1
|
Quradha MM, Tamfu AN, Duru ME, Kucukaydin S, Iqbal M, Qahtan AMF, Khan R, Ceylan O. Evaluation of HPLC Profile, Antioxidant, Quorum Sensing, Biofilm, Swarming Motility, and Enzyme Inhibition Activities of Conventional and Green Extracts of Salvia triloba. Food Sci Nutr 2024; 12:10716-10733. [PMID: 39723056 PMCID: PMC11666897 DOI: 10.1002/fsn3.4580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/26/2024] [Accepted: 10/16/2024] [Indexed: 12/28/2024] Open
Abstract
The current study aims to prepare a green extract using a new method in addition to conventional extraction methods including; methanolic and ultrasonic extraction of Salvia triloba, to compare their phenolic composition utilizing high-performance liquid chromatograph equipped with a diode array detector (HPLC-DAD), anti-bacterial, anti-oxidant, and enzyme inhibition activities. The results of HPLC-DAD analysis showed that Rosmarinic acid was found the highest amount in the methanolic extract followed by ultrasonic and green extracts as 169.7 ± 0.51, 135.1 ± 0.40, and 28.58 ± 0.46 μg/g respectively. The Trans-cinnamic acid (4.40 ± 0.09 μg/g) was found exclusively in ultrasonic extract. For bioactivities, the green extract exhibited the highest biofilm inhibition against Enterococcus faecalis compared to other extracts, while the methanolic extract outperformed both ultrasonic-assisted and green extract against Staphylococcus aureus and Escherichia coli strains at minimum inhibitory concentration. The methanolic and green extract exhibited considerable quorum sensing inhibition against Chromobacterium violaceum CV026, while no activity was recorded from ultrasonic-assisted extract. The methanolic and ultrasonic-assisted extracts of S. triloba recorded moderate butyrylcholinesterase inhibition; each extract demonstrated limited inhibitory effects on the urease enzyme. Similarly, each extract of S. triloba demonstrated significant antioxidant activity, with the highest activity exhibited by methanolic extract as β-carotene-linoleic acid assay (IC50 = 10.29 ± 0.36 μg/mL), DPPH• assay (IC50 = 27.77 ± 0.55 μg/mL), ABTS•+ assay (IC50 = 15.49 ± 0.95 μg/mL), metal chelating assay (IC50 = 57.80 ± 0.95 μg/mL), and CUPRAC (assay A 0.50 = 32.54 ± 0.84 μg/mL). Furthermore, the methanolic extract exhibited antioxidant activity better than α-tocopherol (Standard used). The current study demonstrated the potential of green solvent(s) as eco-friendly alternative for extractin phenolic compounds from S. triloba and evaluated their biological activities for the first time.
Collapse
Affiliation(s)
- Mohammed Mansour Quradha
- College of EducationSeiyun UniversitySeiyunYemen
- Pharmacy Department, Medical SciencesAljanad University for Science and TechnologyTaizYemen
| | - Alfred Ngenge Tamfu
- Department of Chemical Engineering, School of Chemical Engineering and Mineral IndustriesUniversity of NgaoundereNgaoundereCameroon
- Food Quality Control and Analysis Program, Ula Ali Kocman Vocational SchoolMugla Sitki Kocman UniversityUla MuglaTurkey
| | - Mehmet Emin Duru
- Department of Chemistry, Faculty of ScienceMugla Sitki Kocman UniversityMenteşeMuglaTurkey
| | - Selcuk Kucukaydin
- Department of Medical Services and Techniques, Koycegiz Vocational School of Health ServicesMugla Sıtkı Kocman UniversityKoycegizMuglaTurkey
| | - Mudassar Iqbal
- Department of Agricultural Chemistry and BiochemistryThe University of Agriculture PeshawarPeshawarPakistan
| | | | - Rasool Khan
- Institute of Chemical SciencesUniversity of PeshawarPeshawarPakistan
| | - Ozgur Ceylan
- Food Quality Control and Analysis Program, Ula Ali Kocman Vocational SchoolMugla Sitki Kocman UniversityUla MuglaTurkey
| |
Collapse
|
2
|
Li S, Li W, Malhi NK, Huang J, Li Q, Zhou Z, Wang R, Peng J, Yin T, Wang H. Cannabigerol (CBG): A Comprehensive Review of Its Molecular Mechanisms and Therapeutic Potential. Molecules 2024; 29:5471. [PMID: 39598860 PMCID: PMC11597810 DOI: 10.3390/molecules29225471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/10/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
Cannabigerol (CBG), a non-psychoactive cannabinoid found in cannabis, has emerged as a promising therapeutic agent with a diverse range of potential applications. Unlike its well-known counterpart tetrahydrocannabinol (THC), CBG does not induce intoxication, making it an attractive option in the clinic. Recent research has shed light on CBG's intriguing molecular mechanisms, highlighting its potential to modulate multiple physiological processes. This review delves into the current understanding of CBG's molecular interactions and explores its therapeutic power to alleviate various conditions, including cancer, metabolic, pain, and inflammatory disorders, amongst others. We discuss how CBG interacts with the endocannabinoid system and other key signaling pathways, such as CB1, CB2, TPR channels, and α2-adrenoceptor, potentially influencing inflammation, pain, neurodegeneration, and other ailments. Additionally, we highlight the ongoing research efforts aimed at elucidating the full spectrum of CBG's therapeutic potential and its safety profile in clinical settings. Through this comprehensive analysis, we aim to provide a deeper understanding of CBG's role in promoting human health and pave the way for future research endeavors.
Collapse
Affiliation(s)
- Shijia Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; (S.L.); (J.H.); (Q.L.); (Z.Z.)
| | - Weini Li
- Department of Biomedical Science, Cedars-Sinai Medical Center, Cedars-Sinai Cancer Institute, Los Angeles, CA 90067, USA; (W.L.); (R.W.)
| | - Naseeb Kaur Malhi
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA;
| | - Junwei Huang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; (S.L.); (J.H.); (Q.L.); (Z.Z.)
| | - Quanqi Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; (S.L.); (J.H.); (Q.L.); (Z.Z.)
| | - Ziwei Zhou
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; (S.L.); (J.H.); (Q.L.); (Z.Z.)
| | - Ruiheng Wang
- Department of Biomedical Science, Cedars-Sinai Medical Center, Cedars-Sinai Cancer Institute, Los Angeles, CA 90067, USA; (W.L.); (R.W.)
| | - Jiangling Peng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; (S.L.); (J.H.); (Q.L.); (Z.Z.)
| | - Tong Yin
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Honggen Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China;
| |
Collapse
|
3
|
Dhayalan A, Prajapati A, Yogisharadhya R, Chanda MM, Shivachandra SB. Anti-quorum sensing and anti-biofilm activities of Pasteurella multocida strains. Microb Pathog 2024; 197:107085. [PMID: 39481691 DOI: 10.1016/j.micpath.2024.107085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/10/2024] [Accepted: 10/25/2024] [Indexed: 11/02/2024]
Abstract
A total of 52 Pasteurella multocida strains of capsular serogroups (A, B and D) were screened for anti-quorum sensing activity against Chromobacterium violaceum. Of which, 12 strains of serogroups A were found to possess anti-quorum sensing activity. Inhibition activity was highest for strain NIVEDIPm9 and lowest for strain NIVEDIPm30 based on zone of pigment inhibition. Further, cell free extract of NIVEDIPm9 strain showed highest anti-biofilm activity in reference E. coli strain and concentration dependent degradation activity of C6-AHL molecule. In whole genome sequence annotation of NIVEDIPm9 strain predicted the presence of four metallo-β-lactamases (MBL) fold metallo-hydrolase proteins. In docking studies, MBL1 and MBL3 proteins showed high binding affinity with autoinduce signalling molecules AHL compound of OH-C10, binding energy value were -6.3 and -6.2 kcal/mol. Interaction study of VAF and quorum sensing molecules showed that OmpA and HgbA proteins were stimulated by all the ten molecules (C4-AHLs, C6-AHLs, C10-AHLs, C14-AHLs, 3-oxo-C10-AHLs, 3OH-C10-HSL, C8-HSL, C10-HSL, C12-HSL, C14-HSL), while toxA gene was stimulated by OH-C10-AHL molecule, sodC gene was stimulated by none. In conclusion, we described the anti-quorum sensing activities of diverse P. multocida strains causing Pasteurellosis in livestock.
