1
|
Morinaka H, Chen Y, Sugimoto K. Single-cell views of fate reprogramming in de novo organogenesis. JOURNAL OF PLANT RESEARCH 2025:10.1007/s10265-025-01644-6. [PMID: 40366545 DOI: 10.1007/s10265-025-01644-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 04/25/2025] [Indexed: 05/15/2025]
Abstract
De novo organogenesis is a key process in plant development and regeneration, enabling plants to adapt and survive under suboptimal conditions. Studying the molecular mechanisms of cellular reprogramming that drives new organ formation has been challenging since only a subset of cells among heterogeneous cell populations change the cell fate. Recent advancements in single-cell technologies, however, have begun to provide unprecedented insights into the cell identities and their developmental trajectories, offering a deeper understanding of cell fate transitions during this process. In this review we highlight how single-cell approaches help uncover the regulatory networks that govern cell fate reprogramming and propose future directions for improving temporal and spatial resolution to further advance this emerging field.
Collapse
Affiliation(s)
- Hatsune Morinaka
- RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan.
| | - Yu Chen
- RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
| | - Keiko Sugimoto
- RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| |
Collapse
|
2
|
Tenorio Berrío R, Verhelst E, Eekhout T, Grones C, De Veylder L, De Rybel B, Dubois M. Dual and spatially resolved drought responses in the Arabidopsis leaf mesophyll revealed by single-cell transcriptomics. THE NEW PHYTOLOGIST 2025; 246:840-858. [PMID: 40033544 PMCID: PMC11982798 DOI: 10.1111/nph.20446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/13/2025] [Indexed: 03/05/2025]
Abstract
Drought stress imposes severe challenges on agriculture by impacting crop performance. Understanding drought responses in plants at a cellular level is a crucial first step toward engineering improved drought resilience. However, the molecular responses to drought are complex as they depend on multiple factors, including the severity of drought, the profiled organ, its developmental stage or even the cell types therein. Thus, deciphering the transcriptional responses to drought is especially challenging. In this study, we investigated tissue-specific responses to mild drought (MD) in young Arabidopsis thaliana (Arabidopsis) leaves using single-cell RNA sequencing (scRNA-seq). To preserve transcriptional integrity during cell isolation, we inhibited RNA synthesis using the transcription inhibitor actinomycin D, and demonstrated the benefits of transcriptome fixation for studying mild stress responses at a single-cell level. We present a curated and validated single-cell atlas, comprising 50 797 high-quality cells from almost all known cell types present in the leaf. All cell type annotations were validated with a new library of reporter lines. The curated data are available to the broad community in an intuitive tool and a browsable single-cell atlas (http://www.single-cell.be/plant/leaf-drought). We show that the mesophyll contains two spatially separated cell populations with distinct responses to drought: one enriched in canonical abscisic acid-related drought-responsive genes, and another one enriched in genes involved in iron starvation responses. Our study thus reveals a dual adaptive mechanism of the leaf mesophyll in response to MD and provides a valuable resource for future research on stress responses.
Collapse
Affiliation(s)
- Rubén Tenorio Berrío
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhent9052Belgium
- Center for Plant Systems Biology, VIBGhent9052Belgium
| | - Eline Verhelst
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhent9052Belgium
- Center for Plant Systems Biology, VIBGhent9052Belgium
| | - Thomas Eekhout
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhent9052Belgium
- Center for Plant Systems Biology, VIBGhent9052Belgium
- Single Cell Core Facility, VIBGhent9052Belgium
| | - Carolin Grones
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhent9052Belgium
- Center for Plant Systems Biology, VIBGhent9052Belgium
| | - Lieven De Veylder
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhent9052Belgium
- Center for Plant Systems Biology, VIBGhent9052Belgium
| | - Bert De Rybel
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhent9052Belgium
- Center for Plant Systems Biology, VIBGhent9052Belgium
| | - Marieke Dubois
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhent9052Belgium
- Center for Plant Systems Biology, VIBGhent9052Belgium
| |
Collapse
|
3
|
Pereira WJ, Conde D, Perron N, Schmidt HW, Dervinis C, Venado RE, Ané JM, Kirst M. Investigating biological nitrogen fixation via single-cell transcriptomics. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:931-949. [PMID: 39563004 PMCID: PMC11850973 DOI: 10.1093/jxb/erae454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 11/16/2024] [Indexed: 11/21/2024]
Abstract
The extensive use of nitrogen fertilizers has detrimental environmental consequences, and it is essential for society to explore sustainable alternatives. One promising avenue is engineering root nodule symbiosis, a naturally occurring process in certain plant species within the nitrogen-fixing clade, into non-leguminous crops. Advancements in single-cell transcriptomics provide unprecedented opportunities to dissect the molecular mechanisms underlying root nodule symbiosis at the cellular level. This review summarizes key findings from single-cell studies in Medicago truncatula, Lotus japonicus, and Glycine max. We highlight how these studies address fundamental questions about the development of root nodule symbiosis, including the following findings: (i) single-cell transcriptomics has revealed a conserved transcriptional program in root hair and cortical cells during rhizobial infection, suggesting a common infection pathway across legume species; (ii) characterization of determinate and indeterminate nodules using single-cell technologies supports the compartmentalization of nitrogen fixation, assimilation, and transport into distinct cell populations; (iii) single-cell transcriptomics data have enabled the identification of novel root nodule symbiosis genes and provided new approaches for prioritizing candidate genes for functional characterization; and (iv) trajectory inference and RNA velocity analyses of single-cell transcriptomics data have allowed the reconstruction of cellular lineages and dynamic transcriptional states during root nodule symbiosis.
