1
|
Segervald J, Malyshev D, Öberg R, Zäll E, Jia X, Wågberg T, Andersson M. Ultra-Sensitive Detection of Bacterial Spores via SERS. ACS Sens 2025; 10:1237-1248. [PMID: 39847439 DOI: 10.1021/acssensors.4c03151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Bacterial spores are highly resilient and capable of surviving extreme conditions, making them a persistent threat in contexts such as disease transmission, food safety, and bioterrorism. Their ability to withstand conventional sterilization methods necessitates rapid and accurate detection techniques to effectively mitigate the risks they present. In this study, we introduce a surface-enhanced Raman spectroscopy (SERS) approach for detecting Bacillus thuringiensis spores by targeting calcium dipicolinate acid (CaDPA), a biomarker uniquely associated with bacterial spores. Our method uses probe sonication to disrupt spores, releasing their CaDPA, which is then detected by SERS on drop-dried supernatant mixed with gold nanorods. This simple approach enables the selective detection of CaDPA, distinguishing it from other spore components and background noise. We demonstrate detection of biogenic CaDPA from concentrations as low as 103 spores/mL, with sensitivity reaching beyond CaDPA levels of a single spore. Finally, we show the method's robustness by detecting CaDPA from a realistic sample of fresh milk mixed with spores. These findings highlight the potential of SERS as a sensitive and specific technique for bacterial spore detection, with implications for fields requiring rapid and reliable spore identification.
Collapse
Affiliation(s)
- Jonas Segervald
- Department of Physics, Umeå University, Umeå SE-901 87, Sweden
| | - Dmitry Malyshev
- Department of Physics, Umeå University, Umeå SE-901 87, Sweden
| | - Rasmus Öberg
- Department of Physics, Umeå University, Umeå SE-901 87, Sweden
| | - Erik Zäll
- Department of Physics, Umeå University, Umeå SE-901 87, Sweden
| | - Xueen Jia
- Department of Physics, Umeå University, Umeå SE-901 87, Sweden
| | - Thomas Wågberg
- Department of Physics, Umeå University, Umeå SE-901 87, Sweden
- Wallenberg Initiative Materials Science for Sustainability, Department of Physics, Umeå University, Umeå SE-901 87, Sweden
| | | |
Collapse
|
2
|
Wu L, Chen Y, Yan Y, Wang H, Guy CD, Carney J, Moreno CL, Quintanilla-Arteaga A, Monsivais F, Zheng Z, Zeng M. Identification of Potential Therapeutic Targets Against Anthrax-Toxin-Induced Liver and Heart Damage. Toxins (Basel) 2025; 17:54. [PMID: 39998071 PMCID: PMC11861023 DOI: 10.3390/toxins17020054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/17/2025] [Accepted: 01/19/2025] [Indexed: 02/26/2025] Open
Abstract
Anthrax represents a disease resulting from infection by toxin-secreting bacteria, Bacillus anthracis. This research aimed to identify new therapeutic targets to combat anthrax. We performed assays to assess cell viability, apoptosis, glycogen consumption, and compound uptake and release in hepatocytes and cardiomyocytes responding to anthrax toxins. Microarray analysis was carried out to identify the genes potentially involved in toxin-induced toxicity. Knockdown experiments were performed to validate the contributions of the identified genes. Our study showed that anthrax edema toxin (EdTx) and lethal toxin (LeTx) induced lethal damage in mouse liver and heart, respectively. Microarray assays showed that 218 genes were potentially involved in EdTx-mediated toxicity, and 18 genes were potentially associated with LeTx-mediated toxicity. Among these genes, the knockdown of Rgs1, Hcar2, Fosl2, Hcar2, Cxcl2, and Cxcl3 protected primary hepatocytes from EdTx-induced cytotoxicity. Plasminogen activator inhibitor 1 (PAI-1)-encoding Serpine1 constituted the most significantly upregulated gene in response to LeTx treatment in mouse liver. PAI-1 knockout mouse models had a higher tolerance to LeTx compared with wild-type counterparts, suggesting that PAI-1 is essential for LeTx-induced toxicity and might represent a therapeutic target in LeTx-induced tissue damage. These results provide potential therapeutic targets for combating anthrax-toxin-induced liver and heart damage.
Collapse
Affiliation(s)
- Lihong Wu
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Yanping Chen
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Yongyong Yan
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Haiyan Wang
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Cynthia D. Guy
- Liver and GI Pathology Section, Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - John Carney
- Liver and GI Pathology Section, Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - Carla L. Moreno
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Anaisa Quintanilla-Arteaga
- L. Frederick Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Fernando Monsivais
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Zhichao Zheng
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Mingtao Zeng
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
- L. Frederick Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| |
Collapse
|
3
|
Yabueng N, Sansupa C, Noirungsee N, Kraisitnitikul P, Chansuebsri S, Janta R, Khoomrung S, Disayathanoowat T, Chantara S. Characterization of airborne microbial communities in northern Thailand: Impacts of smoke haze versus non-haze conditions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 364:125302. [PMID: 39542164 DOI: 10.1016/j.envpol.2024.125302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/09/2024] [Accepted: 11/10/2024] [Indexed: 11/17/2024]
Abstract
Data on airborne microorganisms, particularly in Southeast Asia, are more limited compared to chemical data. This study is the first to examine the community and diversity of microorganisms on PM2.5 in an urban area of Northern Thailand during both smoke haze and non-smoke haze periods of 2020. This study evaluated the composition of airborne bacteria and fungi and analyzed their association with the chemical composition of PM2.5 and meteorological variables. Significantly higher concentrations of PM2.5 and more chemical compounds were observed during the smoke haze period compared to the non-smoke haze period. Increased PM2.5 concentrations significantly altered both bacterial and fungal communities. The diversity and richness of airborne bacteria increased, whereas those of fungi decreased. The level of PM2.5 concentration (the carrier), the chemical composition of PM2.5 (the resources for survival), and the local meteorological conditions (relative humidity (RH)) were associated with the differences in bacterial and fungal populations. In addition, air originating from the west of the receptor site, influenced by both terrestrial and marine air mass routes, contributed to higher bacterial diversity and richness during the smoke haze period. In contrast, fungal diversity and richness were greater when the air came from the southwest, following a marine route. However, the primary health concern is pathogens, which were present in both periods (such as Clostridium, Aspergillus, and Cladosporium) and were especially abundant during smoke haze periods. This study highlights those airborne microorganisms, along with the particles and their chemical composition, are important components that can impact health, including that of humans, animals, and the environment.
Collapse
Affiliation(s)
- Nuttipon Yabueng
- Environmental Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Chakriya Sansupa
- Siriraj Center of Research Excellence in Metabolomics and Systems Biology (SiCORE-MSB), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand; Siriraj Metabolomics and Phenomics Center (SiMPC), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Nuttapol Noirungsee
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Pavidarin Kraisitnitikul
- Environmental Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand; Office of Research Administration, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Sarana Chansuebsri
- Environmental Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Radshadaporn Janta
- Environmental Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand; Office of Research Administration, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Sakda Khoomrung
- Siriraj Center of Research Excellence in Metabolomics and Systems Biology (SiCORE-MSB), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand; Siriraj Metabolomics and Phenomics Center (SiMPC), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand; Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University Bangkok, 10700, Thailand; Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science Mahidol University, Bangkok, 10400, Thailand; Thailand Metabolomics Society, Thailand
| | - Terd Disayathanoowat
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200, Thailand; Research Center of Deep Technology in Beekeeping and Bee Products for Sustainable Development Goals (SMART BEE SDGs), Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Somporn Chantara
- Environmental Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand; Chemistry Department, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
4
|
Kayani KF, Shatery OBA, Mohammed SJ, Ahmed HR, Hamarawf RF, Mustafa MS. Synthesis and applications of luminescent metal organic frameworks (MOFs) for sensing dipicolinic acid in biological and water samples: a review. NANOSCALE ADVANCES 2024; 7:13-41. [PMID: 39583129 PMCID: PMC11579904 DOI: 10.1039/d4na00652f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/05/2024] [Indexed: 11/26/2024]
Abstract
The detection of trace quantities of 2,6-dipicolinic acid (DPA) in real-world samples is crucial for early disease diagnosis and routine health monitoring. Metal-organic frameworks (MOFs), recognized for their diverse structural architectures, have emerged as advanced multifunctional hybrid materials. One of the most notable properties of MOFs is their luminescence (L), which can arise from structural ligands, guest molecules, and emissive metal ions. Luminescent MOFs have shown significant promise as platforms for sensor design. This review highlights the application of luminescent MOFs in the detection of DPA in biological and aqueous environments. It provides a comprehensive discussion of the various detection strategies employed in luminescent MOF-based DPA sensors. Additionally, it explores the origins of L in MOFs, their synthesis, and the mechanisms underlying their sensing capabilities. The article also addresses key challenges and limitations in this field, offering practical insights for the development of efficient luminescent MOFs for DPA detection.
Collapse
Affiliation(s)
- Kawan F Kayani
- Department of Chemistry, College of Science, Charmo University Peshawa Street, Chamchamal Sulaimani City 46023 Iraq
- Department of Chemistry, College of Science, University of Sulaimani Qliasan St 46002 Sulaimani City Kurdistan Region Iraq
| | - Omer B A Shatery
- Department of Chemistry, College of Science, University of Sulaimani Qliasan St 46002 Sulaimani City Kurdistan Region Iraq
| | - Sewara J Mohammed
- Department of Anesthesia, College of Health Sciences, Cihan University Sulaimaniya Sulaymaniyah City Kurdistan Iraq
- Research and Development Center, University of Sulaimani Qlyasan Street, Kurdistan Regional Government Sulaymaniyah 46001 Iraq
| | - Harez Rashid Ahmed
- Department of Chemistry, College of Science, University of Sulaimani Qliasan St 46002 Sulaimani City Kurdistan Region Iraq
| | - Rebaz F Hamarawf
- Department of Chemistry, College of Science, University of Sulaimani Qliasan St 46002 Sulaimani City Kurdistan Region Iraq
| | - Muhammad S Mustafa
- Department of Chemistry, College of Science, University of Sulaimani Qliasan St 46002 Sulaimani City Kurdistan Region Iraq
| |
Collapse
|
5
|
Anandakumar J, Suresh KP, Patil AV, Jagadeesh CA, Bylaiah S, Patil SS, Hemadri D. Comprehensive Spatial-Temporal and Risk Factor Insights for Optimizing Livestock Anthrax Vaccination Strategies in Karnataka, India. Vaccines (Basel) 2024; 12:1081. [PMID: 39340111 PMCID: PMC11435676 DOI: 10.3390/vaccines12091081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/08/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Anthrax, a zoonotic disease affecting both livestock and humans globally, is caused by Bacillus anthracis. The objectives of this study were the following: (1) to identify environmental risk factors for anthrax and use this information to develop an improved predictive risk map, and (2) to estimate spatial variation in basic reproduction number (Ro) and herd immunity threshold at the village level, which can be used to optimize vaccination policies within high-risk regions. Based on the anthrax incidences from 2000-2023 and vaccine administration figures between 2008 and 2022 in Karnataka, this study depicted spatiotemporal pattern analysis to derive a risk map employing machine learning algorithms and estimate Ro and herd immunity threshold for better vaccination coverage. Risk factors considered were key meteorological, remote sensing, soil, and geographical parameters. Spatial autocorrelation and SaTScan analysis revealed the presence of hotspots and clusters predominantly in the southern, central, and uppermost northern districts of Karnataka and temporal cluster distribution between June and September. Factors significantly associated with anthrax were air temperature, surface pressure, land surface temperature (LST), enhanced vegetation index (EVI), potential evapotranspiration (PET), soil temperature, soil moisture, pH, available potassium, sulphur, and boron, elevation, and proximity to waterbodies and waterways. Ensemble technique with random forest and classification tree models were used to improve the prediction accuracy of anthrax. High-risk areas are expected in villages in the southern, central, and extreme northern districts of Karnataka. The estimated Ro revealed 11 high-risk districts with Ro > 1.50 and respective herd immunity thresholds ranging from 11.24% to 55.47%, and the assessment of vaccination coverage at the 70%, 80%, and 90% vaccine efficacy levels, all serving for need-based strategic vaccine allocation. A comparison analysis of vaccinations administered and vaccination coverage estimated in this study is used to illustrate difference in the supply and vaccine force. The findings from the present study may support in planning preventive interventions, resource allocation, especially of vaccines, and other control strategies against anthrax across Karnataka, specifically focusing on predicted high-risk regions.
Collapse
Affiliation(s)
- Jayashree Anandakumar
- ICAR-National Institute of Veterinary Epidemiology & Disease Informatics, Bengaluru 560064, Karnataka, India; (J.A.); (A.V.P.); (C.A.J.); (S.S.P.); (D.H.)
| | - Kuralayanapalya Puttahonnappa Suresh
- ICAR-National Institute of Veterinary Epidemiology & Disease Informatics, Bengaluru 560064, Karnataka, India; (J.A.); (A.V.P.); (C.A.J.); (S.S.P.); (D.H.)
| | - Archana Veeranagouda Patil
- ICAR-National Institute of Veterinary Epidemiology & Disease Informatics, Bengaluru 560064, Karnataka, India; (J.A.); (A.V.P.); (C.A.J.); (S.S.P.); (D.H.)
| | - Chethan A. Jagadeesh
- ICAR-National Institute of Veterinary Epidemiology & Disease Informatics, Bengaluru 560064, Karnataka, India; (J.A.); (A.V.P.); (C.A.J.); (S.S.P.); (D.H.)
| | - Sushma Bylaiah
- M S Ramaiah Institute of Technology, Bengaluru 560054, Karnataka, India;
| | - Sharanagouda S. Patil
- ICAR-National Institute of Veterinary Epidemiology & Disease Informatics, Bengaluru 560064, Karnataka, India; (J.A.); (A.V.P.); (C.A.J.); (S.S.P.); (D.H.)
| | - Divakar Hemadri
- ICAR-National Institute of Veterinary Epidemiology & Disease Informatics, Bengaluru 560064, Karnataka, India; (J.A.); (A.V.P.); (C.A.J.); (S.S.P.); (D.H.)
| |
Collapse
|
6
|
Subedi D, Pantha S, Jyoti S, Gautam B, Kaphle K, Yadav RK, Ghimire S, Dhakal S. Anthrax in Humans, Animals, and the Environment and the One Health Strategies for Anthrax Control. Pathogens 2024; 13:773. [PMID: 39338965 PMCID: PMC11435069 DOI: 10.3390/pathogens13090773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
Anthrax is a notorious disease of public health importance caused by Bacillus anthracis. The causative agent can also be used as a biological weapon. Spores of these bacteria can sustain extreme environmental conditions and remain viable in soil for decades. Domestic and wild ruminants are highly susceptible to this pathogen, which usually presents as a peracute to acute disease. In humans, cutaneous anthrax is frequent but pulmonary and enteric anthrax are more serious. Humans, animals, and the environment are all involved, making anthrax a perfect target for a One Health approach. The environment plays a key role in disease transmission. At a time when the One Health concept is not mere slogans, collaborative efforts of medical professionals, veterinarians, and environmental scientists will be valuable for the prevention and control of this disease. In this review, we discussed the transmission dynamics of anthrax in the environment, animals, and humans, as well as One Health strategies to control and prevent anthrax.