Collapse
Affiliation(s)
- Arul Dhayalan
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Post Box No. 6450, Yelahanka, Bengaluru, 560064, Karnataka, India
| | - Awadhesh Prajapati
- Bihar Veterinary College, Bihar Animal Sciences University, Patna, 800014. Bihar, India
| | - Revanaiah Yogisharadhya
- ICAR-Krishi Vigyan Kendra (KVK), ICAR-Research Complex for NEH Region, Hailakandi, 788152, Assam, India
| | - Mohammed Mudassar Chanda
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Post Box No. 6450, Yelahanka, Bengaluru, 560064, Karnataka, India
| | - Sathish Bhadravati Shivachandra
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Post Box No. 6450, Yelahanka, Bengaluru, 560064, Karnataka, India.
| |
Collapse
|
4
|
Espíndola-Rodríguez NH, Muñoz-Cázares N, Serralta-Peraza LEDS, Díaz-Nuñez JL, Montoya-Reyes F, García-Contreras R, Díaz-Guerrero M, Rivera-Chávez JA, Gutiérrez J, Sotelo-Barrera M, Castillo-Juárez I. Antivirulence and antipathogenic activity of Mayan herbal remedies against Pseudomonas aeruginosa. JOURNAL OF ETHNOPHARMACOLOGY 2024; 332:118373. [PMID: 38782309 DOI: 10.1016/j.jep.2024.118373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/11/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Yucatan Peninsula has a privileged wealth of vascular plants with which various Mayan herbal formulations have been developed. However, studies on their antipathogenic and antivirulence properties are scarce. AIM OF THE STUDY Identify antivirulence properties in Mayan herbal remedies and determine their antipathogenic capacity in burn wounds infected with Pseudomonas aeruginosa. MATERIALS AND METHODS An ethnobotanical study was conducted in Mayan communities in central and southern Quintana Roo, Mexico. Furthermore, the antipathogenic capacity of three Mayan herbal remedies was analyzed using an animal model of thermal damage and P. aeruginosa infection. Antivirulence properties were determined by inhibiting phenotypes regulated by quorum sensing (pyocyanin, biofilm, and swarming) and by the secretion of the ExoU toxin. The chemical composition of the most active herbal remedy was analyzed using molecular network analysis. RESULTS It was found that topical administration of the remedy called "herbal soap" (HS) for eleven days maintained 100% survival of the animals, reduced establishment of the bacteria in the burn and prevented its systemic dispersion. Although no curative effect was recorded on tissue damaged by HS treatment, its herbal composition strongly reduced swarming and ExoU secretion. Through analysis of Molecular Networks, it was possible to carry out a global study of its chemical components, and identify the family of oxindole monoterpenoid alkaloids and carboline and tetrahydropyrididole alkaloids. In addition, flavonols, flavan-3-ols, and quinic acid derivatives were detected. CONCLUSIONS The antipathogenic and antivirulence capacity of ancient Mayan remedies makes them a potential resource for developing new antibacterial therapies to treat burns infected by P. aeruginosa.
Collapse
Affiliation(s)
- Nadine Heidi Espíndola-Rodríguez
- Laboratorio de Investigación y Aplicación de Fitoquímicos Bioactivos, Posgrado en Botánica, Colegio de Postgraduados, Texcoco, 56230, Mexico.
| | - Naybi Muñoz-Cázares
- Campo Experimental Chetumal, Instituto de Investigaciones Forestales, Agrícolas y Pecuarias, Quintana Roo, 77963, Mexico; Investigadora Posdoctoral CONAHCYT Comisionada al Colegio de Postgraduados-Campus Tabasco, Cárdenas, Tabasco, C. P. 86500, Mexico.
| | | | - José Luis Díaz-Nuñez
- Laboratorio de Investigación y Aplicación de Fitoquímicos Bioactivos, Posgrado en Botánica, Colegio de Postgraduados, Texcoco, 56230, Mexico.
| | - Francisco Montoya-Reyes
- Campo Experimental Chetumal, Instituto de Investigaciones Forestales, Agrícolas y Pecuarias, Quintana Roo, 77963, Mexico.
| | - Rodolfo García-Contreras
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, 04510, Mexico.
| | - Miguel Díaz-Guerrero
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, 04510, Mexico.
| | - José Alberto Rivera-Chávez
- Departamento de Productos Naturales, Instituto de Química, Universidad Nacional Autónoma de México, CDMX, 04510, Mexico.
| | - Jorge Gutiérrez
- Área de Biología, Departamento de Preparatoria Agrícola, Universidad Autónoma Chapingo, Texcoco, 56230, Mexico.
| | - Mireya Sotelo-Barrera
- Laboratorio de Investigación y Aplicación de Fitoquímicos Bioactivos, Posgrado en Botánica, Colegio de Postgraduados, Texcoco, 56230, Mexico.
| | - Israel Castillo-Juárez
- Laboratorio de Investigación y Aplicación de Fitoquímicos Bioactivos, Posgrado en Botánica, Colegio de Postgraduados, Texcoco, 56230, Mexico; Conahcyt-Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Mineral de la Reforma, Hidalgo, 42184, Mexico.
| |
Collapse
|
5
|
Khan RT, Sharma V, Khan SS, Rasool S. Prevention and potential remedies for antibiotic resistance: current research and future prospects. Front Microbiol 2024; 15:1455759. [PMID: 39421555 PMCID: PMC11484029 DOI: 10.3389/fmicb.2024.1455759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024] Open
Abstract
The increasing threat of antibiotic resistance and shrinking treatment options for infections have pushed mankind into a difficult position. The looming threat of the return of the pre-antibiotic era has caused a sense of urgency to protect and conserve the potency of antibiotic therapy. One of the perverse effects of antibiotic resistance is the dissemination of its causative agents from non-clinically important strains to clinically important strains and vice versa. The popular saying "Prevention is better than cure" is appropriate for tackling antibiotic resistance. On the one hand, new and effective antibiotics are required; on the other hand, better measures for the use of antibiotics, along with increased awareness in the general public related to antibiotic use, are essential. Awareness, especially of appropriate antibiotic use, antibiotic resistance, its dissemination, and potential threats, can help greatly in controlling the use and abuse of antibiotics, and the containment of antibiotic resistance. Antibiotic drugs' effectiveness can be enhanced by producing novel antibiotic analogs or adding adjuvants to current antibiotics. Combinatorial therapy of antibiotics has proven successful in treating multidrug-resistant (MDR) bacterial infections. This review aims to highlight the current global situation of antibiotic resistance and discuss the methods used to monitor, prevent, inhibit, or reverse bacterial resistance mechanisms in the fight against antibiotic resistance.
Collapse
Affiliation(s)
| | | | | | - Shafaq Rasool
- Molecular Biology Lab, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, India
| |
Collapse
|
6
|
Abou Taleb MF, Alzidan K. Multifunctional applications of seaweed extract-infused hydroxyethyl cellulose-polyvinylpyrrolidone aerogels: Antibacterial, and antibiofilm proficiency for water decontamination. Int J Biol Macromol 2024; 278:135021. [PMID: 39182882 DOI: 10.1016/j.ijbiomac.2024.135021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/02/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Establishing a reliable and secure water supply is still a significant challenge in many areas that need more infrastructure. Eliminating harmful bacteria from water systems is a critical obstacle to managing the spread of waterborne illnesses and protecting public health. Thus, this work focuses on enhancing the efficiency of using marine waste extract, namely seaweed, by its integrating its extract into aerogels based on Hydroxyethyl cellulose (HEC) and polyvinylpolypyrrolidone (PVP). Four formulations were created with increasing concentrations of Padina extract (PE): PE-0, PE-1, PE-2, and PE-3 loaded HEC-PVP aerogels. PE-3 loaded HEC-PVP aerogel showed remarkable efficacy in completely deactivating several types of bacteria, including Escherichia coli, Salmonella enterica, Enterococcus faecalis, and Bacillus subtilis. This antibacterial impact was seen within a short time frame of 75 min after treatment, making it the most significant outcome. Significantly, it had the greatest level of inhibition against E. coli (IZD: 24 mm) and showed potent inhibitory effects against S. enterica, E. faecalis, and B. subtilis, with IZD values of 18, 15, and 14 mm, respectively. These results indicate that the aerogel's ability to prohibite the harmfull microorganisms may be due to its surface qualities, which help release antimicrobial substances from the PE contained in the aerogel.
