1
|
Deng Z, Jin X, Liu B, Zhen H, Wang X. Unveiling the prognostic significance of RNA editing-related genes in colon cancer: evidence from bioinformatics and experiment. Eur J Med Res 2025; 30:94. [PMID: 39940052 PMCID: PMC11823094 DOI: 10.1186/s40001-025-02335-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 01/26/2025] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND RNA editing is recognized as a crucial factor in cancer biology. Its potential application in predicting the prognosis of colon adenocarcinoma (COAD) remains unexplored. METHODS RNA editing data of COAD patients were downloaded from the Synapse database. LASSO regression was used to construct the risk model and verified by the receiver operating characteristic (ROC) curve. GO and KEGG enrichment analyses were performed to delineate the biological significance of the differentially expressed genes. Finally, differential analysis and immunohistochemistry were used to verify the expression of adenosine deaminase 1 (ADAR1). RESULTS We evaluated a total of 4079 RNA editing sites in 514 COAD patients from Synapse database. A prognostic signature was constructed based on five genes were significantly associated with the prognosis of COAD patients including GNL3L, NUP43, MAGT1, EMP2, and ARSD. Univariate and multivariate Cox regression analysis revealed that RNA editing-related genes (RERGs)-related signature was an independent risk factor for COAD. Moreover, Experimental evidence shows that ADAR1 is highly expressed in colon adenocarcinoma and silencing ADAR1 can inhibit cancer cell proliferation. CONCLUSION We established a prognostic model based on five RERGs with strong predictive value. This model not only serves as a foundation for a novel prognostic tool but also facilitates the identification of potential drug candidates for treating COAD.
Collapse
Affiliation(s)
- Zhengcong Deng
- Hubei Third People's Hospital, Wuhan, 430033, Hubei, China
- Wuhan Donghu New Technology Development Zone Disease Prevention and Control Center, Wuhan, 430200, Hubei, China
| | - Xueqin Jin
- Hubei Third People's Hospital, Wuhan, 430033, Hubei, China
| | - Bingxue Liu
- Medical School, Jianghan University, Wuhan, 430056, Hubei, China
| | - Hongyan Zhen
- Medical School, Jianghan University, Wuhan, 430056, Hubei, China
| | - Xiang Wang
- Medical School, Jianghan University, Wuhan, 430056, Hubei, China.
- Wuhan University of Arts and Science, Wuhan, 430345, Hubei, China.
| |
Collapse
|
2
|
Kopec K, Quaranto D, DeSouza NR, Jarboe T, Islam HK, Moscatello A, Li XM, Geliebter J, Tiwari RK. The HOX Gene Family's Role as Prognostic and Diagnostic Biomarkers in Hematological and Solid Tumors. Cancers (Basel) 2025; 17:262. [PMID: 39858044 PMCID: PMC11763641 DOI: 10.3390/cancers17020262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/07/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
The HOX gene family encodes for regulatory transcription factors that play a crucial role in embryogenesis and differentiation of adult cells. This highly conserved family of genes consists of thirty-nine genes in humans that are located in four clusters, A-D, on different chromosomes. While early studies on the HOX gene family have been focused on embryonic development and its related disorders, research has shifted to examine aberrant expression of HOX genes and the subsequent implication in cancer prediction and progression. Due to their role of encoding master regulatory transcription factors, the abnormal expression of HOX genes has been shown to affect all stages of tumorigenesis and metastasis. This review highlights the novel role of the HOX family's clinical relevance as both prognostic and diagnostic biomarkers in hematological and solid tumors.
Collapse
Affiliation(s)
- Kaci Kopec
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA; (K.K.); (D.Q.); (N.R.D.); (T.J.); (H.K.I.); (A.M.); (X.-M.L.); (R.K.T.)
| | - Danielle Quaranto
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA; (K.K.); (D.Q.); (N.R.D.); (T.J.); (H.K.I.); (A.M.); (X.-M.L.); (R.K.T.)
| | - Nicole R. DeSouza
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA; (K.K.); (D.Q.); (N.R.D.); (T.J.); (H.K.I.); (A.M.); (X.-M.L.); (R.K.T.)
| | - Tara Jarboe
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA; (K.K.); (D.Q.); (N.R.D.); (T.J.); (H.K.I.); (A.M.); (X.-M.L.); (R.K.T.)
| | - Humayun K. Islam
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA; (K.K.); (D.Q.); (N.R.D.); (T.J.); (H.K.I.); (A.M.); (X.-M.L.); (R.K.T.)
- Department of Otolaryngology, New York Medical College, Valhalla, NY 10595, USA
| | - Augustine Moscatello
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA; (K.K.); (D.Q.); (N.R.D.); (T.J.); (H.K.I.); (A.M.); (X.-M.L.); (R.K.T.)
- Department of Otolaryngology, New York Medical College, Valhalla, NY 10595, USA
| | - Xiu-Min Li
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA; (K.K.); (D.Q.); (N.R.D.); (T.J.); (H.K.I.); (A.M.); (X.-M.L.); (R.K.T.)
- Department of Otolaryngology, New York Medical College, Valhalla, NY 10595, USA
- Department of Dermatology, New York Medical College, Valhalla, NY 10595, USA
| | - Jan Geliebter
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA; (K.K.); (D.Q.); (N.R.D.); (T.J.); (H.K.I.); (A.M.); (X.-M.L.); (R.K.T.)
- Department of Otolaryngology, New York Medical College, Valhalla, NY 10595, USA
| | - Raj K. Tiwari
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA; (K.K.); (D.Q.); (N.R.D.); (T.J.); (H.K.I.); (A.M.); (X.-M.L.); (R.K.T.)
- Department of Otolaryngology, New York Medical College, Valhalla, NY 10595, USA
| |
Collapse
|
3
|
Hosseini Farzad S, Lashkarboloki M, Mowla SJ, Soltani BM. LncRNA DANCR-V1 is a novel regulator of Wnt/β-catenin and TGF-β1/SMAD signaling pathways in colorectal cancer: an in vitro and in silico study. Mol Biol Rep 2024; 52:36. [PMID: 39643825 DOI: 10.1007/s11033-024-10128-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/19/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND DANCR is an oncogenic lncRNA associated with advanced colorectal cancer, one of the most common malignancies worldwide. This lncRNA has a new variant, DANCR-V1, whose function is not yet understood. In this study, we aimed to evaluate the expression pattern of DANCR-V1 and its regulatory mechanism in colorectal cancer. METHOD AND RESULT Bioinformatics analysis and RT-qPCR showed that DANCR-V1 expression was higher in colorectal cancer tissues than in normal pairs obtained from microarray data and 20 samples, respectively. LncRNA subcellular localization and hsa-miR-222 binding sites were predicted using bioinformatics tools. Dual luciferase assays confirmed that miR-222-mediated downregulation of DANCR-V1 through its targeting, and RT-qPCR showed that overexpression of miR-222 decreased the level of DANCR-V1. Functionally, Wnt/β-catenin and TGF-β1/SMAD-related genes changed under DANCR-V1 overexpression in the SW480 cell line, while their expression was reversed following miR-222 overexpression. Finally, at the cellular level, overexpression of DANCR-V1 elevated the proliferation and migration rates of SW480 cells, as determined using flow cytometry, western blotting and scratch assays. CONCLUSION Our data suggest that DANCR-V1 is a novel transcript variant that has crucial crosstalk with miR-222 via negative feedback and plays a critical role in colorectal cancer progression through Wnt/β-catenin and TGF-β1/SMAD signaling modulation.
Collapse
Affiliation(s)
- Sana Hosseini Farzad
- Genetics Department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mina Lashkarboloki
- Genetics Department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyed Javad Mowla
- Genetics Department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bahram M Soltani
- Genetics Department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
4
|
Hosseini MS, Bejnordi BE, Trinh VQH, Chan L, Hasan D, Li X, Yang S, Kim T, Zhang H, Wu T, Chinniah K, Maghsoudlou S, Zhang R, Zhu J, Khaki S, Buin A, Chaji F, Salehi A, Nguyen BN, Samaras D, Plataniotis KN. Computational pathology: A survey review and the way forward. J Pathol Inform 2024; 15:100357. [PMID: 38420608 PMCID: PMC10900832 DOI: 10.1016/j.jpi.2023.100357] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/21/2023] [Accepted: 12/23/2023] [Indexed: 03/02/2024] Open
Abstract
Computational Pathology (CPath) is an interdisciplinary science that augments developments of computational approaches to analyze and model medical histopathology images. The main objective for CPath is to develop infrastructure and workflows of digital diagnostics as an assistive CAD system for clinical pathology, facilitating transformational changes in the diagnosis and treatment of cancer that are mainly address by CPath tools. With evergrowing developments in deep learning and computer vision algorithms, and the ease of the data flow from digital pathology, currently CPath is witnessing a paradigm shift. Despite the sheer volume of engineering and scientific works being introduced for cancer image analysis, there is still a considerable gap of adopting and integrating these algorithms in clinical practice. This raises a significant question regarding the direction and trends that are undertaken in CPath. In this article we provide a comprehensive review of more than 800 papers to address the challenges faced in problem design all-the-way to the application and implementation viewpoints. We have catalogued each paper into a model-card by examining the key works and challenges faced to layout the current landscape in CPath. We hope this helps the community to locate relevant works and facilitate understanding of the field's future directions. In a nutshell, we oversee the CPath developments in cycle of stages which are required to be cohesively linked together to address the challenges associated with such multidisciplinary science. We overview this cycle from different perspectives of data-centric, model-centric, and application-centric problems. We finally sketch remaining challenges and provide directions for future technical developments and clinical integration of CPath. For updated information on this survey review paper and accessing to the original model cards repository, please refer to GitHub. Updated version of this draft can also be found from arXiv.
Collapse
Affiliation(s)
- Mahdi S. Hosseini
- Department of Computer Science and Software Engineering (CSSE), Concordia Univeristy, Montreal, QC H3H 2R9, Canada
| | | | - Vincent Quoc-Huy Trinh
- Institute for Research in Immunology and Cancer of the University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Lyndon Chan
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering (ECE), University of Toronto, Toronto, ON M5S 3G4, Canada
| | - Danial Hasan
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering (ECE), University of Toronto, Toronto, ON M5S 3G4, Canada
| | - Xingwen Li
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering (ECE), University of Toronto, Toronto, ON M5S 3G4, Canada
| | - Stephen Yang
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering (ECE), University of Toronto, Toronto, ON M5S 3G4, Canada
| | - Taehyo Kim
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering (ECE), University of Toronto, Toronto, ON M5S 3G4, Canada
| | - Haochen Zhang
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering (ECE), University of Toronto, Toronto, ON M5S 3G4, Canada
| | - Theodore Wu
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering (ECE), University of Toronto, Toronto, ON M5S 3G4, Canada
| | - Kajanan Chinniah
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering (ECE), University of Toronto, Toronto, ON M5S 3G4, Canada
| | - Sina Maghsoudlou
- Department of Computer Science and Software Engineering (CSSE), Concordia Univeristy, Montreal, QC H3H 2R9, Canada
| | - Ryan Zhang
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering (ECE), University of Toronto, Toronto, ON M5S 3G4, Canada
| | - Jiadai Zhu
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering (ECE), University of Toronto, Toronto, ON M5S 3G4, Canada
| | - Samir Khaki
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering (ECE), University of Toronto, Toronto, ON M5S 3G4, Canada
| | - Andrei Buin
- Huron Digitial Pathology, St. Jacobs, ON N0B 2N0, Canada
| | - Fatemeh Chaji
- Department of Computer Science and Software Engineering (CSSE), Concordia Univeristy, Montreal, QC H3H 2R9, Canada
| | - Ala Salehi
- Department of Electrical and Computer Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| | - Bich Ngoc Nguyen
- University of Montreal Hospital Center, Montreal, QC H2X 0C2, Canada
| | - Dimitris Samaras
- Department of Computer Science, Stony Brook University, Stony Brook, NY 11794, United States
| | - Konstantinos N. Plataniotis
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering (ECE), University of Toronto, Toronto, ON M5S 3G4, Canada
| |
Collapse
|
5
|
Kong ASY, Maran S, Loh HS. Navigating the interplay between BCL-2 family proteins, apoptosis, and autophagy in colorectal cancer. ADVANCES IN CANCER BIOLOGY - METASTASIS 2024; 11:100126. [DOI: 10.1016/j.adcanc.2024.100126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
6
|
Kudo Y, Nakamura K, Tsuzuki H, Hirota K, Kawai M, Takaya D, Fukuzawa K, Honma T, Yoshino Y, Nakamura M, Shiota M, Fujimoto N, Ikari A, Endo S. Docosahexaenoic acid enhances the treatment efficacy for castration-resistant prostate cancer by inhibiting autophagy through Atg4B inhibition. Arch Biochem Biophys 2024; 760:110135. [PMID: 39181384 DOI: 10.1016/j.abb.2024.110135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Autophagy induction in cancer is involved in cancer progression and the acquisition of resistance to anticancer agents. Therefore, autophagy is considered a potential therapeutic target in cancer therapy. In this study, we found that long-chain fatty acids (LCFAs) have inhibitory effects on Atg4B, which is essential for autophagosome formation, through screening based on the pharmacophore of 21f, a recently developed Atg4B inhibitor. Among these fatty acids, docosahexaenoic acid (DHA), a polyunsaturated fatty acid, exhibited the most potent Atg4B inhibitory activity. DHA inhibited autophagy induced by androgen receptor signaling inhibitors (ARSI) in LNCaP and 22Rv1 prostate cancer cells and significantly increased apoptotic cell death. Furthermore, we investigated the effect of DHA on resistance to ARSI by establishing darolutamide-resistant prostate cancer 22Rv1 (22Rv1/Dar) cells, which had developed resistance to darolutamide, a novel ARSI. At baseline, 22Rv1/Dar cells showed a higher autophagy level than parental 22Rv1 cells. DHA significantly suppressed Dar-induced autophagy and sensitized 22Rv1/Dar cells by inducing apoptotic cell death through mitochondrial dysfunction. These results suggest that DHA supplementation may improve prostate cancer therapy with ARSI.
Collapse
Affiliation(s)
- Yudai Kudo
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Kana Nakamura
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Honoka Tsuzuki
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Kotaro Hirota
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Mina Kawai
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Daisuke Takaya
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871, Japan
| | - Kaori Fukuzawa
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871, Japan
| | - Teruki Honma
- Center for Biosystems Dynamics Research, RIKEN, Kanagawa, 230-0045, Japan
| | - Yuta Yoshino
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Mitsuhiro Nakamura
- Laboratories of Drug Informatics, Department of Pharmacy Practice and Science, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Masaki Shiota
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Naohiro Fujimoto
- Department of Urology, University of Occupational and Environmental Health, Fukuoka, 807-8555, Japan
| | - Akira Ikari
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Satoshi Endo
- The United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, 501-1194, Japan; Center for One Medicine Innovative Translational Research (COMIT), Gifu University, Gifu, 501-1193, Japan.
| |
Collapse
|
7
|
Liu Y, Ming H, Xu L, Li L, Liu Q, Zhao J, Zhong C, Li H. DNA methylation analysis of the SDC2, SEPT9 and VIM genes in fecal DNA for colorectal cancer diagnosis. BMC Cancer 2024; 24:1205. [PMID: 39350171 PMCID: PMC11440654 DOI: 10.1186/s12885-024-12990-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Colorectal cancer is one of the most common cancers worldwide. DNA methylation sites may serve as a new gene signature for colorectal cancer diagnosis. The search for representative DNA methylation sites is urgently needed. This study aimed to systematically identify a methylation gene panel for colorectal cancer diagnosis via tissue and fecal samples. METHODS A total of 181 fecal and 50 tumor tissue samples were collected. They were obtained from 83 colorectal cancer patients and 98 healthy subjects. These samples were evaluated for DNA methylation of 9 target genes via quantitative bisulfite next-generation sequencing. We employed the rank-sum test to screen the colorectal cancer-specific methylation sites in the tissue and fecal cohorts. A data model was subsequently constructed and validated via the dedicated validation dataset. RESULTS Compared with the fecal and negative control samples, the colorectal cancer tissue samples presented significantly higher methylation rates for all the selected gene sites. The methylation rates of the tissue and preoperative fecal samples showed the same high and low rates at the same sites. After screening, a panel of 29 loci in the SDC2, SEPT9, and VIM genes proved to be reliable biomarkers for colorectal cancer diagnosis in fecal samples. Logistic regression models were then constructed and validated using this panel. The sensitivity of the model was 91.43% (95% CI = [89.69, 93.17]), the specificity was 100% (95% CI = [100,100]), and the AUC value is 99.31% (95% CI = [99,99.62]). The diagnostic accuracy of the model for stage I and stage II colorectal cancer was 100% (11/11) and 91.3% (21/23), respectively. Overall, this study confirms that the gene locus panel and the model can be used to diagnose colorectal cancer effectively through feces. CONCLUSIONS Our study identified a set of key methylation sites for colorectal cancer diagnosis from fecal samples, highlighting the importance of using tissue and fecal samples to accurately assess DNA methylation levels to screen for methylation sites, and developing an effective diagnostic model for colorectal cancer.