Collapse
Affiliation(s)
- Wendell J Pereira
- School of Forest, Fisheries, and Geomatics Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Daniel Conde
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid–Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), 28223 Madrid, Spain
| | - Noé Perron
- School of Forest, Fisheries, and Geomatics Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Henry W Schmidt
- School of Forest, Fisheries, and Geomatics Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Christopher Dervinis
- School of Forest, Fisheries, and Geomatics Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Rafael E Venado
- Department of Bacteriology, University of Wisconsin, Madison, WI 53706, USA
| | - Jean-Michel Ané
- Department of Bacteriology, University of Wisconsin, Madison, WI 53706, USA
- Department of Plant and Agroecosystem Sciences, University of Wisconsin, Madison, WI 53706, USA
| | - Matias Kirst
- School of Forest, Fisheries, and Geomatics Sciences, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
4
|
Zogopoulos VL, Papadopoulos K, Malatras A, Iconomidou VA, Michalopoulos I. ACT2.6: Global Gene Coexpression Network in Arabidopsis thaliana Using WGCNA. Genes (Basel) 2025; 16:258. [PMID: 40149410 PMCID: PMC11942487 DOI: 10.3390/genes16030258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/06/2025] [Accepted: 02/21/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND/OBJECTIVES Genes with similar expression patterns across multiple samples are considered coexpressed, and they may participate in similar biological processes or pathways. Gene coexpression networks depict the degree of similarity between the expression profiles of all genes in a set of samples. Gene coexpression tools allow for the prediction of functional gene partners or the assignment of roles to genes of unknown function. Weighted Gene Correlation Network Analysis (WGCNA) is an R package that provides a multitude of functions for constructing and analyzing a weighted or unweighted gene coexpression network. METHODS Previously preprocessed, high-quality gene expression data of 3500 samples of Affymetrix microarray technology from various tissues of the Arabidopsis thaliana plant model species were used to construct a weighted gene coexpression network, using WGCNA. RESULTS The gene dendrogram was used as the basis for the creation of a new Arabidopsis coexpression tool (ACT) version (ACT2.6). The dendrogram contains 21,273 leaves, each one corresponding to a single gene. Genes that are clustered in the same clade are coexpressed. WGCNA grouped the genes into 27 functional modules, all of which were positively or negatively correlated with specific tissues. DISCUSSION Genes known to be involved in common metabolic pathways were discovered in the same module. By comparing the current ACT version with the previous one, it was shown that the new version outperforms the old one in discovering the functional connections between gene partners. ACT2.6 is a major upgrade over the previous version and a significant addition to the collection of public gene coexpression tools.
Collapse
Affiliation(s)
- Vasileios L. Zogopoulos
- Center of Systems Biology, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece; (V.L.Z.); (K.P.)
- Section of Cell Biology and Biophysics, Department of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece;
| | - Konstantinos Papadopoulos
- Center of Systems Biology, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece; (V.L.Z.); (K.P.)
- Section of Cell Biology and Biophysics, Department of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece;
| | - Apostolos Malatras
- Molecular Medicine Research Center, biobank.cy, Center of Excellence in Biobanking and Biomedical Research, University of Cyprus, 2109 Nicosia, Cyprus;
| | - Vassiliki A. Iconomidou
- Section of Cell Biology and Biophysics, Department of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece;
| | - Ioannis Michalopoulos
- Center of Systems Biology, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece; (V.L.Z.); (K.P.)
| |
Collapse
|
5
|
Pelletier JM, Chen M, Lin JY, Le B, Kirkbride RC, Hur J, Wang T, Chang SH, Olson A, Nikolov L, Goldberg RB, Harada JJ. Dissecting the cellular architecture and genetic circuitry of the soybean seed. Proc Natl Acad Sci U S A 2025; 122:e2416987121. [PMID: 39793081 PMCID: PMC11725896 DOI: 10.1073/pnas.2416987121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 11/18/2024] [Indexed: 01/12/2025] Open
Abstract
Seeds are complex structures composed of three regions, embryo, endosperm, and seed coat, with each further divided into subregions that consist of tissues, cell layers, and cell types. Although the seed is well characterized anatomically, much less is known about the genetic circuitry that dictates its spatial complexity. To address this issue, we profiled mRNAs from anatomically distinct seed subregions at several developmental stages. Analyses of these profiles showed that all subregions express similar diverse gene numbers and that the small gene numbers expressed subregion specifically provide information about the biological processes that occur in these seed compartments. In parallel, we profiled RNAs in individual nuclei and identified nuclei clusters representing distinct cell identities. Integrating single-nucleus RNA and subregion mRNA transcriptomes allowed most cell identities to be assigned to specific subregions and cell types and/or cell states. The number of cell identities exceeds the number of anatomically distinguishable cell types, emphasizing the spatial complexity of seeds. We defined gene coexpression networks that underlie distinct biological processes during seed development. We showed that network distribution among subregions and cell identities is highly variable. Some networks operate in single subregions and/or cell identities, and many coexpression networks operate in multiple subregions and/or cell identities. We also showed that single subregions and cell identities possess several networks. Together, our studies provide unique insights into the biological processes and genetic circuitry that underlie the spatial landscape of the seed.