Collapse
Affiliation(s)
- Manal F Abou Taleb
- Department of Chemistry, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Khatmah Alzidan
- Department of Food science and nutrition, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| |
Collapse
|
7
|
Wang J, Yang J, Durairaj P, Wang W, Wei D, Tang S, Liu H, Wang D, Jia AQ. Discovery of β-nitrostyrene derivatives as potential quorum sensing inhibitors for biofilm inhibition and antivirulence factor therapeutics against Serratia marcescens. MLIFE 2024; 3:445-458. [PMID: 39359676 PMCID: PMC11442132 DOI: 10.1002/mlf2.12135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/14/2024] [Accepted: 04/25/2024] [Indexed: 10/04/2024]
Abstract
Quorum sensing (QS) inhibition has emerged as a promising target for directed drug design, providing an appealing strategy for developing antimicrobials, particularly against infections caused by drug-resistant pathogens. In this study, we designed and synthesized a total of 33 β-nitrostyrene derivatives using 1-nitro-2-phenylethane (NPe) as the lead compound, to target the facultative anaerobic bacterial pathogen Serratia marcescens. The QS-inhibitory effects of these compounds were evaluated using S. marcescens NJ01 and the reporter strain Chromobacterium violaceum CV026. Among the 33 new β-nitrostyrene derivatives, (E)-1-methyl-4-(2-nitrovinyl)benzene (m-NPe, compound 28) was proven to be a potent inhibitor that reduced biofilm formation of S. marcescens NJ01 by 79%. Scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) results revealed that treatment with m-NPe (50 μg/ml) not only enhanced the susceptibility of the formed biofilms but also disrupted the architecture of biofilms by 84%. m-NPe (50 μg/ml) decreased virulence factors in S. marcescens NJ01, reducing the activity of protease, prodigiosin, and extracellular polysaccharide (EPS) by 36%, 72%, and 52%, respectively. In S. marcescens 4547, the activities of hemolysin and EPS were reduced by 28% and 40%, respectively, outperforming the positive control, vanillic acid (VAN). The study also found that the expression levels of QS- and biofilm-related genes (flhD, fimA, fimC, sodB, bsmB, pigA, pigC, and shlA) were downregulated by 1.21- to 2.32-fold. Molecular dynamics analysis showed that m-NPe could bind stably to SmaR, RhlI, RhlR, LasR, and CviR proteins in a 0.1 M sodium chloride solution. Importantly, a microscale thermophoresis (MST) test revealed that SmaR could be a target protein for the screening of a quorum sensing inhibitor (QSI) against S. marcescens. Overall, this study highlights the efficacy of m-NPe in suppressing the virulence factors of S. marcescens, identifying it as a new potential QSI and antibiofilm agent capable of restoring or improving antimicrobial drug sensitivity.
Collapse
Affiliation(s)
- Jiang Wang
- Hainan Affiliated Hospital of Hainan Medical University Hainan General Hospital Haikou China
- Center for Translational Research Shenzhen Bay Laboratory Shenzhen China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences Hainan University Haikou China
| | - Jingyi Yang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences Hainan University Haikou China
- Hainan Branch, Shanghai Children's Medical Center, School of Medicine Shanghai Jiao Tong University Sanya China
| | - Pradeepraj Durairaj
- Center for Translational Research Shenzhen Bay Laboratory Shenzhen China
- Present address: National High Magnetic Field Laboratory, FAMU-FSU College of Engineering Florida State University Tallahassee Florida USA
| | - Wei Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences Hainan University Haikou China
| | - Dongyan Wei
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences Hainan University Haikou China
| | - Shi Tang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences Hainan University Haikou China
| | - Haiqing Liu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences Hainan University Haikou China
| | - Dayong Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences Hainan University Haikou China
| | - Ai-Qun Jia
- Hainan Affiliated Hospital of Hainan Medical University Hainan General Hospital Haikou China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences Hainan University Haikou China
| |
Collapse
|
8
|
Al-Momani H, Aolymat I, Ibrahim L, Albalawi H, Al Balawi D, Albiss BA, Almasri M, Alghweiri S. Low-dose zinc oxide nanoparticles trigger the growth and biofilm formation of Pseudomonas aeruginosa: a hormetic response. BMC Microbiol 2024; 24:290. [PMID: 39095741 PMCID: PMC11297655 DOI: 10.1186/s12866-024-03441-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/25/2024] [Indexed: 08/04/2024] Open
Abstract
INTRODUCTION Hormesis describes an inverse dose-response relationship, whereby a high dose of a toxic compound is inhibitory, and a low dose is stimulatory. This study explores the hormetic response of low concentrations of zinc oxide nanoparticles (ZnO NPs) toward Pseudomonas aeruginosa. METHOD Samples of P. aeruginosa, i.e. the reference strain, ATCC 27,853, together with six strains recovered from patients with cystic fibrosis, were exposed to ten decreasing ZnO NPs doses (0.78-400 µg/mL). The ZnO NPs were manufactured from Peganum harmala using a chemical green synthesis approach, and their properties were verified utilizing X-ray diffraction and scanning electron microscopy. A microtiter plate technique was employed to investigate the impact of ZnO NPs on the growth, biofilm formation and metabolic activity of P. aeruginosa. Real-time polymerase chain reactions were performed to determine the effect of ZnO NPs on the expression of seven biofilm-encoding genes. RESULT The ZnO NPs demonstrated concentration-dependent bactericidal and antibiofilm efficiency at concentrations of 100-400 µg/mL. However, growth was significantly stimulated at ZnO NPs concentration of 25 µg/mL (ATCC 27853, Pa 3 and Pa 4) and at 12.5 µg/mL and 6.25 µg/mL (ATCC 27853, Pa 2, Pa 4 and Pa 5). No significant positive growth was detected at dilutions < 6.25 µg/mL. similarly, biofilm formation was stimulated at concentration of 12.5 µg/mL (ATCC 27853 and Pa 1) and at 6.25 µg/mL (Pa 4). At concentration of 12.5 µg/mL, ZnO NPs upregulated the expression of LasB ( ATCC 27853, Pa 1 and Pa 4) and LasR and LasI (ATCC 27853 and Pa 1) as well as RhII expression (ATCC 27853, Pa 2 and Pa 4). CONCLUSION When exposed to low ZnO NPs concentrations, P. aeruginosa behaves in a hormetic manner, undergoing positive growth and biofilm formation. These results highlight the importance of understanding the response of P. aeruginosa following exposure to low ZnO NPs concentrations.
Collapse
Affiliation(s)
- Hafez Al-Momani
- Department of Microbiology, Pathology and Forensic Medicine, Faculty of Medicine, The Hashemite University, P.O box 330127, Zarqa, 13133, Jordan.
