1
|
Takada S, Fujiwara K. Artificial cell system as a tool for investigating pattern formation mechanisms of intracellular reaction-diffusion waves. Biophys Physicobiol 2024; 21:e210022. [PMID: 39963599 PMCID: PMC11830476 DOI: 10.2142/biophysico.bppb-v21.0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 10/08/2024] [Indexed: 02/20/2025] Open
Abstract
Intracellular positional information is crucial for the precise control of biological phenomena, including cell division, polarity, and motility. Intracellular reaction-diffusion (iRD) waves are responsible for regulating positional information within cells as morphogens in multicellular tissues. However, iRD waves are explained by the coupling of biochemical reactions and molecular diffusion which indicates nonlinear systems under far from equilibrium conditions. Because of this complexity, experiments using defined elements rather than living cells containing endogenous factors are necessary to elucidate their pattern formation mechanisms. In this review, we summarize the effectiveness of artificial cell systems for investigating iRD waves derived from their high controllability and ability to emulate cell-size space effects. We describe how artificial cell systems reveal the characteristics of iRD waves, including the mechanisms of wave generation, mode selection, and period regulation. Furthermore, we introduce remaining open questions and discuss future challenges even in Min waves and in applying artificial cell systems to various iRD waves.
Collapse
Affiliation(s)
- Sakura Takada
- Department of Biosciences and Informatics, Keio University, Yokohama, Kanagawa 223-8522, Japan
| | - Kei Fujiwara
- Department of Biosciences and Informatics, Keio University, Yokohama, Kanagawa 223-8522, Japan
| |
Collapse
|
2
|
Hladyshau S, Guan K, Nivedita N, Errede B, Tsygankov D, Elston TC. Multiscale Modeling of Bistability in the Yeast Polarity Circuit. Cells 2024; 13:1358. [PMID: 39195248 PMCID: PMC11352540 DOI: 10.3390/cells13161358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/05/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024] Open
Abstract
Cell polarity refers to the asymmetric distribution of proteins and other molecules along a specified axis within a cell. Polarity establishment is the first step in many cellular processes. For example, directed growth or migration requires the formation of a cell front and back. In many cases, polarity occurs in the absence of spatial cues. That is, the cell undergoes symmetry breaking. Understanding the molecular mechanisms that allow cells to break symmetry and polarize requires computational models that span multiple spatial and temporal scales. Here, we apply a multiscale modeling approach to examine the polarity circuit of yeast. In addition to symmetry breaking, experiments revealed two key features of the yeast polarity circuit: bistability and rapid dismantling of the polarity site following a loss of signal. We used modeling based on ordinary differential equations (ODEs) to investigate mechanisms that generate these behaviors. Our analysis revealed that a model involving positive and negative feedback acting on different time scales captured both features. We then extend our ODE model into a coarse-grained reaction-diffusion equation (RDE) model to capture the spatial profiles of polarity factors. After establishing that the coarse-grained RDE model qualitatively captures key features of the polarity circuit, we expand it to more accurately capture the biochemical reactions involved in the system. We convert the expanded model to a particle-based model that resolves individual molecules and captures fluctuations that arise from the stochastic nature of biochemical reactions. Our models assume that negative regulation results from negative feedback. However, experimental observations do not rule out the possibility that negative regulation occurs through an incoherent feedforward loop. Therefore, we conclude by using our RDE model to suggest how negative feedback might be distinguished from incoherent feedforward regulation.