Collapse
Affiliation(s)
- Deepak Subedi
- Paklihawa Campus, Institute of Agriculture and Animal Science (IAAS), Tribhuvan University, Siddarthanagar 32900, Nepal; (S.P.); (S.J.); (B.G.); (K.K.); (R.K.Y.)
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Saurav Pantha
- Paklihawa Campus, Institute of Agriculture and Animal Science (IAAS), Tribhuvan University, Siddarthanagar 32900, Nepal; (S.P.); (S.J.); (B.G.); (K.K.); (R.K.Y.)
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Avenue, Manhattan, KS 66506, USA;
| | - Sumit Jyoti
- Paklihawa Campus, Institute of Agriculture and Animal Science (IAAS), Tribhuvan University, Siddarthanagar 32900, Nepal; (S.P.); (S.J.); (B.G.); (K.K.); (R.K.Y.)
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE C1A 4P3, Canada
| | - Bickal Gautam
- Paklihawa Campus, Institute of Agriculture and Animal Science (IAAS), Tribhuvan University, Siddarthanagar 32900, Nepal; (S.P.); (S.J.); (B.G.); (K.K.); (R.K.Y.)
| | - Krishna Kaphle
- Paklihawa Campus, Institute of Agriculture and Animal Science (IAAS), Tribhuvan University, Siddarthanagar 32900, Nepal; (S.P.); (S.J.); (B.G.); (K.K.); (R.K.Y.)
| | - Rakesh Kumar Yadav
- Paklihawa Campus, Institute of Agriculture and Animal Science (IAAS), Tribhuvan University, Siddarthanagar 32900, Nepal; (S.P.); (S.J.); (B.G.); (K.K.); (R.K.Y.)
- Department of Pharmacology, Dalian Medical University, Dalian 116041, China
| | - Shristi Ghimire
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Avenue, Manhattan, KS 66506, USA;
| | - Santosh Dhakal
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Avenue, Manhattan, KS 66506, USA;
| |
Collapse
|
7
|
Magome TG, Ochai SO, Hassim A, Bezuidenhout CC, van Heerden H, Lekota KE. A genome-based investigation of the Priestia species isolated from anthrax endemic regions in Kruger National Park. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 123:105649. [PMID: 39059732 DOI: 10.1016/j.meegid.2024.105649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Priestia is a genus that was renamed from the genus Bacillus based on the conserved signature indels (CSIs) in protein sequences that separate Priestia species from Bacillus, with the latter only including species closely related to B. subtilis and B. cereus. Diagnosis of anthrax, a zoonotic disease, is implicated by tripartite anthrax virulence genes (lef, pagA, and cya) and poly-γ-D-glutamic acid capsular genes cap-ABCDE of Bacillus anthracis. Due to the amplification of anthrax virulence genes in Priestia isolates, the search for homologous anthrax virulence genes within the Priestia genomes (n = 9) isolated from animal blood smears was embarked upon through whole genome sequencing. In silico taxonomic identification of the isolates was conducted using genome taxonomy database (GTDB), average nucleotide identity (ANI), and multi-locus sequence typing (MLST), which identified the genomes as P. aryabhattai (n = 5), P. endophytica (n = 2) and P. megaterium (n = 2). A pan-genome analysis was further conducted on the Priestia genomes, including the screening of virulence, antibiotic resistance genes and mobile genetic elements on the sequenced genomes. The oligoribonuclease NrnB protein sequences showed that Priestia spp. possess a unique CSI that is absent in other Bacillus species. Furthermore, the CSI in P. endophytica is unique from other Priestia spp. Pan-genomic analysis indicates that P. endophytica clusters separately from P. aryabhattai and P. megaterium. In silico BLASTn genome analysis using the SYBR primers, Taqman probes and primers that target the chromosomal marker (Ba-1), protective antigen (pagA), and lethal factor (lef) on B. anthracis, showed partial binding to Priestia regions encoding for hypothetical proteins, pyridoxine biosynthesis, hydrolase, and inhibitory proteins. The antibiotic resistance genes (ARG) profile of Priestia spp. showed that the genomes contained no more than two ARGs. This included genes conferring resistance to rifamycin and fosfomycin on P. endophytica, as well as clindamycin on P. aryabhattai and P. megaterium. Priestia genomes lacked B. anthracis plasmids and consisted of plasmid replicon types with unknown functions. Furthermore, the amplification of Priestia strains may result in false positives when qPCR is used to detect the virulence genes of B. anthracis in soil, blood smears, and/or environmental samples.
Collapse
Affiliation(s)
- Thuto Gomolemo Magome
- Unit for Environmental Sciences and Management, Microbiology, North-West University, Potchefstroom, South Africa.
| | - Sunday Ochonu Ochai
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa; International Centre for Antimicrobial Resistance Solutions, Copenhagen S, 2300, Denmark; Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Ayesha Hassim
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | | | - Henriette van Heerden
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - Kgaugelo Edward Lekota
- Unit for Environmental Sciences and Management, Microbiology, North-West University, Potchefstroom, South Africa
| |
Collapse
|
8
|
Sarpong AK, Odoi H, Boakye YD, Boamah VE, Agyare C. Resistant C. albicans implicated in recurrent vulvovaginal candidiasis (RVVC) among women in a tertiary healthcare facility in Kumasi, Ghana. BMC Womens Health 2024; 24:412. [PMID: 39030542 PMCID: PMC11264716 DOI: 10.1186/s12905-024-03217-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 06/19/2024] [Indexed: 07/21/2024] Open
Abstract
BACKGROUND Vulvovaginal candidiasis is a common fungal infection that affects the female lower genital tract. This study determined the major risk factors associated with vulvovaginal infection (VVI) in the Ashanti region of Ghana and also determined the antifungal resistance patterns of Candida albicans isolates to some antifungals. METHODS Three hundred and fifty (350) high vaginal swab (HVS) samples were collected from women who presented with signs and symptoms of VVI. A structured questionnaire was administered to one hundred and seventy-two (172) of the women. HVS samples were cultured on Sabouraud dextrose agar with 2% chloramphenicol. The polymerase chain reaction was employed to confirm C. albicans. Antifungal susceptibility testing was performed and the susceptibility of C. albicans isolates to fluconazole, clotrimazole, amphotericin B, nystatin, miconazole and 5-flurocytosine were assessed. RESULTS Vaginal infection was most prevalent amongst females in their reproductive age (21 to 30 years; 63.0%). The study found a significant association between vaginal infections and some risk factors such as sexual practices (p < 0.001), antibiotic misuse (p < 0.05), poor personal hygiene (p < 0.005) and birth control methods (p < 0.049). Out of the 350 HVS samples collected, 112 yielded yeast cells with 65 (58%) identified as C. albicans. The C. albicans isolates were resistant to 5' flucytosine (100%), fluconazole (70%), voriconazole (69.2%), miconazole (58.5%) and nystatin (49.2%). C. albicans isolates were more susceptible to amphotericin B (53.8%) and clotrimazole (45.1%), although an appreciable number of isolates showed resistance (46.1% and 52.3%, respectively). CONCLUSION There should be nationwide education on all associated risk factors of VVI. Also, use of the various antifungal agents in vaginal candidiasis should proceed after antifungal susceptibility testing to ensure efficacious use of these agents.
Collapse
Affiliation(s)
- Abena Kyeraa Sarpong
- Pharmaceutical Microbiology Section, Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Laboratory Technology Department , Kumasi Technical University, Kumasi, Ghana
| | - Hayford Odoi
- Department of Pharmaceutical Microbiology, School of Pharmacy, University of Health and Allied Sciences, Ho, Ghana
| | - Yaw Duah Boakye
- Pharmaceutical Microbiology Section, Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Vivian Etsiapa Boamah
- Pharmaceutical Microbiology Section, Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
- Pharmaceutical Microbiology Section, Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
| | - Christian Agyare
- Pharmaceutical Microbiology Section, Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| |
Collapse
|
9
|
Railean V, Sobolewski J, Jaśkowski JM. Anthrax in one health in Southern and Southeastern Europe - the effect of climate change? Vet Res Commun 2024; 48:623-632. [PMID: 37863848 PMCID: PMC10998808 DOI: 10.1007/s11259-023-10238-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/10/2023] [Indexed: 10/22/2023]
Abstract
Anthrax is a serious infection caused by Bacillus anthracis. The anthracis spores are highly resistant and can persist in the environment for several decades. Therefore, anthrax is considered a global health threat affecting wildlife, livestock, and the general public. The resistance mechanism is influenced not only by the environment or the ecological niche but also by virulence factors. In the last 10 years the Southern and Southeastern Europe have been confronted with this threat. Recently, there have been 8 human anthrax cases reported in Croatia (2022), and 4 cases in Romania (2023). Moreover, this incident and the COVID situation could be a starting point to encourage researchers to raise the alarm. On the other hand, climate change is causing glaciers to melt and land to thaw, and many wetlands and swampy areas are being drained. It should not be forgotten that epidemiological and epizootic threats significantly affect the country's economic development. The Covid-19 epidemic best illustrates these threats.
Collapse
Affiliation(s)
- Viorica Railean
- Department of Infectious, Invasive Diseases and Veterinary Administration, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Gagarina 7, Toruń, 87-100, Poland.
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, Torun, 87-100, Poland.
| | - Jarosław Sobolewski
- Department of Public Health and Animal Welfare, Institute of Veterinary Medicine, Nicolaus Copernicus University, Gagarina 7, Toruń, 87-100, Poland
| | - Jędrzej M Jaśkowski
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University, Gagarina 7, Toruń, 87-100, Poland.
| |
Collapse
|
10
|
Öberg R, Sil TB, Ohlin A, Andersson M, Malyshev D. Assessing CaDPA levels, metabolic activity, and spore detection through deuterium labeling. Analyst 2024; 149:1861-1871. [PMID: 38348676 DOI: 10.1039/d3an02162a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Many strains among spore-forming bacteria species are associated with food spoilage, foodborne disease, and hospital-acquired infections. Understanding the impact of environmental conditions and decontamination techniques on the metabolic activity, viability, and biomarkers of these spores is crucial for combatting them. To distinguish and track spores and to understand metabolic mechanisms, spores must be labeled. Staining or genetic modification are current methods for this, however, these methods can be time-consuming, and affect the viability and function of spore samples. In this work, we investigate the use of heavy water for permanent isotope labeling of spores and Raman spectroscopy for tracking sporulation/germination mechanisms. We also discuss the potential of this method in observing decontamination. We find that steady-state deuterium levels in the spore are achieved after only ∼48 h of incubation with 30% D2O-infused broth and sporulation, generating Raman peaks at cell silent region of 2200 and 2300 cm-1. These deuterium levels then decrease rapidly upon spore germination in non-deuterated media. We further find that unlike live spores, spores inactivated using various methods do not lose these Raman peaks upon incubation in growth media, suggesting these peaks may be used to indicate the viability of a spore sample. We further observe several Raman peaks exclusive to deuterated DPA, a spore-specific chemical biomarker, at e.g. 988 and 2300 cm-1, which can be used to track underlying changes in spores involving DPA. In conclusion, permanent spore labeling using deuterium offers a robust and non-invasive way of labeling bacterial spores for marking, viability determination, and characterising spore activity.
Collapse
Affiliation(s)
- Rasmus Öberg
- Department of Physics, Umeå University, 901 87, Umeå, Sweden.
- Swedish Defence Research Agency (FOI), Cementvägen 20, 906 21 Umeå, Sweden
| | - Timir Baran Sil
- Department of Physics, Umeå University, 901 87, Umeå, Sweden.
| | - André Ohlin
- Department of Chemistry, Umeå University, 901 87, Umeå, Sweden
| | | | - Dmitry Malyshev
- Department of Physics, Umeå University, 901 87, Umeå, Sweden.
| |
Collapse
|
11
|
Mytych JS, Pan Z, Lopez-Davis C, Redinger N, Lawrence C, Ziegler J, Popescu NI, James JA, Farris AD. Peptidoglycan from Bacillus anthracis Inhibits Human Macrophage Efferocytosis in Part by Reducing Cell Surface Expression of MERTK and TIM-3. Immunohorizons 2024; 8:269-280. [PMID: 38517345 PMCID: PMC10985058 DOI: 10.4049/immunohorizons.2300109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/06/2024] [Indexed: 03/23/2024] Open
Abstract
Bacillus anthracis peptidoglycan (PGN) is a major component of the bacterial cell wall and a key pathogen-associated molecular pattern contributing to anthrax pathology, including organ dysfunction and coagulopathy. Increases in apoptotic leukocytes are a late-stage feature of anthrax and sepsis, suggesting there is a defect in apoptotic clearance. In this study, we tested the hypothesis that B. anthracis PGN inhibits the capacity of human monocyte-derived macrophages (MΦ) to efferocytose apoptotic cells. Exposure of CD163+CD206+ MΦ to PGN for 24 h impaired efferocytosis in a manner dependent on human serum opsonins but independent of complement component C3. PGN treatment reduced cell surface expression of the proefferocytic signaling receptors MERTK, TYRO3, AXL, integrin αVβ5, CD36, and TIM-3, whereas TIM-1, αVβ3, CD300b, CD300f, STABILIN-1, and STABILIN-2 were unaffected. ADAM17 is a major membrane-bound protease implicated in mediating efferocytotic receptor cleavage. We found multiple ADAM17-mediated substrates increased in PGN-treated supernatant, suggesting involvement of membrane-bound proteases. ADAM17 inhibitors TAPI-0 and Marimastat prevented TNF release, indicating effective protease inhibition, and modestly increased cell-surface levels of MerTK and TIM-3 but only partially restored efferocytic capacity by PGN-treated MΦ. We conclude that human serum factors are required for optimal recognition of PGN by human MΦ and that B. anthracis PGN inhibits efferocytosis in part by reducing cell surface expression of MERTK and TIM-3.