| | - Iman Aolymat
- Department of Anatomy, Physiology and Biochemistry, Faculty of Medicine, The Hashemite University, P.O box 330127, Zarqa, 13133, Jordan
| | - Lujain Ibrahim
- Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, 13133, Jordan
| | - Hadeel Albalawi
- Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, 13133, Jordan
| | - Dua'a Al Balawi
- Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, 13133, Jordan
| | - Borhan Aldeen Albiss
- Nanotechnology Institute, Jordan University of Science & Technology, P.O. Box 3030, Irbid, 22110, Jordan
| | - Muna Almasri
- Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, 13133, Jordan
| | - Sahar Alghweiri
- Medical Laboratory Department, Prince Hashem Military Hospital, Zarqa, 13133, Jordan
| |
Collapse
|
9
|
Sanabria-Ríos DJ, García-Del-Valle R, Bosh-Fonseca S, González-Pagán J, Díaz-Rosa A, Acevedo-Rosario K, Reyes-Vicente L, Colom A, Carballeira NM. Synthesis of the Novel N-(2-Hexadecynoyl)-l-Homoserine Lactone and Evaluation of Its Antiquorum Sensing Activity in Chromobacterium violaceum. ACS OMEGA 2024; 9:32536-32546. [PMID: 39100292 PMCID: PMC11292648 DOI: 10.1021/acsomega.4c01121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 07/04/2024] [Accepted: 07/11/2024] [Indexed: 08/06/2024]
Abstract
Chromobacterium violaceum is commonly found in soil and freshwater within tropical and subtropical regions. Although not a common occurrence, this bacterium has the potential to cause severe diseases in humans and animals, such as liver and lung abscesses and septicemia. Herein we report the synthesis of novel N-acyl homoserine lactones (HSLs) to evaluate their effectiveness as antiquorum sensing (anti-QS) agents in C. violaceum. The HSLs were prepared through three synthetic approaches, where hexanoic acid, decanoic acid, 6-decynoic acid, or 2-hexadecynoic acid (2-HDA) was treated with commercially available l-homoserine lactone (HSL) hydrobromide in either dichloromethane or tetrahydrofuran in the presence of EDC and DMAP. The effectiveness of HSLs as anti-QS agents was assessed through susceptibility tests and violacein quantification. The most effective anti-QS inhibitor among all N-acyl-HSLs tested was the N-(2-hexadecynoyl)-l-homoserine lactone (HSL 4). Further experimental approaches, such as quantification of acyl-homoserine lactones and biofilm inhibitory tests, were carried out to determine the effect of HSL 4 on these QS-dependent mechanisms. These experiments showed that HSL 4 was highly effective at inhibiting the production of HSLs and biofilm in C. violaceum at 0.25, 0.50, and 1 mg/mL. In addition, the cytotoxicity activity was evaluated against Vero cells to determine the selectivity of HSL 4 as a nontraditional antibacterial agent. HSL 4 was not toxic against Vero cells at concentrations ranging from 0.0039 to 1 mg/mL. Molecular docking experiments were conducted to study the interactions between novel HSLs and CviR (PDB ID 3QP5), a receptor that plays a significant role in C. violaceum QS. In silico studies indicate that HSL 4 exhibits better interactions with Leu 72 and Gln 95 of the CviR binding pocket when compared to the other analogs. These results validate previous in vitro studies, such as susceptibility tests and violacein production assays. The findings above indicate that novel acetylenic HSLs may potentially be agents that combat bacterial communication and biofilm formation. However, further investigation is necessary to expand the spectrum of bacterial strains capable of resisting antibiotics through QS and evaluate the compounds' cytotoxicity in other cell lines.
Collapse
Affiliation(s)
- David J. Sanabria-Ríos
- Faculty
of Science and Technology, Inter American
University of Puerto Rico, Metropolitan Campus, P.O. Box 191293, San
Juan, Puerto Rico 00919, United States
- Medicinal
Research and Applications Laboratory, Inter
American University of Puerto Rico, Metropolitan Campus, P.O. Box
191293, San Juan, Puerto Rico 00919, United States
| | - Rene García-Del-Valle
- Department
of Chemistry, University of Puerto Rico, Río Piedras Campus, 17 Ave
Universidad STE 1701, San Juan, Puerto Rico 00925, United States
| | - Sachel Bosh-Fonseca
- Faculty
of Science and Technology, Inter American
University of Puerto Rico, Metropolitan Campus, P.O. Box 191293, San
Juan, Puerto Rico 00919, United States
| | - Joangely González-Pagán
- Faculty
of Science and Technology, Inter American
University of Puerto Rico, Metropolitan Campus, P.O. Box 191293, San
Juan, Puerto Rico 00919, United States
| | - Alanis Díaz-Rosa
- Faculty
of Science and Technology, Inter American
University of Puerto Rico, Metropolitan Campus, P.O. Box 191293, San
Juan, Puerto Rico 00919, United States
| | - Karina Acevedo-Rosario
- Faculty
of Science and Technology, Inter American
University of Puerto Rico, Metropolitan Campus, P.O. Box 191293, San
Juan, Puerto Rico 00919, United States
| | - Luzmarie Reyes-Vicente
- Faculty
of Science and Technology, Inter American
University of Puerto Rico, Metropolitan Campus, P.O. Box 191293, San
Juan, Puerto Rico 00919, United States
- Medicinal
Research and Applications Laboratory, Inter
American University of Puerto Rico, Metropolitan Campus, P.O. Box
191293, San Juan, Puerto Rico 00919, United States
| | - Antonio Colom
- Faculty
of Science and Technology, Inter American
University of Puerto Rico, Metropolitan Campus, P.O. Box 191293, San
Juan, Puerto Rico 00919, United States
| | - Néstor M. Carballeira
- Department
of Chemistry, University of Puerto Rico, Río Piedras Campus, 17 Ave
Universidad STE 1701, San Juan, Puerto Rico 00925, United States
| |
Collapse
|
10
|
Hetta HF, Ramadan YN, Rashed ZI, Alharbi AA, Alsharef S, Alkindy TT, Alkhamali A, Albalawi AS, Battah B, Donadu MG. Quorum Sensing Inhibitors: An Alternative Strategy to Win the Battle against Multidrug-Resistant (MDR) Bacteria. Molecules 2024; 29:3466. [PMID: 39124871 PMCID: PMC11313800 DOI: 10.3390/molecules29153466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/29/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Antibiotic resistance is a major problem and a major global health concern. In total, there are 16 million deaths yearly from infectious diseases, and at least 65% of infectious diseases are caused by microbial communities that proliferate through the formation of biofilms. Antibiotic overuse has resulted in the evolution of multidrug-resistant (MDR) microbial strains. As a result, there is now much more interest in non-antibiotic therapies for bacterial infections. Among these revolutionary, non-traditional medications is quorum sensing inhibitors (QSIs). Bacterial cell-to-cell communication is known as quorum sensing (QS), and it is mediated by tiny diffusible signaling molecules known as autoinducers (AIs). QS is dependent on the density of the bacterial population. QS is used by Gram-negative and Gram-positive bacteria to control a wide range of processes; in both scenarios, QS entails the synthesis, identification, and reaction to signaling chemicals, also known as auto-inducers. Since the usual processes regulated by QS are the expression of virulence factors and the creation of biofilms, QS is being investigated as an alternative solution to antibiotic resistance. Consequently, the use of QS-inhibiting agents, such as QSIs and quorum quenching (QQ) enzymes, to interfere with QS seems like a good strategy to prevent bacterial infections. This review sheds light on QS inhibition strategy and mechanisms and discusses how using this approach can aid in winning the battle against resistant bacteria.
Collapse
Affiliation(s)
- Helal F. Hetta
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (A.A.A.); (S.A.); (T.T.A.)
| | - Yasmin N. Ramadan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt; (Y.N.R.); (Z.I.R.)
| | - Zainab I. Rashed
- Department of Microbiology and Immunology, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt; (Y.N.R.); (Z.I.R.)
| | - Ahmad A. Alharbi
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (A.A.A.); (S.A.); (T.T.A.)
| | - Shomokh Alsharef
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (A.A.A.); (S.A.); (T.T.A.)
| | - Tala T. Alkindy
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (A.A.A.); (S.A.); (T.T.A.)
| | - Alanoud Alkhamali
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (A.A.); (A.S.A.)
| | - Abdullah S. Albalawi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (A.A.); (A.S.A.)
| | - Basem Battah
- Department of Biochemistry and Microbiology, Faculty of Pharmacy, Antioch Syrian Private University, Maaret Siadnaya 22734, Syria
| | - Matthew G. Donadu
- Hospital Pharmacy, Giovanni Paolo II Hospital, ASL Gallura, 07026 Olbia, Italy;
- Department of Medicine, Surgery and Pharmacy, Scuola di Specializzazione in Farmacia Ospedaliera, University of Sassari, 07100 Sassari, Italy
| |
Collapse
|
11
|
Niu H, Gu J, Zhang Y. Bacterial persisters: molecular mechanisms and therapeutic development. Signal Transduct Target Ther 2024; 9:174. [PMID: 39013893 PMCID: PMC11252167 DOI: 10.1038/s41392-024-01866-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 07/18/2024] Open
Abstract
Persisters refer to genetically drug susceptible quiescent (non-growing or slow growing) bacteria that survive in stress environments such as antibiotic exposure, acidic and starvation conditions. These cells can regrow after stress removal and remain susceptible to the same stress. Persisters are underlying the problems of treating chronic and persistent infections and relapse infections after treatment, drug resistance development, and biofilm infections, and pose significant challenges for effective treatments. Understanding the characteristics and the exact mechanisms of persister formation, especially the key molecules that affect the formation and survival of the persisters is critical to more effective treatment of chronic and persistent infections. Currently, genes related to persister formation and survival are being discovered and confirmed, but the mechanisms by which bacteria form persisters are very complex, and there are still many unanswered questions. This article comprehensively summarizes the historical background of bacterial persisters, details their complex characteristics and their relationship with antibiotic tolerant and resistant bacteria, systematically elucidates the interplay between various bacterial biological processes and the formation of persister cells, as well as consolidates the diverse anti-persister compounds and treatments. We hope to provide theoretical background for in-depth research on mechanisms of persisters and suggest new ideas for choosing strategies for more effective treatment of persistent infections.