Collapse
Affiliation(s)
- Yue Liu
- Dalian Gentalker Biotech Co., Ltd., 9-2, Jinqi Road, Jinpu New District , Dalian, Liaoning, 116635, China
| | - Hongbo Ming
- Dalian Gentalker Biotech Co., Ltd., 9-2, Jinqi Road, Jinpu New District , Dalian, Liaoning, 116635, China
| | - Lizhi Xu
- Dalian Gentalker Biotech Co., Ltd., 9-2, Jinqi Road, Jinpu New District , Dalian, Liaoning, 116635, China
| | - Lizhen Li
- Dalian Gentalker Biotech Co., Ltd., 9-2, Jinqi Road, Jinpu New District , Dalian, Liaoning, 116635, China
| | - Qi Liu
- Dalian Gentalker Biotech Co., Ltd., 9-2, Jinqi Road, Jinpu New District , Dalian, Liaoning, 116635, China
| | - Jinyin Zhao
- Dalian Gentalker Biotech Co., Ltd., 9-2, Jinqi Road, Jinpu New District , Dalian, Liaoning, 116635, China
| | - Cundi Zhong
- Department of Laboratory, The Second Affiliated Hospital of Dalian Medical University, 216 Zhongshan Street, Ganjingzi District, Dalian, Liaoning, 116031, China.
| | - Hongzhi Li
- Dalian Gentalker Biotech Co., Ltd., 9-2, Jinqi Road, Jinpu New District , Dalian, Liaoning, 116635, China.
| |
Collapse
|
8
|
Neefs I, Tran TN, Ferrari A, Janssens S, Van Herck K, Op de Beeck K, Van Camp G, Peeters M, Fransen E, Hoeck S, Van Hal G. Clinicopathological and molecular differences between stage IV screen-detected and interval colorectal cancers in the Flemish screening program. Front Oncol 2024; 14:1409196. [PMID: 39286015 PMCID: PMC11402608 DOI: 10.3389/fonc.2024.1409196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 08/15/2024] [Indexed: 09/19/2024] Open
Abstract
Introduction Interval cancer (IC) is an important quality indicator in colorectal cancer (CRC) screening. Previously, we found that fecal immunochemical test (FIT) ICs are more common in women, older age, right-sided tumors, and advanced stage. Here, we extended our existing stage IV patient cohort with clinicopathological and molecular characteristics, to identify factors associated with FIT-IC. Methods Logistic regression models were fit to identify variables associated with the odds of having a stage IV FIT-IC. Multivariate models were corrected for gender, age, and location. Results A total of 292 screen-detected (SD) CRCs and 215 FIT-IC CRCs were included. FIT-IC CRC had 5 fold higher odds to be a neuroendocrine (NET) tumor and 2.5 fold higher odds to have lymphovascular invasion. Interestingly, some variables lost significance upon accounting for location. Thus, tumor location is a critical covariate that should always be included when evaluating factors related to FIT-IC. Conclusions We identified NETs and lymphovascular invasion as factors associated with increased odds of having a stage IV FIT-IC. Moreover, we highlight the importance of tumor location as a covariate in evaluating FIT-IC related factors. More research across all stages is needed to clarify how these insights might help to optimize the Flemish CRC screening program.
Collapse
Affiliation(s)
- Isabelle Neefs
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital (UZA), Edegem, Belgium
- Center for Oncological Research (CORE), University of Antwerp and Antwerp University Hospital (UZA), Antwerp, Belgium
| | - Thuy Ngan Tran
- Research group on Social Epidemiology and Health Policy, Department of Family Medicine and Population Health (FAMPOP), University of Antwerp, Antwerp, Belgium
- Centre for Cancer Detection, Bruges, Belgium
| | - Allegra Ferrari
- Research group on Social Epidemiology and Health Policy, Department of Family Medicine and Population Health (FAMPOP), University of Antwerp, Antwerp, Belgium
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | | | | | - Ken Op de Beeck
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital (UZA), Edegem, Belgium
- Center for Oncological Research (CORE), University of Antwerp and Antwerp University Hospital (UZA), Antwerp, Belgium
| | - Guy Van Camp
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital (UZA), Edegem, Belgium
- Center for Oncological Research (CORE), University of Antwerp and Antwerp University Hospital (UZA), Antwerp, Belgium
| | - Marc Peeters
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital (UZA), Edegem, Belgium
- Center for Oncological Research (CORE), University of Antwerp and Antwerp University Hospital (UZA), Antwerp, Belgium
| | - Erik Fransen
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital (UZA), Edegem, Belgium
| | - Sarah Hoeck
- Research group on Social Epidemiology and Health Policy, Department of Family Medicine and Population Health (FAMPOP), University of Antwerp, Antwerp, Belgium
- Centre for Cancer Detection, Bruges, Belgium
| | - Guido Van Hal
- Research group on Social Epidemiology and Health Policy, Department of Family Medicine and Population Health (FAMPOP), University of Antwerp, Antwerp, Belgium
- Centre for Cancer Detection, Bruges, Belgium
| |
Collapse
|
9
|
Al-Khazraji Y, Muzammil MA, Javid S, Tangella AV, Gohil NV, Saifullah H, Kanagala SG, Fariha F, Muneer A, Ahmed S, Shariq A. Novel regimens and treatment strategies in neoadjuvant therapy for colorectal cancer: A systematic review. Int J Health Sci (Qassim) 2024; 18:43-58. [PMID: 39282125 PMCID: PMC11393386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024] Open
Abstract
Objective The objective of this systematic review was to describe novel regimens and treatment strategies in neoadjuvant therapy for colorectal cancer (CRC). The aim was to summarize the current advancements in neoadjuvant chemotherapy (NACT) for CRC, including the use of cytotoxic drugs, targeted treatments, and immunotherapy. The analysis aimed to provide insights into the potential benefits and drawbacks of these novel approaches and highlight the need for further research to optimize NACT use in CRC and improve patient outcomes. Methods From October 20, 2023, to December 10, 2023, a comprehensive literature search was conducted across multiple databases, including PubMed, Ovid, Web of Science, the Cochrane Library, Cumulative Index to Nursing and Allied Health Literature, Embase, and Scopus. Studies addressing the use of and treatment strategies for CRC and neoadjuvant therapies were included. Screening was conducted in two steps, initially by title and abstract and then by full-text articles. English-language articles were considered, while preprints, non-English publications, and articles published as grey literature were excluded from the study. A total of 85 studies were selected for further analysis after screening and filtering. Results After filtering out duplicates and items that were irrelevant to our research query from the initial database search's 510 results, 397 unique articles were found. Eighty-five studies were chosen for additional analysis after the articles underwent two rounds of screening. Conclusion The review concluded that neoadjuvant therapy for CRC has evolved beyond conventional approaches and holds promise for improving patient outcomes. Future prospects for advancing neoadjuvant approaches are promising, with ongoing clinical trials investigating the refinement of strategies, identification of predictive biomarkers, and optimization of patient selection. The adoption of novel regimens, precision medicine, and immunotherapy offers opportunities to redefine treatment paradigms and enhance patient care in CRC.
Collapse
Affiliation(s)
| | | | - Saman Javid
- Department of Medicine, CMH Kharian Medical College, Kharian, Pakistan
| | | | - Namra Vinay Gohil
- Department of Medicine, Medical College Baroda, Vadodara, Gujarat, India
| | - Hanya Saifullah
- Department of Medicine, Medical College Baroda, CMH Lahore Medical College, Lahore, Pakistan
| | | | - Fnu Fariha
- Department of Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Asim Muneer
- Department of Adult Hematology Oncology, Prince Faisal Ca ncer Centre Buraidah, Al qaseem, Saudi Arabia
| | - Sumaira Ahmed
- Department of Gastroenterology, King Fahad Hospital, Burydah, KSA
| | - Ali Shariq
- Department of Pathology, College of Medicine, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
10
|
Alkan A, Doğaner Gİ, Tanrıverdi Ö. Serum Uric Acid Level May Be a Predictive Factor for BRAF V600E Mutation in Older Patients with Metastatic Colorectal Cancer: An Exploratory Analysis. Oncology 2024; 102:952-959. [PMID: 38952125 DOI: 10.1159/000539981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 06/19/2024] [Indexed: 07/03/2024]
Abstract
INTRODUCTION This study aimed to show the relationship between the serum uric acid level measured at diagnosis and the BRAF mutation status in the primary tumor tissue in patients with metastatic colorectal cancer. METHODS In this retrospective cross-sectional study, 264 patients (64% male) whose serum uric acid level was measured at the time of diagnosis and whose BRAF mutation status in the primary tumor was determined were included. RESULTS The BRAF mutation rate was 14% (n = 37). The median serum uric acid levels of all patients were 6.9 mg/dL (25%, 75% percentile range 3.7, 8.2). The serum uric acid level cut-off value was 6.6 mg/dL. Sensitivity and specificity for BRAF mutated patients were 84% and 27%, respectively. These rates were calculated as 85% and 70% in BRAF-mutated patients aged 65 and over. There was a significant correlation between BRAF mutation and high serum uric acid level, female gender, tumor located in the ascending colon, and multiple metastatic sites. The independent factors affecting BRAF mutation were age 65 and over, tumor in the ascending colon, and high serum uric acid level. CONCLUSION As a result, we concluded that high serum uric acid level measured during diagnosis in metastatic colorectal cancer is an accessible and economical biomarker that can predict BRAF mutation in patients aged 65 and over.
Collapse
Affiliation(s)
- Ali Alkan
- Department of Medical Oncology and Oncological Clinical Research Center, Muğla Sıtkı Koçman University Faculty of Medicine, Muğla, Turkey
- Muğla Sıtkı Koçman University Graduate School of Medical Sciences, Elderly Health PhD Program, Muğla, Turkey
| | | | - Özgür Tanrıverdi
- Department of Medical Oncology and Oncological Clinical Research Center, Muğla Sıtkı Koçman University Faculty of Medicine, Muğla, Turkey
- Muğla Sıtkı Koçman University Graduate School of Medical Sciences, Elderly Health PhD Program, Muğla, Turkey
| |
Collapse
|
11
|
Sebzda T, Karwacki J, Cichoń A, Modrzejewska K, Heimrath J, Łątka M, Gnus J, Gburek J. Association of Serum Proteases and Acute Phase Factors Levels with Survival Outcomes in Patients with Colorectal Cancer. Cancers (Basel) 2024; 16:2471. [PMID: 39001534 PMCID: PMC11240471 DOI: 10.3390/cancers16132471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/27/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
Colorectal cancer (CRC) represents a substantial burden on global healthcare, contributing to significant morbidity and mortality worldwide. Despite advances in screening methodologies, its incidence remains high, necessitating continued efforts in early detection and treatment. Neoplastic invasion and metastasis are primary determinants of CRC lethality, emphasizing the urgency of understanding underlying mechanisms to develop effective therapeutic strategies. This study aimed to explore the potential of serum biomarkers in predicting survival outcomes in CRC patients, with a focus on cathepsin B (CB), leukocytic elastase (LE), total sialic acid (TSA), lipid-associated sialic acid (LASA), antitrypsin activity (ATA), C-reactive protein (CRP), and cystatin C (CC). We recruited 185 CRC patients and 35 healthy controls, assessing demographic variables, tumor characteristics, and 7 serum biomarker levels, including (1) CB, (2) LE, (3) TSA, (4) LASA, (5) ATA, (6) CRP, and (7) CC. Statistical analyses included ANOVA with Tukey's post hoc tests and MANOVA for continuous variables. Student's t-test was used for dependent samples, while non-parametric tests like Mann-Whitney U and Wilcoxon signed-rank tests were applied for variables deviating from the normal distribution. Categorical variables were assessed using chi-square and Kruskal-Wallis tests. Spearman's rank correlation coefficient was utilized to examine variable correlations. Survival analysis employed the Kaplan-Meier method with a log-rank test for comparing survival times between groups. Significant associations were observed between CB (p = 0.04), LE (p = 0.01), and TSA (p = 0.008) levels and survival outcomes in CRC patients. Dukes' classification stages also showed a significant correlation with survival (p = 0.001). However, no significant associations were found for LASA, ATA, CRP, and CC. Multivariate analysis of LE, TSA, and ATA demonstrated a notable correlation with survival (p = 0.041), notwithstanding ATA's lack of significance in univariate analysis (p = 0.13). CB, LE, and TSA emerged as promising diagnostic markers with prognostic value in CRC, potentially aiding in early diagnosis and treatment planning. Further research is needed to validate these findings and explore additional prognostic indicators.
Collapse
Affiliation(s)
- Tadeusz Sebzda
- Department of Pathophysiology, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| | - Jakub Karwacki
- Department of Pathophysiology, Wroclaw Medical University, 50-368 Wroclaw, Poland;
- University Center of Excellence in Urology, Department of Minimally Invasive and Robotic Urology, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Anna Cichoń
- Regional Specialist Hospital of St. Barbara, 41-200 Sosnowiec, Poland;
| | | | | | - Mirosław Łątka
- Department of Biomedical Engineering, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland;
| | - Jan Gnus
- Department of Physiotherapy, Wroclaw Medical University, 50-355 Wroclaw, Poland;
| | - Jakub Gburek
- Department of Pharmaceutical Biochemistry, Wroclaw Medical University, 50-556 Wroclaw, Poland
| |
Collapse
|
12
|
Chen H, Jiang RY, Hua Z, Wang XW, Shi XL, Wang Y, Feng QQ, Luo J, Ning W, Shi YF, Zhang DK, Wang B, Jie JZ, Zhong DR. Comprehensive analysis of gene mutations and mismatch repair in Chinese colorectal cancer patients. World J Gastrointest Oncol 2024; 16:2673-2682. [PMID: 38994136 PMCID: PMC11236251 DOI: 10.4251/wjgo.v16.i6.2673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/23/2024] [Accepted: 04/12/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND RAS, BRAF, and mismatch repair (MMR)/microsatellite instability (MSI) are crucial biomarkers recommended by clinical practice guidelines for colorectal cancer (CRC). However, their characteristics and influencing factors in Chinese patients have not been thoroughly described. AIM To analyze the clinicopathological features of KRAS, NRAS, BRAF, and PIK3CA mutations and the DNA MMR status in CRC. METHODS We enrolled 2271 Chinese CRC patients at the China-Japan Friendship Hospital. MMR proteins were tested using immunohistochemical analysis, and the KRAS/NRAS/BRAF/PIK3CA mutations were determined using quantitative polymerase chain reaction. Microsatellite status was determined using an MSI detection kit. Statistical analyses were conducted using SPSS software and logistic regression. RESULTS The KRAS, NRAS, BRAF, and PIK3CA mutations were detected in 44.6%, 3.4%, 3.7%, and 3.9% of CRC patients, respectively. KRAS mutations were more likely to occur in patients with moderate-to-high differentiation. BRAF mutations were more likely to occur in patients with right-sided CRC, poorly differentiated, or no perineural invasion. Deficient MMR (dMMR) was detected in 7.9% of all patients and 16.8% of those with mucinous adenocarcinomas. KRAS, NRAS, BRAF, and PIK3CA mutations were detected in 29.6%, 1.1%, 8.1%, and 22.3% of patients with dMMR, respectively. The dMMR was more likely to occur in patients with a family history of CRC, aged < 50 years, right-sided CRC, poorly differentiated histology, no perineural invasion, and with carcinoma in situ, stage I, or stage II tumors. CONCLUSION This study analyzed the molecular profiles of KRAS, NRAS, BRAF, PIK3CA, and MMR/MSI in CRC, identifying key influencing factors, with implications for clinical management of CRC.
