a better understanding of this fascinating system.
Collapse
|
19
|
Abstract
Autism Spectrum Disorders (ASDs) are a heterogeneous group of neurodevelopmental disorders that are diagnosed solely on the basis of behaviour. A large body of work has reported neuroanatomical differences between individuals with ASD and neurotypical controls. Despite the huge clinical and genetic heterogeneity that typifies autism, some of these anatomical features appear to be either present in most cases or so dramatically altered in some that their presence is now reasonably well replicated in a number of studies. One such finding is the tendency towards overgrowth of the frontal cortex during the early postnatal period. Although these reports have been focused primarily on the presumed pathological anatomy, they are providing us with important insights into normal brain anatomy and are stimulating new ideas and hypotheses about the normal trajectory of brain development and the function of specific anatomical brain structures. The use of model systems that include genetic model organisms such as the mouse and, more recently, human induced pluripotent stem cell-derived brain organoids to model normal and pathological human cortical development, is proving particularly informative. Here we review some of the neuroanatomical alterations reported in autism, with a particular focus on well-validated findings and recent advances in the field, and ask what these observations can tell us about normal and abnormal brain development.
Collapse
Affiliation(s)
- Alex P. A. Donovan
- Department of Craniofacial Development and Stem Cell Biology, and MRC Centre for Neurodevelopmental DisordersKing's College LondonLondonUK
| | - M. Albert Basson
- Department of Craniofacial Development and Stem Cell Biology, and MRC Centre for Neurodevelopmental DisordersKing's College LondonLondonUK
| |
Collapse
|
20
|
Zhou W, He Q, Zhang C, He X, Cui Z, Liu F, Li W. BLOS2 negatively regulates Notch signaling during neural and hematopoietic stem and progenitor cell development. eLife 2016; 5. [PMID: 27719760 PMCID: PMC5094856 DOI: 10.7554/elife.18108] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 10/04/2016] [Indexed: 12/28/2022] Open
Abstract
Notch signaling plays a crucial role in controling the proliferation and differentiation of stem and progenitor cells during embryogenesis or organogenesis, but its regulation is incompletely understood. BLOS2, encoded by the Bloc1s2 gene, is a shared subunit of two lysosomal trafficking complexes, biogenesis of lysosome-related organelles complex-1 (BLOC-1) and BLOC-1-related complex (BORC). Bloc1s2-/- mice were embryonic lethal and exhibited defects in cortical development and hematopoiesis. Loss of BLOS2 resulted in elevated Notch signaling, which consequently increased the proliferation of neural progenitor cells and inhibited neuronal differentiation in cortices. Likewise, ablation of bloc1s2 in zebrafish or mice led to increased hematopoietic stem and progenitor cell production in the aorta-gonad-mesonephros region. BLOS2 physically interacted with Notch1 in endo-lysosomal trafficking of Notch1. Our findings suggest that BLOS2 is a novel negative player in regulating Notch signaling through lysosomal trafficking to control multiple stem and progenitor cell homeostasis in vertebrates.
Collapse
Affiliation(s)
- Wenwen Zhou
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qiuping He
- University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Chunxia Zhang
- University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xin He
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Zongbin Cui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Beijing, China
| | - Feng Liu
- University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Wei Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,Center for Medical Genetics, Beijing Children's Hospital, Capital Medical University, Beijing, China.,Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, China.,MOE Key Laboratory of Major Diseases in Children, Beijing, China.,Beijing Pediatric Research Institute, Beijing, China
| |
Collapse
|
21
|
Lakomá J, Rimondini R, Ferrer Montiel A, Donadio V, Liguori R, Caprini M. Increased expression of Trpv1 in peripheral terminals mediates thermal nociception in Fabry disease mouse model. Mol Pain 2016; 12:12/0/1744806916663729. [PMID: 27531673 PMCID: PMC5009828 DOI: 10.1177/1744806916663729] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 07/07/2016] [Indexed: 02/02/2023] Open
Abstract
Fabry disease is a X-linked lysosomal storage disorder caused by deficient function of the alpha-galactosidase A (α-GalA) enzyme. α-GalA deficiency leads to multisystemic clinical manifestations caused by the preferential accumulation of globotriaosylceramide (Gb3) in the endothelium and vascular smooth muscles. A hallmark symptom of Fabry disease patients is neuropathic pain that appears in the early stage of the disease as a result of peripheral small fiber damage. The α-GalA gene null mouse model (α-GalA(-/0)) has provided molecular evidence for the molecular alterations in small type-C nociceptors in Fabry disease that may underlie their hyperexcitability, although the specific mechanism remains elusive. Here, we have addressed this question and report that small type-C nociceptors from α-GalA(-/0) mice exhibit a significant increase in the expression and function of the TRPV1 channel, a thermoTRP channel implicated in painful heat sensation. Notably, male α-GalA(-/0) mice displayed a ≈2-fold higher heat sensitivity than wild-type animals, consistent with the augmented expression levels and activity of TRPV1 in α-GalA(-/0) nociceptors. Intriguingly, blockade of neuronal exocytosis with peptide DD04107, a process that inhibits among others the algesic membrane recruitment of TRPV1 channels in peptidergic nociceptors, virtually eliminated the enhanced heat nociception of α-GalA(-/0) mice. Together, these findings suggest that the augmented expression of TRPV1 in α-GalA(-/0) nociceptors may underly at least in part their increased heat sensitivity, and imply that blockade of peripheral neuronal exocytosis may be a valuable pharmacological strategy to reduce pain in Fabry disease patients, increasing their quality of life.