Collapse
Affiliation(s)
- Joshua S. Mytych
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Zijian Pan
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Charmaine Lopez-Davis
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Nancy Redinger
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Christina Lawrence
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Jadith Ziegler
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Narcis I. Popescu
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Judith A. James
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - A. Darise Farris
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| |
Collapse
|
12
|
Öberg R, Sil TB, Johansson AC, Malyshev D, Landström L, Johansson S, Andersson M, Andersson PO. UV-Induced Spectral and Morphological Changes in Bacterial Spores for Inactivation Assessment. J Phys Chem B 2024; 128:1638-1646. [PMID: 38326108 PMCID: PMC10895659 DOI: 10.1021/acs.jpcb.3c07062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/09/2024]
Abstract
The ability to detect and inactivate spore-forming bacteria is of significance within, for example, industrial, healthcare, and defense sectors. Not only are stringent protocols necessary for the inactivation of spores but robust procedures are also required to detect viable spores after an inactivation assay to evaluate the procedure's success. UV radiation is a standard procedure to inactivate spores. However, there is limited understanding regarding its impact on spores' spectral and morphological characteristics. A further insight into these UV-induced changes can significantly improve the design of spore decontamination procedures and verification assays. This work investigates the spectral and morphological changes to Bacillus thuringiensis spores after UV exposure. Using absorbance and fluorescence spectroscopy, we observe an exponential decay in the spectral intensity of amino acids and protein structures, as well as a logistic increase in dimerized DPA with increased UV exposure on bulk spore suspensions. Additionally, using micro-Raman spectroscopy, we observe DPA release and protein degradation with increased UV exposure. More specifically, the protein backbone's 1600-1700 cm-1 amide I band decays slower than other amino acid-based structures. Last, using electron microscopy and light scattering measurements, we observe shriveling of the spore bodies with increased UV radiation, alongside the leaking of core content and disruption of proteinaceous coat and exosporium layers. Overall, this work utilized spectroscopy and electron microscopy techniques to gain new understanding of UV-induced spore inactivation relating to spore degradation and CaDPA release. The study also identified spectroscopic indicators that can be used to determine spore viability after inactivation. These findings have practical applications in the development of new spore decontamination and inactivation validation methods.
Collapse
Affiliation(s)
- Rasmus Öberg
- Swedish
Defence Research Agency (FOI), Umeå 90621, Sweden
- Department
of Physics, Umeå University, Umeå 90736, Sweden
| | - Timir B. Sil
- Department
of Physics, Umeå University, Umeå 90736, Sweden
| | | | | | - Lars Landström
- Swedish
Defence Research Agency (FOI), Norra Sorunda 13794, Sweden
| | | | - Magnus Andersson
- Department
of Physics, Umeå University, Umeå 90736, Sweden
- Umeå
Centre for Microbial Research (UCMR), Umeå 90736, Sweden
| | | |
Collapse
|
13
|
Gao X, Teng T, Liu Y, Ai T, Zhao R, Fu Y, Zhang P, Han J, Zhang Y. Anthrax lethal toxin and tumor necrosis factor-α synergize on intestinal epithelia to induce mouse death. Protein Cell 2024; 15:135-148. [PMID: 37855658 PMCID: PMC10833652 DOI: 10.1093/procel/pwad050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/26/2023] [Indexed: 10/20/2023] Open
Abstract
Bacillus anthracis lethal toxin (LT) is a determinant of lethal anthrax. Its function in myeloid cells is required for bacterial dissemination, and LT itself can directly trigger dysfunction of the cardiovascular system. The interplay between LT and the host responses is important in the pathogenesis, but our knowledge on this interplay remains limited. Tumor necrosis factor-α (TNF-α) is a pleiotropic pro-inflammatory cytokine induced by bacterial infections. Since LT accumulates and cytokines, predominantly TNF, amass during B. anthracis infection, co-treatment of TNF + LT in mice was used to mimic in vivo conditions for LT to function in inflamed hosts. Bone marrow transplantation and genetically engineered mice showed unexpectedly that the death of intestinal epithelial cells (IECs) rather than that of hematopoietic cells led to LT + TNF-induced lethality. Inhibition of p38α mitogen-activated protein kinase (MAPK) signaling by LT in IECs promoted TNF-induced apoptosis and necroptosis of IECs, leading to intestinal damage and mouse death. Consistently, p38α inhibition by LT enhanced TNF-mediated cell death in human colon epithelial HT-29 cells. As intestinal damage is one of the leading causes of lethality in anthrax patients, the IEC damage caused by LT + TNF would most likely be a mechanism underneath this clinical manifestation and could be a target for interventions.
Collapse
Affiliation(s)
- Xinhe Gao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Teng Teng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Yifei Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Tingting Ai
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Rui Zhao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Yilong Fu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Peipei Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Jiahuai Han
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
- Research Unit of Cellular Stress of CAMS, Xiang’an Hospital of Xiamen University, Cancer Research Center of Xiamen University, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
- Laboratory Animal Center, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Yingying Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| |
Collapse
|
14
|
Ogunleye SC, Olorunshola MM, Fasina KA, Aborode AT, Akinsulie OC, Amoo A, Olatoye BJ, Bakare A, Lawal MA, Adekanye O, Chinyere EC. Anthrax outbreak: exploring its biological agents and public health implications. FRONTIERS IN TROPICAL DISEASES 2024; 4. [DOI: 10.3389/fitd.2023.1297896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024] Open
Abstract
The (re)emergence of several infectious zoonoses underlines the need for the re-evaluation of the transmission patterns and key players responsible for effective inter-species transfer of diseases. Anthrax is caused by Bacillus anthracis, a zoonotic rod-shaped, Gram-positive, spore-forming bacterium that is highly fatal to both human and animal populations. B. anthracis is widespread across several regions of the world, including Africa, Asia, southern Europe, North and South America, and Australia, and it has a remarkably high attendant impact on the sustainability and profitability of livestock. The current trend in the global distribution of anthrax necessitates an urgent contextual understanding of the key drivers of the spread of B. anthracis in different parts of the world toward the end goal of an anthrax-free world. The understanding of the drivers is integral for the development of control and preventive measures, and also the development of agents such as therapeutics and vaccines against B. anthracis. This review presents a holistic description of the transmission pattern and epidemiology of B. anthracis, and updates on the diagnostic techniques and approaches available for the detection of B. anthracis. In addition, this review highlights plausible prevention and control strategies for the bacterium. This review further underscores the need for participatory epidemiology, hygiene, and safety protocols, the establishment of comprehensive surveillance systems, and global collaborative efforts toward vaccine development as critical steps in controlling anthrax.
Collapse
|
15
|
Elisha IL, Onikisateinba A, Joel GS, Luka PD, Joshua BI, Jagab SH, Ahmed R, Haliru H, Abubakar SA, Makama S, Sati NS, Muhammad M. Unveiling the global reach of African anthrax research: A bibliometric study. SCIENCE IN ONE HEALTH 2023; 3:100052. [PMID: 39077387 PMCID: PMC11262261 DOI: 10.1016/j.soh.2023.100052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/10/2023] [Indexed: 07/31/2024]
Abstract
Anthrax is a zoonotic bacterial disease caused by Bacillus anthracis. It poses significant threat to humans through contact with infected animals or their by-products. Concerns arise from its long-lasting spore viability and lethality, fuelling its biowarfare potential. Recent anthrax outbreaks across multiple African nations prompted this bibliometric study. The aim of the study was to assess the contributions of African countries, institutions, authors, research funding, and collaborations, while identifying research trends and gaps. We conducted an extensive bibliometric analysis of anthrax-related research publications in Africa from 1923 to 2023, utilizing the Scopus database and VOSviewer. The study covered 364 publications from 32 African countries, accumulating 5,636 citations at an average of 15.5 citations per article, with research articles comprising 88.5% of the corpus. The publication growth rate from 1923 to 2023 was modest at 8.3%, indicating gradual advancement. Notably, there was a significant surge in publications between 2011 and 2023, accounting for 73.1% of total publications. The African research contributions, were categorized into five thematic focuses: ecological dynamics and host interactions, human-livestock anthrax interface, molecular insights into bacterial activity and treatment strategies, collaborative approaches for zoonotic disease prevention, and antibody response and vaccination strategies. Leading institutional contributors included the University of Pretoria and the University of KwaZulu-Natal. Collaborations extended globally to 35 non-African countries, with significant involvement from the United States, United Kingdom, and Germany. Strong African partnerships, especially between Kenya, Nigeria, and South Africa, emerged. The top 10 cited papers explored diverse aspects, including disease impact on wildlife and innovative control strategies, underscoring the importance of multidisciplinary approaches. South Africa played a prominent role, contributing 95 publications and securing funding from various sources, including the National Research Foundation. Collaborations with global institutions highlighted its commitment. This study unveils the dynamic landscape of anthrax research in Africa, emphasizing the pivotal role of collaboration, multidisciplinary One Health approaches, and global partnerships in enhancing research outcomes. Ongoing research and practical solutions for human and animal health remain imperative.
Collapse
Affiliation(s)
- Ishaku Leo Elisha
- National Veterinary Research Institute Vom, P.M.B. 01 Vom, Plateau State, Nigeria
| | - Arieri Onikisateinba
- National Veterinary Research Institute Vom, P.M.B. 01 Vom, Plateau State, Nigeria
| | - Ganih Saidu Joel
- State Key Laboratory for Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Science, China
| | - Pam Dachung Luka
- National Veterinary Research Institute Vom, P.M.B. 01 Vom, Plateau State, Nigeria
| | - Barde Israel Joshua
- National Veterinary Research Institute Vom, P.M.B. 01 Vom, Plateau State, Nigeria
| | - Shuaibu Hafsat Jagab
- National Veterinary Research Institute Vom, P.M.B. 01 Vom, Plateau State, Nigeria
| | - Rabi Ahmed
- Department of Biosecurity, National Biosafety Management Agency, Abuja, Nigeria
| | - Habibu Haliru
- National Veterinary Research Institute Vom, P.M.B. 01 Vom, Plateau State, Nigeria
| | - Sa’adatu Aliyu Abubakar
- National Reference Laboratory, Nigeria Centre for Disease Control and Prevention, Abuja, Nigeria
| | - Sunday Makama
- National Veterinary Research Institute Vom, P.M.B. 01 Vom, Plateau State, Nigeria
| | - Ngulukun Samuel Sati
- National Veterinary Research Institute Vom, P.M.B. 01 Vom, Plateau State, Nigeria
| | - Maryam Muhammad
- National Veterinary Research Institute Vom, P.M.B. 01 Vom, Plateau State, Nigeria
| |
Collapse
|
16
|
Metrailer MC, Hoang TTH, Jiranantasak T, Luong T, Hoa LM, Ngoc DB, Pham QT, Pham VK, Hung TTM, Huong VTL, Pham TL, Ponciano JM, Hamerlinck G, Dang DA, Norris MH, Blackburn JK. Spatial and phylogenetic patterns reveal hidden infection sources of Bacillus anthracis in an anthrax outbreak in Son La province, Vietnam. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 114:105496. [PMID: 37678701 DOI: 10.1016/j.meegid.2023.105496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/07/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023]
Abstract
Bacillus anthracis, the bacterial cause of anthrax, is a zoonosis affecting livestock and wildlife often spilling over into humans. In Vietnam, anthrax has been nationally reportable since 2015 with cases occurring annually, mostly in the northern provinces. In April 2022, an outbreak was reported in Son La province following the butchering of a water buffalo, Bubalus bubalis. A total of 137 humans from three villages were likely exposed to contaminated meat from the animal. Early epidemiological investigations suggested a single animal was involved in all exposures. Five B. anthracis isolates were recovered from human clinical cases along with one from the buffalo hide, another from associated maggots, and one from soil at the carcass site. The isolates were whole genome sequenced, allowing global, regional, and local molecular epidemiological analyses of the outbreak strains. All recovered B. anthracis belong to the A.Br.001/002 lineage based on canonical single nucleotide polymorphism analysis (canSNP). Although not previously identified in Vietnam, this lineage has been identified in the nearby countries of China, India, Indonesia, Thailand, as well as Australia. A twenty-five marker multi-locus variable number tandem repeat analysis (MLVA-25) was used to investigate the relationship between human, soil, and buffalo strains. Locally, four MLVA-25 genotypes were identified from the eight isolates. This level of genetic diversity is unusual for the limited geography and timing of cases and differs from past literature using MLVA-25. The coupled spatial and phylogenetic data suggest this outbreak originated from multiple, likely undetected, animal sources. These findings were further supported by local news reports that identified at least two additional buffalo deaths beyond the initial animal sampled in response to the human cases. Future outbreak response should include intensive surveillance for additional animal cases and additional molecular epidemiological traceback to identify pathogen sources.