Collapse
Affiliation(s)
- Huang Chen
- Department of Pathology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Rui-Ying Jiang
- Department of Pathology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Zhan Hua
- Department of Gastrointestinal Surgery, China-Japan Friendship Hospital, Beijing 100029, China
| | - Xiao-Wei Wang
- Department of Pathology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Xiao-Li Shi
- Department of Scientific Research, Geneis, Beijing 100012, China
| | - Ye Wang
- Department of Pathology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Qian-Qian Feng
- Department of Pathology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Jie Luo
- Department of Pathology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Wu Ning
- Department of Gastrointestinal Surgery, China-Japan Friendship Hospital, Beijing 100029, China
| | - Yan-Fen Shi
- Department of Pathology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Da-Kui Zhang
- Department of Gastrointestinal Surgery, China-Japan Friendship Hospital, Beijing 100029, China
| | - Bei Wang
- Department of Pathology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Jian-Zheng Jie
- Department of Gastrointestinal Surgery, China-Japan Friendship Hospital, Beijing 100029, China
| | - Ding-Rong Zhong
- Department of Pathology, China-Japan Friendship Hospital, Beijing 100029, China
| |
Collapse
|
13
|
Chen H, Jiang RY, Hua Z, Wang XW, Shi XL, Wang Y, Feng QQ, Luo J, Ning W, Shi YF, Zhang DK, Wang B, Jie JZ, Zhong DR. Comprehensive analysis of gene mutations and mismatch repair in Chinese colorectal cancer patients. World J Gastrointest Oncol 2024; 16:2661-2670. [DOI: 10.4251/wjgo.v16.i6.2661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/23/2024] [Accepted: 04/12/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND RAS, BRAF, and mismatch repair (MMR)/microsatellite instability (MSI) are crucial biomarkers recommended by clinical practice guidelines for colorectal cancer (CRC). However, their characteristics and influencing factors in Chinese patients have not been thoroughly described.
AIM To analyze the clinicopathological features of KRAS, NRAS, BRAF, and PIK3CA mutations and the DNA MMR status in CRC.
METHODS We enrolled 2271 Chinese CRC patients at the China-Japan Friendship Hospital. MMR proteins were tested using immunohistochemical analysis, and the KRAS/NRAS/BRAF/PIK3CA mutations were determined using quantitative polymerase chain reaction. Microsatellite status was determined using an MSI detection kit. Statistical analyses were conducted using SPSS software and logistic regression.
RESULTS The KRAS, NRAS, BRAF, and PIK3CA mutations were detected in 44.6%, 3.4%, 3.7%, and 3.9% of CRC patients, respectively. KRAS mutations were more likely to occur in patients with moderate-to-high differentiation. BRAF mutations were more likely to occur in patients with right-sided CRC, poorly differentiated, or no perineural invasion. Deficient MMR (dMMR) was detected in 7.9% of all patients and 16.8% of those with mucinous adenocarcinomas. KRAS, NRAS, BRAF, and PIK3CA mutations were detected in 29.6%, 1.1%, 8.1%, and 22.3% of patients with dMMR, respectively. The dMMR was more likely to occur in patients with a family history of CRC, aged < 50 years, right-sided CRC, poorly differentiated histology, no perineural invasion, and with carcinoma in situ, stage I, or stage II tumors.
CONCLUSION This study analyzed the molecular profiles of KRAS, NRAS, BRAF, PIK3CA, and MMR/MSI in CRC, identifying key influencing factors, with implications for clinical management of CRC.
Collapse
Affiliation(s)
- Huang Chen
- Department of Pathology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Rui-Ying Jiang
- Department of Pathology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Zhan Hua
- Department of Gastrointestinal Surgery, China-Japan Friendship Hospital, Beijing 100029, China
| | - Xiao-Wei Wang
- Department of Pathology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Xiao-Li Shi
- Department of Scientific Research, Geneis, Beijing 100012, China
| | - Ye Wang
- Department of Pathology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Qian-Qian Feng
- Department of Pathology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Jie Luo
- Department of Pathology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Wu Ning
- Department of Gastrointestinal Surgery, China-Japan Friendship Hospital, Beijing 100029, China
| | - Yan-Fen Shi
- Department of Pathology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Da-Kui Zhang
- Department of Gastrointestinal Surgery, China-Japan Friendship Hospital, Beijing 100029, China
| | - Bei Wang
- Department of Pathology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Jian-Zheng Jie
- Department of Gastrointestinal Surgery, China-Japan Friendship Hospital, Beijing 100029, China
| | - Ding-Rong Zhong
- Department of Pathology, China-Japan Friendship Hospital, Beijing 100029, China
| |
Collapse
|
14
|
Kiran N, Yashaswini C, Maheshwari R, Bhattacharya S, Prajapati BG. Advances in Precision Medicine Approaches for Colorectal Cancer: From Molecular Profiling to Targeted Therapies. ACS Pharmacol Transl Sci 2024; 7:967-990. [PMID: 38633600 PMCID: PMC11019743 DOI: 10.1021/acsptsci.4c00008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 04/19/2024]
Abstract
Precision medicine is transforming colorectal cancer treatment through the integration of advanced technologies and biomarkers, enhancing personalized and effective disease management. Identification of key driver mutations and molecular profiling have deepened our comprehension of the genetic alterations in colorectal cancer, facilitating targeted therapy and immunotherapy selection. Biomarkers such as microsatellite instability (MSI) and DNA mismatch repair deficiency (dMMR) guide treatment decisions, opening avenues for immunotherapy. Emerging technologies such as liquid biopsies, artificial intelligence, and machine learning promise to revolutionize early detection, monitoring, and treatment selection in precision medicine. Despite these advancements, ethical and regulatory challenges, including equitable access and data privacy, emphasize the importance of responsible implementation. The dynamic nature of colorectal cancer, with its tumor heterogeneity and clonal evolution, underscores the necessity for adaptive and personalized treatment strategies. The future of precision medicine in colorectal cancer lies in its potential to enhance patient care, clinical outcomes, and our understanding of this intricate disease, marked by ongoing evolution in the field. The current reviews focus on providing in-depth knowledge on the various and diverse approaches utilized for precision medicine against colorectal cancer, at both molecular and biochemical levels.
Collapse
Affiliation(s)
- Neelakanta
Sarvashiva Kiran
- Department
of Biotechnology, School of Applied Sciences, REVA University, Bengaluru, Karnataka 560064, India
| | - Chandrashekar Yashaswini
- Department
of Biotechnology, School of Applied Sciences, REVA University, Bengaluru, Karnataka 560064, India
| | - Rahul Maheshwari
- School
of Pharmacy and Technology Management, SVKM’s
Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-University, Green Industrial Park, TSIIC,, Jadcherla, Hyderabad 509301, India
| | - Sankha Bhattacharya
- School
of Pharmacy and Technology Management, SVKM’S
NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India
| | - Bhupendra G. Prajapati
- Shree.
S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva, Gujarat 384012, India
| |
Collapse
|
15
|
Daems E, Bassini S, Mariën L, Op de Beeck H, Stratulat A, Zwaenepoel K, Vandamme T, Op de Beeck K, Koljenović S, Peeters M, Van Camp G, De Wael K. Singlet oxygen-based photoelectrochemical detection of single-point mutations in the KRAS oncogene. Biosens Bioelectron 2024; 249:115957. [PMID: 38199080 DOI: 10.1016/j.bios.2023.115957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024]
Abstract
Single nucleotide point mutations in the KRAS oncogene occur frequently in human cancers, rendering them intriguing targets for diagnosis, early detection and personalized treatment. Current detection methods are based on polymerase chain reaction, sometimes combined with next-generation sequencing, which can be expensive, complex and have limited availability. Here, we propose a novel singlet oxygen (1O2)-based photoelectrochemical detection methodology for single-point mutations, using KRAS mutations as a case study. This detection method combines the use of a sandwich assay, magnetic beads and robust chemical photosensitizers, that need only air and light to produce 1O2, to ensure high specificity and sensitivity. We demonstrate that hybridization of the sandwich hybrid at high temperatures enables discrimination between mutated and wild-type sequences with a detection rate of up to 93.9%. Additionally, the presence of background DNA sequences derived from human cell-line DNA, not containing the mutation of interest, did not result in a signal, highlighting the specificity of the methodology. A limit of detection as low as 112 pM (1.25 ng/mL) was achieved without employing any amplification techniques. The developed 1O2-based photoelectrochemical methodology exhibits unique features, including rapidity, ease of use, and affordability, highlighting its immense potential in the field of nucleic acid-based diagnostics.
Collapse
Affiliation(s)
- Elise Daems
- A-Sense Lab, Department of Bioscience Engineering, University of Antwerp, Antwerp, 2020, Belgium; NANOlab Center of Excellence, University of Antwerp, Antwerp, 2020, Belgium
| | - Simone Bassini
- A-Sense Lab, Department of Bioscience Engineering, University of Antwerp, Antwerp, 2020, Belgium; NANOlab Center of Excellence, University of Antwerp, Antwerp, 2020, Belgium
| | - Laura Mariën
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, 2650, Belgium; Center for Oncological Research, Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, 2610, Belgium
| | - Hannah Op de Beeck
- A-Sense Lab, Department of Bioscience Engineering, University of Antwerp, Antwerp, 2020, Belgium; NANOlab Center of Excellence, University of Antwerp, Antwerp, 2020, Belgium
| | - Alexandr Stratulat
- A-Sense Lab, Department of Bioscience Engineering, University of Antwerp, Antwerp, 2020, Belgium; NANOlab Center of Excellence, University of Antwerp, Antwerp, 2020, Belgium
| | - Karen Zwaenepoel
- Center for Oncological Research, Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, 2610, Belgium; Department of Pathology, Antwerp University Hospital, Edegem, 2650, Belgium
| | - Timon Vandamme
- Center for Oncological Research, Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, 2610, Belgium; Department of Oncology and Multidisciplinary Oncological Center Antwerp (MOCA), Antwerp University Hospital, Edegem, 2650, Belgium
| | - Ken Op de Beeck
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, 2650, Belgium; Center for Oncological Research, Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, 2610, Belgium
| | - Senada Koljenović
- Center for Oncological Research, Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, 2610, Belgium; Department of Pathology, Antwerp University Hospital, Edegem, 2650, Belgium
| | - Marc Peeters
- Center for Oncological Research, Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, 2610, Belgium; Department of Oncology and Multidisciplinary Oncological Center Antwerp (MOCA), Antwerp University Hospital, Edegem, 2650, Belgium
| | - Guy Van Camp
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, 2650, Belgium; Center for Oncological Research, Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, 2610, Belgium
| | - Karolien De Wael
- A-Sense Lab, Department of Bioscience Engineering, University of Antwerp, Antwerp, 2020, Belgium; NANOlab Center of Excellence, University of Antwerp, Antwerp, 2020, Belgium.
| |
Collapse
|
16
|
Shen C, Zheng B, Chen Z, Zhang W, Chen X, Xu S, Ji J, Fang X, Shi C. Identification of prognostic models for glycosylation-related subtypes and tumor microenvironment infiltration characteristics in clear cell renal cell cancer. Heliyon 2024; 10:e27710. [PMID: 38515689 PMCID: PMC10955297 DOI: 10.1016/j.heliyon.2024.e27710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 03/23/2024] Open
Abstract
Background One of the most fatal forms of cancer of the urinary system, renal cell carcinoma (RCC), significantly negatively impacts human health. Recent research reveals that abnormal glycosylation contributes to the growth and spread of tumors. However, there is no information on the function of genes related to glycosylation in RCC. Methods In this study, we created a technique that can be used to guide the choice of immunotherapy and chemotherapy regimens for RCC patients while predicting their survival prognosis. The Cancer Genome Atlas (TCGA) provided us with patient information, while the GeneCards database allowed us to collect genes involved in glycosylation. GSE29609 was used as external validation to assess the accuracy of prognostic models. The "ConsensusClusterPlus" program created molecular subtypes based on genes relevant to glycosylation discovered using differential expression analysis and univariate Cox analysis. We examined immune cell infiltration as measured by estimate, CIBERSORT, TIMER, and ssGSEA algorithms, Tumor Immune Dysfunction and Exclusion (TIDE) and exclusion of tumour stemness indices (TSIs) based on glycosylation-related molecular subtypes and risk profiles. Stratification, somatic mutation, nomogram creation, and chemotherapy response prediction were carried out based on risk factors. Results We built and verified 16 gene signatures associated with the prognosis of ccRCC patients, which are independent prognostic variables, and identified glycosylation-related genes by bioinformatics research. Cluster 2 is associated with lower human leukocyte antigen expression, worse overall survival, higher immunological checkpoints, and higher immune escape scores. In addition, cluster 2 had significantly better angiogenic activity, mesenchymal EMT, and stem ability scores. Higher immune checkpoint genes and human leukocyte antigens are associated with lower overall survival and a higher risk score. Higher estimated and immune scores, lesser tumor purity, lower mesenchymal EMT, and higher stem scores were all characteristics of the high-risk group. High amounts of tumor-infiltrating lymphocytes, a high mutation load, and a high copy number alteration frequency were present in the high-risk group.Discussion.According to our research, the 16-gene prognostic signature may be helpful in predicting prognosis and developing individualized treatments for patients with renal clear cell carcinoma, which may result in new personalized management options for these patients.