Collapse
Affiliation(s)
- Siarhei Hladyshau
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Kaiyun Guan
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nivedita Nivedita
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Beverly Errede
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Denis Tsygankov
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Timothy C. Elston
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
3
|
Bement WM, Goryachev AB, Miller AL, von Dassow G. Patterning of the cell cortex by Rho GTPases. Nat Rev Mol Cell Biol 2024; 25:290-308. [PMID: 38172611 DOI: 10.1038/s41580-023-00682-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2023] [Indexed: 01/05/2024]
Abstract
The Rho GTPases - RHOA, RAC1 and CDC42 - are small GTP binding proteins that regulate basic biological processes such as cell locomotion, cell division and morphogenesis by promoting cytoskeleton-based changes in the cell cortex. This regulation results from active (GTP-bound) Rho GTPases stimulating target proteins that, in turn, promote actin assembly and myosin 2-based contraction to organize the cortex. This basic regulatory scheme, well supported by in vitro studies, led to the natural assumption that Rho GTPases function in vivo in an essentially linear matter, with a given process being initiated by GTPase activation and terminated by GTPase inactivation. However, a growing body of evidence based on live cell imaging, modelling and experimental manipulation indicates that Rho GTPase activation and inactivation are often tightly coupled in space and time via signalling circuits and networks based on positive and negative feedback. In this Review, we present and discuss this evidence, and we address one of the fundamental consequences of coupled activation and inactivation: the ability of the Rho GTPases to self-organize, that is, direct their own transition from states of low order to states of high order. We discuss how Rho GTPase self-organization results in the formation of diverse spatiotemporal cortical patterns such as static clusters, oscillatory pulses, travelling wave trains and ring-like waves. Finally, we discuss the advantages of Rho GTPase self-organization and pattern formation for cell function.
Collapse
Affiliation(s)
- William M Bement
- Center for Quantitative Cell Imaging, Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA.
| | - Andrew B Goryachev
- Center for Engineering Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.
| | - Ann L Miller
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| | | |
Collapse
|
4
|
Kang PJ, Mullner R, Lian K, Park HO. Cdc42 couples septin recruitment to the axial landmark assembly via Axl2 in budding yeast. J Cell Sci 2024; 137:jcs261080. [PMID: 37712304 PMCID: PMC10617600 DOI: 10.1242/jcs.261080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023] Open
Abstract
Cell polarization generally occurs along a single axis that is directed by a spatial cue. Cells of the budding yeast Saccharomyces cerevisiae undergo polarized growth and oriented cell division in a spatial pattern by selecting a specific bud site. Haploid a or α cells bud in the axial pattern in response to a transient landmark that includes Bud3, Bud4, Axl1 and Axl2. Septins, a family of filament-forming GTP-binding proteins, are also involved in axial budding and are recruited to an incipient bud site, but the mechanism of recruitment remains unclear. Here, we show that Axl2 interacts with Bud3 and the Cdc42 GTPase in its GTP-bound state. Axl2 also interacts with Cdc10, a septin subunit, promoting efficient recruitment of septins near the cell division site. Furthermore, a cdc42 mutant defective in the axial budding pattern at a semi-permissive temperature had a reduced interaction with Axl2 and compromised septin recruitment in the G1 phase. We thus propose that active Cdc42 brings Axl2 to the Bud3-Bud4 complex and that Axl2 then interacts with Cdc10, linking septin recruitment to the axial landmark.
Collapse
Affiliation(s)
- Pil Jung Kang
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Rachel Mullner
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Kendra Lian
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Hay-Oak Park
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
5
|
Kang PJ, Mullner R, Lian K, Park HO. Cdc42 couples septin recruitment to the axial landmark assembly via Axl2 in budding yeast. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.25.554823. [PMID: 37662239 PMCID: PMC10473694 DOI: 10.1101/2023.08.25.554823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Cell polarization generally occurs along a single axis that is directed by a spatial cue. Cells of the budding yeast Saccharomyces cerevisiae undergo polarized growth and oriented cell division in a spatial pattern by selecting a specific bud site. Haploid a or α cells bud in the axial pattern in response to a transient landmark that includes Bud3, Bud4, Axl1, and Axl2. Septins, a family of filament-forming GTP-binding proteins, are also involved in axial budding and recruited to an incipient bud site, but the mechanism of recruitment remains unclear. Here, we show that Axl2 interacts with Bud3 and the Cdc42 GTPase in its GTP-bound state. Axl2 also interacts with Cdc10, a septin subunit, promoting efficient recruitment of septins near the cell division site. Furthermore, a cdc42 mutant defective in the axial budding pattern at a semi-permissive temperature had a reduced interaction with Axl2 and compromised septin recruitment in the G1 phase. We thus propose that active Cdc42 brings Axl2 to the Bud3-Bud4 complex and that Axl2 then interacts with Cdc10, linking septin recruitment to the axial landmark.