Collapse
Affiliation(s)
- Morgan C Metrailer
- Spatial Epidemiology and Ecology Research Laboratory, Department of Geography, University of Florida, Gainesville, FL, USA; Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | | | - Treenate Jiranantasak
- Spatial Epidemiology and Ecology Research Laboratory, Department of Geography, University of Florida, Gainesville, FL, USA; Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Tan Luong
- Spatial Epidemiology and Ecology Research Laboratory, Department of Geography, University of Florida, Gainesville, FL, USA; Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA; National Institute of Hygiene and Epidemiology, Hanoi, Viet Nam
| | - Luong Minh Hoa
- National Institute of Hygiene and Epidemiology, Hanoi, Viet Nam
| | - Do Bich Ngoc
- National Institute of Hygiene and Epidemiology, Hanoi, Viet Nam
| | - Quang Thai Pham
- National Institute of Hygiene and Epidemiology, Hanoi, Viet Nam
| | - Van Khang Pham
- National Institute of Hygiene and Epidemiology, Hanoi, Viet Nam
| | | | | | | | | | | | - Duc Anh Dang
- National Institute of Hygiene and Epidemiology, Hanoi, Viet Nam
| | - Michael H Norris
- Spatial Epidemiology and Ecology Research Laboratory, Department of Geography, University of Florida, Gainesville, FL, USA; Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Jason K Blackburn
- Spatial Epidemiology and Ecology Research Laboratory, Department of Geography, University of Florida, Gainesville, FL, USA; Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
17
|
Sardar N, Aziz MW, Mukhtar N, Yaqub T, Anjum AA, Javed M, Ashraf MA, Tanvir R, Wolfe AJ, Schabacker DS, Forrester S, Khemmani M, Aqel AA, Warraich MA, Shabbir MZ. One Health Assessment of Bacillus anthracis Incidence and Detection in Anthrax-Endemic Areas of Pakistan. Microorganisms 2023; 11:2462. [PMID: 37894120 PMCID: PMC10609008 DOI: 10.3390/microorganisms11102462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/28/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Anthrax, a severe zoonotic disease, is infrequently reported in anthrax-endemic regions of Pakistan. Despite clinical reports indicating its presence, particularly cutaneous anthrax, there is insufficient laboratory evidence regarding disease occurrence and environmental persistence. The present study aimed to confirm Bacillus anthracis presence, accountable for animal mortality and human infection, while exploring environmental transmission factors. Between March 2019 and July 2021, a total of 19 outbreaks were documented. Of these, 11 affected sheep/goats in Zhob district and 8 affected cattle/sheep in Bajour Agency. Clinical signs suggestive of Bacillus anthracis outbreak were observed in 11 animals. Blood and swab samples were collected for confirmation. The study followed a One Health approach, analyzing animal, environmental (soil/plant), and human samples. Of the 19 outbreaks, 11 were confirmed positive for anthrax based on growth characteristics, colony morphology, and PCR. Soil and plant root samples from the outbreak areas were collected and analyzed microscopically and molecularly. Cutaneous anthrax was observed in six humans, and swab samples were taken from the lesions. Human serum samples (n = 156) were tested for IgG antibodies against PA toxin and quantitative analysis of anthrax toxin receptor 1 (ANTXR1). Bacillus anthracis was detected in 65 out of 570 (11.40%) soil samples and 19 out of 190 (10%) plant root samples from the outbreak areas. Four out of six human samples from cutaneous anthrax lesions tested positive for Bacillus anthracis. Human anthrax seroprevalence was found to be 11% and 9% in two districts, with the highest rates among butchers and meat consumers. The highest ANTXR1 levels were observed in butchers, followed by meat consumers, farm employees, meat vendors, veterinarians, and farm owners. These findings highlight the persistence of anthrax in the region and emphasize the potential public health risks.
Collapse
Affiliation(s)
- Nageen Sardar
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan; (N.S.); (M.J.); (M.A.A.); (R.T.); (M.Z.S.)
- Department of Microbiology, University of Jhang, Jhang 35200, Pakistan
| | - Muhammad Waqar Aziz
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan; (N.S.); (M.J.); (M.A.A.); (R.T.); (M.Z.S.)
- Department of Microbiology, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Nadia Mukhtar
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan; (N.S.); (M.J.); (M.A.A.); (R.T.); (M.Z.S.)
| | - Tahir Yaqub
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan; (N.S.); (M.J.); (M.A.A.); (R.T.); (M.Z.S.)
| | - Aftab Ahmad Anjum
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan; (N.S.); (M.J.); (M.A.A.); (R.T.); (M.Z.S.)
| | - Maryam Javed
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan; (N.S.); (M.J.); (M.A.A.); (R.T.); (M.Z.S.)
| | - Muhammad Adnan Ashraf
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan; (N.S.); (M.J.); (M.A.A.); (R.T.); (M.Z.S.)
| | - Rabia Tanvir
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan; (N.S.); (M.J.); (M.A.A.); (R.T.); (M.Z.S.)
| | - Alan J. Wolfe
- Department of Microbiology and Immunology, Loyola University Chicago, Chicago, IL 60660, USA; (A.J.W.)
| | | | | | - Mark Khemmani
- Department of Microbiology and Immunology, Loyola University Chicago, Chicago, IL 60660, USA; (A.J.W.)
| | - Amin A. Aqel
- Faculty of Medicine, Mutah University, Al-Karak 61710, Jordan;
| | - Muhammad Akib Warraich
- Department of Marketing, Rennes School of Business, CS 76522, 2 Rue Robert d’Arbrissel, 35065 Rennes Cedex, France;
| | - Muhammad Zubair Shabbir
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan; (N.S.); (M.J.); (M.A.A.); (R.T.); (M.Z.S.)
| |
Collapse
|
18
|
Mytych JS, Pan Z, Lopez-Davis C, Redinger N, Lawrence C, Ziegler J, Popescu NI, James JA, Farris AD. Peptidoglycan from Bacillus anthracis Inhibits Human Macrophage Efferocytosis in Part by Reducing Cell Surface Expression of MERTK and TIM-3. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.30.535001. [PMID: 37066181 PMCID: PMC10103956 DOI: 10.1101/2023.03.30.535001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Bacillus anthracis peptidoglycan (PGN) is a major component of the bacterial cell wall and a key pathogen-associated molecular pattern (PAMP) contributing to anthrax pathology, including organ dysfunction and coagulopathy. Increases in apoptotic lymphocytes are a late-stage feature of anthrax and sepsis, suggesting there is a defect in apoptotic clearance. Here, we tested the hypothesis that B. anthracis PGN inhibits the capacity of human monocyte-derived macrophages (MΦ) to efferocytose apoptotic cells. Exposure of CD163+CD206+ MΦ to PGN for 24h impaired efferocytosis in a manner dependent on human serum opsonins but independent of complement component C3. PGN treatment reduced cell surface expression of the pro-efferocytic signaling receptors MERTK, TYRO3, AXL, integrin αVβ5, CD36 and TIM-3, whereas TIM-1, αVβ3, CD300b, CD300f, STABILIN-1 and STABILIN-2 were unaffected. ADAM17 is a major membrane-bound protease implicated in mediating efferocytotic receptor cleavage. We found multiple ADAM17-mediated substrates increased in PGN-treated supernatant suggesting involvement of membrane-bound proteases. ADAM17 inhibitors TAPI-0 and Marimastat prevented TNF release, indicating effective protease inhibition, and modestly increased cell-surface levels of MerTK and TIM-3 but only partially restored efferocytic capacity by PGN-treated MΦ. We conclude that human serum factors are required for optimal recognition of PGN by human MΦ and that B. anthracis PGN inhibits efferocytosis in part by reducing cell surface expression of MERTK and TIM-3.
Collapse
Affiliation(s)
- Joshua S Mytych
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, 825 NE 13 Street, Oklahoma City, OK 73104, USA
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, 1100 N Lindsay Avenue, Oklahoma City, OK 73104, USA
| | - Zijian Pan
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, 825 NE 13 Street, Oklahoma City, OK 73104, USA
| | - Charmaine Lopez-Davis
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, 825 NE 13 Street, Oklahoma City, OK 73104, USA
| | - Nancy Redinger
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, 825 NE 13 Street, Oklahoma City, OK 73104, USA
| | - Christina Lawrence
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, 825 NE 13 Street, Oklahoma City, OK 73104, USA
| | - Jadith Ziegler
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, 825 NE 13 Street, Oklahoma City, OK 73104, USA
| | - Narcis I. Popescu
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, 825 NE 13 Street, Oklahoma City, OK 73104, USA
| | - Judith A. James
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, 825 NE 13 Street, Oklahoma City, OK 73104, USA
| | - A. Darise Farris
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, 825 NE 13 Street, Oklahoma City, OK 73104, USA
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, 1100 N Lindsay Avenue, Oklahoma City, OK 73104, USA
| |
Collapse
|
19
|
Jayaprakasam M, Chatterjee N, Chanda MM, Shahabuddin SM, Singhai M, Tiwari S, Panda S. Human anthrax in India in recent times: A systematic review & risk mapping. One Health 2023; 16:100564. [PMID: 37363236 PMCID: PMC10288098 DOI: 10.1016/j.onehlt.2023.100564] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 06/28/2023] Open
Abstract
The disease anthrax occurs generally in herbivores and the causative organism (Bacillus anthracis) infects humans who come in contact with infected animals or their products. The persistence of anthrax spores for decades and its lethality contribute to its biowarfare potential. We conducted this systematic review along with risk mapping to investigate the spatio-temporal distribution, clinico-epidemiological, socio-behavioural and programmatic issues pertaining to anthrax in India over the last two decades. Peer reviewed quantitative and qualitative studies and grey literature comprising weekly reports of the 'Integrated Disease Surveillance Program' (IDSP), were accessed for extracting data. IDSP data were used for geo-referencing of the villages of anthrax cases; Pseudo-absence was generated to fit a Bayesian Additive Regression Trees (BART) model to develop anthrax risk map. The case fatality rate of cutaneous anthrax ranged from 2% to 38%, while the gastrointestinal and inhalational types were 100% fatal. Our synthesis revealed that human anthrax outbreaks in India were clustered around the eastern coastal regions. The states of Odisha, West Bengal, Andhra Pradesh and Jharkhand reported maximum number of outbreaks. Odisha reported a maximum number of 439 human anthrax cases since 2009, of which Koraput district contributed to 200 cases (46%). While handling or consumption of infected animal product were proximal drivers of these events, poverty, lack of awareness, traditional beliefs and local practices served as facilitatory factors. Other structural determinants were wild life-livestock interface, historical forest loss, soil pH, soil-water balance, organic carbon content, temperature, rainfall and humidity. The programmatic issues identified through this review were lack of active surveillance, non-availability of diagnostic facility at the periphery, delayed reporting, absence of routine livestock vaccination and lack of adequate veterinary services. Interventions based on One-health approach in the country merit immediate policy and program attention; high risk zones for anthrax identified during present investigation, should be prioritized.
Collapse
Affiliation(s)
| | - Nabendu Chatterjee
- Division of Basic Medical Sciences, Indian Council of Medical Research, New Delhi, India
| | - Mohammed Mudassar Chanda
- ICAR - National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Bangalore, India
| | | | - Monil Singhai
- Center for Arboviral and Zoonotic Diseases (CAZD), National Center for Disease Control, New Delhi, India
| | - Simmi Tiwari
- Division of Zoonotic Diseases Program, National Centre for Disease Control, New Delhi, India
| | - Samiran Panda
- Indian Council of Medical Research, New Delhi, India
| |
Collapse
|
20
|
Kim GL, Pyo SW, Yi H, Kim SH, Shin H, Yu MA, Hwang YR, Choi SY, Jeon JH, Jo SK, Rhie GE. Immunogenicity and Protective Efficacy of Recombinant Protective Antigen Anthrax Vaccine (GC1109) in A/J Mice Model. Vaccine 2023; 41:3106-3110. [PMID: 37055344 DOI: 10.1016/j.vaccine.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/10/2023] [Accepted: 04/03/2023] [Indexed: 04/15/2023]
Abstract
A recombinant protective antigen anthrax vaccine (GC1109) is being developed as a new-generation vaccine by the Korea Disease Control and Prevention Agency. In accordance with the ongoing step 2 of phase II clinical trials, the immunogenicity and protective efficacy of the booster dose of GC1109 were evaluated in A/J mice after 3 serial vaccinations at 4-week intervals. The results indicated that the booster dose significantly increased the production of anti-protective antigen (PA) IgG and toxin-neutralizing antibody (TNA) compared with those of the group without booster. An enhanced protective effect of the booster dose was not observed because the TNA titers of the group without booster were high enough to confer protection against spore challenge. Additionally, the correlation between TNA titers and probability of survival was determined for calculating the threshold TNA titer levels associated with protection. The threshold 50 % neutralization factor (NF50) of TNA showing 70 % probability of protection was 0.21 in A/J mice with 1,200 LD50 Sterne spores challenge. These results indicate that GC1109 is a promising candidate as a new-generation anthrax vaccine and that a booster dose might provide enhanced protection by producing toxin-neutralizing antibodies.
Collapse
Affiliation(s)
- Gyu-Lee Kim
- Division of High-risk Pathogens, Bureau of Infectious Disease Diagnosis Control, Korea Disease Control and Prevention Agency, Cheongju 28159, Republic of Korea
| | - Seong Wook Pyo
- Division of High-risk Pathogens, Bureau of Infectious Disease Diagnosis Control, Korea Disease Control and Prevention Agency, Cheongju 28159, Republic of Korea
| | - Hwajung Yi
- Division of High-risk Pathogens, Bureau of Infectious Disease Diagnosis Control, Korea Disease Control and Prevention Agency, Cheongju 28159, Republic of Korea
| | - So-Hyeon Kim
- Division of High-risk Pathogens, Bureau of Infectious Disease Diagnosis Control, Korea Disease Control and Prevention Agency, Cheongju 28159, Republic of Korea
| | - Hwachul Shin
- Division of High-risk Pathogens, Bureau of Infectious Disease Diagnosis Control, Korea Disease Control and Prevention Agency, Cheongju 28159, Republic of Korea
| | - Min-Ah Yu
- Division of High-risk Pathogens, Bureau of Infectious Disease Diagnosis Control, Korea Disease Control and Prevention Agency, Cheongju 28159, Republic of Korea
| | - Yi-Rang Hwang
- Division of High-risk Pathogens, Bureau of Infectious Disease Diagnosis Control, Korea Disease Control and Prevention Agency, Cheongju 28159, Republic of Korea
| | - Sang-Yoon Choi
- Division of High-risk Pathogens, Bureau of Infectious Disease Diagnosis Control, Korea Disease Control and Prevention Agency, Cheongju 28159, Republic of Korea
| | - Jun Ho Jeon
- Division of High-risk Pathogens, Bureau of Infectious Disease Diagnosis Control, Korea Disease Control and Prevention Agency, Cheongju 28159, Republic of Korea
| | - Su Kyoung Jo
- Division of High-risk Pathogens, Bureau of Infectious Disease Diagnosis Control, Korea Disease Control and Prevention Agency, Cheongju 28159, Republic of Korea
| | - Gi-Eun Rhie
- Division of High-risk Pathogens, Bureau of Infectious Disease Diagnosis Control, Korea Disease Control and Prevention Agency, Cheongju 28159, Republic of Korea.
| |
Collapse
|
21
|
Zhai LN, Zhao Y, Song XL, Qin TT, Zhang ZJ, Wang JZ, Sui CY, Zhang LL, Lv M, Hu LF, Zhou DS, Fang TY, Yang WH, Wang YC. Inhalable vaccine of bacterial culture supernatant extract mediates protection against fatal pulmonary anthrax. Emerg Microbes Infect 2023; 12:2191741. [PMID: 36920800 PMCID: PMC10071900 DOI: 10.1080/22221751.2023.2191741] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
AbstractPulmonary anthrax is the most fatal clinical form of anthrax and currently available injectable vaccines do not provide adequate protection against it. Hence, next-generation vaccines that effectively induce immunity against pulmonary anthrax are urgently needed. In the present study, we prepared an attenuated and low protease activity Bacillus anthracis strain A16R-5.1 by deleting five of its extracellular protease activity-associated genes and its lef gene through the CRISPR-Cas9 genome editing system. This mutant strain was then used to formulate a lethal toxin (LeTx)-free culture supernatant extract (CSE) anthrax vaccine,of which half was protective antigen (PA). We generated liquid, powder, and powder reconstituted formulations that could be delivered by aerosolized intratracheal inoculation. All of them induced strong humoral, cellular, and mucosal immune responses. The vaccines also produced LeTx neutralizing antibodies and conferred full protection against the lethal aerosol challenges of B. anthracis Pasteur II spores in mice. Compared to the recombinant PA vaccine, the CSE anthrax vaccine with equal PA content provided superior immunoprotection against pulmonary anthrax. The preceding results suggest that the CSE anthrax vaccine developed herein is suitable and scalable for use in inhalational immunization against pulmonary anthrax.