Collapse
Affiliation(s)
- Cheng Shen
- Department of Urology, Affiliated Hospital 2 of Nantong University, China
- Medical Research Center, Affiliated Hospital 2 of Nantong University, China
| | - Bing Zheng
- Department of Urology, Affiliated Hospital 2 of Nantong University, China
| | - Zhan Chen
- Department of Urology, Affiliated Hospital 2 of Nantong University, China
- Medical Research Center, Affiliated Hospital 2 of Nantong University, China
| | - Wei Zhang
- Department of Urology, Affiliated Hospital 2 of Nantong University, China
| | - Xinfeng Chen
- Department of Urology, Affiliated Hospital 2 of Nantong University, China
| | - Siyang Xu
- Clinical Medicine Specialty, Xinglin College of Nantong University, China
| | - Jianfeng Ji
- Department of Burn and plastic surgery, Affiliated Hospital 2 of Nantong University, China
| | - Xingxing Fang
- Nephrology Department, Affiliated Hospital 2 of Nantong University, China
| | - Chunmei Shi
- Department of Urology, Affiliated Hospital 2 of Nantong University, China
| |
Collapse
|
17
|
Karunakaran C, Niranjan V, Setlur AS, Pradeep D, Kumar J. Exploring the Role of Non-synonymous and Deleterious Variants Identified in Colorectal Cancer: A Multi-dimensional Computational Scrutiny of Exomes. Curr Genomics 2024; 25:41-64. [PMID: 38544823 PMCID: PMC10964087 DOI: 10.2174/0113892029285310231227105503] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/25/2023] [Accepted: 12/13/2023] [Indexed: 08/25/2024] Open
Abstract
Introduction Colorectal cancers are the world's third most commonly diagnosed type of cancer. Currently, there are several diagnostic and treatment options to combat it. However, a delay in detection of the disease is life-threatening. Additionally, a thorough analysis of the exomes of cancers reveals potential variation data that can be used for early disease prognosis. Methods By utilizing a comprehensive computational investigation, the present study aimed to reveal mutations that could potentially predispose to colorectal cancer. Ten colorectal cancer exomes were retrieved. Quality control assessments were performed using FastQC and MultiQC, gapped alignment to the human reference genome (hg19) using Bowtie2 and calling the germline variants using Haplotype caller in the GATK pipeline. The variants were filtered and annotated using SIFT and PolyPhen2 successfully categorized the mutations into synonymous, non-synonymous, start loss and stop gain mutations as well as marked them as possibly damaging, probably damaging and benign. This mutational profile helped in shortlisting frequently occurring mutations and associated genes, for which the downstream multi-dimensional expression analyses were carried out. Results Our work involved prioritizing the non-synonymous, deleterious SNPs since these polymorphisms bring about a functional alteration to the phenotype. The top variations associated with their genes with the highest frequency of occurrence included LGALS8, CTSB, RAD17, CPNE1, OPRM1, SEMA4D, MUC4, PDE4DIP, ELN and ADRA1A. An in-depth multi-dimensional downstream analysis of all these genes in terms of gene expression profiling and analysis and differential gene expression with regard to various cancer types revealed CTSB and CPNE1 as highly expressed and overregulated genes in colorectal cancer. Conclusion Our work provides insights into the various alterations that might possibly lead to colorectal cancer and suggests the possibility of utilizing the most important genes identified for wet-lab experimentation.
Collapse
Affiliation(s)
- Chandrashekar Karunakaran
- Department of Biotechnology, R V College of Engineering, Bangalore, 560059, affiliated to Visveswaraya Technological University, Belagavi, 590018, India
| | - Vidya Niranjan
- Department of Biotechnology, R V College of Engineering, Bangalore, 560059, affiliated to Visveswaraya Technological University, Belagavi, 590018, India
| | - Anagha S. Setlur
- Department of Biotechnology, R V College of Engineering, Bangalore, 560059, affiliated to Visveswaraya Technological University, Belagavi, 590018, India
| | - Dhanya Pradeep
- Department of Biotechnology, BMS College of Engineering, Bangalore, 560019, India
| | - Jitendra Kumar
- Biotechnology Industry Research Assistance Council (BIRAC), CGO complex Lodhi Road, New Delhi, India
| |
Collapse
|
18
|
Chauhan S, Sharma S. Recent Approaches on Molecular Markers, Treatment and Novel Drug Delivery System Used for the Management of Colorectal Cancer: A Comprehensive Review. Curr Pharm Biotechnol 2024; 25:1969-1985. [PMID: 38275054 DOI: 10.2174/0113892010270975231208113157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/29/2023] [Accepted: 10/16/2023] [Indexed: 01/27/2024]
Abstract
Colorectal cancer affects 1 in 25 females and 1 in 24 males, making it the third most frequent cancer with over 6,08,030 deaths worldwide, despite advancements in detection and treatments, including surgery, chemotherapeutics, radiotherapy, and immune therapeutics. Novel potential agents have increased survival in acute and chronic disease conditions, with a higher risk of side effects and cost. However, metastatic disease has an insignificant long-term diagnosis, and significant challenges remain due to last-stage diagnosis and treatment failure. Early detection, survival, and treatment efficacy are all improved by biomarkers. The advancement of cancer biomarkers' molecular pathology and genomics during the last three decades has improved therapy. Clinically useful prognostic biomarkers assist clinical judgment, for example, by predicting the success of EGFR-inhibiting antibodies in the presence of KRAS gene mutations. Few biomarkers are currently used in clinical settings, so further research is still needed. Nanocarriers, with materials like Carbon nanotubes and gold nanoparticles, provide targeted CRC drug delivery and diagnostics. Light-responsive drugs with gold and silica nanoparticles effectively target and destroy CRC cells. We evaluate the potential use of the long non-coding RNA (non-coding RNA) oncogene plasmacytoma variant translocation 1 (PVT1) as a diagnostic, prognostic, and therapeutic biomarker, along with the latest nanotech breakthroughs in CRC diagnosis and treatment.
Collapse
Affiliation(s)
- Sonia Chauhan
- Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, U.P, 201306, India
| | - Sakshi Sharma
- Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, U.P, 201306, India
| |
Collapse
|
19
|
Liu M, Xu D, Zhu B, Song C, Ni Q, Gao Z. ARHGEF16 expression correlates with proliferation, migration and invasion of colon cancer cells. Transl Cancer Res 2023; 12:3443-3452. [PMID: 38192976 PMCID: PMC10774027 DOI: 10.21037/tcr-23-228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 10/29/2023] [Indexed: 01/10/2024]
Abstract
Background Rho guanine nucleotide exchange factor 16 (ARHGEF16) is a newly discovered Rho-family guanine nucleotide exchange factor (GEF) involved in the activation of Rho-family GTPases. However, its roles in colon cancer cell proliferation, migration, and invasion remain unknown. This study analyzed the expression of ARHGEF16 in colon cancer and explored its biological effects on colon cancer cells, so as to find new therapeutic targets for the treatment of colon cancer. Methods The expression of ARHGEF16 in colon cancer tissues and cells was detected by bioinformatics analysis, western blot, and quantitative real time polymerase chain reaction (qRT-PCR) assays. The effects of overexpression and silencing of ARHGEF16 on the biological behavior of colon cancer cells were examined by Cell Counting Kit-8 (CCK-8), cell scratching and Transwell assays. Results The database showed that ARHGEF16 was highly expressed in colon cancer tissues. Validation with clinical fresh tissue specimens and colon cancer cell lines revealed that ARHGEF16 was highly expressed in both. The proliferation, growth, migration, and invasion ability of colon cancer cell lines increased significantly with the overexpression of ARHGEF16, while silencing ARHGEF16 showed the opposite effect. Conclusions The expression of ARHGEF16 is closely related to the migration and invasive ability of colon cancer cells, and overexpression of ARHGEF16 promotes the migration and invasion of colon cancer cells and correlates with the metastatic potential of colon cancer.
Collapse
Affiliation(s)
- Mengmeng Liu
- Department of Gastroenterology, Affiliated Zhongshan Hospital of Fudan University, Qingpu Branch, Shanghai, China
| | - Dong Xu
- Department of General Surgery, Affiliated Zhongshan Hospital of Fudan University, Qingpu Branch, Shanghai, China
| | - Baocheng Zhu
- Department of General Surgery, Affiliated Zhongshan Hospital of Fudan University, Qingpu Branch, Shanghai, China
| | - Chao Song
- Department of General Surgery, Affiliated Zhongshan Hospital of Fudan University, Qingpu Branch, Shanghai, China
- Department of General Surgery, Affiliated Zhongshan Hospital of Fudan University, Shanghai, China
| | - Qianzhi Ni
- Chinese Academy of Sciences Key Laboratory of Nutrition, University of Chinese Academy of Sciences, Shanghai, China
| | - Zhenjun Gao
- Department of Gastroenterology, Affiliated Zhongshan Hospital of Fudan University, Qingpu Branch, Shanghai, China
| |
Collapse
|
20
|
Órdenes P, Carril Pardo C, Elizondo-Vega R, Oyarce K. Current Research on Molecular Biomarkers for Colorectal Cancer in Stool Samples. BIOLOGY 2023; 13:15. [PMID: 38248446 PMCID: PMC10813333 DOI: 10.3390/biology13010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/08/2023] [Accepted: 12/10/2023] [Indexed: 01/23/2024]
Abstract
Colorectal cancer (CRC) is one of the most diagnosed cancers worldwide, with a high incidence and mortality rate when diagnosed late. Currently, the methods used in healthcare to diagnose CRC are the fecal occult blood test, flexible sigmoidoscopy, and colonoscopy. However, the lack of sensitivity and specificity and low population adherence are driving the need to implement other technologies that can identify biomarkers that not only help with early CRC detection but allow for the selection of more personalized treatment options. In this regard, the implementation of omics technologies, which can screen large pools of biological molecules, coupled with molecular validation, stands out as a promising tool for the discovery of new biomarkers from biopsied tissues or body fluids. This review delves into the current state of the art in the identification of novel CRC biomarkers that can distinguish cancerous tissue, specifically from fecal samples, as this could be the least invasive approach.
Collapse
Affiliation(s)
- Patricio Órdenes
- Laboratorio de Neuroinmunología, Facultad de Medicina y Ciencia, Universidad San Sebastián, Sede Concepción, Concepción 4030000, Chile; (P.Ó.); (C.C.P.)
| | - Claudio Carril Pardo
- Laboratorio de Neuroinmunología, Facultad de Medicina y Ciencia, Universidad San Sebastián, Sede Concepción, Concepción 4030000, Chile; (P.Ó.); (C.C.P.)
| | - Roberto Elizondo-Vega
- Laboratorio de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4070386, Chile;
| | - Karina Oyarce
- Laboratorio de Neuroinmunología, Facultad de Medicina y Ciencia, Universidad San Sebastián, Sede Concepción, Concepción 4030000, Chile; (P.Ó.); (C.C.P.)
| |
Collapse
|
21
|
Hanusova V, Matouskova P, Manethova M, Soukup J, John S, Zofka M, Vošmikova H, Krbal L, Rudolf E. Comparative Analysis of miRNA and EMT Markers in Metastatic Colorectal Cancer. Cancer Invest 2023; 41:837-847. [PMID: 37997798 DOI: 10.1080/07357907.2023.2283495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 11/09/2023] [Indexed: 11/25/2023]
Abstract
Colorectal cancer (CRC) is the fourth most commonly diagnosed malignant condition in the world. Micro RNAs (miRNAs) as well as epithelial to mesenchymal transition (EMT) play an important role in the pathogenesis of CRC. We performed a comparative analysis of the expression of selected miRNA genes and EMT markers in bioptic samples from patients (n = 45) with primary CRC or metastatic (m)CRC to the regional lymph node using reverse transcription-quantitative PCR and IHC staining. Results: Out of all miRNA analyzed, the miR-17 expression was most significantly different and associated with lower risk of CRC spread to the lymph node. In addition, significant relationships were found between the tumor side localization and several miRNAs expressions (miR-9, miR-29b, miR-19a, miR-19b, miR-21, miR-106a, miR-20a and miR-17). In addition, of the examined EMT markers, only VEGFA expression correlated with tumor progression (tumor grade G2). In the examined set of patient samples and their matched healthy tissue, several specific molecular markers (miRNAs associated with EMT and tumor progression) were identified with a promising prognostic potential. Their further examination in larger patient cohorts is planned to validate the present data.
Collapse
Affiliation(s)
- Veronika Hanusova
- Department of Medical Biology and Genetics, Faculty of Medicine, Charles University, Czech Republic
| | - Petra Matouskova
- Department of Biochemistry, Faculty of Pharmacy, Charles University, Czech Republic
| | - Monika Manethova
- The Fingerland Department of Pathology, Faculty of Medicine and University Hospital in Hradec Kralove, Charles University, Czech Republic
| | - Jiri Soukup
- The Fingerland Department of Pathology, Faculty of Medicine and University Hospital in Hradec Kralove, Charles University, Czech Republic
| | - Stanislav John
- Department of Medical Biology and Genetics, Faculty of Medicine, Charles University, Czech Republic
- The Department of Oncology and Radiotherapy, Faculty of Medicine and University Hospital in Hradec Kralove, Charles University, Czech Republic
| | - Martin Zofka
- Department of Biochemistry, Faculty of Pharmacy, Charles University, Czech Republic
| | - Hana Vošmikova
- The Fingerland Department of Pathology, Faculty of Medicine and University Hospital in Hradec Kralove, Charles University, Czech Republic
| | - Lukas Krbal
- The Fingerland Department of Pathology, Faculty of Medicine and University Hospital in Hradec Kralove, Charles University, Czech Republic
| | - Emil Rudolf
- Department of Medical Biology and Genetics, Faculty of Medicine, Charles University, Czech Republic
| |
Collapse
|
22
|
Pham TD, Sun X. Wavelet scattering networks in deep learning for discovering protein markers in a cohort of Swedish rectal cancer patients. Cancer Med 2023; 12:21502-21518. [PMID: 38014709 PMCID: PMC10726782 DOI: 10.1002/cam4.6672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/25/2023] [Accepted: 10/20/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Cancer biomarkers play a pivotal role in the diagnosis, prognosis, and treatment response prediction of the disease. In this study, we analyzed the expression levels of RhoB and DNp73 proteins in rectal cancer, as captured in immunohistochemical images, to predict the 5-year survival time of two patient groups: one with preoperative radiotherapy and one without. METHODS The utilization of deep convolutional neural networks in medical research, particularly in clinical cancer studies, has been gaining substantial attention. This success primarily stems from their ability to extract intricate image features that prove invaluable in machine learning. Another innovative method for extracting features at multiple levels is the wavelet-scattering network. Our study combines the strengths of these two convolution-based approaches to robustly extract image features related to protein expression. RESULTS The efficacy of our approach was evaluated across various tissue types, including tumor, biopsy, metastasis, and adjacent normal tissue. Statistical assessments demonstrated exceptional performance across a range of metrics, including prediction accuracy, classification accuracy, precision, and the area under the receiver operating characteristic curve. CONCLUSION These results underscore the potential of dual convolutional learning to assist clinical researchers in the timely validation and discovery of cancer biomarkers.
Collapse
Affiliation(s)
- Tuan D. Pham
- Barts and The London School of Medicine and Dentistry Queen MaryUniversity of London Turner StreetLondonUK
| | - Xiao‐Feng Sun
- Division of Oncology Department of Biomedical and Clinical SciencesLinkoping UniversityLinkopingSweden
| |
Collapse
|
23
|
Islam MS, Gopalan V, Lam AK, Shiddiky MJA. Current advances in detecting genetic and epigenetic biomarkers of colorectal cancer. Biosens Bioelectron 2023; 239:115611. [PMID: 37619478 DOI: 10.1016/j.bios.2023.115611] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 08/07/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023]
Abstract
Colorectal carcinoma (CRC) is the third most common cancer in terms of diagnosis and the second in terms of mortality. Recent studies have shown that various proteins, extracellular vesicles (i.e., exosomes), specific genetic variants, gene transcripts, cell-free DNA (cfDNA), circulating tumor DNA (ctDNA), microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and altered epigenetic patterns, can be used to detect, and assess the prognosis of CRC. Over the last decade, a plethora of conventional methodologies (e.g., polymerase chain reaction [PCR], direct sequencing, enzyme-linked immunosorbent assay [ELISA], microarray, in situ hybridization) as well as advanced analytical methodologies (e.g., microfluidics, electrochemical biosensors, surface-enhanced Raman spectroscopy [SERS]) have been developed for analyzing genetic and epigenetic biomarkers using both optical and non-optical tools. Despite these methodologies, no gold standard detection method has yet been implemented that can analyze CRC with high specificity and sensitivity in an inexpensive, simple, and time-efficient manner. Moreover, until now, no study has critically reviewed the advantages and limitations of these methodologies. Here, an overview of the most used genetic and epigenetic biomarkers for CRC and their detection methods are discussed. Furthermore, a summary of the major biological, technical, and clinical challenges and advantages/limitations of existing techniques is also presented.