Collapse
|
6
|
Kang PJ, Mullner R, Li H, Hansford D, Shen HW, Park HO. Upregulation of the Cdc42 GTPase limits the replicative lifespan of budding yeast. Mol Biol Cell 2022; 33:br5. [PMID: 35044837 PMCID: PMC9250358 DOI: 10.1091/mbc.e21-04-0208] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Cdc42, a conserved Rho GTPase, plays a central role in polarity establishment in yeast and animals. Cell polarity is critical for asymmetric cell division, and asymmetric cell division underlies replicative aging of budding yeast. Yet how Cdc42 and other polarity factors impact life span is largely unknown. Here we show by live-cell imaging that the active Cdc42 level is sporadically elevated in wild type during repeated cell divisions but rarely in the long-lived bud8 deletion cells. We find a novel Bud8 localization with cytokinesis remnants, which also recruit Rga1, a Cdc42 GTPase activating protein. Genetic analyses and live-cell imaging suggest that Rga1 and Bud8 oppositely impact life span likely by modulating active Cdc42 levels. An rga1 mutant, which has a shorter life span, dies at the unbudded state with a defect in polarity establishment. Remarkably, Cdc42 accumulates in old cells, and its mild overexpression accelerates aging with frequent symmetric cell divisions, despite no harmful effects on young cells. Our findings implicate that the interplay among these positive and negative polarity factors limits the life span of budding yeast.
Collapse
Affiliation(s)
- Pil Jung Kang
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Rachel Mullner
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Haoyu Li
- Department of Computer Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Derek Hansford
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Han-Wei Shen
- Department of Computer Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Hay-Oak Park
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
7
|
Overexpression of the Aspergillus fumigatus Small GTPase, RsrA, Promotes Polarity Establishment during Germination. J Fungi (Basel) 2020; 6:jof6040285. [PMID: 33202962 PMCID: PMC7711769 DOI: 10.3390/jof6040285] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/06/2020] [Accepted: 11/11/2020] [Indexed: 11/17/2022] Open
Abstract
Cell polarization comprises highly controlled processes and occurs in most eukaryotic organisms. In yeast, the processes of budding, mating and filamentation require coordinated mechanisms leading to polarized growth. Filamentous fungi, such as Aspergillus fumigatus, are an extreme example of cell polarization, essential for both vegetative and pathogenic growth. A major regulator of polarized growth in yeast is the small GTPase Rsr1, which is essential for bud-site selection. Here, we show that deletion of the putative A. fumigatus ortholog, rsrA, causes only a modest reduction of growth rate and delay in germ tube emergence. In contrast, overexpression of rsrA results in a morphogenesis defect, characterized by a significant delay in polarity establishment followed by the establishment of multiple growth axes. This aberrant phenotype is reversed when rsrA expression levels are decreased, suggesting that correct regulation of RsrA activity is crucial for accurate patterning of polarity establishment. Despite this finding, deletion or overexpression of rsrA resulted in no changes of A. fumigatus virulence attributes in a mouse model of invasive aspergillosis. Additional mutational analyses revealed that RsrA cooperates genetically with the small GTPase, RasA, to support A. fumigatus viability.