Collapse
Affiliation(s)
- Jarmila Lakomá
- Department of Pharmacy and Biotechnology (FaBiT), Laboratory of Human and General Physiology, University of Bologna, Italy Institute of Molecular and Cellular Biology, University of Miguel Hernandez, Spain
| | | | | | - Vincenzo Donadio
- Institute of Molecular and Cellular Biology, University of Miguel Hernandez, Spain
| | - Rocco Liguori
- Institute of Molecular and Cellular Biology, University of Miguel Hernandez, Spain Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Italy
| | - Marco Caprini
- Department of Pharmacy and Biotechnology (FaBiT), Laboratory of Human and General Physiology, University of Bologna, Italy
| |
Collapse
|
22
|
Zhang K, Chen C, Yang Z, He W, Liao X, Ma Q, Deng P, Lu J, Li J, Wang M, Li M, Zheng L, Zhou Z, Sun W, Wang L, Jia H, Yu Z, Zhou Z, Chen X. Sensory Response of Transplanted Astrocytes in Adult Mammalian Cortex In Vivo. Cereb Cortex 2016; 26:3690-3704. [PMID: 27405333 PMCID: PMC5004757 DOI: 10.1093/cercor/bhw213] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 06/13/2016] [Indexed: 12/16/2022] Open
Abstract
Glial precursor transplantation provides a potential therapy for brain disorders. Before its clinical application, experimental evidence needs to indicate that engrafted glial cells are functionally incorporated into the existing circuits and become essential partners of neurons for executing fundamental brain functions. While previous experiments supporting for their functional integration have been obtained under in vitro conditions using slice preparations, in vivo evidence for such integration is still lacking. Here, we utilized in vivo two-photon Ca2+ imaging along with immunohistochemistry, fluorescent indicator labeling-based axon tracing and correlated light/electron microscopy to analyze the profiles and the functional status of glial precursor cell-derived astrocytes in adult mouse neocortex. We show that after being transplanted into somatosensory cortex, precursor-derived astrocytes are able to survive for more than a year and respond with Ca2+ signals to sensory stimulation. These sensory-evoked responses are mediated by functionally-expressed nicotinic receptors and newly-established synaptic contacts with the host cholinergic afferents. Our results provide in vivo evidence for a functional integration of transplanted astrocytes into adult mammalian neocortex, representing a proof-of-principle for sensory cortex remodeling through addition of essential neural elements. Moreover, we provide strong support for the use of glial precursor transplantation to understand glia-related neural development in vivo.
Collapse
Affiliation(s)
- Kuan Zhang
- Brain Research Center, Third Military Medical University, Chongqing 400038, China
| | - Chunhai Chen
- Department of Occupational Health, Third Military Medical University, Chongqing 400038, China
| | - Zhiqi Yang
- Brain Research Center, Third Military Medical University, Chongqing 400038, China.,Department of Neurology, Lanzhou General Hospital, Lanzhou Military Area Command, Lanzhou, Gansu 730050, China
| | - Wenjing He
- Brain Research Center, Third Military Medical University, Chongqing 400038, China
| | - Xiang Liao
- Brain Research Center, Third Military Medical University, Chongqing 400038, China
| | - Qinlong Ma
- Department of Occupational Health, Third Military Medical University, Chongqing 400038, China
| | - Ping Deng
- Department of Occupational Health, Third Military Medical University, Chongqing 400038, China
| | - Jian Lu
- Brain Research Center, Third Military Medical University, Chongqing 400038, China
| | - Jingcheng Li
- Brain Research Center, Third Military Medical University, Chongqing 400038, China
| | - Meng Wang
- Brain Research Center, Third Military Medical University, Chongqing 400038, China
| | - Mingli Li
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Lianghong Zheng
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Zhuan Zhou
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Wei Sun
- Brain Research Center, Third Military Medical University, Chongqing 400038, China
| | - Liting Wang
- Brain Research Center, Third Military Medical University, Chongqing 400038, China
| | - Hongbo Jia
- Brain Research Instrument Innovation Center, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Zhengping Yu
- Department of Occupational Health, Third Military Medical University, Chongqing 400038, China
| | - Zhou Zhou
- Department of Occupational Health, Third Military Medical University, Chongqing 400038, China
| | - Xiaowei Chen
- Brain Research Center, Third Military Medical University, Chongqing 400038, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
23
|
Abstract
Stem cells hold great promise in treating many diseases either through promoting endogenous cell repair or through direct cell transplants. In order to maximize their potential, understanding the fundamental signals and mechanisms that regulate their behavior is essential. The extracellular matrix (ECM) is one such component involved in mediating stem cell fate. Recent studies have made significant progress in understanding stem cell-ECM interactions. Technological developments have provided greater clarity in how cells may sense and respond to the ECM, in particular the physical properties of the matrix. This review summarizes recent developments, providing illustrative examples of the different modes with which the ECM controls both embryonic and adult stem cell behavior.
Collapse
|
24
|
Bock HH, May P. Canonical and Non-canonical Reelin Signaling. Front Cell Neurosci 2016; 10:166. [PMID: 27445693 PMCID: PMC4928174 DOI: 10.3389/fncel.2016.00166] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 06/08/2016] [Indexed: 12/11/2022] Open
Abstract
Reelin is a large secreted glycoprotein that is essential for correct neuronal positioning during neurodevelopment and is important for synaptic plasticity in the mature brain. Moreover, Reelin is expressed in many extraneuronal tissues; yet the roles of peripheral Reelin are largely unknown. In the brain, many of Reelin's functions are mediated by a molecular signaling cascade that involves two lipoprotein receptors, apolipoprotein E receptor-2 (Apoer2) and very low density-lipoprotein receptor (Vldlr), the neuronal phosphoprotein Disabled-1 (Dab1), and members of the Src family of protein tyrosine kinases as crucial elements. This core signaling pathway in turn modulates the activity of adaptor proteins and downstream protein kinase cascades, many of which target the neuronal cytoskeleton. However, additional Reelin-binding receptors have been postulated or described, either as coreceptors that are essential for the activation of the "canonical" Reelin signaling cascade involving Apoer2/Vldlr and Dab1, or as receptors that activate alternative or additional signaling pathways. Here we will give an overview of canonical and alternative Reelin signaling pathways, molecular mechanisms involved, and their potential physiological roles in the context of different biological settings.