Collapse
Affiliation(s)
- Li-Na Zhai
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.,State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Yue Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China.,Basic medical college, Guizhou Medical University, Guizhou 550004, China
| | - Xiao-Lin Song
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Tong-Tong Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Zhi-Jun Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Jia-Zhen Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Cheng-Yu Sui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Li-Li Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Meng Lv
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Ling-Fei Hu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Dong-Sheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Tong-Yu Fang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Wen-Hui Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Yan-Chun Wang
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Biotechnology, Beijing 100071, China
| |
Collapse
|
22
|
Shinde S, Miryala SK, Anbarasu A, Ramaiah S. Systems biology approach to understand the interplay between Bacillus anthracis and human host genes that leads to CVDs. Microb Pathog 2023; 176:106019. [PMID: 36736801 DOI: 10.1016/j.micpath.2023.106019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/28/2023] [Accepted: 01/31/2023] [Indexed: 02/04/2023]
Abstract
Humans infected with invasive Bacillus anthracis (B. anthracis) have a very poor prognosis and are at high risk for developing cardiovascular diseases (CVDs) and shock. Several bacterial elements probably have significant pathogenic roles in this pathogenic process of anthrax. In our current work, we have analysed the molecular level interactions between B. anthracis and human genes to understand the interplay during anthrax that leads to the CVDs. Our results have shown dense interactions between the functional partners in both host and the B. anthracis Gene interaction network (GIN). The functional enrichment analysis indicated that the clusters in the host GIN had genes related to hypoxia and autophagy in response to the lethal toxin; and genes related to adherens junction and actin cytoskeleton in response to edema toxin play a significant role in multiple stages of the disease. The B. anthracis genes BA_0530, guaA, polA, rpoB, ribD, secDF, metS, dinG and human genes ACTB, EGFR, EP300, CTNNB1, ESR1 have shown more than 50 direct interactions with the functional partners and hence they can be considered as hub genes in the network and they are observed to have important roles in CVDs. The outcome of our study will help to understand the molecular pathogenesis of CVDs in anthrax. The hub genes reported in the study can be considered potential drug targets and they can be exploited for new drug discovery.
Collapse
Affiliation(s)
- Shabduli Shinde
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, Kharagpur, 721302, West Bengal, India
| | - Sravan Kumar Miryala
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India
| | - Anand Anbarasu
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India
| | - Sudha Ramaiah
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
23
|
In Search of Proximate Triggers of Anthrax Outbreaks in Wildlife: A Hypothetical Individual-Based Model of Plasmid Transfer within Bacillus Communities. DIVERSITY 2023. [DOI: 10.3390/d15030347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Bacillus anthracis, the causative agent of anthrax in humans, livestock, and wildlife, exists in a community with hundreds of other species of bacteria in the environment. Work on the genetics of these communities has shown that B. anthracis shares a high percentage of chromosomal genes with both B. thuringiensis and B. cereus, and that phenotypic differences among these bacteria can result from extra-chromosomal DNA in the form of plasmids. We developed a simple hypothetical individual-based model to simulate the likelihood of detecting plasmids with genes encoding anthrax toxins within bacterial communities composed of B. anthracis, B. thuringiensis, and B. cereus, and the surrounding matrix of extra-cellular polymeric substances. Simulation results suggest the horizontal transfer of plasmids with genes encoding anthrax toxins among Bacillus species persisting outside the host could function as a proximate factor triggering anthrax outbreaks.
Collapse
|
24
|
Valijam S, Nilsson DP, Öberg R, Albertsdóttir Jonsmoen UL, Porch A, Andersson M, Malyshev D. A lab-on-a-chip utilizing microwaves for bacterial spore disruption and detection. Biosens Bioelectron 2023; 231:115284. [PMID: 37031508 DOI: 10.1016/j.bios.2023.115284] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/07/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
Bacterial spores are problematic in agriculture, the food industry, and healthcare, with the fallout costs from spore-related contamination being very high. Spores are difficult to detect since they are resistant to many of the bacterial disruption techniques used to bring out the biomarkers necessary for detection. Because of this, effective and practical spore disruption methods are desirable. In this study, we demonstrate the efficiency of a compact microfluidic lab-on-chip built around a coplanar waveguide (CPW) operating at 2.45 GHz. We show that the CPW generates an electric field hotspot of ∼10 kV/m, comparable to that of a commercial microwave oven, while using only 1.2 W of input power and thus resulting in negligible sample heating. Spores passing through the microfluidic channel are disrupted by the electric field and release calcium dipicolinic acid (CaDPA), a biomarker molecule present alongside DNA in the spore core. We show that it is possible to detect this disruption in a bulk spore suspension using fluorescence spectroscopy. We then use laser tweezers Raman spectroscopy (LTRS) to show the loss of CaDPA on an individual spore level and that the loss increases with irradiation power. Only 22% of the spores contain CaDPA after exposure to 1.2 W input power, compared to 71% of the untreated control spores. Additionally, spores exposed to microwaves appear visibly disrupted when imaged using scanning electron microscopy (SEM). Overall, this study shows the advantages of using a CPW for disrupting spores for biomarker release and detection.
Collapse
|
25
|
Beeram R, Vepa KR, Soma VR. Recent Trends in SERS-Based Plasmonic Sensors for Disease Diagnostics, Biomolecules Detection, and Machine Learning Techniques. BIOSENSORS 2023; 13:328. [PMID: 36979540 PMCID: PMC10046859 DOI: 10.3390/bios13030328] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Surface-enhanced Raman spectroscopy/scattering (SERS) has evolved into a popular tool for applications in biology and medicine owing to its ease-of-use, non-destructive, and label-free approach. Advances in plasmonics and instrumentation have enabled the realization of SERS's full potential for the trace detection of biomolecules, disease diagnostics, and monitoring. We provide a brief review on the recent developments in the SERS technique for biosensing applications, with a particular focus on machine learning techniques used for the same. Initially, the article discusses the need for plasmonic sensors in biology and the advantage of SERS over existing techniques. In the later sections, the applications are organized as SERS-based biosensing for disease diagnosis focusing on cancer identification and respiratory diseases, including the recent SARS-CoV-2 detection. We then discuss progress in sensing microorganisms, such as bacteria, with a particular focus on plasmonic sensors for detecting biohazardous materials in view of homeland security. At the end of the article, we focus on machine learning techniques for the (a) identification, (b) classification, and (c) quantification in SERS for biology applications. The review covers the work from 2010 onwards, and the language is simplified to suit the needs of the interdisciplinary audience.
Collapse
Affiliation(s)
| | | | - Venugopal Rao Soma
- Advanced Centre of Research in High Energy Materials (ACRHEM), DRDO Industry Academia—Centre of Excellence (DIA-COE), University of Hyderabad, Hyderabad 500046, Telangana, India
| |
Collapse
|
26
|
Rohokale R, Guo Z. Development in the Concept of Bacterial Polysaccharide Repeating Unit-Based Antibacterial Conjugate Vaccines. ACS Infect Dis 2023; 9:178-212. [PMID: 36706246 PMCID: PMC9930202 DOI: 10.1021/acsinfecdis.2c00559] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The surface of cells is coated with a dense layer of glycans, known as the cell glycocalyx. The complex glycans in the glycocalyx are involved in various biological events, such as bacterial pathogenesis, protection of bacteria from environmental stresses, etc. Polysaccharides on the bacterial cell surface are highly conserved and accessible molecules, and thus they are excellent immunological targets. Consequently, bacterial polysaccharides and their repeating units have been extensively studied as antigens for the development of antibacterial vaccines. This Review surveys the recent developments in the synthetic and immunological investigations of bacterial polysaccharide repeating unit-based conjugate vaccines against several human pathogenic bacteria. The major challenges associated with the development of functional carbohydrate-based antibacterial conjugate vaccines are also considered.
Collapse
Affiliation(s)
- Rajendra Rohokale
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States of America
| | - Zhongwu Guo
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States of America
| |
Collapse
|
27
|
Sharma S, Bahl V, Srivastava G, Shamim R, Bhatnagar R, Gaur D. Recombinant full-length Bacillus Anthracis protective antigen and its 63 kDa form elicits protective response in formulation with addavax. Front Immunol 2023; 13:1075662. [PMID: 36713362 PMCID: PMC9877290 DOI: 10.3389/fimmu.2022.1075662] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/16/2022] [Indexed: 01/14/2023] Open
Abstract
Introduction Bacillus anthracis is the causative agent for the lethal disease anthrax, primarily affecting animals and humans in close contact with an infected host. The pathogenicity of B. anthracis is attributed to the secreted exotoxins and their outer capsule. The host cell-binding exotoxin component "protective antigen" (PA) is reported to be a potent vaccine candidate. The aim of our study is to produce several PA constructs and analyze their vaccine potential. Methods We have designed the various subunit, PA-based recombinant proteins, i.e., full-length Protective antigen (PA-FL), C-terminal 63 kDa fragment (PA63), Protective antigen domain 1-domain 4 chimeras (PA-D1-4) and protective antigen domain 4 (PA-D4) and analyzed their vaccine potential with different human-compatible adjuvants in the mouse model. We have optimized the process and successfully expressed our recombinant antigens as soluble proteins, except full-length PA. All the recombinant antigen formulations with three different adjuvants i.e., Addavax, Alhydrogel, and Montanide ISA 720, were immunized in different mouse groups. The vaccine efficacy of the formulations was analyzed by mouse serum antigen-specific antibody titer, toxin neutralization assay, and survival analysis of mouse groups challenged with a lethal dose of B. anthracis virulent spores. Results We have demonstrated that the PA-FL addavax and PA63 addavax formulations were most effective in protecting spore-challenged mice and serum from the mice immunized with PAFL addavax, PA-FL alhydrogel, PA63 addavax, and PA63 alhydrogel formulations were equivalently efficient in neutralizing the anthrax lethal toxin. The higher levels of serum Th1, Th2, and Th17 cytokines in PA-FL addavax immunized mice correspond to the enhanced protection provided by the formulation in challenged mice. Discussion We have demonstrated that the PA-FL addavax and PA63 addavax formulations exhibit equivalent efficiency as vaccine formulation both in a mouse model of anthrax and mammalian cell lines. However, PA63 is a smaller antigen than PA-FL and more importantly, PA63 is expressed as a soluble protein in E. coli, which imparts a translational advantage to PA63-based formulation. Thus, the outcome of our study has significant implications for the development of protective antigen-based vaccine formulations for human use against the lethal disease anthrax.
Collapse
Affiliation(s)
- Shikhar Sharma
- Laboratory of Malaria & Vaccine Research, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India,Department of Oncology Science, University of Oklahoma Health Science Center, Oklahoma City, OK, United States,*Correspondence: Shikhar Sharma, ;
| | - Vanndita Bahl
- Laboratory of Malaria & Vaccine Research, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Gaurav Srivastava
- Food Technology Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| | - Risha Shamim
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rakesh Bhatnagar
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Deepak Gaur
- Laboratory of Malaria & Vaccine Research, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
28
|
Bi N, Zhang YH, Hu MH, Xu J, Song W, Gou J, Li YX, Jia L. Highly selective and multicolor ultrasensitive assay of dipicolinic acid: The integration of terbium(III) and gold nanocluster. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 284:121777. [PMID: 36058171 DOI: 10.1016/j.saa.2022.121777] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/10/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
A novel multicolor fluorescent nano-probe based on the hybridization of Tb3+ ion with gold nanoclusters (Au NCs) was synthesized to monitor and on-site visual assay of 2,6-pyridinedicarboxylic acid (DPA), a biomarker of bacterial spores. DPA can replace the water molecule in the center of Tb3+ and strongly coordinate with Tb3+ based on the analyte-triggered antenna effect. Simultaneously, the red fluorescence of Au NCs is not influenced after addition of DPA and can be used as steady inside fluorescence reference channel to measure background noise. On this basis, the multicolor fluorescence nano-probe based on Tb3+-doped Au NCs for fast analysis of DPA was fabricated. The linear range of this method is 0 to 12.5 μM and the limit of detection is 3.4 nM, which is well below the quantity of DPA concentration of 60 μM released by the spore transmission dose of anthrax infection. The proposed multicolor fluorescence nano-probe was successfully detecting DPA in actual sample with good sensitivity and specificity. In addition, the visual paper-based nano-probe is designed to detect DPA by using the color scanning application of smart phone. This developed platform possesses abroad application prospects with advantages of effective, convenient carrying, simple operation, good selectivity and repeatability.