Collapse
|
8
|
Abstract
The Rho GTPase Cdc42 is a central regulator of cell polarity in diverse cell types. The activity of Cdc42 is dynamically controlled in time and space to enable distinct polarization events, which generally occur along a single axis in response to spatial cues. Our understanding of the mechanisms underlying Cdc42 polarization has benefited largely from studies of the budding yeast Saccharomyces cerevisiae, a genetically tractable model organism. In budding yeast, Cdc42 activation occurs in two temporal steps in the G1 phase of the cell cycle to establish a proper growth site. Here, we review findings in budding yeast that reveal an intricate crosstalk among polarity proteins for biphasic Cdc42 regulation. The first step of Cdc42 activation may determine the axis of cell polarity, while the second step ensures robust Cdc42 polarization for growth. Biphasic Cdc42 polarization is likely to ensure the proper timing of events including the assembly and recognition of spatial landmarks and stepwise assembly of a new ring of septins, cytoskeletal GTP-binding proteins, at the incipient bud site. Biphasic activation of GTPases has also been observed in mammalian cells, suggesting that biphasic activation could be a general mechanism for signal-responsive cell polarization. Cdc42 activity is necessary for polarity establishment during normal cell division and development, but its activity has also been implicated in the promotion of aging. We also discuss negative polarity signaling and emerging concepts of Cdc42 signaling in cellular aging.
Collapse
Affiliation(s)
- Kristi E Miller
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210.,Present address: Department of Biochemistry and Cell Biology, The Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Pil Jung Kang
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| | - Hay-Oak Park
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
9
|
Miller KE, Lo WC, Chou CS, Park HO. Temporal regulation of cell polarity via the interaction of the Ras GTPase Rsr1 and the scaffold protein Bem1. Mol Biol Cell 2019; 30:2543-2557. [PMID: 31411940 PMCID: PMC6740199 DOI: 10.1091/mbc.e19-02-0106] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The Cdc42 guanosine triphosphatase (GTPase) plays a central role in polarity development in species ranging from yeast to humans. In budding yeast, a specific growth site is selected in the G1 phase. Rsr1, a Ras GTPase, interacts with Cdc42 and its associated proteins to promote polarized growth at the proper bud site. Yet how Rsr1 regulates cell polarization is not fully understood. Here, we show that Rsr1-GDP interacts with the scaffold protein Bem1 in early G1, likely hindering the role of Bem1 in Cdc42 polarization and polarized secretion. Consistent with these in vivo observations, mathematical modeling predicts that Bem1 is unable to promote Cdc42 polarization in early G1 in the presence of Rsr1-GDP. We find that a part of the Bem1 Phox homology domain, which overlaps with a region interacting with the exocyst component Exo70, is necessary for the association of Bem1 with Rsr1-GDP. Overexpression of the GDP-locked Rsr1 interferes with Bem1-dependent Exo70 polarization. We thus propose that Rsr1 functions in spatial and temporal regulation of polarity establishment by associating with distinct polarity factors in its GTP- and GDP-bound states.
Collapse
Affiliation(s)
- Kristi E Miller
- Molecular Cellular Developmental Biology Program, The Ohio State University, Columbus, OH 43210
| | - Wing-Cheong Lo
- Department of Mathematics, City University of Hong Kong, Kowloon, Hong Kong
| | - Ching-Shan Chou
- Department of Mathematics, The Ohio State University, Columbus, OH 43210
| | - Hay-Oak Park
- Molecular Cellular Developmental Biology Program, The Ohio State University, Columbus, OH 43210.,Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
10
|
Xu B, Jilkine A. Modeling the Dynamics of Cdc42 Oscillation in Fission Yeast. Biophys J 2019; 114:711-722. [PMID: 29414716 DOI: 10.1016/j.bpj.2017.12.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 11/27/2017] [Accepted: 12/11/2017] [Indexed: 11/17/2022] Open
Abstract
Regulation of polarized cell growth is essential for many cellular processes, including spatial coordination of cell morphology changes during growth and division. We present a mathematical model of the core mechanism responsible for the regulation of polarized growth dynamics by the small GTPase Cdc42. The model is based on the competition of growth zones of Cdc42 localized at the cell tips for a common substrate (inactive Cdc42) that diffuses in the cytosol. We consider several potential ways of implementing negative feedback between Cd42 and its GEF in this model that would be consistent with the observed oscillations of Cdc42 in fission yeast. We analyze the bifurcations in this model as the cell length increases, and total amount of Cdc42 and GEF increase. Symmetric antiphase oscillations at two tips emerge via saddle-homoclinic bifurcations or Hopf bifurcations. We find that a stable oscillation and a stable steady state can coexist, which is consistent with the experimental finding that only 50% of bipolar cells oscillate. The mean amplitude and period can be tuned by parameters involved in the negative feedback. We link modifications in the parameters of the model to observed mutant phenotypes. Our model suggests that negative feedback is more likely to be acting through inhibition of GEF association rather than upregulation of GEF dissociation.