Collapse
Affiliation(s)
- Hans H Bock
- Clinic of Gastroenterology and Hepatology, Heinrich-Heine-University Düsseldorf Düsseldorf, Germany
| | - Petra May
- Clinic of Gastroenterology and Hepatology, Heinrich-Heine-University Düsseldorf Düsseldorf, Germany
| |
Collapse
|
25
|
Shah B, Lutter D, Bochenek ML, Kato K, Tsytsyura Y, Glyvuk N, Sakakibara A, Klingauf J, Adams RH, Püschel AW. C3G/Rapgef1 Is Required in Multipolar Neurons for the Transition to a Bipolar Morphology during Cortical Development. PLoS One 2016; 11:e0154174. [PMID: 27111087 PMCID: PMC4844105 DOI: 10.1371/journal.pone.0154174] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 04/08/2016] [Indexed: 12/03/2022] Open
Abstract
The establishment of a polarized morphology is essential for the development and function of neurons. During the development of the mammalian neocortex, neurons arise in the ventricular zone (VZ) from radial glia cells (RGCs) and leave the VZ to generate the cortical plate (CP). During their migration, newborn neurons first assume a multipolar morphology in the subventricular zone (SVZ) and lower intermediate zone (IZ). Subsequently, they undergo a multi-to-bipolar (MTB) transition to become bipolar in the upper IZ by developing a leading process and a trailing axon. The small GTPases Rap1A and Rap1B act as master regulators of neural cell polarity in the developing mouse neocortex. They are required for maintaining the polarity of RGCs and directing the MTB transition of multipolar neurons. Here we show that the Rap1 guanine nucleotide exchange factor (GEF) C3G (encoded by the Rapgef1 gene) is a crucial regulator of the MTB transition in vivo by conditionally inactivating the Rapgef1 gene in the developing mouse cortex at different time points during neuronal development. Inactivation of C3G results in defects in neuronal migration, axon formation and cortical lamination. Live cell imaging shows that C3G is required in cortical neurons for both the specification of an axon and the initiation of radial migration by forming a leading process.
Collapse
Affiliation(s)
- Bhavin Shah
- Institut für Molekulare Zellbiologie, Westfälische Wilhelms-Universität, Schloßplatz 5, D-48149 Münster, Germany
- Cells-in-Motion Cluster of Excellence, University of Münster, D-48149 Münster, Germany
| | - Daniela Lutter
- Institut für Molekulare Zellbiologie, Westfälische Wilhelms-Universität, Schloßplatz 5, D-48149 Münster, Germany
| | - Magdalena L. Bochenek
- Max-Planck-Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, and University of Münster, Faculty of Medicine, D-48149 Münster, Germany
| | - Katsuhiro Kato
- Max-Planck-Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, and University of Münster, Faculty of Medicine, D-48149 Münster, Germany
| | - Yaroslav Tsytsyura
- Institute of Medical Physics and Biophysics, Robert-Koch Straße 31, D-48149 Münster, Germany
| | - Natalia Glyvuk
- Institute of Medical Physics and Biophysics, Robert-Koch Straße 31, D-48149 Münster, Germany
| | - Akira Sakakibara
- College of Life and Health Sciences, Chubu University, Kasugai 487–8501, Japan
| | - Jürgen Klingauf
- Institute of Medical Physics and Biophysics, Robert-Koch Straße 31, D-48149 Münster, Germany
| | - Ralf H. Adams
- Max-Planck-Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, and University of Münster, Faculty of Medicine, D-48149 Münster, Germany
- Cells-in-Motion Cluster of Excellence, University of Münster, D-48149 Münster, Germany
| | - Andreas W. Püschel
- Institut für Molekulare Zellbiologie, Westfälische Wilhelms-Universität, Schloßplatz 5, D-48149 Münster, Germany
- Cells-in-Motion Cluster of Excellence, University of Münster, D-48149 Münster, Germany
- * E-mail:
| |
Collapse
|
26
|
Korn MJ, Mandle QJ, Parent JM. Conditional Disabled-1 Deletion in Mice Alters Hippocampal Neurogenesis and Reduces Seizure Threshold. Front Neurosci 2016; 10:63. [PMID: 26941603 PMCID: PMC4766299 DOI: 10.3389/fnins.2016.00063] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/10/2016] [Indexed: 11/13/2022] Open
Abstract
Many animal models of temporal lobe epilepsy (TLE) exhibit altered neurogenesis arising from progenitors within the dentate gyrus subgranular zone (SGZ). Aberrant integration of new neurons into the existing circuit is thought to contribute to epileptogenesis. In particular, adult-born neurons that exhibit ectopic migration and hilar basal dendrites (HBDs) are suggested to be pro-epileptogenic. Loss of reelin signaling may contribute to these morphological changes in patients with epilepsy. We previously demonstrated that conditional deletion of the reelin adaptor protein, disabled-1 (Dab1), from postnatal mouse SGZ progenitors generated dentate granule cells (DGCs) with abnormal dendritic development and ectopic placement. To determine whether the early postnatal loss of reelin signaling is epileptogenic, we conditionally deleted Dab1 in neural progenitors and their progeny on postnatal days 7–8 and performed chronic video-EEG recordings 8–10 weeks later. Dab1-deficient mice did not have spontaneous seizures but exhibited interictal epileptiform abnormalities and a significantly reduced latency to pilocarpine-induced status epilepticus. After chemoconvulsant treatment, over 90% of mice deficient for Dab1 developed generalized motor convulsions with tonic-clonic movements, rearing, and falling compared to <20% of wild-type mice. Recombination efficiency, measured by Cre reporter expression, inversely correlated with time to the first sustained seizure. These pro-epileptogenic changes were associated with decreased neurogenesis and increased numbers of hilar ectopic DGCs. Interestingly, neurons co-expressing the Cre reporter comprised a fraction of these hilar ectopic DGCs cells, suggesting a non-cell autonomous effect for the loss of reelin signaling. We also noted a dispersion of the CA1 pyramidal layer, likely due to hypomorphic effects of the conditional Dab1 allele, but this abnormality did not correlate with seizure susceptibility. These findings suggest that the misplacement or reduction of postnatally-generated DGCs contributes to aberrant circuit development and hyperexcitability, but aberrant neurogenesis after conditional Dab1 deletion alone is not sufficient to produce spontaneous seizures.