Collapse
Affiliation(s)
- Julie M. Pelletier
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA95616
| | - Min Chen
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA90095
| | - Jer-Young Lin
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA90095
| | - Brandon Le
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA90095
| | - Ryan C. Kirkbride
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA95616
| | - Jungim Hur
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA90095
| | - Tina Wang
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA95616
| | - Shu-Heng Chang
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA95616
| | - Alexander Olson
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA95616
| | - Lachezar Nikolov
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA90095
| | - Robert B. Goldberg
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA90095
| | - John J. Harada
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA95616
| |
Collapse
|
6
|
Chau TN, Timilsena PR, Bathala SP, Kundu S, Bargmann BOR, Li S. Orthologous marker groups reveal broad cell identity conservation across plant single-cell transcriptomes. Nat Commun 2025; 16:201. [PMID: 39747890 PMCID: PMC11695714 DOI: 10.1038/s41467-024-55755-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 12/26/2024] [Indexed: 01/04/2025] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) is widely used in plant biology and is a powerful tool for studying cell identity and differentiation. However, the scarcity of known cell-type marker genes and the divergence of marker expression patterns limit the accuracy of cell-type identification and our capacity to investigate cell-type conservation in many species. To tackle this challenge, we devise a novel computational strategy called Orthologous Marker Gene Groups (OMGs), which can identify cell types in both model and non-model plant species and allows for rapid comparison of cell types across many published single-cell maps. Our method does not require cross-species data integration, while still accurately determining inter-species cellular similarities. We validate the method by analyzing published single-cell data from species with well-annotated single-cell maps, and we show our methods can capture majority of manually annotated cell types. The robustness of our method is further demonstrated by its ability to pertinently map cell clusters from 1 million cells, 268 cell clusters across 15 diverse plant species. We reveal 14 dominant groups with substantial conservation in shared cell-type markers across monocots and dicots. To facilitate the use of this method by the broad research community, we launch a user-friendly web-based tool called the OMG browser, which simplifies the process of cell-type identification in plant datasets for biologists.
Collapse
Affiliation(s)
- Tran N Chau
- Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, VA, USA.
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, USA.
| | | | | | - Sanchari Kundu
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, USA
| | | | - Song Li
- Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, VA, USA.
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, USA.
- Department of Computer Science, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
7
|
Li Y, Liu Y, Ran G, Yu Y, Zhou Y, Zhu Y, Du Y, Pi L. The pentatricopeptide repeat protein DG1 promotes the transition to bilateral symmetry during Arabidopsis embryogenesis through GUN1-mediated plastid signals. THE NEW PHYTOLOGIST 2024; 244:542-557. [PMID: 39140987 DOI: 10.1111/nph.20056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/25/2024] [Indexed: 08/15/2024]
Abstract
During Arabidopsis embryogenesis, the transition of the embryo's symmetry from radial to bilateral between the globular and heart stage is a crucial event, involving the formation of cotyledon primordia and concurrently the establishment of a shoot apical meristem (SAM). However, a coherent framework of how this transition is achieved remains to be elucidated. In this study, we investigated the function of DELAYED GREENING 1 (DG1) in Arabidopsis embryogenesis using a newly identified dg1-3 mutant. The absence of chloroplast-localized DG1 in the mutants led to embryos being arrested at the globular or heart stage, accompanied by an expansion of WUSCHEL (WUS) and SHOOT MERISTEMLESS (STM) expression. This finding pinpoints the essential role of DG1 in regulating the transition to bilateral symmetry. Furthermore, we showed that this regulation of DG1 may not depend on its role in plastid RNA editing. Nevertheless, we demonstrated that the DG1 function in establishing bilateral symmetry is genetically mediated by GENOMES UNCOUPLED 1 (GUN1), which represses the transition process in dg1-3 embryos. Collectively, our results reveal that DG1 functionally antagonizes GUN1 to promote the transition of the Arabidopsis embryo's symmetry from radial to bilateral and highlight the role of plastid signals in regulating pattern formation during plant embryogenesis.
Collapse
Affiliation(s)
- Yajie Li
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Yiqiong Liu
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Guiping Ran
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Yue Yu
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Yifan Zhou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yuxian Zhu
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yujuan Du
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, 464-8601, Japan
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Limin Pi
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
8
|
Tenorio Berrío R, Dubois M. Single-cell transcriptomics reveals heterogeneity in plant responses to the environment: a focus on biotic and abiotic interactions. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5188-5203. [PMID: 38466621 DOI: 10.1093/jxb/erae107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/08/2024] [Indexed: 03/13/2024]
Abstract
Biotic and abiotic environmental cues are major factors influencing plant growth and productivity. Interactions with biotic (e.g. symbionts and pathogens) and abiotic (e.g. changes in temperature, water, or nutrient availability) factors trigger signaling and downstream transcriptome adjustments in plants. While bulk RNA-sequencing technologies have traditionally been used to profile these transcriptional changes, tissue homogenization may mask heterogeneity of responses resulting from the cellular complexity of organs. Thus, whether different cell types respond equally to environmental fluctuations, or whether subsets of the responses are cell-type specific, are long-lasting questions in plant biology. The recent breakthrough of single-cell transcriptomics in plant research offers an unprecedented view of cellular responses under changing environmental conditions. In this review, we discuss the contribution of single-cell transcriptomics to the understanding of cell-type-specific plant responses to biotic and abiotic environmental interactions. Besides major biological findings, we present some technical challenges coupled to single-cell studies of plant-environment interactions, proposing possible solutions and exciting paths for future research.