Collapse
Affiliation(s)
- Ning Bi
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, PR China
| | - Yin-Hong Zhang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, PR China
| | - Mei-Hua Hu
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, PR China.
| | - Jun Xu
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, PR China
| | - Wei Song
- Chongqing Jianfeng Chemical Co., Ltd., Chongqing 400000, PR China
| | - Jian Gou
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, PR China
| | - Yong-Xin Li
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, PR China
| | - Lei Jia
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, PR China.
| |
Collapse
|
29
|
Boyer AE, Gallegos-Candela M, Lins RC, Solano MI, Woolfitt AR, Lee JS, Sanford DC, Knostman KAB, Quinn CP, Hoffmaster AR, Pirkle JL, Barr JR. Comprehensive characterization of toxins during progression of inhalation anthrax in a non-human primate model. PLoS Pathog 2022; 18:e1010735. [PMID: 36534695 PMCID: PMC9810172 DOI: 10.1371/journal.ppat.1010735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 01/03/2023] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Inhalation anthrax has three clinical stages: early-prodromal, intermediate-progressive, and late-fulminant. We report the comprehensive characterization of anthrax toxins, including total protective antigen (PA), total lethal factor (LF), total edema factor (EF), and their toxin complexes, lethal toxin and edema toxin in plasma, during the course of inhalation anthrax in 23 cynomolgus macaques. The toxin kinetics were predominantly triphasic with an early rise (phase-1), a plateau/decline (phase-2), and a final rapid rise (phase-3). Eleven animals had shorter survival times, mean±standard deviation of 58.7±7.6 hours (fast progression), 11 animals had longer survival times, 113±34.4 hours (slow progression), and one animal survived. Median (lower-upper quartile) LF levels at the end-of-phase-1 were significantly higher in animals with fast progression [138 (54.9-326) ng/mL], than in those with slow progression [23.8 (15.6-26.3) ng/mL] (p = 0.0002), and the survivor (11.1 ng/mL). The differences were also observed for other toxins and bacteremia. Animals with slow progression had an extended phase-2 plateau, with low variability of LF levels across all time points and animals. Characterization of phase-2 toxin levels defined upper thresholds; critical levels for exiting phase-2 and entering the critical phase-3, 342 ng/mL (PA), 35.8 ng/mL (LF), and 1.10 ng/mL (EF). The thresholds were exceeded earlier in animals with fast progression (38.5±7.4 hours) and later in animals with slow progression (78.7±15.2 hours). Once the threshold was passed, toxin levels rose rapidly in both groups to the terminal stage. The time from threshold to terminal was rapid and similar; 20.8±7.4 hours for fast and 19.9±7.5 hours for slow progression. The three toxemic phases were aligned with the three clinical stages of anthrax for fast and slow progression which showed that anthrax progression is toxin- rather than time-dependent. This first comprehensive evaluation of anthrax toxins provides new insights into disease progression.
Collapse
Affiliation(s)
- Anne E. Boyer
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- * E-mail:
| | | | - Renato C. Lins
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- Battelle Atlanta Analytical Services, Atlanta, Georgia, United States of America
| | - Maria I. Solano
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Adrian R. Woolfitt
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - John S. Lee
- Biomedical Advanced Research and Development Authority, Washington, DC, United States of America
| | - Daniel C. Sanford
- Battelle Biomedical Research Center, West Jefferson, Ohio, United States of America
| | | | - Conrad P. Quinn
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Alex R. Hoffmaster
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - James L. Pirkle
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - John R. Barr
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| |
Collapse
|
30
|
Hamutyinei Dhliwayo T, Chonzi P, Madembo C, Juru TP, Chadambuka A, Gombe NT, Chikerema S, Shambira G, Umeokonkwo CD, Tshimanga M. Anthrax outbreak investigation in Tengwe, Mashonaland West Province, Zimbabwe, 2022. PLoS One 2022; 17:e0278537. [PMID: 36508405 PMCID: PMC9744298 DOI: 10.1371/journal.pone.0278537] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/18/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Anthrax continues to be a disease of public health concern in Zimbabwe. Between December 2021 and February 2022, Tengwe reported 36 cases of human anthrax. Gastrointestinal anthrax has the potential to cause serious outbreaks leading to loss of human life. We investigated the outbreak, identified the risk factors using one health approach to inform outbreak control. MATERIALS AND METHODS We conducted descriptive analysis of the outbreak and a 1:2 unmatched case control study to identify risk factors for anthrax. A case was any Tengwe resident who developed an ulcer and/or abdominal symptoms and epidemiologically linked to a confirmed environmental exposure. Validated, structured interviewer-administered questionnaires were used to collect data from the cases and neighbourhood controls. Soil and dried meat samples were collected for laboratory investigations. District preparedness and response was assessed using a checklist. Data was analysed using Epi Info version 7.2.5. The odds of exposure were calculated for each risk factor examined. Multivariable logistic regression analysis was performed to identify the independent factors associated with contracting anthrax. RESULTS Through active case finding we identified 36 cases, 31 were interviewed. Twenty-one (67.7%) were males. The median age was 33 years (Inter quartile range: 22-54). Nineteen (61.2%) cases presented with abdominal symptoms with zero deaths reported. The independent risk factor for contracting anthrax was eating under-cooked meat (aOR = 12.2, 95% CI: 1.41-105.74, p = 0.023). All samples collected tested positive for anthrax. No livestock vaccinations or zoonotic meetings were being conducted prior to the outbreak. Notification of the outbreak was done 11 days after index case presentation however one health response was instituted within 24 hours. CONCLUSION The anthrax was confirmed in Tengwe. Consumption of under-cooked meat was associated with gastrointestinal anthrax. The timely one health response resulted in excellent outcomes. Using one health approach in managing zoonotic threats is encouraged.
Collapse
Affiliation(s)
- Theresa Hamutyinei Dhliwayo
- Department of Primary Health Care Sciences, Family Medicine, Global and Public Health Unit, University of Zimbabwe, Harare, Zimbabwe
| | | | | | - Tsitsi Patience Juru
- Department of Primary Health Care Sciences, Family Medicine, Global and Public Health Unit, University of Zimbabwe, Harare, Zimbabwe
| | - Addmore Chadambuka
- Department of Primary Health Care Sciences, Family Medicine, Global and Public Health Unit, University of Zimbabwe, Harare, Zimbabwe
- * E-mail:
| | - Notion Tafara Gombe
- Department of Primary Health Care Sciences, Family Medicine, Global and Public Health Unit, University of Zimbabwe, Harare, Zimbabwe
- African Field Epidemiology Network, Harare, Zimbabwe
| | - Silvester Chikerema
- Department of Clinical Veterinary Studies, University of Zimbabwe, Harare, Zimbabwe
| | - Gerald Shambira
- Department of Primary Health Care Sciences, Family Medicine, Global and Public Health Unit, University of Zimbabwe, Harare, Zimbabwe
| | | | - Mufuta Tshimanga
- Department of Primary Health Care Sciences, Family Medicine, Global and Public Health Unit, University of Zimbabwe, Harare, Zimbabwe
| |
Collapse
|
31
|
Batinovic S, Stanton CR, Rice DTF, Rowe B, Beer M, Petrovski S. Tyroviruses are a new group of temperate phages that infect Bacillus species in soil environments worldwide. BMC Genomics 2022; 23:777. [PMID: 36443683 PMCID: PMC9703825 DOI: 10.1186/s12864-022-09023-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/17/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Bacteriophages are widely considered to be highly abundant and genetically diverse, with their role in the evolution and virulence of many pathogens becoming increasingly clear. Less attention has been paid on phages preying on Bacillus, despite the potential for some of its members, such as Bacillus anthracis, to cause serious human disease. RESULTS We have isolated five phages infecting the causative agent of anthrax, Bacillus anthracis. Using modern phylogenetic approaches we place these five new Bacillus phages, as well as 21 similar phage genomes retrieved from publicly available databases and metagenomic datasets into the Tyrovirus group, a newly proposed group named so due to the conservation of three distinct tyrosine recombinases. Genomic analysis of these large phages (~ 160-170 kb) reveals their DNA packaging mechanism and genomic features contributing to virion morphogenesis, host cell lysis and phage DNA replication processes. Analysis of the three tyrosine recombinases suggest Tyroviruses undergo a prophage lifecycle that may involve both host integration and plasmid stages. Further we show that Tyroviruses rely on divergent invasion mechanisms, with a subset requiring host S-layer for infection. CONCLUSIONS Ultimately, we expand upon our understanding on the classification, phylogeny, and genomic organisation of a new and substantial phage group that prey on critically relevant Bacillus species. In an era characterised by a rapidly evolving landscape of phage genomics the deposition of future Tyroviruses will allow the further unravelling of the global spread and evolutionary history of these Bacillus phages.
Collapse
Affiliation(s)
- Steven Batinovic
- grid.1018.80000 0001 2342 0938Department of Physiology, Anatomy, and Microbiology, La Trobe University, Bundoora, VIC Australia ,grid.268446.a0000 0001 2185 8709Present address: Division of Materials Science and Chemical Engineering, Yokohama National University, Yokohama, Kanagawa Japan
| | - Cassandra R. Stanton
- grid.1018.80000 0001 2342 0938Department of Physiology, Anatomy, and Microbiology, La Trobe University, Bundoora, VIC Australia
| | - Daniel T. F. Rice
- grid.1018.80000 0001 2342 0938Department of Physiology, Anatomy, and Microbiology, La Trobe University, Bundoora, VIC Australia
| | - Brittany Rowe
- grid.1018.80000 0001 2342 0938Department of Physiology, Anatomy, and Microbiology, La Trobe University, Bundoora, VIC Australia
| | - Michael Beer
- grid.431245.50000 0004 0385 5290Defence Science and Technology Group, Fishermans Bend, Victoria, Australia
| | - Steve Petrovski
- grid.1018.80000 0001 2342 0938Department of Physiology, Anatomy, and Microbiology, La Trobe University, Bundoora, VIC Australia
| |
Collapse
|
32
|
Bacilli in the International Space Station. Microorganisms 2022; 10:microorganisms10122309. [PMID: 36557562 PMCID: PMC9782108 DOI: 10.3390/microorganisms10122309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Astronauts remote from Earth, not least those who will inhabit the Moon or Mars, are vulnerable to disease due to their reduced immunity, isolation from clinical support, and the disconnect from any buffering capacity provided by the Earth. Here, we explore potential risks for astronaut health, focusing on key aspects of the biology of Bacillus anthracis and other anthrax-like bacilli. We examine aspects of Bacillus cereus group genetics in relation to their evolutionary biology and pathogenicity; a new clade of the Bacillus cereus group, close related to B. anthracis, has colonized the International Space Station (ISS), is still present, and could in theory at least acquire pathogenic plasmids from the other B. cereus group strains. The main finding is that the genomic sequence alignments of the B. cereus group ISS strains revealed a high sequence identity, indicating they originated from the same strain and that a close look to the genetic variations among the strains suggesting they lived, or they are living, in a vegetative form in the ISS enough time to accumulate genetic variations unique for each single strains.
Collapse
|
33
|
Real-Time PCR Detection of <i>Bacillus anthracis</i> by Lambda_Ba03 Prophage Genes. PROBLEMS OF PARTICULARLY DANGEROUS INFECTIONS 2022. [DOI: 10.21055/0370-1069-2022-3-170-172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The aim of the study was to develop a set of primers and fluorescent probes for the detection of two chromosomal targets of Bacillus anthracis using real-time PCR based on the lambda_Ba03 prophage genes.Materials and methods. BLAST analysis of B. anthracis chromosomal DNA identified two target genes in the region of lambdaBa03 prophage, BA_5358 (AE016879.1: 4852332..4853642) and BA_5361 (AE016879.1: 4855298..4856278). The designed primers and fluorescent hydrolysable TaqMan probes for simultaneous detection of B. anthracis chromosomal DNA by two stated genes were tested in qPCR for sensitivity and specificity.Results and discussion. Studies performed on chromosomal DNA samples of closely related bacteria (B. cereus, B. thuringiensis, B. subtilis, B. clausii) have shown 100 % specificity of the developed sets of primers/probes. The sensitivity of the devised multiplex kit, tested on DNA samples of the m55-VNIIVViM vaccine strain and archival DNA samples of B. anthracis, reached 100 fg of bacterial DNA, which sets the limit of sensitivity at 17 genomes per reaction. The developed multiplex kit can be used as a separate tool for research laboratories studying anthrax.
Collapse
|
34
|
Slay RM, Cook R, Hendricks K, Boucher D, Merchlinsky M. Pre- and Postlicensure Animal Efficacy Studies Comparing Anthrax Antitoxins. Clin Infect Dis 2022; 75:S441-S450. [PMID: 36251555 PMCID: PMC9649416 DOI: 10.1093/cid/ciac593] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND The deliberate use of Bacillus anthracis spores is believed by the US government to be a high bioweapons threat. The first line of defense following potential exposure to B. anthracis spores would be postexposure prophylaxis with antimicrobials that have activity against B. anthracis. Additional therapies to address the effects of toxins may be needed in systemically ill individuals. Over the last 2 decades, the United States government (USG) collaborated with the private sector to develop, test, and stockpile 3 antitoxins: anthrax immunoglobulin intravenous (AIGIV), raxibacumab, and obiltoxaximab. All 3 products target protective antigen, a protein factor common to the 2 exotoxins released by B. anthracis, and hamper or block the toxins' effects and prevent or reduce pathogenesis. These antitoxins were approved for licensure by the United States Food and Drug Administration based on animal efficacy studies compared to placebo. METHODS We describe USG-sponsored pre- and postlicensure studies that compared efficacy of 3 antitoxins in a New Zealand White rabbit model of inhalation anthrax; survival following a lethal aerosolized dose of B. anthracis spores was the key measure of effectiveness. To model therapeutic intervention, intravenous treatments were started following onset of antigenemia. RESULTS In pre- and postlicensure studies, all 3 antitoxins were superior to placebo; in the postlicensure study, raxibacumab and obiltoxaximab were superior to AIGIV, but neither was superior to the other. CONCLUSIONS These data illustrate the relative therapeutic benefit of the 3 antitoxins and provide a rationale to prioritize their deployment.
Collapse
Affiliation(s)
- Raymond M Slay
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Rachel Cook
- Oak Ridge Institute for Science and Education, CDC Fellowship Program, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Katherine Hendricks
- Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - David Boucher
- Office of the Assistant Secretary for Preparedness and Response, Biomedical Advanced Research and Development Authority, Washington, District of Columbia, USA
| | - Michael Merchlinsky
- Office of the Assistant Secretary for Preparedness and Response, Biomedical Advanced Research and Development Authority, Washington, District of Columbia, USA
| |
Collapse
|
35
|
Ascough S, Ingram RJ, Chu KKY, Moore SJ, Gallagher T, Dyson H, Doganay M, Metan G, Ozkul Y, Baillie L, Williamson ED, Robinson JH, Maillere B, Boyton RJ, Altmann DM. Impact of HLA Polymorphism on the Immune Response to Bacillus Anthracis Protective Antigen in Vaccination versus Natural Infection. Vaccines (Basel) 2022; 10:vaccines10101571. [PMID: 36298436 PMCID: PMC9610610 DOI: 10.3390/vaccines10101571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
The causative agent of anthrax, Bacillus anthracis, evades the host immune response and establishes infection through the production of binary exotoxins composed of Protective Antigen (PA) and one of two subunits, lethal factor (LF) or edema factor (EF). The majority of vaccination strategies have focused upon the antibody response to the PA subunit. We have used a panel of humanised HLA class II transgenic mouse strains to define HLA-DR-restricted and HLA-DQ-restricted CD4+ T cell responses to the immunodominant epitopes of PA. This was correlated with the binding affinities of epitopes to HLA class II molecules, as well as the responses of two human cohorts: individuals vaccinated with the Anthrax Vaccine Precipitated (AVP) vaccine (which contains PA and trace amounts of LF), and patients recovering from cutaneous anthrax infections. The infected and vaccinated cohorts expressing different HLA types were found to make CD4+ T cell responses to multiple and diverse epitopes of PA. The effects of HLA polymorphism were explored using transgenic mouse lines, which demonstrated differential susceptibility, indicating that HLA-DR1 and HLA-DQ8 alleles conferred protective immunity relative to HLA-DR15, HLA-DR4 and HLA-DQ6. The HLA transgenics enabled a reductionist approach, allowing us to better define CD4+ T cell epitopes. Appreciating the effects of HLA polymorphism on the variability of responses to natural infection and vaccination is vital in planning protective strategies against anthrax.