Collapse
Affiliation(s)
- Md Sajedul Islam
- Cancer Molecular Pathology, School of Medicine & Dentistry, Griffith University, Gold Coast Campus, Southport, QLD, 4222, Australia; Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, 4222, Australia
| | - Vinod Gopalan
- Cancer Molecular Pathology, School of Medicine & Dentistry, Griffith University, Gold Coast Campus, Southport, QLD, 4222, Australia; Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, 4222, Australia.
| | - Alfred K Lam
- Cancer Molecular Pathology, School of Medicine & Dentistry, Griffith University, Gold Coast Campus, Southport, QLD, 4222, Australia; Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, 4222, Australia; Pathology Queensland, Gold Coast University Hospital, Southport, QLD, 4215, Australia
| | - Muhammad J A Shiddiky
- Rural Health Research Institute, Charles Sturt University, Orange, NSW, 2800, Australia.
| |
Collapse
|
24
|
Mobeen SA, Saxena P, Jain AK, Deval R, Riazunnisa K, Pradhan D. Integrated bioinformatics approach to unwind key genes and pathways involved in colorectal cancer. J Cancer Res Ther 2023; 19:1766-1774. [PMID: 38376276 DOI: 10.4103/jcrt.jcrt_620_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 12/13/2021] [Indexed: 02/21/2024]
Abstract
BACKGROUND Colorectal cancer (CRC) is the fifth leading cause of death in India. Until now, the exact pathogenesis concerning CRC signaling pathways is largely unknown; however, the diseased condition is believed to deteriorate with lifestyle, aging, and inherited genetic disorders. Hence, the identification of hub genes and therapeutic targets is of great importance for disease monitoring. OBJECTIVE Identification of hub genes and targets for identification of candidate hub genes for CRC diagnosis and monitoring. MATERIALS AND METHODS The present study applied gene expression analysis by integrating two profile datasets (GSE20916 and GSE33113) from NCBI-GEO database to elucidate the potential key candidate genes and pathways in CRC. Differentially expressed genes (DEGs) between CRC (195 CRC tissues) and healthy control (46 normal mucosal tissue) were sorted using GEO2R tool. Further, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis were performed using Cluster Profiler in Rv. 3.6.1. Moreover, protein-protein interactions (PPI), module detection, and hub gene identification were accomplished and visualized through the Search Tool for the Retrieval of Interacting Genes, Molecular Complex Detection (MCODE) plug-in of Cytoscape v3.8.0. Further hub genes were imported into ToppGene webserver for pathway analysis and prognostic expression analysis was conducted using Gene Expression Profiling Interactive Analysis webserver. RESULTS A total of 2221 DEGs, including 1286 up-regulated and 935down-regulated genes mainly enriched in signaling pathways of NOD-like receptor, FoxO, AMPK signalling and leishmaniasis. Three key modules were detected from PPI network using MCODE. Besides, top 20 high prioritized hub genes were selected. Further, prognostic expression analysis revealed ten of the hub genes, namely IL1B, CD44, Glyceraldehyde-3-phosphate dehydrogenase (GAPDH, MMP9, CREB1, STAT1, vascular endothelial growth factor (VEGFA), CDC5 L, Ataxia-telangiectasia mutated (ATM + and CDH1 to be differently expressed in normal and cancer patients. CONCLUSION The present study proposed five novel therapeutic targets, i.e., ATM, GAPDH, CREB1, VEGFA, and CDH1 genes that might provide new insights into molecular oncogenesis of CRC.
Collapse
Affiliation(s)
- Syeda Anjum Mobeen
- Department of Biotechnology and Bioinformatics, Yogi Vemana University, Andhra Pradesh, India
| | - Pallavi Saxena
- Biomedical Informatics Centre, Indian Council of Medical Research, National Institute of Pathology, New Delhi, India
- Department of Biotechnology, Invertis University, Bareilly, Uttar Pradesh, India
| | - Arun Kumar Jain
- Biomedical Informatics Centre, Indian Council of Medical Research, National Institute of Pathology, New Delhi, India
| | - Ravi Deval
- Department of Biotechnology, Invertis University, Bareilly, Uttar Pradesh, India
| | - Khateef Riazunnisa
- Department of Biotechnology and Bioinformatics, Yogi Vemana University, Andhra Pradesh, India
| | | |
Collapse
|
25
|
Wagner SJ, Reisenbüchler D, West NP, Niehues JM, Zhu J, Foersch S, Veldhuizen GP, Quirke P, Grabsch HI, van den Brandt PA, Hutchins GGA, Richman SD, Yuan T, Langer R, Jenniskens JCA, Offermans K, Mueller W, Gray R, Gruber SB, Greenson JK, Rennert G, Bonner JD, Schmolze D, Jonnagaddala J, Hawkins NJ, Ward RL, Morton D, Seymour M, Magill L, Nowak M, Hay J, Koelzer VH, Church DN, Matek C, Geppert C, Peng C, Zhi C, Ouyang X, James JA, Loughrey MB, Salto-Tellez M, Brenner H, Hoffmeister M, Truhn D, Schnabel JA, Boxberg M, Peng T, Kather JN. Transformer-based biomarker prediction from colorectal cancer histology: A large-scale multicentric study. Cancer Cell 2023; 41:1650-1661.e4. [PMID: 37652006 PMCID: PMC10507381 DOI: 10.1016/j.ccell.2023.08.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 06/18/2023] [Accepted: 08/07/2023] [Indexed: 09/02/2023]
Abstract
Deep learning (DL) can accelerate the prediction of prognostic biomarkers from routine pathology slides in colorectal cancer (CRC). However, current approaches rely on convolutional neural networks (CNNs) and have mostly been validated on small patient cohorts. Here, we develop a new transformer-based pipeline for end-to-end biomarker prediction from pathology slides by combining a pre-trained transformer encoder with a transformer network for patch aggregation. Our transformer-based approach substantially improves the performance, generalizability, data efficiency, and interpretability as compared with current state-of-the-art algorithms. After training and evaluating on a large multicenter cohort of over 13,000 patients from 16 colorectal cancer cohorts, we achieve a sensitivity of 0.99 with a negative predictive value of over 0.99 for prediction of microsatellite instability (MSI) on surgical resection specimens. We demonstrate that resection specimen-only training reaches clinical-grade performance on endoscopic biopsy tissue, solving a long-standing diagnostic problem.
Collapse
Affiliation(s)
- Sophia J Wagner
- Helmholtz Munich - German Research Center for Environment and Health, Munich, Germany; School of Computation, Information and Technology, Technical University of Munich, Munich, Germany; Else Kroener Fresenius Center for Digital Health (EFFZ), Technical University Dresden, Dresden, Germany
| | - Daniel Reisenbüchler
- Helmholtz Munich - German Research Center for Environment and Health, Munich, Germany
| | - Nicholas P West
- Institute of Pathology, University Medical Center Mainz, Mainz, Germany
| | - Jan Moritz Niehues
- Else Kroener Fresenius Center for Digital Health (EFFZ), Technical University Dresden, Dresden, Germany
| | - Jiefu Zhu
- Else Kroener Fresenius Center for Digital Health (EFFZ), Technical University Dresden, Dresden, Germany
| | - Sebastian Foersch
- Institute of Pathology, University Medical Center Mainz, Mainz, Germany
| | | | - Philip Quirke
- Division of Pathology and Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Heike I Grabsch
- Division of Pathology and Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK; Department of Pathology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Piet A van den Brandt
- Department of Epidemiology, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Gordon G A Hutchins
- Division of Pathology and Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Susan D Richman
- Division of Pathology and Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Tanwei Yuan
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rupert Langer
- Institute of Pathology und Molecular Pathology, Johannes Kepler University Hospital Linz, Linz, Österreich
| | - Josien C A Jenniskens
- Department of Epidemiology, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Kelly Offermans
- Department of Epidemiology, Maastricht University Medical Center+, Maastricht, the Netherlands
| | | | - Richard Gray
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Stephen B Gruber
- Center for Precision Medicine and Department of Medical Oncology, City of Hope National Medical Center, Duarte, CA, USA
| | - Joel K Greenson
- Department of Pathology, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Gad Rennert
- Department of Community Medicine & Epidemiology, Lady Davis Carmel Medical Center, Ruth & Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel; Steve and Cindy Rasmussen Institute for Genomic Medicine, Lady Davis Carmel Medical Center and Technion Faculty of Medicine, Clalit National Cancer Control Center, Haifa, Israel
| | - Joseph D Bonner
- Department of Community Medicine & Epidemiology, Lady Davis Carmel Medical Center, Ruth & Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Daniel Schmolze
- Center for Precision Medicine and Department of Medical Oncology, City of Hope National Medical Center, Duarte, CA, USA
| | - Jitendra Jonnagaddala
- School of Population Health, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Nicholas J Hawkins
- School of Medical Sciences, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Robyn L Ward
- School of Medical Sciences, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Dion Morton
- University Hospital Birmingham, Birmingham, UK
| | | | - Laura Magill
- University of Birmingham Clinical Trials Unit, Birmingham, UK
| | - Marta Nowak
- Department of Pathology and Molecular Pathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Jennifer Hay
- Glasgow Tissue Research Facility, University of Glasgow, Queen Elizabeth University Hospital, Glasgow, UK
| | - Viktor H Koelzer
- Department of Pathology and Molecular Pathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland; Department of Oncology, University of Oxford, Oxford, UK; Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, UK
| | - David N Church
- Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, UK; Oxford NIHR Comprehensive Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Christian Matek
- Helmholtz Munich - German Research Center for Environment and Health, Munich, Germany; Institute of Pathology, University Hospital Erlangen, FAU Erlangen-Nuremberg, Erlangen, Germany; Comprehensive Cancer Center Erlangen-EMN (CCC), University Hospital Erlangen, FAU Erlangen-Nuremberg, Erlangen, Germany
| | - Carol Geppert
- Institute of Pathology, University Hospital Erlangen, FAU Erlangen-Nuremberg, Erlangen, Germany; Comprehensive Cancer Center Erlangen-EMN (CCC), University Hospital Erlangen, FAU Erlangen-Nuremberg, Erlangen, Germany
| | - Chaolong Peng
- Medical School, Jianggang Shan University, Jiangxi, China
| | - Cheng Zhi
- Department of Pathology, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaoming Ouyang
- Department of Pathology, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jacqueline A James
- Precision Medicine Centre of Excellence, Health Sciences Building, The Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK; Regional Molecular Diagnostic Service, Belfast Health and Social Care Trust, Belfast, UK; The Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Maurice B Loughrey
- The Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK; Department of Cellular Pathology, Belfast Health and Social Care Trust, Belfast, UK; Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - Manuel Salto-Tellez
- Precision Medicine Centre of Excellence, Health Sciences Building, The Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK; Regional Molecular Diagnostic Service, Belfast Health and Social Care Trust, Belfast, UK; Integrated Pathology Unit, Institute for Cancer Research and Royal Marsden Hospital, London, UK
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany; Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany; German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniel Truhn
- Department of Diagnostic and Interventional Radiology, University Hospital RWTH Aachen, Aachen, Germany
| | - Julia A Schnabel
- Helmholtz Munich - German Research Center for Environment and Health, Munich, Germany; School of Computation, Information and Technology, Technical University of Munich, Munich, Germany; School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Melanie Boxberg
- Institute of Pathology, Technical University Munich, Munich, Germany; Institute of Pathology Munich-North, Munich, Germany
| | - Tingying Peng
- Helmholtz Munich - German Research Center for Environment and Health, Munich, Germany.
| | - Jakob Nikolas Kather
- Else Kroener Fresenius Center for Digital Health (EFFZ), Technical University Dresden, Dresden, Germany; Division of Pathology and Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK; Medical Oncology, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg.
| |
Collapse
|
26
|
Wu H, Dong H, Ren S, Chen J, Zhang Y, Dai M, Wu Y, Zhang X. Exploration of novel clusters and prognostic value of immune‑related signatures and identify HAMP as hub gene in colorectal cancer. Oncol Lett 2023; 26:360. [PMID: 37545621 PMCID: PMC10398624 DOI: 10.3892/ol.2023.13946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/31/2023] [Indexed: 08/08/2023] Open
Abstract
Immune checkpoint inhibitors currently serve an important role in prolonging patients' overall survival. However, the prognostic signatures of immune checkpoint inhibitors in colorectal cancer (CRC) remain uncertain and more knowledge on the genetic characteristics of colorectal cancer is needed. Patients with CRC from The Cancer Genome Atlas were classified into high-immunity group and low-immunity group based on median scores from single-sample gene set enrichment analysis using the GSVA package. We explored immune status by immune scores, stromal scores and tumor purity scores in ESTIMATE package and surveyed the difference of immune cells distribution with CIBERSORT package. Eighteen genes were selected using the LASSO Cox regression method and a prognostic risk model was constructed. Compared with patients in the low-risk group, those in the high-risk group had a significantly shorter survival time. For assessment of the prognostic validity of the risk model, receiver operating characteristic curves with areas under the curve of 0.769, 0.774 and 0.771 for 1, 3 and 5 years respectively. Differences in molecular mechanisms between high- and low-risk groups were analyzed using the clusterProfiler package. Tumor Immune Dysfunction and Exclusion data were downloaded and analyzed. The top 5 enriched pathways in the high-risk group involved 'calcium signaling', 'dilated cardiomyopathy', 'extracellular matrix receptor interaction', 'hypertrophic cardiomyopathy' and 'neuroactive ligand receptor interaction'. HAMP was identified as a hub gene, which was highly expressed in tumor samples. The results of the present study indicate that the prognostic model based on both immune-related genes and HAMP has the potential to support personalized treatment.
Collapse
Affiliation(s)
- Hongyuan Wu
- Department of Radiation Oncology, Affiliated Dongguan People's Hospital of Southern Medical University, Dongguan, Guangdong 523009, P.R. China
- Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, Dongguan Institute of Clinical Cancer Research, The Tenth Affiliated Hospital of Southern Medical University, Dongguan, Guangdong 523009, P.R. China
| | - Heling Dong
- School of Sports Education, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Shaofang Ren
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Jianxin Chen
- Department of General Surgery, Affiliated Dongguan People's Hospital of Southern Medical University, Dongguan, Guangdong 523009, P.R. China
| | - Yan Zhang
- Department of Radiation Oncology, Affiliated Dongguan People's Hospital of Southern Medical University, Dongguan, Guangdong 523009, P.R. China
| | - Meng Dai
- Department of Health Management, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yinfen Wu
- Department of Oncology, Affiliated Dongguan People's Hospital of Southern Medical University, Dongguan, Guangdong 523009, P.R. China
| | - Xuefang Zhang
- Department of Radiation Oncology, Affiliated Dongguan People's Hospital of Southern Medical University, Dongguan, Guangdong 523009, P.R. China
- Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, Dongguan Institute of Clinical Cancer Research, The Tenth Affiliated Hospital of Southern Medical University, Dongguan, Guangdong 523009, P.R. China
| |
Collapse
|
27
|
Fortune EE, Zaleta AK, Saxton MC. Biomarker testing communication, familiarity, and informational needs among people living with breast, colorectal, and lung cancer. PATIENT EDUCATION AND COUNSELING 2023; 112:107720. [PMID: 37062167 DOI: 10.1016/j.pec.2023.107720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/06/2023] [Accepted: 03/29/2023] [Indexed: 05/09/2023]
Abstract
OBJECTIVES This study aims to characterize patient experiences with biomarker testing, including history of biomarker testing, related communication and education, self-perceived familiarity and informational needs. METHODS 436 U.S. adults diagnosed with lung (38%), colorectal (35%) or breast cancer (27%) from 2018 to 2022 completed a survey. Two logistic regressions were conducted to predict patients' familiarity with biomarker testing and informational needs. RESULTS Despite high biomarker testing rates (85%), half of respondents reported low familiarity with biomarker testing and three-quarters reported outstanding informational needs. Regression models indicate those patients who have greater health literacy and report having conversations with their oncologists about biomarker testing have more familiarity with biomarker testing and less informational needs, even after controlling for important sociodemographic factors. CONCLUSIONS There is an opportunity to improve patients' familiarity with biomarker testing and decrease outstanding informational needs by focusing on factors such as health literacy and patient-provider communication, which could further cultivate patients' understanding of the importance of biomarker testing in cancer care. PRACTICE IMPLICATIONS These findings underscore the importance of patient-provider relationships and the need for additional tools that assist providers in assessing patients' health literacy and facilitating conversations with patients, especially those focused on complex topics such as biomarker testing.