Collapse
Affiliation(s)
- Rubén Tenorio Berrío
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Marieke Dubois
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
9
|
Adema K, Schon MA, Nodine MD, Kohlen W. Lost in space: what single-cell RNA sequencing cannot tell you. TRENDS IN PLANT SCIENCE 2024; 29:1018-1028. [PMID: 38570278 DOI: 10.1016/j.tplants.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/21/2024] [Accepted: 03/11/2024] [Indexed: 04/05/2024]
Abstract
Plant scientists are rapidly integrating single-cell RNA sequencing (scRNA-seq) into their workflows. Maximizing the potential of scRNA-seq requires a proper understanding of the spatiotemporal context of cells. However, positional information is inherently lost during scRNA-seq, limiting its potential to characterize complex biological systems. In this review we highlight how current single-cell analysis pipelines cannot completely recover spatial information, which confounds biological interpretation. Various strategies exist to identify the location of RNA, from classical RNA in situ hybridization to spatial transcriptomics. Herein we discuss the possibility of utilizing this spatial information to supervise single-cell analyses. An integrative approach will maximize the potential of each technology, and lead to insights which go beyond the capability of each individual technology.
Collapse
Affiliation(s)
- Kelvin Adema
- Laboratory of Cell and Developmental Biology, Cluster of Plant Developmental Biology, Department of Plant Sciences, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Michael A Schon
- Laboratory of Cell and Developmental Biology, Cluster of Plant Developmental Biology, Department of Plant Sciences, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands; Laboratory of Molecular Biology, Cluster of Plant Developmental Biology, Department of Plant Sciences, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Michael D Nodine
- Laboratory of Molecular Biology, Cluster of Plant Developmental Biology, Department of Plant Sciences, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Wouter Kohlen
- Laboratory of Cell and Developmental Biology, Cluster of Plant Developmental Biology, Department of Plant Sciences, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands; Laboratory of Molecular Biology, Cluster of Plant Developmental Biology, Department of Plant Sciences, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
| |
Collapse
|
10
|
Grones C, Eekhout T, Shi D, Neumann M, Berg LS, Ke Y, Shahan R, Cox KL, Gomez-Cano F, Nelissen H, Lohmann JU, Giacomello S, Martin OC, Cole B, Wang JW, Kaufmann K, Raissig MT, Palfalvi G, Greb T, Libault M, De Rybel B. Best practices for the execution, analysis, and data storage of plant single-cell/nucleus transcriptomics. THE PLANT CELL 2024; 36:812-828. [PMID: 38231860 PMCID: PMC10980355 DOI: 10.1093/plcell/koae003] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 10/17/2023] [Accepted: 10/24/2023] [Indexed: 01/19/2024]
Abstract
Single-cell and single-nucleus RNA-sequencing technologies capture the expression of plant genes at an unprecedented resolution. Therefore, these technologies are gaining traction in plant molecular and developmental biology for elucidating the transcriptional changes across cell types in a specific tissue or organ, upon treatments, in response to biotic and abiotic stresses, or between genotypes. Despite the rapidly accelerating use of these technologies, collective and standardized experimental and analytical procedures to support the acquisition of high-quality data sets are still missing. In this commentary, we discuss common challenges associated with the use of single-cell transcriptomics in plants and propose general guidelines to improve reproducibility, quality, comparability, and interpretation and to make the data readily available to the community in this fast-developing field of research.
Collapse
Affiliation(s)
- Carolin Grones
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Centre for Plant Systems Biology, Ghent 9052, Belgium
| | - Thomas Eekhout
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Centre for Plant Systems Biology, Ghent 9052, Belgium
- VIB Single Cell Core Facility, Ghent 9052, Belgium
| | - Dongbo Shi
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
- Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany
| | - Manuel Neumann
- Institute of Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Lea S Berg
- Institute of Plant Sciences, University of Bern, 3012 Bern, Switzerland
| | - Yuji Ke
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Centre for Plant Systems Biology, Ghent 9052, Belgium
| | - Rachel Shahan
- Department of Biology, Duke University, Durham, NC 27708, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
| | - Kevin L Cox
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Fabio Gomez-Cano
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hilde Nelissen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Centre for Plant Systems Biology, Ghent 9052, Belgium
| | - Jan U Lohmann
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Stefania Giacomello
- SciLifeLab, Department of Gene Technology, KTH Royal Institute of Technology, 17165 Solna, Sweden
| | - Olivier C Martin
- Universities of Paris-Saclay, Paris-Cité and Evry, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay, Gif-sur-Yvette 91192, France
| | - Benjamin Cole
- DOE-Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China
| | - Kerstin Kaufmann
- Institute of Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Michael T Raissig
- Institute of Plant Sciences, University of Bern, 3012 Bern, Switzerland
| | - Gergo Palfalvi
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Thomas Greb
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Marc Libault
- Division of Plant Science and Technology, Interdisciplinary Plant Group, College of Agriculture, Food, and Natural Resources, University of Missouri-Columbia, Columbia, MO 65201, USA
| | - Bert De Rybel
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Centre for Plant Systems Biology, Ghent 9052, Belgium
| |
Collapse
|
11
|
Li X, Liu Q, Liu J. Long Non-Coding RNAs: Discoveries, Mechanisms, and Research Strategies in Seeds. Genes (Basel) 2023; 14:2214. [PMID: 38137035 PMCID: PMC10742540 DOI: 10.3390/genes14122214] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Seeds provide nutrients for the embryo and allow for dormancy in stressed environments to better adapt the plant to its environment. In addition, seeds are an essential source of food for human survival and are the basis for the formation of food production and quality. Therefore, the research on the genetic mechanism of seed development and germination will provide a theoretical basis and technical support for the improvement of crop yield and quality. Recent studies have shown that long non-coding RNAs (lncRNAs) occupy a pivotal position in seed development and germination. In this review, we describe the key processes in seed biology and examine discoveries and insights made in seed lncRNA, with emphasis on lncRNAs that regulate seed biology through multiple mechanisms. Given that thousands of lncRNAs are present in the seed transcriptome, characterization has lagged far behind identification. We provide an overview of research strategies and approaches including some exciting new techniques that may uncover the function of lncRNAs in seed. Finally, we discuss the challenges facing the field and the opening questions. All in all, we hope to provide a clear perspective on discoveries of seed lncRNA by linking discoveries, mechanisms, and technologies.