Collapse
Affiliation(s)
- Hongxia Niu
- School of Basic Medical Science and Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Jiaying Gu
- School of Basic Medical Science and Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Ying Zhang
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China.
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250022, Shandong, China.
| |
Collapse
|
12
|
Lubis AR, Sumon MAA, Dinh-Hung N, Dhar AK, Delamare-Deboutteville J, Kim DH, Shinn AP, Kanjanasopa D, Permpoonpattana P, Doan HV, Linh NV, Brown CL. Review of quorum-quenching probiotics: A promising non-antibiotic-based strategy for sustainable aquaculture. JOURNAL OF FISH DISEASES 2024; 47:e13941. [PMID: 38523339 DOI: 10.1111/jfd.13941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/25/2024] [Accepted: 03/01/2024] [Indexed: 03/26/2024]
Abstract
The emergence of antibiotic-resistant bacteria (ARBs) and genes (ARGs) in aquaculture underscores the urgent need for alternative veterinary strategies to combat antimicrobial resistance (AMR). These measures are vital to reduce the likelihood of entering a post-antibiotic era. Identifying environmentally friendly biotechnological solutions to prevent and treat bacterial diseases is crucial for the sustainability of aquaculture and for minimizing the use of antimicrobials, especially antibiotics. The development of probiotics with quorum-quenching (QQ) capabilities presents a promising non-antibiotic strategy for sustainable aquaculture. Recent research has demonstrated the effectiveness of QQ probiotics (QQPs) against a range of significant fish pathogens in aquaculture. QQ disrupts microbial communication (quorum sensing, QS) by inhibiting the production, replication, and detection of signalling molecules, thereby reducing bacterial virulence factors. With their targeted anti-virulence approach, QQPs have substantial promise as a potential alternative to antibiotics. The application of QQPs in aquaculture, however, is still in its early stages and requires additional research. Key challenges include determining the optimal dosage and treatment regimens, understanding the long-term effects, and integrating QQPs with other disease control methods in diverse aquaculture systems. This review scrutinizes the current literature on antibiotic usage, AMR prevalence in aquaculture, QQ mechanisms and the application of QQPs as a sustainable alternative to antibiotics.
Collapse
Affiliation(s)
- Anisa Rilla Lubis
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Md Afsar Ahmed Sumon
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Nguyen Dinh-Hung
- Aquaculture Pathology Laboratory, School of Animal & Comparative Biomedical Sciences, The University of Arizona, Tucson, Arizona, USA
| | - Arun K Dhar
- Aquaculture Pathology Laboratory, School of Animal & Comparative Biomedical Sciences, The University of Arizona, Tucson, Arizona, USA
| | | | - Do-Hyung Kim
- Department of Aquatic Life Medicine, College of Fisheries Science, Pukyong National University, Busan, Republic of Korea
| | | | - Duangkhaetita Kanjanasopa
- Agricultural Science and Technology Program, Faculty of Innovative Agriculture and Fishery Establishment Project, Prince of Songkla University, Surat Thani Campus, Surat Thani, Thailand
| | - Patima Permpoonpattana
- Agricultural Science and Technology Program, Faculty of Innovative Agriculture and Fishery Establishment Project, Prince of Songkla University, Surat Thani Campus, Surat Thani, Thailand
| | - Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
- Functional Feed Innovation Center (FuncFeed), Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Nguyen Vu Linh
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
- Functional Feed Innovation Center (FuncFeed), Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Christopher L Brown
- FAO World Fisheries University Pilot Programme, Pukyong National University, Busan, South Korea
| |
Collapse
|
13
|
Liang Y, Zhao H, Li Y, Gao F, Qiu J, Liu Z, Li Q. Joint effects about antibiotics combined using with antibiotics or phytochemicals on Aeromonas hydrophila. MARINE ENVIRONMENTAL RESEARCH 2024; 199:106594. [PMID: 38908112 DOI: 10.1016/j.marenvres.2024.106594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/01/2024] [Accepted: 06/04/2024] [Indexed: 06/24/2024]
Abstract
Aeromonas hydrophila is highly prevalent in aquaculture animals and aquaculture environment. Due to the abuse of antibiotics, A. hydrophila can change the antibiotic resistance spectrum directly and affect human health indirectly. The use of combined drugs replacement therapy and the long-term coexistence with drug-resistant bacteria are the reality that human beings have to face in dealing with the problem of antibiotic resistance in the future. This study showed the characteristics and trends through abundant results of combined effects related with the combinations of antibiotic and the combinations of antibiotic and phytochemical on A. hydrophila, and revealed the antagonism probability of combinations of antibiotic and phytochemical is significantly higher than that of the combinations of antibiotic. Meanwhile, the combinations of antibiotic and phytochemical could protect the host cells which also achieved the same effectiveness as combination of antibiotics, and the enrichment pathway was proved to be relatively discrete. In addition, the possible mechanism about the reverse "U" shape of the combined effect curve on wild/antibiotic-resistant bacteria was clarified, and it was confirmed that the antagonism for the combinations of antibiotic and phytochemical might has the significance in inhibiting the evolution of bacterial resistance mutations. This study was aims to provide theoretical basis and some clues for the antibiotic resistance control associated with A. hydrophila.
Collapse
Affiliation(s)
- Yannei Liang
- Key Laboratory of Agro-products Safety & Quality of Ministry of Agriculture, Beijing, PR China; Institute of Quality Standards & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Haiqing Zhao
- Key Laboratory of Agro-products Safety & Quality of Ministry of Agriculture, Beijing, PR China; Institute of Quality Standards & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Yun Li
- Key Laboratory of Agro-products Safety & Quality of Ministry of Agriculture, Beijing, PR China; Institute of Quality Standards & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing, PR China.
| | - Fuqing Gao
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, PR China
| | - Jing Qiu
- Key Laboratory of Agro-products Safety & Quality of Ministry of Agriculture, Beijing, PR China; Institute of Quality Standards & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Zhe Liu
- Key Laboratory of Agro-products Safety & Quality of Ministry of Agriculture, Beijing, PR China; Institute of Quality Standards & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Qiongyan Li
- Key Laboratory of Agro-products Safety & Quality of Ministry of Agriculture, Beijing, PR China; Institute of Quality Standards & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing, PR China
| |
Collapse
|
14
|
Mahendrarajan V, Lazarus H, Easwaran N. Quorum quenching mediated biofilm impediment in Chromobacterium violaceum and Staphylococcus aureus by leaf extracts of Delonix elata. Heliyon 2024; 10:e31898. [PMID: 38882294 PMCID: PMC11177153 DOI: 10.1016/j.heliyon.2024.e31898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/18/2024] Open
Abstract
Biofilms are complex communities of microorganisms that cause systemic infections, resistance development and delay in healing wounds. Biofilms can form in various parts of the human body, such as the teeth, lungs, urinary tract, and wounds. Biofilm complicates the effects of antibiotics in treating infections. In search of a cure, a plant-based phyto component was selected for this investigation as an anti-quorum-mediated biofilm restricting agent in Gram-negative Chromobacterium violaceum and Gram-positive Staphylococcus aureus. The bioactive components in Delonix elata (DE) ethyl acetate extract were identified using Gas chromatography and mass spectrometry. The extract was examined for toxicity using 3T3 cell lines and brine shrimp and ascertained to be non-toxic. Violacein was inhibited up to 68.81 % in C. violaceum at 0.6 mg/ml concentration. Hemolysin synthesis impediments in C. violaceum and S. aureus were 80 % and 51.35 %, respectively, at 0.6 mg/ml of DE extract. At 0.6 mg/ml, EPS was abated by up to 49 % in C. violaceum and 35.26 % in S. aureus. DE extract prevented biofilm formation in C. violaceum and S. aureus up to 76.45 % and 58.15 %, respectively, while associated eDNA was suppressed up to 67.50 % and 53.47 % at the respective sub-MIC concentrations. Expression of genes such as cviI, cviR, vioA, vioB, and vioE were dramatically reduced in C. violaceum, while genes such as agrA, sarA, fnbA, and fnbB were significantly reduced in S. aureus. Docking demonstrates that two or more DE molecules bind efficiently to the QS receptors of C. violaceum and S. aureus. Thus, DE extract can be investigated for therapeutic purposes against pathogenic microorganisms by rendering them less virulent through quorum quenching mediated action.