Collapse
Affiliation(s)
- Stephanie Ascough
- Faculty of Medicine, Imperial College, London W12 0NN, UK
- Correspondence: (S.A.); (D.M.A.)
| | - Rebecca J. Ingram
- Wellcome-Wolfson Institute of Experimental Medicine, Queen’s University Belfast, Belfast BT7 1NN, UK
| | | | | | - Theresa Gallagher
- BioMET, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Hugh Dyson
- Defence Science Technology Laboratory, Porton Down, Salisbury SP4 0JQ, UK
| | - Mehmet Doganay
- Department of Medical Genetics, Erciyes University Hospital, Kayseri 38095, Turkey
| | - Gökhan Metan
- Department of Infectious Diseases and Clinical Microbiology, Hacettepe University Faculty of Medicine Ankara, Ankara 06000, Turkey
| | - Yusuf Ozkul
- Department of Medical Genetics, Erciyes University Hospital, Kayseri 38095, Turkey
| | - Les Baillie
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF24 4HQ, UK
| | | | - John H. Robinson
- Institute for Cellular Medicine, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Bernard Maillere
- CEA-Saclay, Département Médicaments et Technologies pour la Santé, Université Paris-Saclay, 91192 Gif-sur-Yvette, France
| | - Rosemary J. Boyton
- Faculty of Medicine, Imperial College, London W12 0NN, UK
- Lung Division, Royal Brompton and Harefield Hospitals, Guy’s and St Thomas’ NHS Foundation Trust, London SE1 9RT, UK
| | - Daniel M. Altmann
- Faculty of Medicine, Imperial College, London W12 0NN, UK
- Correspondence: (S.A.); (D.M.A.)
| |
Collapse
|
36
|
Liu Z, Wang T, He L, Nan X, Sun X, Bai P. A double emission turn-on Eu-MOF-based luminescent sensor towards an anthrax biomarker. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
37
|
Chen B, Li D, Leng D, Kui H, Bai X, Wang T. Gut microbiota and meat quality. Front Microbiol 2022; 13:951726. [PMID: 36081790 PMCID: PMC9445620 DOI: 10.3389/fmicb.2022.951726] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Sustainable meat production is important to providing safe and quality protein sources for humans worldwide. Intensive artificial selection and high energy input into the diet of many commercial animals for the last decade has significantly increased the daily gain of body weight and shortened the raising period, but unexpectedly decreased the meat quality. The gastrointestinal tract of animals harbors a diverse and complex microbial community that plays a vital role in the digestion and absorption of nutrients, immune system development, pathogen exclusion, and meat quality. Fatty acid composition and oxidative stress in adipose and muscle tissue influences meat quality in livestock and poultry. Recent studies showed that nutraceuticals are receiving increased attention, which could alter the intestinal microbiota and regulate the fat deposition and immunity of hosts to improve their meat quality. Understanding the microbiota composition, the functions of key bacteria, and the host-microbiota interaction is crucial for the development of knowledge-based strategies to improve both animal meat quality and host health. This paper reviews the microorganisms that affect the meat quality of livestock and poultry. A greater understanding of microbial changes that accompany beneficial dietary changes will lead to novel strategies to improve livestock and poultry meat product quality.
Collapse
Affiliation(s)
- Binlong Chen
- College of Animal Science, Xichang University, Xichang, China
| | - Diyan Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, China
- *Correspondence: Diyan Li,
| | - Dong Leng
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Hua Kui
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xue Bai
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Tao Wang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, China
- Tao Wang,
| |
Collapse
|
38
|
Development of Hydroxamic Acid Compounds for Inhibition of Metallo-β-Lactamase from Bacillus anthracis. Int J Mol Sci 2022; 23:ijms23169163. [PMID: 36012433 PMCID: PMC9408887 DOI: 10.3390/ijms23169163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/06/2022] [Accepted: 08/13/2022] [Indexed: 11/16/2022] Open
Abstract
The emergence of resistant bacteria takes place, endangering the effectiveness of antibiotics. A reason for antibiotic resistance is the presence of lactamases that catalyze the hydrolysis of β-lactam antibiotics. An inhibitor of serine-β-lactamases such as clavulanic acid binds to the active site of the enzymes, thus solving the resistance problem. A pressing issue, however, is that the reaction mechanism of metallo-β-lactamases (MBLs) hydrolyzing β-lactam antibiotics differs from that of serine-β-lactamases due to the existence of zinc ions in the active site of MBLs. Thus, the development of potential inhibitors for MBLs remains urgent. Here, the ability to inhibit MBL from Bacillus anthracis (Bla2) was investigated in silico and in vitro using compounds possessing two hydroxamate functional groups such as 3-chloro-N-hydroxy-4-(7-(hydroxyamino)-7-oxoheptyl)benzamide (Compound 4) and N-hydroxy-4-(7-(hydroxyamino)-7-oxoheptyl)-3-methoxybenzamide (Compound 6). In silico docking and molecular dynamics simulations revealed that both Compounds 4 and 6 were coordinated with zinc ions in the active site, suggesting that the hydroxamate group attached to the aromatic ring of the compound plays a crucial role in the coordination to the zinc ions. In vitro kinetic analysis demonstrated that the mode of inhibitions for Compounds 4 and 6 were a competitive inhibition with Ki values of 6.4 ± 1.7 and 4.7 ± 1.4 kcal/mol, respectively. The agreement between in silico and in vitro investigations indicates that compounds containing dihyroxamate moieties may offer a new avenue to overcome antibiotic resistance to bacteria.
Collapse
|
39
|
Role of serine/threonine protein phosphatase PrpN in the life cycle of Bacillus anthracis. PLoS Pathog 2022; 18:e1010729. [PMID: 35913993 PMCID: PMC9371265 DOI: 10.1371/journal.ppat.1010729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 08/11/2022] [Accepted: 07/07/2022] [Indexed: 11/30/2022] Open
Abstract
Reversible protein phosphorylation at serine/threonine residues is one of the most common protein modifications, widely observed in all kingdoms of life. The catalysts controlling this modification are specific serine/threonine kinases and phosphatases that modulate various cellular pathways ranging from growth to cellular death. Genome sequencing and various omics studies have led to the identification of numerous serine/threonine kinases and cognate phosphatases, yet the physiological relevance of many of these proteins remain enigmatic. In Bacillus anthracis, only one ser/thr phosphatase, PrpC, has been functionally characterized; it was reported to be non-essential for bacterial growth and survival. In the present study, we characterized another ser/thr phosphatase (PrpN) of B. anthracis by various structural and functional approaches. To examine its physiological relevance in B. anthracis, a null mutant strain of prpN was generated and shown to have defects in sporulation and reduced synthesis of toxins (PA and LF) and the toxin activator protein AtxA. We also identified CodY, a global transcriptional regulator, as a target of PrpN and ser/thr kinase PrkC. CodY phosphorylation strongly controlled its binding to the promoter region of atxA, as shown using phosphomimetic and phosphoablative mutants. In nutshell, the present study reports phosphorylation-mediated regulation of CodY activity in the context of anthrax toxin synthesis in B. anthracis by a previously uncharacterized ser/thr protein phosphatase–PrpN. Reversible protein phosphorylation at specific ser/thr residues causes conformational changes in the protein structure, thereby modulating its cellular activity. In B. anthracis, though the role of ser/thr phosphorylation is implicated in various cellular pathways including pathogenesis, till date only one STP (PrpC) has been functionally characterized. This manuscript reports functional characterization of another STP (PrpN) in B. anthracis and with the aid of a null mutant strain (BAS ΔprpN) we provide important insight regarding the role of PrpN in the life cycle of B. anthracis. We have also identified the global transcriptional regulator, CodY as a target of PrpN and PrkC, and for the first time showed the physiological relevance of CodY phosphorylation status in the regulation of anthrax toxin synthesis.
Collapse
|
40
|
Malyshev D, Robinson NF, Öberg R, Dahlberg T, Andersson M. Reactive oxygen species generated by infrared laser light in optical tweezers inhibits the germination of bacterial spores. JOURNAL OF BIOPHOTONICS 2022; 15:e202200081. [PMID: 35538633 DOI: 10.1002/jbio.202200081] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/28/2022] [Accepted: 05/08/2022] [Indexed: 06/14/2023]
Abstract
Bacterial spores are highly resistant to heat, radiation and various disinfection chemicals. The impact of these on the biophysical and physicochemical properties of spores can be studied on the single-cell level using optical tweezers. However, the effect of the trapping laser on spores' germination rate is not fully understood. In this work, we assess the impact of 1064 nm laser light on the germination of Bacillus thuringiensis spores. The results show that the germination rate of spores after laser exposure follows a sigmoid dose-response relationship, with only 15% of spores germinating after 20 J of laser light. Under anaerobic growth conditions, the percentage of germinating spores at 20 J increased to 65%. The results thereby indicate that molecular oxygen is a major contributor to the germination-inhibiting effect observed. Thus, our study highlights the risk for optical trapping of spores and ways to mitigate it.
Collapse
Affiliation(s)
| | | | - Rasmus Öberg
- Department of Physics, Umeå University, Umeå, Sweden
| | | | - Magnus Andersson
- Department of Physics, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| |
Collapse
|
41
|
ZEWDIE ASSEFADENEKEW, GAKKHAR SUNITA, GUPTA SHIVKUMAR. MODEL FOR TRANSMISSION AND OPTIMAL CONTROL OF ANTHRAX INVOLVING HUMAN AND ANIMAL POPULATION. J BIOL SYST 2022. [DOI: 10.1142/s0218339022500218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Anthrax is a disease caused by Bacillus anthracis, commonly affects animals as well as humans health. In this paper, a nonlinear deterministic anthrax model involving human and animal is proposed and analyzed. The reproduction number [Formula: see text] and equilibrium points are explored to study the dynamic behavior of the disease. The existence and stability of equilibrium points are discussed. For [Formula: see text], the disease-free equilibrium [Formula: see text] is globally stable. However, it is unstable when [Formula: see text] and a locally stable endemic equilibrium point [Formula: see text] exists. The model is then extended to optimal control model considering human vaccination, animal vaccination and proper removal of carcass. The vaccination class of human and animal population appears separately in a model. The existence and characterization of optimal control are discussed. The numerical simulations are carried out for the choice of parametric values and initial conditions. These illustrate scavengers in the suspected area which eat infected dead body of animals contributing to the effort of reducing the expansion of disease. In addition, numerical comparison analysis with four distinct control strategies is carried out. Our findings show that each control technique has its own influence on reducing the total number of infections in the human and animal populations. The cumulative impact of all control measures is found to be extremely effective in lowering the prevalence of the disease.
Collapse
Affiliation(s)
- ASSEFA DENEKEW ZEWDIE
- Department of Mathematics, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
- Department of Mathematics, Debre Tabor University, Debre Tabor, Amhara, Ethiopia
| | - SUNITA GAKKHAR
- Department of Mathematics, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - SHIV KUMAR GUPTA
- Department of Mathematics, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| |
Collapse
|
42
|
Ahmad T, Baig M, Othman SS, Malibary H, Ahmad S, Rasheed SM, Al Bataineh MT, Al-Omari B. Bibliometric Analysis and Visualization Mapping of Anthrax Vaccine Publications from 1991 through 2021. Vaccines (Basel) 2022; 10:vaccines10071007. [PMID: 35891169 PMCID: PMC9316950 DOI: 10.3390/vaccines10071007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/18/2022] [Accepted: 06/20/2022] [Indexed: 02/01/2023] Open
Abstract
Purpose: This study aims to analyze and characterize anthrax vaccine-related research, key developments, global research trends, and mapping of published scientific research articles during the last three decades (1991–2021). Methods: A bibliometric and visualized study was conducted. The Web of Science Core Collection database (WoSCC) was searched using relevant keywords (“Anthrax” OR “Anthrax bacterium” OR “Bacillus anthracis” OR “Bacteridium anthracis” OR “Bacillus cereus var. Anthracis” (Topic)) AND (“Vaccine” OR “Vaccines” OR “Immunization” OR “Immunisation” OR “Immunizations” OR “Immunisations” (Topic)) with specific restrictions. The data was analyzed and plotted by using different bibliometric software and tools (HistCiteTM software, version 12.3.17, Bibliometrix: An R-tool version 3.2.1, and VOSviewer software, version 1.6.17). Results: The initial search yielded 1750 documents. After screening the titles and abstracts of the published studies, a total of 1090 articles published from 1991 to 2021 were included in the final analysis. These articles were published in 334 journals and were authored by 4567 authors from 64 countries with a collaboration index of 4.32. The annual scientific production growth rate was found to be 9.68%. The analyzed articles were cited 31335 times. The most productive year was 2006 (n = 77, 7.06%), while the most cited year was 2007 (2561 citations). The leading authors and journals in anthrax research were Rakesh Bhatnagar from Jawaharlal Nehru University, India (n = 35, 3.21%), and Vaccine (n = 1830, 16.51%), while the most cited author and journal were Arthur M. Friedlander from the United States Department of Defense (n = 2762), and Vaccine (n = 5696), respectively. The most studied recent research trend topics were lethal, double-blind, epidemiology, B surface antigen, disease, and toxin. The United States of America (USA) was the most dominant country in terms of publications, citations, corresponding author country, and global collaboration in anthrax vaccine research. The USA had the strongest collaboration with the United Kingdom (UK), China, Canada, Germany, and France. Conclusion: This is the first bibliometric study that provides a comprehensive historical overview of scientific studies. From 2006 to 2008, more than 20% of the total articles were published; however, a decrease was observed since 2013 in anthrax vaccine research. The developed countries made significant contributions to anthrax vaccine-related research, especially the USA. Among the top 10 leading authors, six authors are from the USA. The majority of the top leading institutions are also from the USA. About 90% of the total studies were funded by the United States Department of Health and Human Services (HHS), National Institutes of Health (NIH), USA, and the National Institute of Allergy and Infectious Diseases (NIAID), USA.
