1
|
Schuettenberg A, Piña A, Metrailer M, Peláez-Sánchez RG, Agudelo-Flórez P, Lopez JÁ, Ryle L, Monroy FP, Altin JA, Ladner JT. Highly Multiplexed Serology for Nonhuman Mammals. Microbiol Spectr 2022; 10:e0287322. [PMID: 36125316 PMCID: PMC9602771 DOI: 10.1128/spectrum.02873-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/06/2022] [Indexed: 01/04/2023] Open
Abstract
Emerging infectious diseases represent a serious and ongoing threat to humans. Most emerging viruses are maintained in stable relationships with other species of animals, and their emergence within the human population results from cross-species transmission. Therefore, if we want to be prepared for the next emerging virus, we need to broadly characterize the diversity and ecology of viruses currently infecting other animals (i.e., the animal virosphere). High-throughput metagenomic sequencing has accelerated the pace of virus discovery. However, molecular assays can detect only active infections and only if virus is present within the sampled fluid or tissue at the time of collection. In contrast, serological assays measure long-lived antibody responses to infections, which can be detected within the blood, regardless of the infected tissues. Therefore, serological assays can provide a complementary approach for understanding the circulation of viruses, and while serological assays have historically been limited in scope, recent advancements allow thousands to hundreds of thousands of antigens to be assessed simultaneously using <1 μL of blood (i.e., highly multiplexed serology). The application of highly multiplexed serology for the characterization of the animal virosphere is dependent on the availability of reagents that can be used to capture or label antibodies of interest. Here, we evaluate the utility of commercial immunoglobulin-binding proteins (protein A and protein G) to enable highly multiplexed serology in 25 species of nonhuman mammals, and we describe a competitive fluorescence-linked immunosorbent assay (FLISA) that can be used as an initial screen for choosing the most appropriate capture protein for a given host species. IMPORTANCE Antibodies are generated in response to infections with viruses and other pathogens, and they help protect against future exposures. Mature antibodies are long lived, are highly specific, and can bind to their protein targets with high affinity. Thus, antibodies can also provide information about an individual's history of viral exposures, which has important applications for understanding the epidemiology and etiology of disease. In recent years, there have been large advances in the available methods for broadly characterizing antibody-binding profiles, but thus far, these have been utilized primarily with human samples only. Here, we demonstrate that commercial antibody-binding reagents can facilitate modern antibody assays for a wide variety of mammalian species, and we describe an inexpensive and fast approach for choosing the best reagent for each animal species. By studying antibody-binding profiles in captive and wild animals, we can better understand the distribution and prevalence of viruses that could spill over into humans.
Collapse
Affiliation(s)
- Alexa Schuettenberg
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Alejandra Piña
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Morgan Metrailer
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | | | | | - Juan Álvaro Lopez
- Microbiology School, Primary Immunodeficiencies Group, University of Antioquia, Medellín, Colombia
| | - Luke Ryle
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Fernando P. Monroy
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - John A. Altin
- The Translational Genomics Research Institute (TGen), Flagstaff, Arizona, USA
| | - Jason T. Ladner
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| |
Collapse
|
2
|
McGill JL, Sacco RE. The Immunology of Bovine Respiratory Disease: Recent Advancements. Vet Clin North Am Food Anim Pract 2020; 36:333-348. [PMID: 32327252 PMCID: PMC7170797 DOI: 10.1016/j.cvfa.2020.03.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Jodi L McGill
- Department of Veterinary Microbiology and Preventative Medicine, Iowa State University, 1907 ISU C-Drive, VMRI Building 5, Ames, IA 50010, USA.
| | - Randy E Sacco
- Ruminant Diseases and Immunology Research Unit, Agricultural Research Services, USDA, PO Box 70, 1920 Dayton Avenue, Ames, IA 50010, USA
| |
Collapse
|
3
|
Diseases associated with bovine viral diarrhea virus subtypes 1a and 2b in beef and dairy cattle in Uruguay. Braz J Microbiol 2019; 51:357-368. [PMID: 31650465 PMCID: PMC7058746 DOI: 10.1007/s42770-019-00170-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 10/03/2019] [Indexed: 12/02/2022] Open
Abstract
Bovine viral diarrhea virus (BVDV, Pestivirus) causes significant economic losses to the livestock industry worldwide. Although serological surveys show that BVDV exposure is widespread in cattle in Uruguay, BVDV-associated diseases are greatly underreported. The aim of this work is to describe the epidemiological, clinical, pathological, and virological findings from spontaneous outbreaks of BVDV-associated diseases in cattle in Uruguay. Diagnostic investigations were performed during 6 spontaneous disease outbreaks on beef and dairy cattle farms in the departments of Colonia, Rio Negro, and Soriano between November 2016 and April 2018. Carcasses of 8 naturally deceased cattle from these outbreaks were necropsied and subjected to histological examination and immunohistochemistry to detect BVDV antigen in the tissues. Reverse transcription real-time PCR and genomic sequencing were also performed to identify BVDV at the species and subtype levels. Other ancillary diagnostic tests, including bacterial cultures, were performed on a case-by-case basis to rule in/out differential diagnoses based on initial clinicopathological presumptive diagnoses. BVDV-associated conditions that were diagnosed in the 8 cases included mucosal disease, transient postnatal BVDV infections associated with digestive/septicemic salmonellosis by Salmonella serovar typhimurium, Histophilus somni bronchopneumonia, urinary tract coinfections with Escherichia coli and Streptococcus sp., enteric coinfection with coccidia, and transplacental fetal infections and abortions with Neospora caninum coinfection. BVDV-1a and BVDV-2b were each identified in four of the eight cases. We conclude that BVDV-1a and BVDV-2b contribute significantly to disease and mortality in cattle in Uruguay. Future research should estimate the economic impact of BVDV in the Uruguayan livestock sector.