Collapse
Affiliation(s)
- Matthew J Korn
- Department of Neurology, University of Michigan Medical Center Ann Arbor, MI, USA
| | - Quinton J Mandle
- Department of Neurology, University of Michigan Medical Center Ann Arbor, MI, USA
| | - Jack M Parent
- Department of Neurology, University of Michigan Medical CenterAnn Arbor, MI, USA; VA Ann Arbor Healthcare SystemAnn Arbor, MI, USA
| |
Collapse
|
27
|
Regalado-Santiago C, Juárez-Aguilar E, Olivares-Hernández JD, Tamariz E. Mimicking Neural Stem Cell Niche by Biocompatible Substrates. Stem Cells Int 2016; 2016:1513285. [PMID: 26880934 PMCID: PMC4736764 DOI: 10.1155/2016/1513285] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 10/19/2015] [Accepted: 11/23/2015] [Indexed: 01/17/2023] Open
Abstract
Neural stem cells (NSCs) participate in the maintenance, repair, and regeneration of the central nervous system. During development, the primary NSCs are distributed along the ventricular zone of the neural tube, while, in adults, NSCs are mainly restricted to the subependymal layer of the subventricular zone of the lateral ventricles and the subgranular zone of the dentate gyrus in the hippocampus. The circumscribed areas where the NSCs are located contain the secreted proteins and extracellular matrix components that conform their niche. The interplay among the niche elements and NSCs determines the balance between stemness and differentiation, quiescence, and proliferation. The understanding of niche characteristics and how they regulate NSCs activity is critical to building in vitro models that include the relevant components of the in vivo niche and to developing neuroregenerative approaches that consider the extracellular environment of NSCs. This review aims to examine both the current knowledge on neurogenic niche and how it is being used to develop biocompatible substrates for the in vitro and in vivo mimicking of extracellular NSCs conditions.
Collapse
Affiliation(s)
- Citlalli Regalado-Santiago
- Instituto de Ciencias de la Salud, Universidad Veracruzana, Avenida Luis Castelazo Ayala, s/n, 91190 Xalapa, VER, Mexico
| | - Enrique Juárez-Aguilar
- Instituto de Ciencias de la Salud, Universidad Veracruzana, Avenida Luis Castelazo Ayala, s/n, 91190 Xalapa, VER, Mexico
| | - Juan David Olivares-Hernández
- Instituto de Ciencias de la Salud, Universidad Veracruzana, Avenida Luis Castelazo Ayala, s/n, 91190 Xalapa, VER, Mexico
| | - Elisa Tamariz
- Instituto de Ciencias de la Salud, Universidad Veracruzana, Avenida Luis Castelazo Ayala, s/n, 91190 Xalapa, VER, Mexico
| |
Collapse
|
28
|
Barber M, Pierani A. Tangential migration of glutamatergic neurons and cortical patterning during development: Lessons from Cajal-Retzius cells. Dev Neurobiol 2015; 76:847-81. [PMID: 26581033 DOI: 10.1002/dneu.22363] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/12/2015] [Accepted: 11/13/2015] [Indexed: 12/14/2022]
Abstract
Tangential migration is a mode of cell movement, which in the developing cerebral cortex, is defined by displacement parallel to the ventricular surface and orthogonal to the radial glial fibers. This mode of long-range migration is a strategy by which distinct neuronal classes generated from spatially and molecularly distinct origins can integrate to form appropriate neural circuits within the cortical plate. While it was previously believed that only GABAergic cortical interneurons migrate tangentially from their origins in the subpallial ganglionic eminences to integrate in the cortical plate, it is now known that transient populations of glutamatergic neurons also adopt this mode of migration. These include Cajal-Retzius cells (CRs), subplate neurons (SPs), and cortical plate transient neurons (CPTs), which have crucial roles in orchestrating the radial and tangential development of the embryonic cerebral cortex in a noncell-autonomous manner. While CRs have been extensively studied, it is only in the last decade that the molecular mechanisms governing their tangential migration have begun to be elucidated. To date, the mechanisms of SPs and CPTs tangential migration remain unknown. We therefore review the known signaling pathways, which regulate parameters of CRs migration including their motility, contact-redistribution and adhesion to the pial surface, and discuss this in the context of how CR migration may regulate their signaling activity in a spatial and temporal manner. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 847-881, 2016.