Collapse
Affiliation(s)
| | | | - Jun Liu
- Guangdong Provincial Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (X.L.); (Q.L.)
| |
Collapse
|
12
|
Fehér A. A Common Molecular Signature Indicates the Pre-Meristematic State of Plant Calli. Int J Mol Sci 2023; 24:13122. [PMID: 37685925 PMCID: PMC10488067 DOI: 10.3390/ijms241713122] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
In response to different degrees of mechanical injury, certain plant cells re-enter the division cycle to provide cells for tissue replenishment, tissue rejoining, de novo organ formation, and/or wound healing. The intermediate tissue formed by the dividing cells is called a callus. Callus formation can also be induced artificially in vitro by wounding and/or hormone (auxin and cytokinin) treatments. The callus tissue can be maintained in culture, providing starting material for de novo organ or embryo regeneration and thus serving as the basis for many plant biotechnology applications. Due to the biotechnological importance of callus cultures and the scientific interest in the developmental flexibility of somatic plant cells, the initial molecular steps of callus formation have been studied in detail. It was revealed that callus initiation can follow various ways, depending on the organ from which it develops and the inducer, but they converge on a seemingly identical tissue. It is not known, however, if callus is indeed a special tissue with a defined gene expression signature, whether it is a malformed meristem, or a mass of so-called "undifferentiated" cells, as is mostly believed. In this paper, I review the various mechanisms of plant regeneration that may converge on callus initiation. I discuss the role of plant hormones in the detour of callus formation from normal development. Finally, I compare various Arabidopsis gene expression datasets obtained a few days, two weeks, or several years after callus induction and identify 21 genes, including genes of key transcription factors controlling cell division and differentiation in meristematic regions, which were upregulated in all investigated callus samples. I summarize the information available on all 21 genes that point to the pre-meristematic nature of callus tissues underlying their wide regeneration potential.
Collapse
Affiliation(s)
- Attila Fehér
- Institute of Plant Biology, Biological Research Centre, 62 Temesvári Körút, 6726 Szeged, Hungary; or
- Department of Plant Biology, University of Szeged, 52 Közép Fasor, 6726 Szeged, Hungary
| |
Collapse
|
13
|
Thibivilliers S, Farmer A, Schroeder S, Libault M. Plant Single-Cell/Nucleus RNA-seq Workflow. Methods Mol Biol 2022; 2584:165-181. [PMID: 36495448 DOI: 10.1007/978-1-0716-2756-3_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Single-cell transcriptomics technologies allow researchers to investigate how individual cells, in complex multicellular organisms, differentially use their common genomic DNA. In plant biology, these technologies were recently applied to reveal the transcriptomes of various plant cells isolated from different organs and different species and in response to environmental stresses. These first studies support the potential of single-cell transcriptomics technology to decipher the biological function of plant cells, their developmental programs, cell-type-specific gene networks, programs controlling plant cell response to environmental stresses, etc. In this chapter, we provide information regarding the critical steps and important information to consider when developing an experimental design in plant single-cell biology. We also describe the current status of bioinformatics tools used to analyze single-cell RNA-seq datasets and how additional emerging technologies such as spatial transcriptomics and long-read sequencing technologies will provide additional information on the differential use of the genome by plant cells.
Collapse
Affiliation(s)
- Sandra Thibivilliers
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Beadle Center, Lincoln, NE, USA
| | - Andrew Farmer
- National Center for Genome Resources, Santa Fe, NM, USA
| | - Susan Schroeder
- Department of Chemistry & Biochemistry, University of Oklahoma, Norman, OK, USA
- Department of Microbiology & Plant Biology, University of Oklahoma, Norman, OK, USA
| | - Marc Libault
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Beadle Center, Lincoln, NE, USA.
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Beadle Center, Lincoln, NE, USA.
| |
Collapse
|
14
|
Cervantes-Pérez SA, Thibivillliers S, Tennant S, Libault M. Review: Challenges and perspectives in applying single nuclei RNA-seq technology in plant biology. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 325:111486. [PMID: 36202294 DOI: 10.1016/j.plantsci.2022.111486] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/12/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Plant single-cell RNA-seq technology quantifies the abundance of plant transcripts at a single-cell resolution. Deciphering the transcriptomes of each plant cell, their regulation during plant cell development, and their response to environmental stresses will support the functional study of genes, the establishment of precise transcriptional programs, the prediction of more accurate gene regulatory networks, and, in the long term, the design of de novo gene pathways to enhance selected crop traits. In this review, we will discuss the opportunities, challenges, and problems, and share tentative solutions associated with the generation and analysis of plant single-cell transcriptomes. We will discuss the benefit and limitations of using plant protoplasts vs. nuclei to conduct single-cell RNA-seq experiments on various plant species and organs, the functional annotation of plant cell types based on their transcriptomic profile, the characterization of the dynamic regulation of the plant genes during cell development or in response to environmental stress, the need to characterize and integrate additional layers of -omics datasets to capture new molecular modalities at the single-cell level and reveal their causalities, the deposition and access to single-cell datasets, and the accessibility of this technology to plant scientists.