Collapse
Affiliation(s)
- Venkatramanan Mahendrarajan
- Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology, Tiruvalam Road, Katpadi, India
| | - Huldah Lazarus
- Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology, Tiruvalam Road, Katpadi, India
| | - Nalini Easwaran
- Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology, Tiruvalam Road, Katpadi, India
| |
Collapse
|
15
|
Alcorlo M, Abdullah MR, Steil L, Sotomayor F, López-de Oro L, de Castro S, Velázquez S, Kohler TP, Jiménez E, Medina A, Usón I, Keller LE, Bradshaw JL, McDaniel LS, Camarasa MJ, Völker U, Hammerschmidt S, Hermoso JA. Molecular and structural basis of oligopeptide recognition by the Ami transporter system in pneumococci. PLoS Pathog 2024; 20:e1011883. [PMID: 38838057 PMCID: PMC11192437 DOI: 10.1371/journal.ppat.1011883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 06/21/2024] [Accepted: 04/30/2024] [Indexed: 06/07/2024] Open
Abstract
ATP-binding cassette (ABC) transport systems are crucial for bacteria to ensure sufficient uptake of nutrients that are not produced de novo or improve the energy balance. The cell surface of the pathobiont Streptococcus pneumoniae (pneumococcus) is decorated with a substantial array of ABC transporters, critically influencing nasopharyngeal colonization and invasive infections. Given the auxotrophic nature of pneumococci for certain amino acids, the Ami ABC transporter system, orchestrating oligopeptide uptake, becomes indispensable in host compartments lacking amino acids. The system comprises five exposed Oligopeptide Binding Proteins (OBPs) and four proteins building the ABC transporter channel. Here, we present a structural analysis of all the OBPs in this system. Multiple crystallographic structures, capturing both open and closed conformations along with complexes involving chemically synthesized peptides, have been solved at high resolution providing insights into the molecular basis of their diverse peptide specificities. Mass spectrometry analysis of oligopeptides demonstrates the unexpected remarkable promiscuity of some of these proteins when expressed in Escherichia coli, displaying affinity for a wide range of peptides. Finally, a model is proposed for the complete Ami transport system in complex with its various OBPs. We further disclosed, through in silico modelling, some essential structural changes facilitating oligopeptide transport into the cellular cytoplasm. Thus, the structural analysis of the Ami system provides valuable insights into the mechanism and specificity of oligopeptide binding by the different OBPs, shedding light on the intricacies of the uptake mechanism and the in vivo implications for this human pathogen.
Collapse
Affiliation(s)
- Martín Alcorlo
- Department of Crystallography and Structural Biology, Institute of Physical-Chemistry “Blas Cabrera”, Spanish National Research Council (CSIC), Madrid; Spain
| | - Mohammed R. Abdullah
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald; Germany
| | - Leif Steil
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University Medicine Greifswald, Greifswald; Germany
| | - Francisco Sotomayor
- Department of Crystallography and Structural Biology, Institute of Physical-Chemistry “Blas Cabrera”, Spanish National Research Council (CSIC), Madrid; Spain
| | - Laura López-de Oro
- Department of Crystallography and Structural Biology, Institute of Physical-Chemistry “Blas Cabrera”, Spanish National Research Council (CSIC), Madrid; Spain
| | | | | | - Thomas P. Kohler
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald; Germany
| | - Elisabet Jiménez
- Crystallographic Methods, Institute of Molecular Biology of Barcelona (IBMB-CSIC), Barcelona Science Park, Helix Building, Barcelona; Spain
| | - Ana Medina
- Crystallographic Methods, Institute of Molecular Biology of Barcelona (IBMB-CSIC), Barcelona Science Park, Helix Building, Barcelona; Spain
| | - Isabel Usón
- Crystallographic Methods, Institute of Molecular Biology of Barcelona (IBMB-CSIC), Barcelona Science Park, Helix Building, Barcelona; Spain
- ICREA, Institució Catalana de Recerca i Estudis Avançats, Barcelona; Spain
| | - Lance E. Keller
- Center for Immunology and Microbial Research, University of Mississippi Medical Center, Jackson, Mississippi; United States of America
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi; United States of America
| | - Jessica L. Bradshaw
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi; United States of America
| | - Larry S. McDaniel
- Center for Immunology and Microbial Research, University of Mississippi Medical Center, Jackson, Mississippi; United States of America
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi; United States of America
| | | | - Uwe Völker
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University Medicine Greifswald, Greifswald; Germany
| | - Sven Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald; Germany
| | - Juan A. Hermoso
- Department of Crystallography and Structural Biology, Institute of Physical-Chemistry “Blas Cabrera”, Spanish National Research Council (CSIC), Madrid; Spain
| |
Collapse
|
16
|
Gao S, Wang Y, Yuan S, Zuo J, Jin W, Shen Y, Grenier D, Yi L, Wang Y. Cooperation of quorum sensing and central carbon metabolism in the pathogenesis of Gram-positive bacteria. Microbiol Res 2024; 282:127655. [PMID: 38402726 DOI: 10.1016/j.micres.2024.127655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/25/2024] [Accepted: 02/17/2024] [Indexed: 02/27/2024]
Abstract
Quorum sensing (QS), an integral component of bacterial communication, is essential in coordinating the collective response of diverse bacterial pathogens. Central carbon metabolism (CCM), serving as the primary metabolic hub for substances such as sugars, lipids, and amino acids, plays a crucial role in the life cycle of bacteria. Pathogenic bacteria often utilize CCM to regulate population metabolism and enhance the synthesis of specific cellular structures, thereby facilitating in adaptation to the host microecological environment and expediting infection. Research has demonstrated that QS can both directly or indirectly affect the CCM of numerous pathogenic bacteria, thus altering their virulence and pathogenicity. This article reviews the interplay between QS and CCM in Gram-positive pathogenic bacteria, details the molecular mechanisms by which QS modulates CCM, and lays the groundwork for investigating bacterial pathogenicity and developing innovative infection treatment drugs.
Collapse
Affiliation(s)
- Shuji Gao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471003, China
| | - Yuxin Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471003, China
| | - Shuo Yuan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471003, China
| | - Jing Zuo
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471003, China
| | - Wenjie Jin
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471003, China
| | - Yamin Shen
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471003, China
| | - Daniel Grenier
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Quebec City, Quebec, Canada
| | - Li Yi
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471003, China; College of Life Science, Luoyang Normal University, Luoyang 471934, China.
| | - Yang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471003, China.
| |
Collapse
|
17
|
Liu Y, Liu J, Yan P, Kachanuban K, Liu P, Jia A, Zhu W. Carbazole and Quinazolinone Derivatives from a Fluoride-Tolerant Streptomyces Strain OUCMDZ-5511. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6424-6431. [PMID: 38470989 DOI: 10.1021/acs.jafc.4c00780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Six new 9H-carbazole derivatives (1-6) and nine previously reported compounds (7-15) were isolated from a fermented solid medium of the Thailand mangrove-derived Streptomyces strain, OUCMDZ-5511, under fluoride stress. Compounds 2-5, 12, and 15 were exclusively present in the fluoride-supplemented fermentation medium, while compounds 7-9, 13, and 14 were newly discovered natural products. The molecular structures of the compounds were identified by a spectroscopic analysis. The new compound 2 displayed antiquorum sensing activity against Chromobacterium violaceum ATCC 12472 by reducing the violacein production and inhibiting the biofilm formation in a concentration-dependent manner. The study revealed that compound 2 could be a novel potential inhibitor of quorum sensing.