Collapse
Affiliation(s)
- Erica E Fortune
- Cancer Support Community, Research and Training Institute, Philadelphia, PA, USA.
| | - Alexandra K Zaleta
- Cancer Support Community, Research and Training Institute, Philadelphia, PA, USA
| | | |
Collapse
|
28
|
Hernández HG, Aranzazu-Moya GC, Pinzón-Reyes EH. Aberrant AHRR, ADAMTS2 and FAM184 DNA Methylation: Candidate Biomarkers in the Oral Rinse of Heavy Smokers. Biomedicines 2023; 11:1797. [PMID: 37509437 PMCID: PMC10376800 DOI: 10.3390/biomedicines11071797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/17/2023] [Accepted: 05/24/2023] [Indexed: 07/30/2023] Open
Abstract
OBJECTIVE To identify DNA methylation patterns of heavy smokers in oral rinse samples. METHODS Genome-wide DNA methylation data was imported from Gene Expression Omnibus GSE70977 using the GEOquery package. Two independent sets were analyzed: (a) 71 epigenomes of cancer-free subjects (heavy smokers n = 37 vs. non-smokers n = 31); for concordance assessment (b) 139 oral-cancer patients' epigenomes (heavy smokers n = 92 vs. non-smokers n = 47). Differential DNA methylation for CpG positions and at the regional level was determined using Limma and DMRcate Bioconductor packages. The linear model included sex, age, and alcohol consumption. The statistical threshold was set to p < 0.05. Functional gene prioritization analysis was performed for gene-targeted analysis. RESULTS In individuals without cancer and heavy smokers, the FAM184B gene was found with two CpG positions differentially hypermethylated (p = 0.012 after FDR adjustment), in a region of 48 bp with an absolute methylation difference >10% between groups (p = 1.76 × 10-8). In the analysis corresponding to oral-cancer patients, we found AHRR differentially hypomethylated cancer patients, but also in subjects without oral cancer in the targeted analyses. Remarkably, ADAMTS2 was found differentially hypermethylated in heavy smokers without a diagnosis of cancer in two consecutive probes cg05575921 (p = 3.13 × 10-7) and cg10208897 (p = 1.36 × 10-5). CONCLUSIONS Differentially methylated AHRR, ADAMTS2, and FAM184B genes are biomarker candidates in oral rinse samples.
Collapse
Affiliation(s)
- Hernán Guillermo Hernández
- School of Dentistry, Universidad Santo Tomás, Bucaramanga 680001, Colombia
- PhD Program in Dentistry, Universidad Santo Tomás, Bucaramanga 680001, Colombia
| | | | - Efraín Hernando Pinzón-Reyes
- Facultad de Ciencias Médicas y de la Salud, Instituto de Investigación Masira, Universidad de Santander, Bucaramanga 680003, Colombia
| |
Collapse
|
29
|
Yu D, Lu Z, Wang R, Xiang Y, Li H, Lu J, Zhang L, Chen H, Li W, Luan X, Chen L. FXR agonists for colorectal and liver cancers, as a stand-alone or in combination therapy. Biochem Pharmacol 2023; 212:115570. [PMID: 37119860 DOI: 10.1016/j.bcp.2023.115570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/01/2023]
Abstract
Farnesoid X receptor (FXR, NR1H4) is generally considered as a tumor suppressor of colorectal and liver cancers. The interaction between FXR, bile acids (BAs) and gut microbiota is closely associated with an increased risk of colorectal and liver cancers. Increasing evidence shows that FXR agonists may be potential therapeutic agents for colorectal and liver cancers. However, FXR agonists alone do not produce the desired results due to the complicated pathogenesis and single therapeutic mechanism, which suggests that effective treatments will require a multimodal approach. Based on the principle of improvingefficacy andreducingside effects, combination therapy is currently receiving considerable attention. In this review, colorectal and liver cancers are grouped together to discuss the effects of FXR agonists alone or in combination for combating the two cancers. We hope that this review will provide a theoretical basis for the clinical application of novel FXR agonists or combination with FXR agonists against colorectal and liver cancers.
Collapse
Affiliation(s)
- Danmei Yu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhou Lu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Ruyu Wang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yusen Xiang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hongtao Li
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jiani Lu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Lijun Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hongzhuan Chen
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Weihua Li
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xin Luan
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Lili Chen
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
30
|
Maryam S, Krukiewicz K, Haq IU, Khan AA, Yahya G, Cavalu S. Interleukins (Cytokines) as Biomarkers in Colorectal Cancer: Progression, Detection, and Monitoring. J Clin Med 2023; 12:jcm12093127. [PMID: 37176567 PMCID: PMC10179696 DOI: 10.3390/jcm12093127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Cancer is the primary cause of death in economically developed countries and the second leading cause in developing countries. Colorectal cancer (CRC) is the third most common cause of cancer-related deaths worldwide. Risk factors for CRC include obesity, a diet low in fruits and vegetables, physical inactivity, and smoking. CRC has a poor prognosis, and there is a critical need for new diagnostic and prognostic biomarkers to reduce related deaths. Recently, studies have focused more on molecular testing to guide targeted treatments for CRC patients. The most crucial feature of activated immune cells is the production and release of growth factors and cytokines that modulate the inflammatory conditions in tumor tissues. The cytokine network is valuable for the prognosis and pathogenesis of colorectal cancer as they can aid in the cost-effective and non-invasive detection of cancer. A large number of interleukins (IL) released by the immune system at various stages of CRC can act as "biomarkers". They play diverse functions in colorectal cancer, and include IL-4, IL-6, IL-8, IL-11, IL-17A, IL-22, IL-23, IL-33, TNF, TGF-β, and vascular endothelial growth factor (VEGF), which are pro-tumorigenic genes. However, there are an inadequate number of studies in this area considering its correlation with cytokine profiles that are clinically useful in diagnosing cancer. A better understanding of cytokine levels to establish diagnostic pathways entails an understanding of cytokine interactions and the regulation of their various biochemical signaling pathways in healthy individuals. This review provides a comprehensive summary of some interleukins as immunological biomarkers of CRC.
Collapse
Affiliation(s)
- Sajida Maryam
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad 44000, Pakistan
| | - Katarzyna Krukiewicz
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, 44-100 Gliwice, Poland
- Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, Konarskiego 22B, 44-100 Gliwice, Poland
| | - Ihtisham Ul Haq
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad 44000, Pakistan
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, 44-100 Gliwice, Poland
- Joint Doctoral School, Silesian University of Technology, Akademicka 2A, 44-100 Gliwice, Poland
| | - Awal Ayaz Khan
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad 44000, Pakistan
| | - Galal Yahya
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Al Sharqia, Egypt
- Department of Molecular Genetics, Faculty of Biology, Technical University of Kaiserslautern, Paul-Ehrlich Str. 24, 67663 Kaiserslautern, Germany
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania
| |
Collapse
|
31
|
Ho V, Chung L, Wilkinson K, Lea V, Lim SH, Abubakar A, Ng W, Lee M, Roberts TL, Chua W, Lee CS. Prognostic Significance of MRE11 Overexpression in Colorectal Cancer Patients. Cancers (Basel) 2023; 15:cancers15092438. [PMID: 37173905 PMCID: PMC10177562 DOI: 10.3390/cancers15092438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/20/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023] Open
Abstract
Meiotic recombination 11 (MRE11) plays a critical role in the DNA damage response and maintenance of genome stability and is associated with the prognosis for numerous malignancies. Here, we explored the clinicopathological significance and prognostic value of MRE11 expression in colorectal cancer (CRC), a leading cause of cancer-related deaths worldwide. Samples from 408 patients who underwent surgery for colon and rectal cancer between 2006 and 2011, including a sub-cohort of 127 (31%) patients treated with adjuvant therapy, were analyzed. In Kaplan-Meier survival analyses, we found that high MRE11 expression in the tumor center (TC) was significantly associated with poor disease-free survival (DFS; p = 0.045) and overall survival (OS; p = 0.039). Intriguingly, high MRE11 expression in the TC was also significantly correlated with reduced DFS (p = 0.005) and OS (p = 0.010) in the subgroup with right-sided primary CRC. In multivariate analyses, high MRE11 expression (hazard ratio [HR] = 1.697, 95% confidence interval [CI]: 1.034-2.785; p = 0.036) and lymphovascular/perineural invasion (LVI/PNI; HR = 1.922, 95% CI 1.122-3.293; p = 0.017) showed significant association with worse OS in patients with right-sided tumors but not those with left-sided tumors. Moreover, in patients with right-sided tumors, high MRE11 was associated with worse OS for those with lymph node involvement (p = 0.006) and LVI/PNI (p = 0.049). Collectively, our results suggest that MRE11 may serve as an independent prognostic marker in those with right-sided severe CRC, with clinical value in the management of these patients.
Collapse
Affiliation(s)
- Vincent Ho
- School of Medicine, Western Sydney University, Sydney, NSW 2560, Australia
- Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia
| | - Liping Chung
- School of Medicine, Western Sydney University, Sydney, NSW 2560, Australia
- Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia
| | - Kate Wilkinson
- Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia
- Department of Medical Oncology, Liverpool Hospital, Liverpool, NSW 2170, Australia
| | - Vivienne Lea
- School of Medicine, Western Sydney University, Sydney, NSW 2560, Australia
- Department of Anatomical Pathology, Liverpool Hospital, Liverpool, NSW 2170, Australia
| | - Stephanie H Lim
- Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia
- Macarthur Cancer Therapy Centre, Campbelltown Hospital, Sydney, NSW 2560, Australia
| | - Askar Abubakar
- School of Medicine, Western Sydney University, Sydney, NSW 2560, Australia
- Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia
| | - Weng Ng
- Department of Medical Oncology, Liverpool Hospital, Liverpool, NSW 2170, Australia
| | - Mark Lee
- Department of Radiation Oncology, Liverpool Hospital, Liverpool, NSW 2170, Australia
| | - Tara L Roberts
- School of Medicine, Western Sydney University, Sydney, NSW 2560, Australia
- Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia
- South Western Sydney Clinical School, University of New South Wales, Liverpool Hospital, Liverpool, NSW 2170, Australia
| | - Wei Chua
- School of Medicine, Western Sydney University, Sydney, NSW 2560, Australia
- Department of Medical Oncology, Liverpool Hospital, Liverpool, NSW 2170, Australia
- Discipline of Medical Oncology, School of Medicine, Western Sydney University, Liverpool Hospital, Liverpool, NSW 2170, Australia
| | - Cheok Soon Lee
- School of Medicine, Western Sydney University, Sydney, NSW 2560, Australia
- Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia
- Department of Anatomical Pathology, Liverpool Hospital, Liverpool, NSW 2170, Australia
- South Western Sydney Clinical School, University of New South Wales, Liverpool Hospital, Liverpool, NSW 2170, Australia
- Discipline of Pathology, School of Medicine, Western Sydney University, Sydney, NSW 2560, Australia
| |
Collapse
|
32
|
Mokhtari K, Peymani M, Rashidi M, Hushmandi K, Ghaedi K, Taheriazam A, Hashemi M. Colon cancer transcriptome. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 180-181:49-82. [PMID: 37059270 DOI: 10.1016/j.pbiomolbio.2023.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 04/16/2023]
Abstract
Over the last four decades, methodological innovations have continuously changed transcriptome profiling. It is now feasible to sequence and quantify the transcriptional outputs of individual cells or thousands of samples using RNA sequencing (RNA-seq). These transcriptomes serve as a connection between cellular behaviors and their underlying molecular mechanisms, such as mutations. This relationship, in the context of cancer, provides a chance to unravel tumor complexity and heterogeneity and uncover novel biomarkers or treatment options. Since colon cancer is one of the most frequent malignancies, its prognosis and diagnosis seem to be critical. The transcriptome technology is developing for an earlier and more accurate diagnosis of cancer which can provide better protectivity and prognostic utility to medical teams and patients. A transcriptome is a whole set of expressed coding and non-coding RNAs in an individual or cell population. The cancer transcriptome includes RNA-based changes. The combined genome and transcriptome of a patient may provide a comprehensive picture of their cancer, and this information is beginning to affect treatment decision-making in real-time. A full assessment of the transcriptome of colon (colorectal) cancer has been assessed in this review paper based on risk factors such as age, obesity, gender, alcohol use, race, and also different stages of cancer, as well as non-coding RNAs like circRNAs, miRNAs, lncRNAs, and siRNAs. Similarly, they have been examined independently in the transcriptome study of colon cancer.
Collapse
Affiliation(s)
- Khatere Mokhtari
- Department of Modern Biology, ACECR Institute of Higher Education (Isfahan Branch), Isfahan, Iran
| | - Maryam Peymani
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, 4815733971, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, 4815733971, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Kamran Ghaedi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
33
|
Farouk S, El-Shenawy R, Khairy AM, Bader El-Din NG. Overexpression of miRNA 26a and 26b with MMP-9 are valuable diagnostic biomarkers for colorectal cancer patients. Biomark Med 2023; 17:159-169. [PMID: 37097025 DOI: 10.2217/bmm-2022-0861] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/23/2023] [Indexed: 04/26/2023] Open
Abstract
Background: The key role of miRNA expression in incidence and progression of colorectal cancer (CLC) have been developed over the last decade. Materials & methods: A total of 153 subjects were enrolled into two phases: 14 selected miRNAs were first evaluated in 50 subjects, then miR-26a and miR-26b relative expression were further evaluated in 103 subjects and their target protein MMP-9 was measured. Results: miR-26a and -26b showed highly significant overexpression. Both miR-26a and -26b (p < 0.001) had high diagnostic efficacy for CRC. There was a significant increase in serum MMP-9 protein in CRC patients with positive correlation with miR-26a and -26b expression levels (p < 0.001). Conclusion: miRNA 26a and 26b with MMP-9 can be used as diagnostic biomarker for CRC patients.