Collapse
Affiliation(s)
- Bin Xu
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, Indiana.
| | - Alexandra Jilkine
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, Indiana.
| |
Collapse
|
11
|
Moran KD, Kang H, Araujo AV, Zyla TR, Saito K, Tsygankov D, Lew DJ. Cell-cycle control of cell polarity in yeast. J Cell Biol 2018; 218:171-189. [PMID: 30459262 PMCID: PMC6314536 DOI: 10.1083/jcb.201806196] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/21/2018] [Accepted: 10/18/2018] [Indexed: 11/30/2022] Open
Abstract
In Saccharomyces cerevisiae, polarization of Cdc42 is regulated by the cell cycle, but the regulatory mechanisms are not well understood. Moran et al. show that G1 cyclin–dependent kinase activity enables localization of a subset of Cdc42 effectors to sites enriched for Cdc42. In many cells, morphogenetic events are coordinated with the cell cycle by cyclin-dependent kinases (CDKs). For example, many mammalian cells display extended morphologies during interphase but round up into more spherical shapes during mitosis (high CDK activity) and constrict a furrow during cytokinesis (low CDK activity). In the budding yeast Saccharomyces cerevisiae, bud formation reproducibly initiates near the G1/S transition and requires activation of CDKs at a point called “start” in G1. Previous work suggested that CDKs acted by controlling the ability of cells to polarize Cdc42, a conserved Rho-family GTPase that regulates cell polarity and the actin cytoskeleton in many systems. However, we report that yeast daughter cells can polarize Cdc42 before CDK activation at start. This polarization operates via a positive feedback loop mediated by the Cdc42 effector Ste20. We further identify a major and novel locus of CDK action downstream of Cdc42 polarization, affecting the ability of several other Cdc42 effectors to localize to the polarity site.
Collapse
Affiliation(s)
- Kyle D Moran
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC
| | - Hui Kang
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC
| | - Ana V Araujo
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC
| | - Trevin R Zyla
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC
| | - Koji Saito
- Department of Biosciences, School of Science, Kitasato University, Kitasato, Sagamihara, Kanagawa, Japan
| | - Denis Tsygankov
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA
| | - Daniel J Lew
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC
| |
Collapse
|
12
|
Molecular mechanisms of contractile-ring constriction and membrane trafficking in cytokinesis. Biophys Rev 2018; 10:1649-1666. [PMID: 30448943 DOI: 10.1007/s12551-018-0479-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 11/06/2018] [Indexed: 12/14/2022] Open
Abstract
In this review, we discuss the molecular mechanisms of cytokinesis from plants to humans, with a focus on contribution of membrane trafficking to cytokinesis. Selection of the division site in fungi, metazoans, and plants is reviewed, as well as the assembly and constriction of a contractile ring in fungi and metazoans. We also provide an introduction to exocytosis and endocytosis, and discuss how they contribute to successful cytokinesis in eukaryotic cells. The conservation in the coordination of membrane deposition and cytoskeleton during cytokinesis in fungi, metazoans, and plants is highlighted.