Collapse
|
4
|
Hossain MM, Rowland RR. Replicon Particle Expressing the E2 Glycoprotein of Bovine Viral Diarrhea Virus Immunization and Evaluation of Antibody Response. Viral Immunol 2017; 31:55-61. [PMID: 28686540 DOI: 10.1089/vim.2017.0053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The objective of this study was to develop a new antigen delivery system using an alphavirus replicon particle (RP) to induce humoral antibody responses against bovine viral diarrhea virus (BVDV) recombinant antigen produced from envelope glycoprotein E2. An alphavirus RP expressing the E2 glycoprotein of BVDV was used for immunization of pigs. A fluorescent microsphere immunoassay (FMIA) has been applied to detect BVDV E2 antigen-specific antibody isotype in pig immunized with alphavirus RP. Full-length BVDV E2 (aa 1-375) was cleaved into several pieces, eight E2 DNA fragments, including full-length DNA, were cloned into expression vector pHUE, and the recombinant proteins expressed in BL-21 (DE3) Escherichia coli. After successful conjugation of purified proteins with microsphere beads, a multiplex FMIA platform was constructed, and BVDV E2 alphavirus-based RP-immunized animal serum samples were tested in the presence of bead-bound antigen targets. The results were represented as mean fluorescence intensity (MFI); the MFI values were converted to sample value/positive value (S/P) ratios. BVDV E2 (aa 1-183) showed the highest MFI values of eight recombinant E2 fragments when the specific activity of each fragment was tested. In immunized animals, data for BVDV E2-specific IgA, IgG, and IgM in serum and only IgG and IgA in oral fluids were recorded. The MFI values for the positive serum sample showed a 100-fold increase compared with the negative serum sample. Antibody isotype to BVDV E2 antigens showed that IgG > IgM > IgA in serum, whereas IgG > IgA > IgM in oral fluids. The data presented in this study suggested that boosting with the same doses of alphavirus RP in 3-week intervals may potentially enhance antibody response. The experimental results demonstrate that alphavirus RP-expressing BVDV E2 antigen induces antibody response in pig.
Collapse
Affiliation(s)
- Mohammad M Hossain
- Department of Diagnostic Medicine/Pathobiology, Center of Excellence for Emerging and Zoonotic Animal Diseases (CEEZAD), College of Veterinary Medicine, Kansas State University , Manhattan, Kansas
| | - Raymond R Rowland
- Department of Diagnostic Medicine/Pathobiology, Center of Excellence for Emerging and Zoonotic Animal Diseases (CEEZAD), College of Veterinary Medicine, Kansas State University , Manhattan, Kansas
| |
Collapse
|
5
|
A multiepitope fusion antigen elicits neutralizing antibodies against enterotoxigenic Escherichia coli and homologous bovine viral diarrhea virus in vitro. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 20:1076-83. [PMID: 23697572 DOI: 10.1128/cvi.00249-13] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Diarrhea is one of the most important bovine diseases. Enterotoxigenic Escherichia coli (ETEC) and bovine viral diarrhea virus (BVDV) are the major causes of diarrhea in calves and cattle. ETEC expressing K99 (F5) fimbriae and heat-stable type Ia (STa) toxin are the leading bacteria causing calf diarrhea, and BVDV causes diarrhea and other clinical illnesses in cattle of all ages. It is reported that maternal immunization with K99 fimbrial antigens provides passive protection to calves against K99 fimbrial ETEC and that BVDV major structural protein E2 elicits antibodies neutralizing against BVDV viral infection. Vaccines inducing anti-K99 and anti-STa immunity would protect calves more effectively against ETEC diarrhea, and those also inducing anti-E2 neutralizing antibodies would protect calves and cattle against diarrhea caused by both ETEC and BVDV. In this study, we used the ETEC K99 major subunit FanC as a backbone, genetically embedded the STa toxoid STaP12F and the most-antigenic B-cell epitope and T-cell epitope predicted from the BVDV E2 glycoprotein into FanC for the multivalent antigen FanC-STa-E2, and examined immunogenicity of this multivalent antigen to assess vaccine potential against bovine diarrhea. Mice intraperitoneally (i.p.) immunized with this multivalent antigen developed anti-K99, anti-STa, and anti-BVDV antibodies. Moreover, elicited antibodies showed neutralization activities, as they inhibited adherence of K99 fimbrial E. coli, neutralized STa toxin, and prevented homologous BVDV viral infection in vitro. Results from this study suggest that this multiepitope fusion antigen can potentially be developed as a vaccine for broad protection against bovine diarrhea and that the multiepitope fusion strategy may be generally applied for multivalent vaccine development against heterogeneous pathogens.
Collapse
|