Collapse
Affiliation(s)
- Sally Farouk
- Department of Microbial Biotechnology, National Research Centre, Dokki, 12622, Egypt
| | - Reem El-Shenawy
- Department of Microbial Biotechnology, National Research Centre, Dokki, 12622, Egypt
| | - Ahmed M Khairy
- Department of Endemic Medicine, Faculty of Medicine, Cairo University, Giza, 11562, Egypt
| | - Noha G Bader El-Din
- Department of Microbial Biotechnology, National Research Centre, Dokki, 12622, Egypt
| |
Collapse
|
34
|
Sattar RSA, Verma R, Nimisha, Kumar A, Dar GM, Apurva, Sharma AK, Kumari I, Ahmad E, Ali A, Mahajan B, Saluja SS. Diagnostic and prognostic biomarkers in colorectal cancer and the potential role of exosomes in drug delivery. Cell Signal 2022; 99:110413. [PMID: 35907519 DOI: 10.1016/j.cellsig.2022.110413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 11/03/2022]
Abstract
Colorectal cancer (CRC) is the third most common cancer with the second most frequent cause of death worldwide. One fourth to one fifth of the CRC cases are detected at advance stage. Early detection of colorectal cancer might help in decreasing mortality and morbidity worldwide. CRC being a heterogeneous disease, new non-invasive approaches are needed to complement and improve the screening and management of CRC. Reliable and early detectable biomarkers would improve diagnosis, prognosis, therapeutic responses, and will enable the prediction of drug response and recurrence risk. Over the past decades molecular research has demonstrated the potentials of CTCs, ctDNAs, circulating mRNAs, ncRNAs, and exosomes as tumor biomarkers. Non-invasive screening approaches using fecal samples for identification of altered gut microbes in CRC is also gaining attention. Exosomes can be potential candidates that can be employed in the drug delivery system. Further, the integration of in vitro, in vivo and in silico models that involve CRC biomarkers will help to understand the interactions occurring at the cellular level. This review summarizes recent update on CRC biomarkers and their application along with the nanoparticles followed by the application of organoid culture in CRC.
Collapse
Affiliation(s)
- Real Sumayya Abdul Sattar
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Renu Verma
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Nimisha
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Arun Kumar
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Ghulam Mehdi Dar
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Apurva
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Abhay Kumar Sharma
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Indu Kumari
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Ejaj Ahmad
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Asgar Ali
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Bhawna Mahajan
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India; Department of Biochemistry, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Sundeep Singh Saluja
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India; Department of GI Surgery, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India.
| |
Collapse
|
35
|
AVELLA P, VASCHETTI R, CAPPUCCIO M, GAMBALE F, DE MEIS L, RAFANELLI F, BRUNESE MC, GUERRA G, SCACCHI A, ROCCA A. The role of liver surgery in simultaneous synchronous colorectal liver metastases and colorectal cancer resections: a literature review of 1730 patients underwent open and minimally invasive surgery. Minerva Surg 2022; 77:582-590. [DOI: 10.23736/s2724-5691.22.09716-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
Maslankova J, Vecurkovska I, Rabajdova M, Katuchova J, Kicka M, Gayova M, Katuch V. Regulation of transforming growth factor-β signaling as a therapeutic approach to treating colorectal cancer. World J Gastroenterol 2022. [PMID: 36156927 DOI: 10.3748/wjg.v28.i33.4744.pmid:36156927;pmcid:pmc9476856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
According to data from 2020, Slovakia has long been among the top five countries with the highest incidence rate of colorectal cancer (CRC) worldwide, and the rate is continuing to rise every year. In approximately 80% of CRC cases, allelic loss (loss of heterozygosity, LOH) occurs in the long arm of chromosome 18q. The most important genes that can be silenced by 18q LOH or mutations are small mothers against decapentaplegic homolog (SMAD) 2 and SMAD4, which are intracellular mediators of transforming growth factor (TGF)-β superfamily signals. TGF-β plays an important role in the pro-oncogenic processes, including such properties as invasion, epithelial-mesenchymal transition (commonly known as EMT), promotion of angiogenesis, and immunomodulatory effects. Several recent studies have reported that activation of TGF-β signaling is related to drug resistance in CRC. Because the mechanisms of drug resistance are different between patients in different stages of CRC, personalized treatment is more effective. Therefore, knowledge of the activation and inhibition of factors that affect the TGF-β signaling pathway is very important.
Collapse
Affiliation(s)
- Jana Maslankova
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Safarik University in Kosice, Kosice 04011, Slovakia
| | - Ivana Vecurkovska
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Safarik University in Kosice, Kosice 04011, Slovakia
| | - Miroslava Rabajdova
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Safarik University in Kosice, Kosice 04011, Slovakia
| | - Jana Katuchova
- First Department of Surgery, Medical Faculty of Safarik University, Kosice 04011, Kosicky kraj, Slovakia.
| | - Milos Kicka
- First Department of Surgery, Medical Faculty of Safarik University, Kosice 04011, Kosicky kraj, Slovakia
| | - Michala Gayova
- Department of Burns and Reconstructive Surgery, Medical Faculty at Safarik University and University Hospital, Kosice 04011, Slovakia
| | - Vladimir Katuch
- Department of Neurosurgery, Medical Faculty at Safarik University and University Hospital, Kosice 04011, Slovakia
| |
Collapse
|
37
|
Magnetic Nanoparticle-Based Electrochemical Sensing Platform Using Ferrocene-Labelled Peptide Nucleic Acid for the Early Diagnosis of Colorectal Cancer. BIOSENSORS 2022; 12:bios12090736. [PMID: 36140121 PMCID: PMC9496070 DOI: 10.3390/bios12090736] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 02/06/2023]
Abstract
Diagnostic biomarkers based on epigenetic changes such as DNA methylation are promising tools for early cancer diagnosis. However, there are significant difficulties in directly and specifically detecting methylated DNA regions. Here, we report an electrochemical sensing system based on magnetic nanoparticles that enable a quantitative and selective analysis of the methylated septin9 (mSEPT9) gene, which is considered a diagnostic marker in early stage colorectal cancer (CRC). Methylation levels of SEPT9 in CRC samples were successfully followed by the selective recognition ability of a related peptide nucleic acid (PNA) after hybridization with DNA fragments in human patients’ serums and plasma (n = 10). Moreover, this system was also adapted into a point-of-care (POC) device for a one-step detection platform. The detection of mSEPT9 demonstrated a limit of detection (LOD) value of 0.37% and interference-free measurement in the presence of branched-chain amino acid transaminase 1 (BCAT1) and SRY box transcription factor 21 antisense divergent transcript 1 (SOX21-AS1). The currently proposed functional platform has substantial prospects in translational applications of early CRC detection.
Collapse
|
38
|
Maslankova J, Vecurkovska I, Rabajdova M, Katuchova J, Kicka M, Gayova M, Katuch V. Regulation of transforming growth factor-β signaling as a therapeutic approach to treating colorectal cancer. World J Gastroenterol 2022; 28:4744-4761. [PMID: 36156927 PMCID: PMC9476856 DOI: 10.3748/wjg.v28.i33.4744] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/06/2022] [Accepted: 08/16/2022] [Indexed: 02/06/2023] Open
Abstract
According to data from 2020, Slovakia has long been among the top five countries with the highest incidence rate of colorectal cancer (CRC) worldwide, and the rate is continuing to rise every year. In approximately 80% of CRC cases, allelic loss (loss of heterozygosity, LOH) occurs in the long arm of chromosome 18q. The most important genes that can be silenced by 18q LOH or mutations are small mothers against decapentaplegic homolog (SMAD) 2 and SMAD4, which are intracellular mediators of transforming growth factor (TGF)-β superfamily signals. TGF-β plays an important role in the pro-oncogenic processes, including such properties as invasion, epithelial-mesenchymal transition (commonly known as EMT), promotion of angiogenesis, and immunomodulatory effects. Several recent studies have reported that activation of TGF-β signaling is related to drug resistance in CRC. Because the mechanisms of drug resistance are different between patients in different stages of CRC, personalized treatment is more effective. Therefore, knowledge of the activation and inhibition of factors that affect the TGF-β signaling pathway is very important.
Collapse
Affiliation(s)
- Jana Maslankova
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Safarik University in Kosice, Kosice 04011, Slovakia
| | - Ivana Vecurkovska
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Safarik University in Kosice, Kosice 04011, Slovakia
| | - Miroslava Rabajdova
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Safarik University in Kosice, Kosice 04011, Slovakia
| | - Jana Katuchova
- First Department of Surgery, Medical Faculty of Safarik University, Kosice 04011, Kosicky kraj, Slovakia
| | - Milos Kicka
- First Department of Surgery, Medical Faculty of Safarik University, Kosice 04011, Kosicky kraj, Slovakia
| | - Michala Gayova
- Department of Burns and Reconstructive Surgery, Medical Faculty at Safarik University and University Hospital, Kosice 04011, Slovakia
| | - Vladimir Katuch
- Department of Neurosurgery, Medical Faculty at Safarik University and University Hospital, Kosice 04011, Slovakia
| |
Collapse
|
39
|
Prognostic Impact of TP53 Mutations and Tumor Mutational Load in Colorectal Cancer. GASTROINTESTINAL DISORDERS 2022. [DOI: 10.3390/gidisord4030016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The DNA damage response (DDR) is critical for maintaining genome stability, and abnormal DDR—resulting from mutations in DNA damage-sensing and repair proteins—is a hallmark of cancer. Here, we aimed to investigate the predictive power of DDR gene mutations and the tumor mutational load (TML) for survival outcomes in a cohort of 22 rectal cancer patients who received pre-operative neoadjuvant therapy. Univariate analysis revealed that TML-high and TP53 mutations were significantly associated with worse overall survival (OS) with TML-high retaining significance in multivariate analyses. Kaplan–Meier survival analyses further showed TML-high was associated with worse disease-free (p = 0.036) and OS (p = 0.024) results in our patient cohort. A total of 53 somatic mutations were identified in 22 samples with eight (36%) containing mutations in DDR genes, including ATM, ATR, CHEK2, MRE11A, RAD50, NBN, ERCC2 and TP53. TP53 was the most frequently mutated gene, and TP53 mutations were significantly associated with worse OS (p = 0.023) in Kaplan–Meier survival analyses. Thus, our data indicate that TML and TP53 mutations have prognostic value for rectal cancer patients and may be important independent biomarkers for patient management. This suggests that prognostic determination for rectal cancer patients receiving pre-operative neoadjuvant therapy should include consideration of the initial TML and tumor genetic status.
Collapse
|
40
|
Loss of CHGA Protein as a Potential Biomarker for Colon Cancer Diagnosis: A Study on Biomarker Discovery by Machine Learning and Confirmation by Immunohistochemistry in Colorectal Cancer Tissue Microarrays. Cancers (Basel) 2022; 14:cancers14112664. [PMID: 35681650 PMCID: PMC9179857 DOI: 10.3390/cancers14112664] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary The identification of effective novel biomarkers is emergently needed in colon cancer patients. In the present study, firstly we predicted that CHGA could be a biomarker for colon cancer based on the protein–protein interaction network of all the reported biomarkers that were collected from our colorectal cancer biomarker database (CBD). Then we verified our results using a diagnostic test in gene expression data and an immunohistochemistry test. The results of this study suggest that a loss of CHGA expression from the normal colon and adjacent mucosa to colon cancer may be used as a valuable biomarker for early diagnosis of colon cancer patients. Abstract Background. The incidence of colorectal cancers has been constantly increasing. Although the mortality has slightly decreased, it is far from satisfaction. Precise early diagnosis for colorectal cancer has been a great challenge in order to improve patient survival. Patients and Methods. We started with searching for protein biomarkers based on our colorectal cancer biomarker database (CBD), finding differential expressed genes (GEGs) and non-DEGs from RNA sequencing (RNA-seq) data, and further predicted new biomarkers of protein–protein interaction (PPI) networks by machine learning (ML) methods. The best-selected biomarker was further verified by a receiver operating characteristic (ROC) test from microarray and RNA-seq data, biological network, and functional analysis, and immunohistochemistry in the tissue arrays from 198 specimens. Results. There were twelve proteins (MYO5A, CHGA, MAPK13, VDAC1, CCNA2, YWHAZ, CDK5, GNB3, CAMK2G, MAPK10, SDC2, and ADCY5) which were predicted by ML as colon cancer candidate diagnosis biomarkers. These predicted biomarkers showed close relationships with reported biomarkers of the PPI network and shared some pathways. An ROC test showed the CHGA protein with the best diagnostic accuracy (AUC = 0.9 in microarray data and 0.995 in RNA-seq data) among these candidate protein biomarkers. Furthermore, immunohistochemistry examination on our colon cancer tissue microarray samples further confirmed our bioinformatical prediction, indicating that CHGA may be used as a potential biomarker for early diagnosis of colon cancer patients. Conclusions. CHGA could be a potential candidate biomarker for diagnosing earlier colon cancer in the patients.
Collapse
|
41
|
Jiang X, Jiang Z, Jiang M, Sun Y. Berberine as a Potential Agent for the Treatment of Colorectal Cancer. Front Med (Lausanne) 2022; 9:886996. [PMID: 35572960 PMCID: PMC9096113 DOI: 10.3389/fmed.2022.886996] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/29/2022] [Indexed: 01/10/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most commonly diagnosed and deadly malignancies worldwide. The incidence of CRC has been increasing, especially in young people. Although great advances have been made in managing CRC, the prognosis is unfavorable. Numerous studies have shown that berberine (BBR) is a safe and effective agent presenting significant antitumor effects. Nevertheless, the detailed underlying mechanism in treating CRC remains indistinct. In this review, we herein offer beneficial evidence for the utilization of BBR in the management and treatment of CRC, and describe the underlying mechanism(s). The review emphasizes several therapeutic effects of BBR and confirms that BBR could suppress CRC by modulating gene expression, the cell cycle, the inflammatory response, oxidative stress, and several signaling pathways. In addition, BBR also displays antitumor effects in CRC by regulating the gut microbiota and mucosal barrier function. This review emphasizes BBR as a potentially effective and safe drug for CRC therapy.
Collapse
Affiliation(s)
- Xi Jiang
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhongxiu Jiang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Min Jiang
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yan Sun
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Yan Sun
| |
Collapse
|
42
|
Seely KD, Morgan AD, Hagenstein LD, Florey GM, Small JM. Bacterial Involvement in Progression and Metastasis of Colorectal Neoplasia. Cancers (Basel) 2022; 14:1019. [PMID: 35205767 PMCID: PMC8870662 DOI: 10.3390/cancers14041019] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 02/06/2023] Open
Abstract
While the gut microbiome is composed of numerous bacteria, specific bacteria within the gut may play a significant role in carcinogenesis, progression, and metastasis of colorectal carcinoma (CRC). Certain microbial species are known to be associated with specific cancers; however, the interrelationship between bacteria and metastasis is still enigmatic. Mounting evidence suggests that bacteria participate in cancer organotropism during solid tumor metastasis. A critical review of the literature was conducted to better characterize what is known about bacteria populating a distant site and whether a tumor depends upon the same microenvironment during or after metastasis. The processes of carcinogenesis, tumor growth and metastatic spread in the setting of bacterial infection were examined in detail. The literature was scrutinized to discover the role of the lymphatic and venous systems in tumor metastasis and how microbes affect these processes. Some bacteria have a potent ability to enhance epithelial-mesenchymal transition, a critical step in the metastatic cascade. Bacteria also can modify the microenvironment and the local immune profile at a metastatic site. Early targeted antibiotic therapy should be further investigated as a measure to prevent metastatic spread in the setting of bacterial infection.