Collapse
Affiliation(s)
- Melissa Barber
- Institut Jacques-Monod, CNRS, Université Paris Diderot, Sorbonne Cité, Paris, France.,Department of Cell and Developmental Biology, University College London, WC1E 6BT, United Kingdom
| | - Alessandra Pierani
- Institut Jacques-Monod, CNRS, Université Paris Diderot, Sorbonne Cité, Paris, France
| |
Collapse
|
29
|
Ngalula KP, Cramer N, Schell MJ, Juliano SL. Transplanted Neural Progenitor Cells from Distinct Sources Migrate Differentially in an Organotypic Model of Brain Injury. Front Neurol 2015; 6:212. [PMID: 26500604 PMCID: PMC4595842 DOI: 10.3389/fneur.2015.00212] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 09/17/2015] [Indexed: 01/19/2023] Open
Abstract
Brain injury is a major cause of long-term disability. The possibility exists for exogenously derived neural progenitor cells to repair damage resulting from brain injury, although more information is needed to successfully implement this promising therapy. To test the ability of neural progenitor cells (NPCs) obtained from rats to repair damaged neocortex, we transplanted neural progenitor cell suspensions into normal and injured slice cultures of the neocortex acquired from rats on postnatal day 0–3. Donor cells from E16 embryos were obtained from either the neocortex, including the ventricular zone (VZ) for excitatory cells, ganglionic eminence (GE) for inhibitory cells or a mixed population of the two. Cells were injected into the ventricular/subventricular zone (VZ/SVZ) or directly into the wounded region. Transplanted cells migrated throughout the cortical plate with GE and mixed population donor cells predominately targeting the upper cortical layers, while neocortically derived NPCs from the VZ/SVZ migrated less extensively. In the injured neocortex, transplanted cells moved predominantly into the wounded area. NPCs derived from the GE tended to be immunoreactive for GABAergic markers while those derived from the neocortex were more strongly immunoreactive for other neuronal markers such as MAP2, TUJ1, or Milli-Mark. Cells transplanted in vitro acquired the electrophysiological characteristics of neurons, including action potential generation and reception of spontaneous synaptic activity. This suggests that transplanted cells differentiate into neurons capable of functionally integrating with the host tissue. Together, our data suggest that transplantation of neural progenitor cells holds great potential as an emerging therapeutic intervention for restoring function lost to brain damage.
Collapse
Affiliation(s)
- Kapinga P Ngalula
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of Health Sciences , Bethesda, MD , USA
| | - Nathan Cramer
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of Health Sciences , Bethesda, MD , USA
| | - Michael J Schell
- Department of Pharmacology, Uniformed Services University of Health Sciences , Bethesda, MD , USA
| | - Sharon L Juliano
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of Health Sciences , Bethesda, MD , USA
| |
Collapse
|
30
|
Barkovich AJ, Dobyns WB, Guerrini R. Malformations of cortical development and epilepsy. Cold Spring Harb Perspect Med 2015; 5:a022392. [PMID: 25934463 DOI: 10.1101/cshperspect.a022392] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Malformations of cortical development (MCDs) are an important cause of epilepsy and an extremely interesting group of disorders from the perspective of brain development and its perturbations. Many new MCDs have been described in recent years as a result of improvements in imaging, genetic testing, and understanding of the effects of mutations on the ability of their protein products to correctly function within the molecular pathways by which the brain functions. In this review, most of the major MCDs are reviewed from a clinical, embryological, and genetic perspective. The most recent literature regarding clinical diagnosis, mechanisms of development, and future paths of research are discussed.
Collapse
Affiliation(s)
- A James Barkovich
- Department of Radiology and Biomedical Imaging, Neurology, Pediatrics, and Neurosurgery, University of California, San Francisco, San Francisco, California 94143-0628
| | - William B Dobyns
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington 98101
| | - Renzo Guerrini
- Pediatric Neurology Unit and Laboratories, Children's Hospital A. Meyer, University of Florence, Florence 50139, Italy
| |
Collapse
|
31
|
Skorput AGJ, Yeh HH. Effects of ethanol exposure in utero on Cajal-Retzius cells in the developing cortex. Alcohol Clin Exp Res 2015; 39:853-62. [PMID: 25845402 DOI: 10.1111/acer.12696] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 01/31/2015] [Indexed: 11/28/2022]
Abstract
BACKGROUND Prenatal exposure to ethanol exerts teratogenic effects on the developing brain. Here, we tested the hypothesis that exposure to ethanol in utero alters the disposition of Cajal-Retzius cells that play a key role in orchestrating proliferation, migration, and laminar integration of cortical neurons in the embryonic cortex. METHODS Pregnant Ebf2-EGFP mice, harboring EGFP-fluorescent Cajal-Retzius cells, were subjected to a 2% w/w ethanol consumption regimen starting at neural tube closure and lasting throughout gestation. Genesis of Cajal-Retzius cells was assessed by means of 5-bromo-2-deoxyuridine (BrdU) immunofluorescence at embryonic day 12.5, their counts and distribution were determined between postnatal day (P)0 and P4, patch clamp electrophysiology was performed between P2 and P3 to analyze GABA-mediated synaptic activity, and open-field behavioral testing was conducted in P45-P50 adolescents. RESULTS In Ebf2-EGFP embryos exposed to ethanol in utero, we found increased BrdU labeling and expanded distribution of Cajal-Retzius cells in the cortical hem, pointing to increased genesis and proliferation. Postnatally, we found an increase in Cajal-Retzius cell number in cortical layer I. In addition, they displayed altered patterning of spontaneous GABA-mediated synaptic barrages and enhanced GABA-mediated synaptic activity, suggesting enhanced GABAergic tone. CONCLUSIONS These findings, together, underscore that Cajal-Retzius cells contribute to the ethanol-induced aberration of cortical development and abnormal GABAergic neurotransmission at the impactful time when intracortical circuits form.