Collapse
Affiliation(s)
- Sergio Alan Cervantes-Pérez
- Department of Agronomy and Horticulture, Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68503, USA
| | - Sandra Thibivillliers
- Department of Agronomy and Horticulture, Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68503, USA; Center for Biotechnology, University of Nebraska, Lincoln, NE 68588, USA; Single Cell Genomics Core Facility, University of Nebraska-Lincoln, NE 68588, USA
| | - Sutton Tennant
- Department of Agronomy and Horticulture, Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68503, USA
| | - Marc Libault
- Department of Agronomy and Horticulture, Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68503, USA; Center for Biotechnology, University of Nebraska, Lincoln, NE 68588, USA; Single Cell Genomics Core Facility, University of Nebraska-Lincoln, NE 68588, USA.
| |
Collapse
|
15
|
Huang Y, Zhou L, Hou C, Guo D. The dynamic proteome in Arabidopsis thaliana early embryogenesis. Development 2022; 149:276287. [DOI: 10.1242/dev.200715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 07/26/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
The morphology of the flowering plant is established during early embryogenesis. In recent years, many studies have focused on transcriptional profiling in plant embryogenesis, but the dynamic landscape of the Arabidopsis thaliana proteome remains elusive. In this study, Arabidopsis embryos at 2/4-cell, 8-cell, 16-cell, 32-cell, globular and heart stages were collected for nanoproteomic analysis. In total, 5386 proteins were identified. Of these, 1051 proteins were universally identified in all developmental stages and a range of 27 to 2154 proteins was found to be stage specific. These proteins could be grouped into eight clusters according to their expression levels. Gene Ontology enrichment analysis showed that genes involved in ribosome biogenesis and auxin-activated signalling were enriched during early embryogenesis, indicating that active translation and auxin signalling are important events in Arabidopsis embryo development. Combining RNA-sequencing data with the proteomics analysis, the correlation between mRNA and protein was evaluated. An overall positive correlation was found between mRNA and protein. This work provides a comprehensive landscape of the Arabidopsis proteome in early embryogenesis. Some important proteins/transcription factors identified through network analysis may serve as potential targets for future investigation.
Collapse
Affiliation(s)
- Yingzhang Huang
- State Key Laboratory of Agrobiotechnology and School of Life Science, The Chinese University of Hong Kong 1 , 999077 Hong Kong , China
| | - Limeng Zhou
- State Key Laboratory of Agrobiotechnology and School of Life Science, The Chinese University of Hong Kong 1 , 999077 Hong Kong , China
| | - Chunhui Hou
- Southern University of Science and Technology 2 Department of Biology , , Shenzhen 518055 , China
| | - Dianjing Guo
- State Key Laboratory of Agrobiotechnology and School of Life Science, The Chinese University of Hong Kong 1 , 999077 Hong Kong , China
| |
Collapse
|
16
|
Cervantes-Pérez SA, Libault M. Cell-Type-Specific Profiling of the Arabidopsis thaliana Membrane Protein-Encoding Genes. MEMBRANES 2022; 12:874. [PMID: 36135893 PMCID: PMC9506093 DOI: 10.3390/membranes12090874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/09/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
Membrane proteins work in large complexes to perceive and transduce external signals and to trigger a cellular response leading to the adaptation of the cells to their environment. Biochemical assays have been extensively used to reveal the interaction between membrane proteins. However, such analyses do not reveal the unique and complex composition of the membrane proteins of the different plant cell types. Here, we conducted a comprehensive analysis of the expression of Arabidopsis membrane proteins in the different cell types composing the root. Specifically, we analyzed the expression of genes encoding membrane proteins interacting in large complexes. We found that the transcriptional profiles of membrane protein-encoding genes differ between Arabidopsis root cell types. This result suggests that different cell types are characterized by specific sets of plasma membrane proteins, which are likely a reflection of their unique biological functions and interactions. To further explore the complexity of the Arabidopsis root cell membrane proteomes, we conducted a co-expression analysis of genes encoding interacting membrane proteins. This study confirmed previously reported interactions between membrane proteins, suggesting that the co-expression of genes at the single cell-type level can be used to support protein network predictions.