Collapse
Affiliation(s)
- Tauseef Ahmad
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing 210096, China
- Correspondence: or (T.A.); (B.A.-O.)
| | - Mukhtiar Baig
- Department of Clinical Biochemistry, Faculty of Medicine, Rabigh, King Abdulaziz University, Jeddah 25289, Saudi Arabia;
| | - Sahar Shafik Othman
- Department of Family Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah 25289, Saudi Arabia;
| | - Husam Malibary
- Department of Internal Medicine, Faculty of Medicine, Rabigh, King Abdulaziz University, Jeddah 25289, Saudi Arabia;
| | - Shabir Ahmad
- Department of Agriculture, Bacha Khan University Charsadda, P.O. Box 20, Charsadda 24420, Khyber Pakhtunkhwa, Pakistan; (S.A.); (S.M.R.)
| | - Syed Majid Rasheed
- Department of Agriculture, Bacha Khan University Charsadda, P.O. Box 20, Charsadda 24420, Khyber Pakhtunkhwa, Pakistan; (S.A.); (S.M.R.)
| | - Mohammad T. Al Bataineh
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates;
- Emirates Bio-Research Center, Ministry of Interior, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Basem Al-Omari
- Department of Epidemiology and Population Health, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
- K.U. Research and Data Intelligence Support Center (RDISC) AW 8474000331, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Correspondence: or (T.A.); (B.A.-O.)
| |
Collapse
|
43
|
Kaushik S, Selvanathan P, Soni GV. Customized low-cost high-throughput amplifier for electro-fluidic detection of cell volume changes in point-of-care applications. PLoS One 2022; 17:e0267207. [PMID: 35442970 PMCID: PMC9020695 DOI: 10.1371/journal.pone.0267207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/04/2022] [Indexed: 11/23/2022] Open
Abstract
Physical parameters of the pathogenic cells, like its volume, shape, and stiffness, are important biomarkers for diseases, chemical changes within the cell, and overall cell health. The response of pathogenic bacteria and viruses to different chemical disinfectants is studied widely. Some of the routinely employed techniques to measure these changes require elaborate and expensive equipment which limits any study to a non-mobile research lab facility. Recently, we showed a micropore-based electro-fluidic technique to have great promise in measuring subtle changes in cell volumes at high throughput and resolution. This method, however, requires commercial amplifiers, which makes this technique expensive and incompatible for in-field use. In this paper, we develop a home-built amplifier to make this technique in-field compatible and apply it to measure changes in bacterial volumes upon exposure to alcohol. First, we introduce our low-cost and portable transimpedance amplifier and characterize the maximum range, absolute error percentage, and RMS noise of the amplifier in the measured current signal, along with the amplifier's bandwidth, and compared these characteristics with the commercial amplifiers. Using our home-built amplifier, we demonstrate a high throughput detection of ~1300 cells/second and resolve cell diameter changes down to 1 μm. Finally, we demonstrate measurement of cell volume changes in E. coli bacteria when exposed to ethanol (5% v/v), which is otherwise difficult to measure via imaging techniques. Our low-cost amplifier (~100-fold lower than commercial alternatives) is battery-run, completely portable for point-of-care applications, and the electro-fluidic devices are currently being tested for in-field applications.
Collapse
|
44
|
Malyshev D, Öberg R, Landström L, Andersson PO, Dahlberg T, Andersson M. pH-induced changes in Raman, UV-vis absorbance, and fluorescence spectra of dipicolinic acid (DPA). SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 271:120869. [PMID: 35065519 DOI: 10.1016/j.saa.2022.120869] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/29/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Dipicolinic acid (DPA) is an essential component for the protection of DNA in bacterial endospores and is often used as a biomarker for spore detection. Depending upon the pH of the solution, DPA exists in different ionic forms. Therefore, it is important to understand how these ionic forms influence spectroscopic response. In this work, we characterize Raman and absorption spectra of DPA in a pH range of 2.0-10.5. We show that the ring breathing mode Raman peak of DPA shifts from 1003 cm-1 to 1017 cm-1 and then to 1000 cm-1 as pH increases from 2 to 5. The relative peak intensities related to the different ionic forms of DPA are used to experimentally derive the pKa values (2.3 and 4.8). We observe using UV-vis spectroscopy that the changes in the absorption spectrum of DPA as a function of pH correlate with the changes observed in Raman spectroscopy, and the same pKa values are verified. Lastly, using fluorescence spectroscopy and exciting a DPA solution at between 210-330 nm, we observe a shift in fluorescence emission from 375 nm to 425 nm between pH 2 and pH 6 when exciting at 320 nm. Our work shows that the different spectral responses from the three ionic forms of DPA may have to be taken into account in, e.g., spectral analysis and for detection applications.
Collapse
Affiliation(s)
| | - Rasmus Öberg
- Dept of Physics, Umeå University, 901 87 Umeå, Sweden
| | | | - Per Ola Andersson
- Swedish Defence Research Agency (FOI), Umeå, Sweden; Department of Engineering Sciences, Uppsala University, Uppsala, Sweden
| | | | - Magnus Andersson
- Dept of Physics, Umeå University, 901 87 Umeå, Sweden; Umeå Centre for Microbial Research (UCMR), Umeå, Sweden.
| |
Collapse
|
45
|
Pi H, Weiss A, Laut CL, Grunenwald CM, Lin HK, Yi XI, Stauff DL, Skaar EP. An RNA-binding protein acts as a major post-transcriptional modulator in Bacillus anthracis. Nat Commun 2022; 13:1491. [PMID: 35314695 PMCID: PMC8938561 DOI: 10.1038/s41467-022-29209-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 03/01/2022] [Indexed: 12/28/2022] Open
Abstract
HitRS is a two-component system that responds to cell envelope damage in the human pathogen Bacillus anthracis. Here we identify an RNA-binding protein, KrrA, that regulates HitRS function by modulating the stability of the hitRS mRNA. In addition to hitRS, KrrA binds to over 70 RNAs and, directly or indirectly, affects the expression of over 150 genes involved in multiple processes, including genetic competence, sporulation, RNA turnover, DNA repair, transport, and cellular metabolism. KrrA does not exhibit detectable nuclease activity in vitro, and thus the mechanism by which it modulates mRNA stability remains unclear.
Collapse
Affiliation(s)
- Hualiang Pi
- Department of Pathology, Microbiology, & Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University, Nashville, TN, USA
| | - Andy Weiss
- Department of Pathology, Microbiology, & Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University, Nashville, TN, USA
| | - Clare L Laut
- Department of Pathology, Microbiology, & Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University, Nashville, TN, USA
| | - Caroline M Grunenwald
- Department of Pathology, Microbiology, & Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University, Nashville, TN, USA
| | - Hannah K Lin
- Department of Biology, Grove City College, Grove City, PA, USA
| | - Xinjie I Yi
- Department of Biology, Grove City College, Grove City, PA, USA
| | - Devin L Stauff
- Department of Biology, Grove City College, Grove City, PA, USA
| | - Eric P Skaar
- Department of Pathology, Microbiology, & Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
46
|
ASTM: Developing the web service for anthrax related spatiotemporal characteristics and meteorology study. QUANTITATIVE BIOLOGY 2022. [DOI: 10.15302/j-qb-022-0288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
47
|
Severe Clinical Course of a Necrotic Cutaneous Lesion in a Livestock Farmer. INFECTIOUS DISEASES IN CLINICAL PRACTICE 2021. [DOI: 10.1097/ipc.0000000000001078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
48
|
Mugo BC, Lekopien C, Owiny M. 'We dry contaminated meat to make it safe': An assessment of knowledge, attitude and practices on anthrax during an outbreak, Kisumu, Kenya, 2019. PLoS One 2021; 16:e0259017. [PMID: 34735481 PMCID: PMC8568283 DOI: 10.1371/journal.pone.0259017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 10/12/2021] [Indexed: 12/02/2022] Open
Abstract
Introduction Anthrax is the highest-ranked priority zoonotic disease in Kenya with about ten human cases annually. Anthrax outbreak was reported in Kisumu East Sub County after some villagers slaughtered and ate beef from a cow suspected to have died of anthrax. We aimed at establishing the magnitude of the outbreak, described associated factors, and assessed community knowledge, attitude, and practices on anthrax. Methods We reviewed human and animal records, conducted case search and contact tracing using standard case definitions in the period from July 1through to July 28, 2019. A cross-sectional study was conducted to assess community knowledge, attitude, and practices towards anthrax. The household selection was done using multistage sampling. We cleaned and analyzed data in Ms. Excel and Epi Info. Descriptive statistics were carried out for continuous and categorical variables while analytical statistics for the association between dependent and independent variables were calculated. Results Out of 53 persons exposed through consumption or contact with suspicious beef, 23 cases (confirmed: 1, probable: 4, suspected: 18) were reviewed. The proportion of females was 52.17% (12/23), median age 13.5 years and range 45 years. The attack rate was 43.4% (23/53) and the case fatality rate was 4.35% (1/23). Knowledge level, determined by dividing those considered to be ‘having good knowledge’ on anthrax (numerator) by the total number of respondents (denominator) in the population regarding cause, transmission, symptoms and prevention was 51% for human anthrax and 52% for animal anthrax. Having good knowledge on anthrax was associated with rural residence [OR = 5.5 (95% CI 2.1–14.4; p<0.001)], having seen a case of anthrax [OR = 6.2 (95% CI 2.8–14.2; p<0.001)] and among those who present cattle for vaccination [OR = 2.6 (95% CI 1.2–5.6; p = 0.02)]. About 23.2% (26/112) would slaughter and sell beef to neighbors while 63.4% (71/112) would bury or burn the carcass. Nearly 93.8% (105/112) believed vaccination prevents anthrax. However, 5.4% (62/112) present livestock for vaccination. Conclusion Most anthrax exposures were through meat consumption. Poor knowledge of the disease might hamper prevention and control efforts.
Collapse
Affiliation(s)
- Bernard Chege Mugo
- Field Epidemiology and Laboratory Training Program, Ministry of Health, Nairobi, Kenya
- * E-mail:
| | - Cornelius Lekopien
- Field Epidemiology and Laboratory Training Program, Ministry of Health, Nairobi, Kenya
| | - Maurice Owiny
- Field Epidemiology and Laboratory Training Program, Ministry of Health, Nairobi, Kenya
| |
Collapse
|
49
|
Mytych JS, Pan Z, Farris AD. Efferocytosis and Anthrax: Implications for Bacterial Sepsis? JOURNAL OF CELLULAR IMMUNOLOGY 2021; 3:133-139. [PMID: 34708219 PMCID: PMC8547791 DOI: 10.33696/immunology.3.090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Joshua S Mytych
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation (OMRF), 825 NE 13th St., Oklahoma City, OK 73104, USA.,Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center (OUHSC), 940 Stanton L. Young Blvd, Oklahoma City, OK 73104, USA
| | - Zijian Pan
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation (OMRF), 825 NE 13th St., Oklahoma City, OK 73104, USA
| | - A Darise Farris
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation (OMRF), 825 NE 13th St., Oklahoma City, OK 73104, USA.,Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center (OUHSC), 940 Stanton L. Young Blvd, Oklahoma City, OK 73104, USA
| |
Collapse
|
50
|
Apriliana U, Wibawa H, Ruhiat E, Untari T, Indarjulianto S. Isolation and identification of avirulent strains of Bacillus anthracis from environmental samples in Central Java, Indonesia. INTERNATIONAL JOURNAL OF ONE HEALTH 2021. [DOI: 10.14202/ijoh.2021.204-211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: Anthrax is a non-contagious infectious disease caused by Bacillus anthracis. The bacteria form spores that are resistant to extreme conditions and can contaminate the environment for decades. This study aimed to detect and characterize B. anthracis found in endemic areas of anthrax in Yogyakarta and Central Java province, Indonesia.
Materials and Methods: Soil samples were collected from Gunungkidul regency, Yogyakarta province (n=315) and Boyolali regency, Central Java province (n=100). Additional soil samples (n=10) and straw samples (n=5) were obtained from Pati regency, Central Java province. The isolation and identification of B. anthracis were performed using conventional methods: Morphology of bacteria colony in solid media, Gram staining, capsule staining, spores staining, and motility test. Isolates were further identified using polymerase chain reaction (PCR) against Ba813, lef (pXO1), and capC (pXO2) gene. An avirulent vaccine strain of B. anthracis (strain 34F2) was used as a control.
Results: Only four samples grew on blood agar with a ground-glass appearance, white-gray colony (Gunungkidul and avirulent strain) or yellowish (Boyolali and Pati). All were Gram-positive, presented chains, square-ended rods, spores, and were then identified as B. anthracis. Boyolali, Pati, and avirulent strain isolates had slightly different characteristics, including the growth of non-mucoid in the bicarbonate agar medium, and their uncapsulated form. The PCR showed two Gunungkidul isolates which amplified three genes, including Ba813, lef, and capC. Contrarily, the other isolates did not amplify the capC gene.
Conclusion: Gunungkidul isolates were identified as virulent strains of B. anthracis while Boyolali and Pati isolates were proposed as avirulent strains. This is the first report of isolation and identification of avirulent strains of B. anthracis in Central Java, Indonesia.
Collapse
Affiliation(s)
- Ully Apriliana
- Disease Investigation Center Wates, Jalan Raya Jogja-Wates Km 27 Po Box 18, Wates, Yogyakarta, 55602, Indonesia; Department of Internal Medicine, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Jl. Fauna 2, Karangmalang, Yogyakarta, 55281, Indonesia
| | - Hendra Wibawa
- Disease Investigation Center Wates, Jalan Raya Jogja-Wates Km 27 Po Box 18, Wates, Yogyakarta, 55602, Indonesia
| | - Endang Ruhiat
- Disease Investigation Center Wates, Jalan Raya Jogja-Wates Km 27 Po Box 18, Wates, Yogyakarta, 55602, Indonesia
| | - Tri Untari
- Department of Internal Medicine , Faculty of Veterinary Medicine, Universitas Gadjah Mada, Jl. Fauna 2, Karangmalang, Yogyakarta, 55281, Indonesia
| | - Soedarmanto Indarjulianto
- Department of Internal Medicine , Faculty of Veterinary Medicine, Universitas Gadjah Mada, Jl. Fauna 2, Karangmalang, Yogyakarta, 55281, Indonesia
| |
Collapse
|