Collapse
|
13
|
Kang PJ, Miller KE, Guegueniat J, Beven L, Park HO. The shared role of the Rsr1 GTPase and Gic1/Gic2 in Cdc42 polarization. Mol Biol Cell 2018; 29:2359-2369. [PMID: 30091649 PMCID: PMC6233053 DOI: 10.1091/mbc.e18-02-0145] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The Cdc42 GTPase plays a central role in polarity development in many species. In budding yeast, Cdc42 is essential for polarized growth at the proper site and also for spontaneous cell polarization in the absence of spatial cues. Cdc42 polarization is critical for multiple events in the G1 phase prior to bud emergence, including bud-site assembly, polarization of the actin cytoskeleton, and septin filament assembly to form a ring at the new bud site. Yet the mechanism by which Cdc42 polarizes is not fully understood. Here we report that biphasic Cdc42 polarization in the G1 phase is coupled to stepwise assembly of the septin ring for bud emergence. We show that the Rsr1 GTPase shares a partially redundant role with Gic1 and Gic2, two related Cdc42 effectors, in the first phase of Cdc42 polarization in haploid cells. We propose that the first phase of Cdc42 polarization is mediated by positive feedback loops that function in parallel-one involving Rsr1 via local activation of Cdc42 in response to spatial cues and another involving Gic1 or Gic2 via reduction of diffusion of active Cdc42.
Collapse
Affiliation(s)
- Pil Jung Kang
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| | - Kristi E Miller
- Molecular Cellular Developmental Biology Program, The Ohio State University, Columbus, OH 43210
| | - Julia Guegueniat
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| | - Laure Beven
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| | - Hay-Oak Park
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210.,Molecular Cellular Developmental Biology Program, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
14
|
Lai H, Chiou JG, Zhurikhina A, Zyla TR, Tsygankov D, Lew DJ. Temporal regulation of morphogenetic events in Saccharomyces cerevisiae. Mol Biol Cell 2018; 29:2069-2083. [PMID: 29927361 PMCID: PMC6232962 DOI: 10.1091/mbc.e18-03-0188] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Tip growth in fungi involves highly polarized secretion and modification of the cell wall at the growing tip. The genetic requirements for initiating polarized growth are perhaps best understood for the model budding yeast Saccharomyces cerevisiae. Once the cell is committed to enter the cell cycle by activation of G1 cyclin/cyclin-dependent kinase (CDK) complexes, the polarity regulator Cdc42 becomes concentrated at the presumptive bud site, actin cables are oriented toward that site, and septin filaments assemble into a ring around the polarity site. Several minutes later, the bud emerges. Here, we investigated the mechanisms that regulate the timing of these events at the single-cell level. Septin recruitment was delayed relative to polarity establishment, and our findings suggest that a CDK-dependent septin “priming” facilitates septin recruitment by Cdc42. Bud emergence was delayed relative to the initiation of polarized secretion, and our findings suggest that the delay reflects the time needed to weaken the cell wall sufficiently for the cell to bud. Rho1 activation by Rom2 occurred at around the time of bud emergence, perhaps in response to local cell-wall weakening. This report reveals regulatory mechanisms underlying the morphogenetic events in the budding yeast.
Collapse
Affiliation(s)
- Helen Lai
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710.,Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710
| | - Jian-Geng Chiou
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710
| | - Anastasia Zhurikhina
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332
| | - Trevin R Zyla
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710
| | - Denis Tsygankov
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332
| | - Daniel J Lew
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710.,Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710
| |
Collapse
|
15
|
Wang Y, Lo WC, Chou CS. A modeling study of budding yeast colony formation and its relationship to budding pattern and aging. PLoS Comput Biol 2017; 13:e1005843. [PMID: 29121651 PMCID: PMC5697893 DOI: 10.1371/journal.pcbi.1005843] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 11/21/2017] [Accepted: 10/20/2017] [Indexed: 11/23/2022] Open
Abstract