Collapse
Affiliation(s)
- Alexander G J Skorput
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | | |
Collapse
|
32
|
Caffrey JR, Hughes BD, Britto JM, Landman KA. An in silico agent-based model demonstrates Reelin function in directing lamination of neurons during cortical development. PLoS One 2014; 9:e110415. [PMID: 25334023 PMCID: PMC4204858 DOI: 10.1371/journal.pone.0110415] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 09/14/2014] [Indexed: 11/29/2022] Open
Abstract
The characteristic six-layered appearance of the neocortex arises from the correct positioning of pyramidal neurons during development and alterations in this process can cause intellectual disabilities and developmental delay. Malformations in cortical development arise when neurons either fail to migrate properly from the germinal zones or fail to cease migration in the correct laminar position within the cortical plate. The Reelin signalling pathway is vital for correct neuronal positioning as loss of Reelin leads to a partially inverted cortex. The precise biological function of Reelin remains controversial and debate surrounds its role as a chemoattractant or stop signal for migrating neurons. To investigate this further we developed an in silico agent-based model of cortical layer formation. Using this model we tested four biologically plausible hypotheses for neuron motility and four biologically plausible hypotheses for the loss of neuron motility (conversion from migration). A matrix of 16 combinations of motility and conversion rules was applied against the known structure of mouse cortical layers in the wild-type cortex, the Reelin-null mutant, the Dab1-null mutant and a conditional Dab1 mutant. Using this approach, many combinations of motility and conversion mechanisms can be rejected. For example, the model does not support Reelin acting as a repelling or as a stopping signal. In contrast, the study lends very strong support to the notion that the glycoprotein Reelin acts as a chemoattractant for neurons. Furthermore, the most viable proposition for the conversion mechanism is one in which conversion is affected by a motile neuron sensing in the near vicinity neurons that have already converted. Therefore, this model helps elucidate the function of Reelin during neuronal migration and cortical development.
Collapse
Affiliation(s)
- James R. Caffrey
- Department of Mathematics and Statistics, University of Melbourne, Parkville, Victoria, Australia
| | - Barry D. Hughes
- Department of Mathematics and Statistics, University of Melbourne, Parkville, Victoria, Australia
| | - Joanne M. Britto
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Kerry A. Landman
- Department of Mathematics and Statistics, University of Melbourne, Parkville, Victoria, Australia
- * E-mail:
| |
Collapse
|
33
|
Taverna E, Götz M, Huttner WB. The cell biology of neurogenesis: toward an understanding of the development and evolution of the neocortex. Annu Rev Cell Dev Biol 2014; 30:465-502. [PMID: 25000993 DOI: 10.1146/annurev-cellbio-101011-155801] [Citation(s) in RCA: 540] [Impact Index Per Article: 49.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Neural stem and progenitor cells have a central role in the development and evolution of the mammalian neocortex. In this review, we first provide a set of criteria to classify the various types of cortical stem and progenitor cells. We then discuss the issue of cell polarity, as well as specific subcellular features of these cells that are relevant for their modes of division and daughter cell fate. In addition, cortical stem and progenitor cell behavior is placed into a tissue context, with consideration of extracellular signals and cell-cell interactions. Finally, the differences across species regarding cortical stem and progenitor cells are dissected to gain insight into key developmental and evolutionary mechanisms underlying neocortex expansion.
Collapse
Affiliation(s)
- Elena Taverna
- Max-Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany;
| | | | | |
Collapse
|
34
|
Tsunekawa Y, Kikkawa T, Osumi N. Asymmetric inheritance of Cyclin D2 maintains proliferative neural stem/progenitor cells: a critical event in brain development and evolution. Dev Growth Differ 2014; 56:349-57. [PMID: 24835888 DOI: 10.1111/dgd.12135] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 03/20/2014] [Accepted: 03/22/2014] [Indexed: 12/26/2022]
Abstract
Asymmetric cell division and cell cycle regulation are fundamental mechanisms of mammalian brain development and evolution. Cyclin D2, a positive regulator of G1 progression, shows a unique localization within radial glial (RG) cells (i.e., the neural progenitor in the developing neocortex). Cyclin D2 accumulates at the very basal tip of the RG cell (i.e., the basal endfoot) via a unique cis-regulatory sequence found in the 3' untranslated region (3'UTR) of its mRNA. During RG division, Cyclin D2 protein is asymmetrically distributed to two daughter cells following mitosis. The daughter cell that inherits Cyclin D2 mRNA maintains its self-renewal capability, while its sibling undergoes differentiation. A similar localization pattern of Cyclin D2 protein has been observed in the human fetal cortical primordium, suggesting a common mechanism of maintenance of neural progenitors that may be evolutionarily conserved across higher mammals such as primates. Here, we discuss our findings and the Cyclin D2 function in mammalian brain development and evolution.
Collapse
Affiliation(s)
- Yuji Tsunekawa
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California, 92037, USA
| | | | | |
Collapse
|
35
|
Paridaen JTML, Huttner WB. Neurogenesis during development of the vertebrate central nervous system. EMBO Rep 2014; 15:351-64. [PMID: 24639559 DOI: 10.1002/embr.201438447] [Citation(s) in RCA: 261] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
During vertebrate development, a wide variety of cell types and tissues emerge from a single fertilized oocyte. One of these tissues, the central nervous system, contains many types of neurons and glial cells that were born during the period of embryonic and post-natal neuro- and gliogenesis. As to neurogenesis, neural progenitors initially divide symmetrically to expand their pool and switch to asymmetric neurogenic divisions at the onset of neurogenesis. This process involves various mechanisms involving intrinsic as well as extrinsic factors. Here, we discuss the recent advances and insights into regulation of neurogenesis in the developing vertebrate central nervous system. Topics include mechanisms of (a)symmetric cell division, transcriptional and epigenetic regulation, and signaling pathways, using mostly examples from the developing mammalian neocortex.
Collapse
|
36
|
Hawthorne AL. Repurposing Reelin: the new role of radial glia, Reelin and Notch in motor neuron migration. Exp Neurol 2014; 256:17-20. [PMID: 24607503 DOI: 10.1016/j.expneurol.2014.02.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 02/20/2014] [Accepted: 02/24/2014] [Indexed: 01/10/2023]
Abstract
The role of Reelin during cerebral cortical neuron migration has long been studied, but the Reelin signaling pathway and its possible interactions are just beginning to be unraveled. Reelin is not only important in cerebral cortical migration, but has recently been shown to interact with the Notch signaling pathway and to be critical for radial glial cell number and morphology. Lee and Song (2013) show a new Notch- and Reelin-dependent role for radial glia in the mouse spinal cord: to act as a fine filter that allows somatic motor neuron axons but not cell bodies to traverse out of the CNS. Here, the types of neuronal migration are discussed, focusing on motor neurons and cues for proper localization. The interaction of Reelin signaling with the Notch pathway is reviewed, which dictates the proper formation of radial glia in the spinal cord in order to prevent ectopic motor neuron migration (Lee and Song, 2013). Future studies may reveal novel interactions and further insights as to how Reelin functions throughout the developing nervous system.