Collapse
Affiliation(s)
- Yue Liu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Junsheng Liu
- Key Laboratory of Tropical Biological Resources of Ministry Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Pengcheng Yan
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Konthorn Kachanuban
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Department of Fishery Product, Faculty of Fisheries of Kasetsart University, Bangkok 10900, Thailand
| | - Peipei Liu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Aiqun Jia
- Key Laboratory of Tropical Biological Resources of Ministry Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Weiming Zhu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Key Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao 266237, China
| |
Collapse
|
18
|
Gómez-Salgado MDRH, Beltrán-Gómez JÁ, Díaz-Nuñez JL, Rivera-Chávez JA, García-Contreras R, Estrada-Velasco ÁY, Quezada H, Serrano Bello CA, Castillo-Juárez I. Efficacy of a Mexican folk remedy containing cuachalalate (Amphipterygium adstringens (Schltdl.) Schiede ex Standl) for the treatment of burn wounds infected with Pseudomonas aeruginosa. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117305. [PMID: 37848078 DOI: 10.1016/j.jep.2023.117305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/02/2023] [Accepted: 10/08/2023] [Indexed: 10/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cuachalalate (Amphipterygium adstringens) stem bark has been used to heal wounds and counteract microbial infections since pre-Hispanic times. However, its effect in treating infected burns remains unclear. STUDY OBJECTIVES To determine the antipathogenic capacity of a folk remedy (FR) containing cuachalalate stem bark to treat lesions caused by thermal damage and bacterial infection. MATERIALS AND METHODS The antipathogenic capacity of the hexanic extract (HE) and FR was evaluated in a burned mouse model infected with Pseudomonas aeruginosa. Second to third-degree burns were induced with 95 °C water in CD1 mice in similar ratios of males to females. The mice were randomly grouped into non-inoculated (Group 1) and P. aeruginosa inoculated. The latter were divided into untreated infection (Group 2) and infection topically treated with HE (Group 3), silver sulfadiazine (Group 4), and tween 80 (Group 5). In the case of FR, the lesions were washed with an aqueous extract (AE) and applied powdered stem bark (Group 6). Animal survival, establishment of the bacteria in the lesions, and systemic dispersion were determined. In addition, histopathological analysis was performed. The chemical composition of the AE was analyzed through molecular networking analysis, and the antivirulence capacity was determined through the inhibition of pyocyanin production and caseinolytic activity. RESULTS Only the FR showed antipathogenic activity and increased animal survival by 50% by reducing the systemic dispersion of P. aeruginosa. In addition, it stimulated the formation of granulation tissue and the generation of new blood vessels. The AE did not show bactericidal activity but reduced bacterial virulence, and glycosylated flavonoids and catechins were identified as its main constituents. CONCLUSIONS The results of this study contribute to validating the effectiveness of a popular remedy containing cuachalalate stem bark for treating burns infected with P. aeruginosa.
Collapse
Affiliation(s)
| | - José Ángel Beltrán-Gómez
- Laboratorio de Investigación y Aplicación de Fitoquímicos Bioactivos, Posgrado en Botánica, Colegio de Postgraduados, Texcoco, 56230, Mexico.
| | - José Luis Díaz-Nuñez
- Laboratorio de Investigación y Aplicación de Fitoquímicos Bioactivos, Posgrado en Botánica, Colegio de Postgraduados, Texcoco, 56230, Mexico.
| | - José Alberto Rivera-Chávez
- Departamento de Productos Naturales, Instituto de Química, Universidad Nacional Autónoma de México, CDMX, Mexico.
| | - Rodolfo García-Contreras
- Departamento de Microbiología y Parasitología, Universidad Nacional Autónoma de México, Ciudad Universitaria, CDMX, 04510, Mexico.
| | - Ángel Yahir Estrada-Velasco
- Departamento de Microbiología y Parasitología, Universidad Nacional Autónoma de México, Ciudad Universitaria, CDMX, 04510, Mexico.
| | - Héctor Quezada
- Laboratorio de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, CDMX, 06720, Mexico.
| | - Carlos Alberto Serrano Bello
- Departamento de Patología Clínica y Experimental, Hospital Infantil de México Federico Gómez, CDMX, 06720, Mexico.
| | - Israel Castillo-Juárez
- Laboratorio de Investigación y Aplicación de Fitoquímicos Bioactivos, Posgrado en Botánica, Colegio de Postgraduados, Texcoco, 56230, Mexico.
| |
Collapse
|
19
|
Muñoz-Cázares N, Peña-González MC, Castillo-Juárez I, Díaz-Núñez JL, Peña-Rodríguez LM. Exploring the anti-virulence potential of plants used in traditional Mayan medicine to treat bacterial infections. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116783. [PMID: 37321428 DOI: 10.1016/j.jep.2023.116783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE While the antimicrobial activity of a number of plants used in traditional Mayan medicine against infectious diseases has been documented, their potential to inhibit quorum sensing (QS) as means of discovering novel anti-virulence agents remains unexplored. AIM OF THE STUDY To evaluate the anti-virulence potential of plants used in traditional Mayan medicine by determining their inhibition of QS- regulated virulence factors in Pseudomonas aeruginosa. METHODS A group of plants used in traditional Mayan medicine against infectious diseases was selected, and their methanolic extracts were evaluated at 10 mg/mL for their antibacterial and anti-virulence activity using the reference strain P. aeruginosa PA14WT. The broth microdilution method was used to determine antibacterial activity (MIC), while anti-virulence activity was evaluated by measuring the anti-biofilm effect and the inhibition of pyocyanin and protease activities. The most bioactive extract was fractionated using a liquid-liquid partition procedure and the semipurified fractions were evaluated at 5 mg/mL for antibacterial and anti-virulence activity. RESULTS Seventeen Mayan medicinal plants traditionally used to treat infection-associated diseases were selected. None of the extracts exhibited antibacterial activity, whereas anti-virulence activity was detected in extracts of Bonellia flammea, Bursera simaruba, Capraria biflora, Ceiba aesculifolia, Cissampelos pareira and Colubrina yucatanensis. The most active extracts (74% and 69% inhibition) against biofilm formation were from C. aesculifolia (bark) and C. yucatanensis (root), respectively. Alternatively, the extracts of B. flammea (root), B. simaruba (bark), C. pareira (root), and C. biflora (root), reduced pyocyanin and protease production (50-84% and 30-58%, respectively). Fractionation of the bioactive root extract of C. yucatanensis allowed the identification of two semipurified fractions with anti-virulence activity. CONCLUSIONS The anti-virulence activity detected in the crude extracts of B. flammea, B. simaruba, C. biflora, C. aesculifolia, C. pareira, and C. yucatanensis, confirms the efficacy and traditional use of these medicinal plants against infectious diseases. The activity of the extract and semipurified fractions of C. yucatanensis indicates the presence of hydrophilic metabolites capable of interfering with QS in P. aeruginosa. This study represents the first report of Mayan medicinal plants with anti-QS properties and suggests they represent an important source of novel anti-virulence agents.
Collapse
Affiliation(s)
- Naybi Muñoz-Cázares
- Laboratorio de Química Orgánica, Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Colonia Chuburná, 97205, Mérida, Yucatán, Mexico.
| | - Maria Claudia Peña-González
- Laboratorio de Química Orgánica, Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Colonia Chuburná, 97205, Mérida, Yucatán, Mexico.
| | - Israel Castillo-Juárez
- Laboratorio de Investigación y Aplicación de Fitoquímicos Bioactivos, Posgrado en Botánica, Colegio de Postgraduados, Km 36.5 Carretera Federal México-Texcoco, Texcoco, Estado de México, 56230, Mexico.
| | - Jose Luis Díaz-Núñez
- Catedrático COMECYT-Colegio de Postgraduados, Campus Montecillo, Posgrado en Botánica, Colegio de Postgraduados, Km 36.5 Carretera Federal México-Texcoco, Texcoco, Estado de México, 56230, Mexico.
| | - Luis Manuel Peña-Rodríguez
- Laboratorio de Química Orgánica, Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Colonia Chuburná, 97205, Mérida, Yucatán, Mexico.