Budding yeast, which undergoes polarized growth during budding and mating, has been a useful model system to study cell polarization. Bud sites are selected differently in haploid and diploid yeast cells: haploid cells bud in an axial manner, while diploid cells bud in a bipolar manner. While previous studies have been focused on the molecular details of the bud site selection and polarity establishment, not much is known about how different budding patterns give rise to different functions at the population level. In this paper, we develop a two-dimensional agent-based model to study budding yeast colonies with cell-type specific biological processes, such as budding, mating, mating type switch, consumption of nutrients, and cell death. The model demonstrates that the axial budding pattern enhances mating probability at an early stage and the bipolar budding pattern improves colony development under nutrient limitation. Our results suggest that the frequency of mating type switch might control the trade-off between diploidization and inbreeding. The effect of cellular aging is also studied through our model. Based on the simulations, colonies initiated by an aged haploid cell show declined mating probability at an early stage and recover as the rejuvenated offsprings become the majority. Colonies initiated with aged diploid cells do not show disadvantage in colony expansion possibly due to the fact that young cells contribute the most to colony expansion. Budding yeast is a model organism in understanding fundamental aspects of eukaryotic cells, such as cell polarization and cell aging. Previously, extensive research has focused on the molecular mechanisms of biological processes in yeast, but many questions regarding yeast budding remain unsolved. For example, how do different budding patterns affect yeast colony growth? How does declined spatial order due to aging impact the colony at the population level? To address these questions, we developed a computational agent-based model, which incorporates key biological processes, the effect of aging, as well as cell-environment interaction. We performed and analyzed a large number of simulations for a variety of situations, and obtained insightful results. We found that axial budding pattern enhances the percentage of diploid cells at early stage and bipolar budding pattern improves colony development under nutrient limitation; the frequency of mating type switch might control the trade-off between diploidization and inbreeding; aging affects the percentage of diploid cells in colonies initiated by a single haploid cell, but does not have much influence in the expansion of colonies initiated by diploid cells. The framework of the model can be extended to study other important systems, such as tissue with stem cell lineage.
Collapse
Affiliation(s)
- Yanli Wang
- Department of Mathematics, The Ohio State University, Columbus, Ohio, United States of America
| | - Wing-Cheong Lo
- Department of Mathematics, City University of Hong Kong, Hong Kong, China
| | - Ching-Shan Chou
- Department of Mathematics, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
16
|
Miller KE, Lo WC, Lee ME, Kang PJ, Park HO. Fine-tuning the orientation of the polarity axis by Rga1, a Cdc42 GTPase-activating protein. Mol Biol Cell 2017; 28:3773-3788. [PMID: 29074565 PMCID: PMC5739294 DOI: 10.1091/mbc.e17-01-0074] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 10/19/2017] [Accepted: 10/20/2017] [Indexed: 01/29/2023] Open
Abstract
In vivo and in vitro analyses reveal how a Cdc42 GTPase-activating protein (GAP) interacts with other negative polarity cues at old division sites in budding yeast. Mathematical modeling suggests that spatial distribution of a Cdc42 GAP in coordination with G1 progression is critical for fine-tuning the orientation of the polarity axis. In yeast and animal cells, signaling pathways involving small guanosine triphosphatases (GTPases) regulate cell polarization. In budding yeast, selection of a bud site directs polarity establishment and subsequently determines the plane of cell division. Rga1, a Cdc42 GTPase-activating protein, prevents budding within the division site by inhibiting Cdc42 repolarization. A protein complex including Nba1 and Nis1 is involved in preventing rebudding at old division sites, yet how these proteins and Rga1 might function in negative polarity signaling has been elusive. Here we show that Rga1 transiently localizes to the immediately preceding and older division sites by interacting with Nba1 and Nis1. The LIM domains of Rga1 are necessary for its interaction with Nba1, and loss of this interaction results in premature delocalization of Rga1 from the immediately preceding division site and, consequently, abnormal bud-site selection in daughter cells. However, such defects are minor in mother cells of these mutants, likely because the G1 phase is shorter and a new bud site is established prior to delocalization of Rga1. Indeed, our biphasic mathematical model of Cdc42 polarization predicts that premature delocalization of Rga1 leads to more frequent Cdc42 repolarization within the division site when the first temporal step in G1 is assumed to last longer. Spatial distribution of a Cdc42 GAP in coordination with G1 progression may thus be critical for fine-tuning the orientation of the polarity axis in yeast.