Collapse
Affiliation(s)
- Alicia L Hawthorne
- Dept. of Cell Biology, Emory University School of Medicine, 615 Michael St., WBRB 415, Atlanta, GA 30322, USA.
| |
Collapse
|
37
|
Aboitiz F, Zamorano F. Neural progenitors, patterning and ecology in neocortical origins. Front Neuroanat 2013; 7:38. [PMID: 24273496 PMCID: PMC3824149 DOI: 10.3389/fnana.2013.00038] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 10/21/2013] [Indexed: 01/13/2023] Open
Abstract
The anatomical organization of the mammalian neocortex stands out among vertebrates for its laminar and columnar arrangement, featuring vertically oriented, excitatory pyramidal neurons. The evolutionary origin of this structure is discussed here in relation to the brain organization of other amniotes, i.e., the sauropsids (reptiles and birds). Specifically, we address the developmental modifications that had to take place to generate the neocortex, and to what extent these modifications were shared by other amniote lineages or can be considered unique to mammals. In this article, we propose a hypothesis that combines the control of proliferation in neural progenitor pools with the specification of regional morphogenetic gradients, yielding different anatomical results by virtue of the differential modulation of these processes in each lineage. Thus, there is a highly conserved genetic and developmental battery that becomes modulated in different directions according to specific selective pressures. In the case of early mammals, ecological conditions like nocturnal habits and reproductive strategies are considered to have played a key role in the selection of the particular brain patterning mechanisms that led to the origin of the neocortex.
Collapse
Affiliation(s)
- Francisco Aboitiz
- Departamento de Psiquiatría, Facultad de Medicina y Centro Interdisciplinario de Neurociencia, Pontificia Universidad Católica de Chile Santiago, Chile
| | | |
Collapse
|
38
|
Di Benedetto B, Rupprecht R. Targeting glia cells: novel perspectives for the treatment of neuropsychiatric diseases. Curr Neuropharmacol 2013; 11:171-85. [PMID: 23997752 PMCID: PMC3637671 DOI: 10.2174/1570159x11311020004] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 10/30/2012] [Accepted: 11/02/2012] [Indexed: 12/28/2022] Open
Abstract
Neuropsychiatric disorders are devastating mental illnesses with a high economic burden. The additional morbidity associated with social issues that arises along with the course of these diseases increases the need for a clear understanding of their etiopathogenesis to allow an implementation of novel pharmacological strategies. Yet a poor knowledge about interactions occurring at the glia-neuron interface in health and disease still hampers innovative discoveries, despite the fact that glia cells have been long described to actively participate in the regulation of brain circuits. The purpose of this review was to collect the scattered literature on the involvement of glia cells in neuropsychiatric disorders and to describe how also these cells besides neurons might be responsive to current pharmacological interventions. We hope thereby to offer alternative approaches for investigations that may open avenues to search for new potential targets for drug discovery.
Collapse
Affiliation(s)
- B Di Benedetto
- Max Planck Institute of Psychiatry, Munich, Germany ; Department of Psychiatry and Psychotherapy, Regensburg University, Germany
| | | |
Collapse
|
39
|
Paternal treadmill exercise enhances spatial learning and memory related to hippocampus among male offspring. Behav Brain Res 2013; 253:297-304. [DOI: 10.1016/j.bbr.2013.07.040] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 07/19/2013] [Accepted: 07/23/2013] [Indexed: 12/20/2022]
|
40
|
Britto JM, Tait KJ, Lee EP, Gamble RS, Hattori M, Tan SS. Exogenous Reelin modifies the migratory behavior of neurons depending on cortical location. ACTA ACUST UNITED AC 2013; 24:2835-47. [PMID: 23749873 DOI: 10.1093/cercor/bht123] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Malformations of cortical development can arise when projection neurons generated in the germinal zones fail to migrate properly into the cortical plate. This process is critically dependent on the Reelin glycoprotein, which when absent leads to an inversion of cortical layers and blurring of borders. Reelin has other functions including supporting neuron migration and maintaining their trajectories; however, the precise role on glial fiber-dependent or -independent migration of neurons remains controversial. In this study, we wish to test the hypothesis that migrating cortical neurons at different levels of the cortical wall have differential responses to Reelin. We exposed neurons migrating across the cortical wall to exogenous Reelin and monitored their migratory behavior using time-lapse imaging. Our results show that, in the germinal zones, exogenous Reelin retarded neuron migration and altered their trajectories. This behavior is in contrast to the response of neurons located in the intermediate zone (IZ), possibly because Reelin receptors are not expressed in this zone. In the reeler cortex, Reelin receptors are expressed in the IZ and exposure to exogenous Reelin was able to rescue the migratory defect. These studies demonstrate that migrating neurons have nonequivalent responses to Reelin depending on their location within the cortical wall.