| |
Collapse
|
20
|
Xu M, Lyu Y, Cheng K, Zhang B, Cai Z, Chen G, Zhou J. Interactions between quorum sensing/quorum quenching and virulence genes may affect coral health by regulating symbiotic bacterial community. ENVIRONMENTAL RESEARCH 2023; 238:117221. [PMID: 37775014 DOI: 10.1016/j.envres.2023.117221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/11/2023] [Accepted: 09/21/2023] [Indexed: 10/01/2023]
Abstract
Quorum sensing (QS) and quorum quenching (QQ) are two antagonistic processes that may regulate the composition, function and structure of bacterial community. In coral holobiont, autoinducers signaling mediate the communication pathways between interspecies and intraspecies bacteria, which regulate the expression of the virulence factors that can damage host health. However, under environmental stressors, the interaction between the QS/QQ gene and virulence factors and their role in the bacterial communities and coral bleaching is still not fully clear. To address this question, here, metagenomics method was used to examine the profile of QS/QQ and virulence genes from a deeply sequenced microbial database, obtained from three bleached and non-bleached corals species. The prediction of bacterial genes of bleached samples involved in functional metabolic pathways were remarkably decreased, and the bacterial community structure on bleached samples was significantly different compared to non-bleached samples. The distribution and significant difference in QS/QQ and virulence genes were also carried out. We found that Proteobacteria was dominant bacteria among all samples, and AI-1 system is widespread within this group of bacteria. The identified specific genes consistently exhibited a trend of increased pathogenicity in bleached corals relative to non-bleached corals. The abundance of pathogenicity-associated QS genes, including bapA, pfoA and dgcB genes, were significantly increased in bleached corals and can encode the protein of biofilm formation and the membrane damaging toxins promoting pathogenic adhesion and infection. Similarly, the virulence genes, such as superoxide dismutase (Mn-SOD gene), metalloproteinase (yme1, yydH and zmpB), glycosidases (malE, malF, malG, and malK) and LodAB (lodB) genes significantly increased. Conversely, QQ genes that inhibit QS activity and virulence factors to defense the pathogens, including blpA, lsrK, amiE, aprE and gmuG showed a significant decrease in bleached groups. Furthermore, the significant correlations were found among virulence, QS/QQ genes, and coral associated bacterial community, and the virulence genes interact with key QS/QQ genes, directly or indirectly influence symbiotic bacterial communities homeostasis, thereby impacting coral health. It suggested that the functional and structural divergence in the symbiont bacteria may be partially attribute to the interplay, involving interactions among the host, bacterial communication signal systems, and bacterial virulence factors. In conclusion, these data helped to reveal the characteristic behavior of coral symbiotic bacteria, and facilitated a better understanding of bleaching mechanism from a chemical ecological perspective.
Collapse
Affiliation(s)
- Meiting Xu
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China; School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, 264209, Shandong Province, PR China
| | - Yihua Lyu
- Nansha Islands Coral Reef Ecosystem National Observation and Research Station, Guangzhou, 510300, PR China
| | - Keke Cheng
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China
| | - Boya Zhang
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China
| | - Zhonghua Cai
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China
| | - Guofu Chen
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China; School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, 264209, Shandong Province, PR China.
| | - Jin Zhou
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China.
| |
Collapse
|
21
|
Guadarrama-Orozco KD, Perez-Gonzalez C, Kota K, Cocotl-Yañez M, Jiménez-Cortés JG, Díaz-Guerrero M, Hernández-Garnica M, Munson J, Cadet F, López-Jácome LE, Estrada-Velasco ÁY, Fernández-Presas AM, García-Contreras R. To cheat or not to cheat: cheatable and non-cheatable virulence factors in Pseudomonas aeruginosa. FEMS Microbiol Ecol 2023; 99:fiad128. [PMID: 37827541 DOI: 10.1093/femsec/fiad128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/30/2023] [Accepted: 10/11/2023] [Indexed: 10/14/2023] Open
Abstract
Important bacterial pathogens such as Pseudomonas aeruginosa produce several exoproducts such as siderophores, degradative enzymes, biosurfactants, and exopolysaccharides that are used extracellularly, benefiting all members of the population, hence being public goods. Since the production of public goods is a cooperative trait, it is in principle susceptible to cheating by individuals in the population who do not invest in their production, but use their benefits, hence increasing their fitness at the expense of the cooperators' fitness. Among the most studied virulence factors susceptible to cheating are siderophores and exoproteases, with several studies in vitro and some in animal infection models. In addition to these two well-known examples, cheating with other virulence factors such as exopolysaccharides, biosurfactants, eDNA production, secretion systems, and biofilm formation has also been studied. In this review, we discuss the evidence of the susceptibility of each of those virulence factors to cheating, as well as the mechanisms that counteract this behavior and the possible consequences for bacterial virulence.
Collapse
Affiliation(s)
- Katya Dafne Guadarrama-Orozco
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04360 Mexico City,Mexico
| | - Caleb Perez-Gonzalez
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04360 Mexico City,Mexico
| | - Kokila Kota
- Ramapo College of New Jersey, Biology Department, Mahwah, NJ 07430, USA
| | - Miguel Cocotl-Yañez
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04360 Mexico City,Mexico
| | - Jesús Guillermo Jiménez-Cortés
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04360 Mexico City,Mexico
| | - Miguel Díaz-Guerrero
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04360 Mexico City,Mexico
| | - Mariel Hernández-Garnica
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04360 Mexico City,Mexico
| | - Julia Munson
- Ramapo College of New Jersey, Biology Department, Mahwah, NJ 07430, USA
| | - Frederic Cadet
- PEACCEL, Artificial Intelligence Department, AI for Biologics, Paris, 75013, France
| | - Luis Esaú López-Jácome
- Laboratorio de Microbiología Clínica, División de Infectología, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, 14389 Mexico City, Mexico
| | - Ángel Yahir Estrada-Velasco
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04360 Mexico City,Mexico
| | - Ana María Fernández-Presas
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04360 Mexico City,Mexico
| | - Rodolfo García-Contreras
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04360 Mexico City,Mexico
| |
Collapse
|
22
|
McWilliam KR. Cell-cell communication in African trypanosomes. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001388. [PMID: 37643128 PMCID: PMC10482365 DOI: 10.1099/mic.0.001388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/15/2023] [Indexed: 08/31/2023]
Abstract
Years of research have shown us that unicellular organisms do not exist entirely in isolation, but rather that they are capable of an altogether far more sociable way of living. Single cells produce, receive and interpret signals, coordinating and changing their behaviour according to the information received. Although this cell-cell communication has long been considered the norm in the bacterial world, an increasing body of knowledge is demonstrating that single-celled eukaryotic parasites also maintain active social lives. This communication can drive parasite development, facilitate the invasion of new niches and, ultimately, influence infection outcome. In this review, I present the evidence for cell-cell communication during the life cycle of the African trypanosomes, from their mammalian hosts to their insect vectors, and reflect on the many remaining unanswered questions in this fascinating field.
Collapse
Affiliation(s)
- K. R. McWilliam
- Institute for Immunology and Infection Research, School of Biological Sciences, King’s Buildings, University of Edinburgh, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK
| |
Collapse
|
23
|
Tian J, Lin Y, Su X, Tan H, Gan C, Ragauskas AJ. Effects of Saccharomyces cerevisiae quorum sensing signal molecules on ethanol production in bioethanol fermentation process. Microbiol Res 2023; 271:127367. [PMID: 36989758 DOI: 10.1016/j.micres.2023.127367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/04/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023]
Abstract
In this study, the concentrations of Saccharomyces cerevisiae quorum sensing signal molecules (QSMs) were determined, not to mention the exploration of the effects of exogenous S. cerevisiae QSMs on the sole fermentation of S. cerevisiae and co-fermentation of S. cerevisiae and Lactobacillus plantarum. The results showed that the concentrations of three signal molecules (2-phenylethanol (2-PE), tyrosol and tryptophan) produced by S. cerevisiae increased with a higher bacteria density, which tends to become stable up to 118.02, 32.05 and 1.93 mg/L respectively when cultivating for 144 h. Among the three signaling molecules, only 2-PE promoted the ethanol production capacity of S. cerevisiae. The ethanol concentration of the sole fermentation of S. cerevisiae loaded with 120 mg/L 2-PE reached 3.2 g/L in 9 h, which was 58.7% higher than that of the group without 2-PE addition. Moreover, 2-PE reduced the negative impact of L. plantarum on S. cerevisiae. Within 12 h of the co-fermentation of L. plantarum and S. cerevisiae, the ethanol concentration in the co-fermentation group loaded with 2-PE reached 5.6 g/L, similar to that in the group fermenting with sole S. cerevisiae, and the yeast budding rate was also restored to 28.51%. qRT-PCR results of S. cerevisiae which was in sole fermentation with 2-PE addition for 9 h showed that the relative expression levels of ethanol dehydrogenase gene ADH1 in S. cerevisiae decreased by 25% and the relative expression levels of MLS1, CIT2, IDH1,CIT1 decreased by 26%, 30%, 22%,18%, respectively, meant that the glyoxylic and tricarboxylic acid cycles were greatly inhibited, which promotes the accumulation of ethanol. The results of this study provide basic data for using QSMs more than antibiotics in the the prevention of contamination during the industrialized bioethanol production.
Collapse
Affiliation(s)
- Jun Tian
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
| | - Yunqin Lin
- Guangdong Provincial Key Laboratory of A
|
|