Collapse
Affiliation(s)
| | - Wing-Cheong Lo
- Department of Mathematics, City University of Hong Kong, Kowloon, Hong Kong
| | - Mid Eum Lee
- Molecular Cellular Developmental Biology Program and
| | - Pil Jung Kang
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| | - Hay-Oak Park
- Molecular Cellular Developmental Biology Program and .,Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
17
|
Goryachev AB, Leda M. Many roads to symmetry breaking: molecular mechanisms and theoretical models of yeast cell polarity. Mol Biol Cell 2017; 28:370-380. [PMID: 28137950 PMCID: PMC5341721 DOI: 10.1091/mbc.e16-10-0739] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 11/17/2016] [Accepted: 11/23/2016] [Indexed: 01/08/2023] Open
Abstract
Mathematical modeling has been instrumental in identifying common principles of cell polarity across diverse systems. These principles include positive feedback loops that are required to destabilize a spatially uniform state of the cell. The conserved small G-protein Cdc42 is a master regulator of eukaryotic cellular polarization. Here we discuss recent developments in studies of Cdc42 polarization in budding and fission yeasts and demonstrate that models describing symmetry-breaking polarization can be classified into six minimal classes based on the structure of positive feedback loops that activate and localize Cdc42. Owing to their generic system-independent nature, these model classes are also likely to be relevant for the G-protein–based symmetry-breaking systems of higher eukaryotes. We review experimental evidence pro et contra different theoretically plausible models and conclude that several parallel and non–mutually exclusive mechanisms are likely involved in cellular polarization of yeasts. This potential redundancy needs to be taken into consideration when interpreting the results of recent cell-rewiring studies.
Collapse
Affiliation(s)
- Andrew B Goryachev
- Center for Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Marcin Leda
- Center for Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| |
Collapse
|
18
|
Abstract
Cdc42 is a small guanosine triphosphatase (GTPase) that plays a central role in polarity development in diverse cell types. Since the activity of Cdc42 is dynamically controlled in time and space, it is required to develop a biosensor to monitor its activation in vivo. In this chapter, we describe the construction and usage of a simple and robust biosensor for monitoring active Cdc42 in budding yeast. This affinity-based biosensor uses a red fluorescent protein fused to a Cdc42- and Rac-interactive binding motif from one of the Cdc42 effector proteins. Because it binds specifically to the GTP-bound Cdc42, this biosensor can be used to monitor Cdc42 activation in vivo. This or similar biosensors can be widely used for studying GTPase signaling in other cell types because of the conserved CRIB motif present among GTPase targets.
Collapse
Affiliation(s)
- Satoshi Okada
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States; Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Mid Eum Lee
- The Ohio State University, Columbus, OH, United States
| | - Erfei Bi
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States.
| | - Hay-Oak Park
- The Ohio State University, Columbus, OH, United States.
| |
Collapse
|
19
|
Martin SG. Spontaneous cell polarization: Feedback control of Cdc42 GTPase breaks cellular symmetry. Bioessays 2015; 37:1193-201. [PMID: 26338468 DOI: 10.1002/bies.201500077] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Spontaneous polarization without spatial cues, or symmetry breaking, is a fundamental problem of spatial organization in biological systems. This question has been extensively studied using yeast models, which revealed the central role of the small GTPase switch Cdc42. Active Cdc42-GTP forms a coherent patch at the cell cortex, thought to result from amplification of a small initial stochastic inhomogeneity through positive feedback mechanisms, which induces cell polarization. Here, I review and discuss the mechanisms of Cdc42 activity self-amplification and dynamic turnover. A robust Cdc42 patch is formed through the combined effects of Cdc42 activity promoting its own activation and active Cdc42-GTP displaying reduced membrane detachment and lateral diffusion compared to inactive Cdc42-GDP. I argue the role of the actin cytoskeleton in symmetry breaking is not primarily to transport Cdc42 to the active site. Finally, negative feedback and competition mechanisms serve to control the number of polarization sites.
Collapse
Affiliation(s)
- Sophie G Martin
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|