Collapse
Affiliation(s)
- Joanne M Britto
- Brain Development and Regeneration Division, The Florey Institute of Neuroscience and Mental Health, Centre for Neuroscience, University of Melbourne, Parkville, Victoria, Australia and
| | - Karen J Tait
- Brain Development and Regeneration Division, The Florey Institute of Neuroscience and Mental Health
| | - Ean Phing Lee
- Brain Development and Regeneration Division, The Florey Institute of Neuroscience and Mental Health
| | - Robin S Gamble
- Brain Development and Regeneration Division, The Florey Institute of Neuroscience and Mental Health
| | - Mitsuharu Hattori
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Seong-Seng Tan
- Brain Development and Regeneration Division, The Florey Institute of Neuroscience and Mental Health, Centre for Neuroscience, University of Melbourne, Parkville, Victoria, Australia and
| |
Collapse
|
41
|
Shariati SAM, De Strooper B. Redundancy and divergence in the amyloid precursor protein family. FEBS Lett 2013; 587:2036-45. [PMID: 23707420 DOI: 10.1016/j.febslet.2013.05.026] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 05/08/2013] [Indexed: 11/30/2022]
Abstract
Gene duplication provides genetic material required for functional diversification. An interesting example is the amyloid precursor protein (APP) protein family. The APP gene family has experienced both expansion and contraction during evolution. The three mammalian members have been studied quite extensively in combined knock out models. The underlying assumption is that APP, amyloid precursor like protein 1 and 2 (APLP1, APLP2) are functionally redundant. This assumption is primarily supported by the similarities in biochemical processing of APP and APLPs and on the fact that the different APP genes appear to genetically interact at the level of the phenotype in combined knockout mice. However, unique features in each member of the APP family possibly contribute to specification of their function. In the current review, we discuss the evolution and the biology of the APP protein family with special attention to the distinct properties of each homologue. We propose that the functions of APP, APLP1 and APLP2 have diverged after duplication to contribute distinctly to different neuronal events. Our analysis reveals that APLP2 is significantly diverged from APP and APLP1.
Collapse
Affiliation(s)
- S Ali M Shariati
- KU Leuven, Center for Human Genetics and Leuven Institute for Neurodegenerative Diseases (LIND), 3000 Leuven, Belgium
| | | |
Collapse
|
42
|
Shariati SAM, Lau P, Hassan BA, Müller U, Dotti CG, De Strooper B, Gärtner A. APLP2 regulates neuronal stem cell differentiation during cortical development. J Cell Sci 2013; 126:1268-77. [PMID: 23345401 DOI: 10.1242/jcs.122440] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Expression of amyloid precursor protein (APP) and its two paralogues, APLP1 and APLP2 during brain development coincides with key cellular events such as neuronal differentiation and migration. However, genetic knockout and shRNA studies have led to contradictory conclusions about their role during embryonic brain development. To address this issue, we analysed in depth the role of APLP2 during neurogenesis by silencing APLP2 in vivo in an APP/APLP1 double knockout mouse background. We find that under these conditions cortical progenitors remain in their undifferentiated state much longer, displaying a higher number of mitotic cells. In addition, we show that neuron-specific APLP2 downregulation does not impact the speed or position of migrating excitatory cortical neurons. In summary, our data reveal that APLP2 is specifically required for proper cell cycle exit of neuronal progenitors, and thus has a distinct role in priming cortical progenitors for neuronal differentiation.
Collapse
Affiliation(s)
- S Ali M Shariati
- KU Leuven, Center for Human Genetics and Leuven Institute for Neurodegenerative Diseases, 3000 Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
43
|
Pérez-Martínez FJ, Luque-Río A, Sakakibara A, Hattori M, Miyata T, Luque JM. Reelin-dependent ApoER2 downregulation uncouples newborn neurons from progenitor cells. Biol Open 2012; 1:1258-63. [PMID: 23259060 PMCID: PMC3522887 DOI: 10.1242/bio.20122816] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Accepted: 09/17/2012] [Indexed: 11/20/2022] Open
Abstract
Reelin and its receptor machinery are well known to be required for the migration and positioning of neocortical projection neurons. More recently, reelin has been shown both necessary and sufficient to determine the rate of neocortical neurogenesis. The molecular links underlying its seemingly distinct proliferative and post-proliferative functions remain unknown. Here we reveal an enriched expression of functional reelin receptors, largely of Apolipoprotein E Receptor 2 (ApoER2), in radial glia basal processes and intermediate progenitor cells during mid/late cortical development. In vivo, ApoER2 overexpression inhibits neuronal migration. In contrast, precluding excessive levels of ApoER2 in reelin-deficient cortices, by either ApoER2 knock-down or the transgenic expression of reelin in neural progenitor cells, improves neuronal migration and positioning. Our study provides groundwork for the highly orchestrated clearance of neocortical neurons from their birth site, suggesting that a reelin-dependent ApoER2 downregulation mechanism uncouples newborn neurons from progenitor cells, thereby enabling neurons to migrate.
Collapse
Affiliation(s)
- F Javier Pérez-Martínez
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Campus de San Juan , E-03550 San Juan de Alicante, Alicante , Spain
| | | | | | | | | | | |
Collapse
|
44
|
Shitamukai A, Matsuzaki F. Control of asymmetric cell division of mammalian neural progenitors. Dev Growth Differ 2012; 54:277-86. [PMID: 22524601 DOI: 10.1111/j.1440-169x.2012.01345.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Although the vertebrate brain commonly stems from the neuroepithelial tube, the size and complexity of the pseudostratified organization of the brain have drastically expanded during mammalian evolution, resulting in the formation of a highly folded cortex. Developmental controls of neural progenitor divisions underlie these events. In this review, we introduce recent progress in understanding the control of proliferation and differentiation of neural progenitors from a structural point of view. We particularly shed light on the roles of epithelial structure and mitotic spindle orientation in the generation of various types of neural progenitors.
Collapse
Affiliation(s)
- Atsunori Shitamukai
- Laboratory for Cell Asymmetry, RIKEN Center for Developmental Biology, 2-2-3 Minatojima Minamimachi, Kobe, 650-0047, Japan
| | | |
Collapse
|
45
|
Lakomá J, Garcia-Alonso L, Luque JM. Reelin sets the pace of neocortical neurogenesis. J Cell Sci 2011. [DOI: 10.1242/jcs.103978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|