Collapse
Affiliation(s)
- Sergio Alan Cervantes-Pérez
- Department of Agronomy and Horticulture, Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68503, USA
| | - Marc Libault
- Department of Agronomy and Horticulture, Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68503, USA
- Single Cell Genomics Core Facility, Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| |
Collapse
|
17
|
de Silva KK, Dunwell JM, Wickramasuriya AM. Weighted Gene Correlation Network Analysis (WGCNA) of Arabidopsis Somatic Embryogenesis (SE) and Identification of Key Gene Modules to Uncover SE-Associated Hub Genes. Int J Genomics 2022; 2022:7471063. [PMID: 35837132 PMCID: PMC9274236 DOI: 10.1155/2022/7471063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/23/2022] [Indexed: 01/07/2023] Open
Abstract
Somatic embryogenesis (SE), which occurs naturally in many plant species, serves as a model to elucidate cellular and molecular mechanisms of embryo patterning in plants. Decoding the regulatory landscape of SE is essential for its further application. Hence, the present study was aimed at employing Weighted Gene Correlation Network Analysis (WGCNA) to construct a gene coexpression network (GCN) for Arabidopsis SE and then identifying highly correlated gene modules to uncover the hub genes associated with SE that may serve as potential molecular targets. A total of 17,059 genes were filtered from a microarray dataset comprising four stages of SE, i.e., stage I (zygotic embryos), stage II (proliferating tissues at 7 days of induction), stage III (proliferating tissues at 14 days of induction), and stage IV (mature somatic embryos). This included 1,711 transcription factors and 445 EMBRYO DEFECTIVE genes. GCN analysis identified a total of 26 gene modules with the module size ranging from 35 to 3,418 genes using a dynamic cut tree algorithm. The module-trait analysis revealed that four, four, seven, and four modules were associated with stages I, II, III, and IV, respectively. Further, we identified a total of 260 hub genes based on the degree of intramodular connectivity. Validation of the hub genes using publicly available expression datasets demonstrated that at least 78 hub genes are potentially associated with embryogenesis; of these, many genes remain functionally uncharacterized thus far. In silico promoter analysis of these genes revealed the presence of cis-acting regulatory elements, "soybean embryo factor 4 (SEF4) binding site," and "E-box" of the napA storage-protein gene of Brassica napus; this suggests that these genes may play important roles in plant embryo development. The present study successfully applied WGCNA to construct a GCN for SE in Arabidopsis and identified hub genes involved in the development of somatic embryos. These hub genes could be used as molecular targets to further elucidate the molecular mechanisms underlying SE in plants.
Collapse
Affiliation(s)
- Kithmee K. de Silva
- Department of Plant Sciences, Faculty of Science, University of Colombo, Colombo 03, Sri Lanka
| | - Jim M. Dunwell
- School of Agriculture, Policy and Development, University of Reading, Reading RG6 6EU, UK
| | | |
Collapse
|
18
|
Verma S, Attuluri VPS, Robert HS. Transcriptional control of Arabidopsis seed development. PLANTA 2022; 255:90. [PMID: 35318532 PMCID: PMC8940821 DOI: 10.1007/s00425-022-03870-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 03/04/2022] [Indexed: 05/04/2023]
Abstract
The entire process of embryo development is under the tight control of various transcription factors. Together with other proteins, they act in a combinatorial manner and control distinct events during embryo development. Seed development is a complex process that proceeds through sequences of events regulated by the interplay of various genes, prominent among them being the transcription factors (TFs). The members of WOX, HD-ZIP III, ARF, and CUC families have a preferential role in embryonic patterning. While WOX TFs are required for initiating body axis, HD-ZIP III TFs and CUCs establish bilateral symmetry and SAM. And ARF5 performs a major role during embryonic root, ground tissue, and vasculature development. TFs such as LEC1, ABI3, FUS3, and LEC2 (LAFL) are considered the master regulators of seed maturation. Furthermore, several new TFs involved in seed storage reserves and dormancy have been identified in the last few years. Their association with those master regulators has been established in the model plant Arabidopsis. Also, using chromatin immunoprecipitation (ChIP) assay coupled with transcriptomics, genome-wide target genes of these master regulators have recently been proposed. Many seed-specific genes, including those encoding oleosins and albumins, have appeared as the direct target of LAFL. Also, several other TFs act downstream of LAFL TFs and perform their function during maturation. In this review, the function of different TFs in different phases of early embryogenesis and maturation is discussed in detail, including information about their genetic and molecular interactors and target genes. Such knowledge can further be leveraged to understand and manipulate the regulatory mechanisms involved in seed development. In addition, the genomics approaches and their utilization to identify TFs aiming to study embryo development are discussed.
Collapse
Affiliation(s)
- Subodh Verma
- Mendel Centre for Genomics and Proteomics of Plants Systems, CEITEC MU - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Venkata Pardha Saradhi Attuluri
- Mendel Centre for Genomics and Proteomics of Plants Systems, CEITEC MU - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Hélène S. Robert
- Mendel Centre for Genomics and Proteomics of Plants Systems, CEITEC MU - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| |
Collapse
|
19
|
Dinant S, Le Hir R. Delving deeper into the link between sugar transport, sugar signaling, and vascular system development. PHYSIOLOGIA PLANTARUM 2022; 174:e13684. [PMID: 35396718 DOI: 10.1111/ppl.13684] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/31/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
Plant growth and development rely on the transport and use of sugars produced during photosynthesis. Sugars have a dual function as nutrients and signal molecules in the cell. Many factors maintaining sugar homeostasis and signaling are now identified, but our understanding of the mechanisms involved in coordinating intracellular and intercellular sugar translocation is still limited. We also know little about the interplay between sugar transport and signaling and the formation of the vascular system, which controls long-distance sugar translocation. Sugar signaling has been proposed to play a role; however, evidence to support this hypothesis is still limited. Here, we exploited recent transcriptomics datasets produced in aerial organs of Arabidopsis to identify genes coding for sugar transporters or signaling components expressed in the vascular cells. We identified genes belonging to sugar transport and signaling for which no information is available regarding a role in vasculature development. In addition, the transcriptomics datasets obtained from sugar-treated Arabidopsis seedlings were used to assess the sugar-responsiveness of known genes involved in vascular differentiation. Interestingly, several key regulators of vascular development were found to be regulated by either sucrose or glucose. Especially CLE41, which controls the procambial cell fate, was oppositely regulated by sucrose or glucose in these datasets. Even if more experimental data are necessary to confirm these findings, this survey supports a link between sugar transport/signaling and vascular system development.
Collapse
Affiliation(s)
- Sylvie Dinant
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Rozenn Le Hir
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| |
Collapse
|
20
|
Cornelis S, Hazak O. Understanding the root xylem plasticity for designing resilient crops. PLANT, CELL & ENVIRONMENT 2022; 45:664-676. [PMID: 34971462 PMCID: PMC9303747 DOI: 10.1111/pce.14245] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 06/14/2023]
Abstract
Xylem is the main route for transporting water, minerals and a myriad of signalling molecules within the plant. With its onset during early embryogenesis, the development of the xylem relies on hormone gradients, the activity of unique transcription factors, the distribution of mobile microRNAs, and receptor-ligand pathways. These regulatory mechanisms are often interconnected and together contribute to the plasticity of this water-conducting tissue. Environmental stresses, such as drought and salinity, have a great impact on xylem patterning. A better understanding of how the structural properties of the xylem are regulated in normal and stress conditions will be instrumental in developing crops of the future. In addition, vascular wilt pathogens that attack the xylem are becoming increasingly problematic. Further knowledge of xylem development in response to these pathogens will bring new solutions against these diseases. In this review, we summarize recent findings on the molecular mechanisms of xylem formation that largely come from Arabidopsis research with additional insights from tomato and monocot species. We emphasize the impact of abiotic factors and pathogens on xylem plasticity and the urgent need to uncover the underlying mechanisms. Finally, we discuss the multidisciplinary approach to model xylem capacities in crops.
Collapse
Affiliation(s)
- Salves Cornelis
- Department of BiologyUniversity of FribourgFribourgSwitzerland
| | - Ora Hazak
- Department of BiologyUniversity of FribourgFribourgSwitzerland
| |
Collapse
|
21
|
Song J, Xie X, Cui Y, Zou J. Endosperm-Embryo Communications: Recent Advances and Perspectives. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112511. [PMID: 34834874 PMCID: PMC8625250 DOI: 10.3390/plants10112511] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 05/22/2023]
Abstract
Seed maturation depends on well-coordinated communications between the processes of endosperm and embryo development. The endosperm is considered to be destined to support embryo development and the timing of endosperm cellularization is critical for embryo growth. Recent findings suggest that the endosperm development and the onset of embryo maturation are two independent processes during seed development. Meanwhile, it is lately reported that several mobile regulators originating from the endosperm are needed to ensure proper embryo growth and seed maturation. In this opinion article, we highlight processes on how endosperm communicates with embryo during seed development and discuss some intriguing questions in light of the latest advancements.
Collapse
Affiliation(s)
- Jingpu Song
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, Saskatoon, SK S7N 0W9, Canada;
- Correspondence:
| | - Xin Xie
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON N5V 4T3, Canada; (X.X.); (Y.C.)
- Department of Biology, Western University, London, ON N6A 3K7, Canada
| | - Yuhai Cui
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON N5V 4T3, Canada; (X.X.); (Y.C.)
- Department of Biology, Western University, London, ON N6A 3K7, Canada
| | - Jitao Zou
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, Saskatoon, SK S7N 0W9, Canada;
| |
Collapse
|
22
|
Plant development: Suspensors as a battlefield for parental tug-of-war? Curr Biol 2021; 31:R1424-R1426. [PMID: 34752766 DOI: 10.1016/j.cub.2021.09.081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Parental contributions to zygotes can influence early embryogenesis and may regulate the distribution of maternal resources to progeny. A new study in Arabidopsis thaliana has demonstrated that signaling components from maternal sporophytic tissues and paternal gametes converge in zygotes to promote elongation of the extraembryonic suspensor, which supports the developing embryo proper.
Collapse
|
23
|
Dubrovsky JG, Vissenberg K. The quiescent centre and root apical meristem: organization and function. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6673-6678. [PMID: 34562009 DOI: 10.1093/jxb/erab405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
This special issue is dedicated to the 100th anniversary of the birth of Frederick Albert Lionel Clowes, who discovered the quiescent centre (QC) of the root apical meristem (RAM). His discovery was a foundation for contemporary studies of the QC and RAM function, maintenance, and organization. RAM function is fundamental for cell production and root growth. This special issue bundles reviews on the main tendencies, hypotheses, and future directions, and identifies unknowns in the field.
Collapse
Affiliation(s)
- Joseph G Dubrovsky
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, 62210, Morelos, Mexico
| | - Kris Vissenberg
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, Antwerp, Belgium
- Plant Biochemistry and Biotechnology Lab, Department of Agriculture, Hellenic Mediterranean University, Stavromenos PC 71410, Heraklion, Crete, Greece
| |
Collapse
|
24
|
The people behind the papers – Ping Kao and Michael Nodine. Development 2021. [DOI: 10.1242/dev.199884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
ABSTRACT
The application of single-cell mRNA sequencing technologies to plant embryos promises to reveal the gene expression dynamics underlying cell-type differentiation. A new paper in Development reports the generation of high-quality transcriptomes from single embryonic nuclei without contamination from maternal tissues. To find out more about the story, we caught up with first author Ping Kao and his supervisor Michael Nodine, who recently moved from the Gregor Mendel Institute in Vienna to become Assistant Professor in the Laboratory of Molecular Biology at Wageningen University in the Netherlands.
Collapse
|