Collapse
Affiliation(s)
- Kevin D. Seely
- College of Osteopathic Medicine, Rocky Vista University, Ivins, UT 84738, USA; (A.D.M.); (L.D.H.)
| | - Amanda D. Morgan
- College of Osteopathic Medicine, Rocky Vista University, Ivins, UT 84738, USA; (A.D.M.); (L.D.H.)
| | - Lauren D. Hagenstein
- College of Osteopathic Medicine, Rocky Vista University, Ivins, UT 84738, USA; (A.D.M.); (L.D.H.)
| | - Garrett M. Florey
- College of Osteopathic Medicine, Rocky Vista University, Parker, CO 80134, USA;
| | - James M. Small
- Department of Biomedical Sciences, Rocky Vista University, Parker, CO 80134, USA;
| |
Collapse
|
43
|
Santos A, Cristóbal I, Rubio J, Caramés C, Luque M, Sanz-Alvarez M, Morales-Gallego M, Madoz-Gúrpide J, Rojo F, García-Foncillas J. MicroRNA-199b Deregulation Shows Oncogenic Properties and Promising Clinical Value as Circulating Marker in Locally Advanced Rectal Cancer Patients. Int J Mol Sci 2022; 23:2203. [PMID: 35216319 PMCID: PMC8875596 DOI: 10.3390/ijms23042203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/14/2022] [Accepted: 02/14/2022] [Indexed: 02/01/2023] Open
Abstract
The identification of robust prognostic markers still represents a need in locally advanced rectal cancer (LARC). MicroRNAs (miRs) have progressively emerged as promising circulating markers, overcoming some limitations that traditional biopsy comprises. Tissue miR-199b deregulation has been reported to predict outcome and response to neoadjuvant chemoradiotherapy (nCRT) in LARC, and was also found to be associated with disease progression in colorectal cancer. However, its biological and clinical relevance remains to be fully clarified. Thus, we observed here that miR-199b regulates cell migration, aggressiveness, and cell growth, and inhibits colonosphere formation and induces caspase-dependent apoptosis. Moreover, miR-199b expression was quantified by real-time PCR in plasma samples from LARC patients and its downregulation was observed in 22.7% of cases. This alteration was found to be associated with higher tumor size (p = 0.002) and pathological stage (p = 0.020) after nCRT. Notably, we observed substantially lower global miR-199b expression associated with patient downstaging (p = 0.009), as well as in non-responders compared to those cases who responded to nCRT in both pre- (p = 0.003) and post-treatment samples (p = 0.038). In concordance, we found that miR-199b served as a predictor marker of response to neoadjuvant therapy in our cohort (p = 0.011). Altogether, our findings here demonstrate the functional relevance of miR-199b in this disease and its potential value as a novel circulating marker in LARC.
Collapse
Affiliation(s)
- Andrea Santos
- Cancer Unit for Research on Novel Therapeutic Targets, Oncohealth Institute, IIS-Fundación Jiménez Díaz-UAM, 28040 Madrid, Spain; (A.S.); (J.R.); (C.C.)
- Translational Oncology Division, Oncohealth Institute, IIS-Fundación Jiménez Díaz-UAM, 28040 Madrid, Spain
| | - Ion Cristóbal
- Cancer Unit for Research on Novel Therapeutic Targets, Oncohealth Institute, IIS-Fundación Jiménez Díaz-UAM, 28040 Madrid, Spain; (A.S.); (J.R.); (C.C.)
- Translational Oncology Division, Oncohealth Institute, IIS-Fundación Jiménez Díaz-UAM, 28040 Madrid, Spain
| | - Jaime Rubio
- Cancer Unit for Research on Novel Therapeutic Targets, Oncohealth Institute, IIS-Fundación Jiménez Díaz-UAM, 28040 Madrid, Spain; (A.S.); (J.R.); (C.C.)
- Translational Oncology Division, Oncohealth Institute, IIS-Fundación Jiménez Díaz-UAM, 28040 Madrid, Spain
- Medical Oncology Department, University Hospital “Fundación Jiménez Díaz”, UAM, 28040 Madrid, Spain
| | - Cristina Caramés
- Cancer Unit for Research on Novel Therapeutic Targets, Oncohealth Institute, IIS-Fundación Jiménez Díaz-UAM, 28040 Madrid, Spain; (A.S.); (J.R.); (C.C.)
- Translational Oncology Division, Oncohealth Institute, IIS-Fundación Jiménez Díaz-UAM, 28040 Madrid, Spain
- Medical Oncology Department, University Hospital “Fundación Jiménez Díaz”, UAM, 28040 Madrid, Spain
| | - Melani Luque
- Pathology Department, IIS-Fundación Jiménez Díaz-UAM, 28040 Madrid, Spain; (M.L.); (M.S.-A.); (M.M.-G.); (J.M.-G.); (F.R.)
| | - Marta Sanz-Alvarez
- Pathology Department, IIS-Fundación Jiménez Díaz-UAM, 28040 Madrid, Spain; (M.L.); (M.S.-A.); (M.M.-G.); (J.M.-G.); (F.R.)
| | - Miriam Morales-Gallego
- Pathology Department, IIS-Fundación Jiménez Díaz-UAM, 28040 Madrid, Spain; (M.L.); (M.S.-A.); (M.M.-G.); (J.M.-G.); (F.R.)
| | - Juan Madoz-Gúrpide
- Pathology Department, IIS-Fundación Jiménez Díaz-UAM, 28040 Madrid, Spain; (M.L.); (M.S.-A.); (M.M.-G.); (J.M.-G.); (F.R.)
| | - Federico Rojo
- Pathology Department, IIS-Fundación Jiménez Díaz-UAM, 28040 Madrid, Spain; (M.L.); (M.S.-A.); (M.M.-G.); (J.M.-G.); (F.R.)
| | - Jesús García-Foncillas
- Translational Oncology Division, Oncohealth Institute, IIS-Fundación Jiménez Díaz-UAM, 28040 Madrid, Spain
- Medical Oncology Department, University Hospital “Fundación Jiménez Díaz”, UAM, 28040 Madrid, Spain
| |
Collapse
|
44
|
Abdel Ghafar MT, Soliman NA. Metadherin (AEG-1/MTDH/LYRIC) expression: Significance in malignancy and crucial role in colorectal cancer. Adv Clin Chem 2022; 106:235-280. [PMID: 35152973 DOI: 10.1016/bs.acc.2021.09.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Metadherin (AEG-1/MTDH/LYRIC) is a 582-amino acid transmembrane protein, encoded by a gene located at chromosome 8q22, and distributed throughout the cytoplasm, peri-nuclear region, nucleus, and nucleolus as well as the endoplasmic reticulum (ER). It contains several structural and interacting domains through which it interacts with transcription factors such as nuclear factor-κB (NF-κB), promyelocytic leukemia zinc finger (PLZF), staphylococcal nuclease domain containing 1 (SND1) and lung homing domain (LHD). It is regulated by miRNAs and mediates its oncogenic function via activation of cell proliferation, survival, migration and metastasis, as well as, angiogenesis and chemoresistance via phosphatidylinositol-3-kinase/AKT (PI3K/AKT), NF-κB, mitogen-activated protein kinase (MAPK) and Wnt signaling pathways. In this chapter, metadherin is reviewed highlighting its role in mediating growth, metastasis and chemoresistance in colorectal cancer (CRC). Metadherin, as well as its variants, and antibodies are associated with CRC progression, poorer prognosis, decreased survival and advanced clinico-pathology. The potential of AEG-1/MTDH/LYRIC as a diagnostic and prognostic marker as well as a therapeutic target in CRC is explored.
Collapse
Affiliation(s)
| | - Nema A Soliman
- Department of Medical Biochemistry, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
45
|
de Assis JV, Coutinho LA, Oyeyemi IT, Oyeyemi OT, Grenfell RFEQ. Diagnostic and therapeutic biomarkers in colorectal cancer: a review. Am J Cancer Res 2022; 12:661-680. [PMID: 35261794 PMCID: PMC8900002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/22/2022] [Indexed: 06/14/2023] Open
Abstract
Colorectal cancer (CRC) is a public health concern and the second most common type of cancer among men and women causing a significant mortality. Biomarkers closely linked to the disease morbidity could holds potential as diagnostic and/or prognostic biomarker for the disease. This review provides an overview of recent advances in the search for colorectal cancer biomarkers through genomics and proteomics according to clinical function and application. Specifically, a number of biomarkers were identified and discussed. Emphasis was placed on their clinical applications relative to the diagnosis and prognosis of CRC. The discovery of more sensitive and specific markers for CRC is an urgent need, and the study of molecular targets is extremely important in this process, as they will allow for a better understanding of colorectal carcinogenesis, identification and validation of potential genetic signatures.
Collapse
Affiliation(s)
- Jéssica Vieira de Assis
- Diagnosis and Therapy of Infectious Diseases and Cancer, René Rachou Institute, Oswaldo Cruz Foundation (Fiocruz)Belo Horizonte, Minas Gerais, Brazil
| | - Lucélia Antunes Coutinho
- Diagnosis and Therapy of Infectious Diseases and Cancer, René Rachou Institute, Oswaldo Cruz Foundation (Fiocruz)Belo Horizonte, Minas Gerais, Brazil
| | | | - Oyetunde Timothy Oyeyemi
- Diagnosis and Therapy of Infectious Diseases and Cancer, René Rachou Institute, Oswaldo Cruz Foundation (Fiocruz)Belo Horizonte, Minas Gerais, Brazil
- Department of Biological Sciences, University of Medical SciencesOndo, Ondo State, Nigeria
| | - Rafaella Fortini e Queiroz Grenfell
- Diagnosis and Therapy of Infectious Diseases and Cancer, René Rachou Institute, Oswaldo Cruz Foundation (Fiocruz)Belo Horizonte, Minas Gerais, Brazil
- Department of Infectious Diseases, College of Veterinary Medicine, University of GeorgiaAthens, Georgia, United States of America
| |
Collapse
|
46
|
Qiu C, Shi W, Wu H, Zou S, Li J, Wang D, Liu G, Song Z, Xu X, Hu J, Geng H. Identification of Molecular Subtypes and a Prognostic Signature Based on Inflammation-Related Genes in Colon Adenocarcinoma. Front Immunol 2022; 12:769685. [PMID: 35003085 PMCID: PMC8733947 DOI: 10.3389/fimmu.2021.769685] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/07/2021] [Indexed: 01/10/2023] Open
Abstract
Both tumour-infiltrating immune cells and inflammation-related genes that can mediate immune infiltration contribute to the initiation and prognosis of patients with colon cancer. In this study, we developed a method to predict the survival outcomes among colon cancer patients and direct immunotherapy and chemotherapy. We obtained patient data from The Cancer Genome Atlas (TCGA) and captured inflammation-related genes from the GeneCards database. The package “ConsensusClusterPlus” was used to generate molecular subtypes based on inflammation-related genes obtained by differential expression analysis and univariate Cox analysis. A prognostic signature including four genes (PLCG2, TIMP1, BDNF and IL13) was also constructed and was an independent prognostic factor. Cluster 2 and higher risk scores meant worse overall survival and higher expression of human leukocyte antigen and immune checkpoints. Immune cell infiltration calculated by the estimate, CIBERSORT, TIMER, ssGSEA algorithms, tumour immune dysfunction and exclusion (TIDE), and tumour stemness indices (TSIs) were also compared on the basis of inflammation-related molecular subtypes and the risk signature. In addition, analyses of stratification, somatic mutation, nomogram construction, chemotherapeutic response prediction and small-molecule drug prediction were performed based on the risk signature. We finally used qRT–PCR to detect the expression levels of four genes in colon cancer cell lines and obtained results consistent with the prediction. Our findings demonstrated a four-gene prognostic signature that could be useful for prognostication in colon cancer patients and designing personalized treatments, which could provide new versions of personalized management for these patients.
Collapse
Affiliation(s)
- Chenjie Qiu
- Department of General Surgery, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, China
| | - Wenxiang Shi
- Department of Pediatric Cardiology, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huili Wu
- Department of Endodontics, Department of Oral & Maxillofacial Imaging, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Shenshan Zou
- Department of General Surgery, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, China
| | - Jianchao Li
- Department of General Surgery, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, China
| | - Dong Wang
- Department of General Surgery, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, China
| | - Guangli Liu
- Department of General Surgery, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, China
| | - Zhenbiao Song
- Department of General Surgery, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, China
| | - Xintao Xu
- Department of General Surgery, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, China
| | - Jiandong Hu
- Department of General Surgery, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, China
| | - Hui Geng
- Department of General Surgery, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, China
| |
Collapse
|
47
|
Sharifianjazi F, Jafari Rad A, Bakhtiari A, Niazvand F, Esmaeilkhanian A, Bazli L, Abniki M, Irani M, Moghanian A. Biosensors and nanotechnology for cancer diagnosis (lung and bronchus, breast, prostate, and colon): a systematic review. Biomed Mater 2021; 17. [PMID: 34891145 DOI: 10.1088/1748-605x/ac41fd] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 12/10/2021] [Indexed: 12/22/2022]
Abstract
The second cause of death in the world has been reported to be cancer, and it has been on the rise in recent years. As a result of the difficulties of cancer detection and its treatment, the survival rate of patients is unclear. The early detection of cancer is an important issue for its therapy. Cancer detection based on biomarkers may effectively enhance the early detection and subsequent treatment. Nanomaterial-based nanobiosensors for cancer biomarkers are excellent tools for the molecular detection and diagnosis of disease. This review reports the latest advancement and attainment in applying nanoparticles to the detection of cancer biomarkers. In this paper, the recent advances in the application of common nanomaterials like graphene, carbon nanotubes, Au, Ag, Pt, and Fe3O4together with newly emerged nanoparticles such as quantum dots, upconversion nanoparticles, inorganics (ZnO, MoS2), and metal-organic frameworks for the diagnosis of biomarkers related to lung, prostate, breast, and colon cancer are highlighted. Finally, the challenges, outlook, and closing remarks are given.
Collapse
Affiliation(s)
| | - Azadeh Jafari Rad
- Department of Chemistry, Islamic Azad University, Omidiyeh Branch, Omidiyeh, Iran
| | | | - Firoozeh Niazvand
- School of Medicine, Abadan University of Medical Sciences, Abadan, Iran
| | | | - Leila Bazli
- School of Metallurgy and Materials Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, Iran
| | - Milad Abniki
- Department of Resin and Additives, Institute for Color Science and Technology, Tehran, Iran
| | - Mohammad Irani
- Dentistry Clinical Research Development Unit, Alborz University of Medical Sciences, Karaj, Iran
| | - Amirhossein Moghanian
- Department of Materials Engineering, Imam Khomeini International University, Qazvin 34149-16818, Iran
| |
Collapse
|
48
|
Gutierrez A, Demond H, Brebi P, Ili CG. Novel Methylation Biomarkers for Colorectal Cancer Prognosis. Biomolecules 2021; 11:1722. [PMID: 34827720 PMCID: PMC8615818 DOI: 10.3390/biom11111722] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/03/2021] [Accepted: 11/09/2021] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) comprises the third most common cancer worldwide and the second regarding number of deaths. In order to make a correct and early diagnosis to predict metastasis formation, biomarkers are an important tool. Although there are multiple signaling pathways associated with cancer progression, the most recognized are the MAPK pathway, p53 pathway, and TGF-β pathway. These pathways regulate many important functions in the cell, such as cell cycle regulation, proliferation, differentiation, and metastasis formation, among others. Changes in expression in genes belonging to these pathways are drivers of carcinogenesis. Often these expression changes are caused by mutations; however, epigenetic changes, such as DNA methylation, are increasingly acknowledged to play a role in the deregulation of oncogenic genes. This makes DNA methylation changes an interesting biomarkers in cancer. Among the newly identified biomarkers for CRC metastasis INHBB, SMOC2, BDNF, and TBRG4 are included, all of which are highly deregulated by methylation and closely associated with metastasis. The identification of such biomarkers in metastasis of CRC may allow a better treatment and early identification of cancer formation in order to perform better diagnostics and improve the life expectancy.
Collapse
Affiliation(s)
| | | | - Priscilla Brebi
- Millennium Institute on Immunology and Immunotherapy, Laboratory of Integrative Biology (LIBi), Centro de Excelencia en Medicina Traslacional (CEMT), Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4810296, Chile; (A.G.); (H.D.)
| | - Carmen Gloria Ili
- Millennium Institute on Immunology and Immunotherapy, Laboratory of Integrative Biology (LIBi), Centro de Excelencia en Medicina Traslacional (CEMT), Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4810296, Chile; (A.G.); (H.D.)
| |
Collapse
|
49
|
Buhagiar A, Seria E, Borg M, Borg J, Ayers D. Overview of microRNAs as liquid biopsy biomarkers for colorectal cancer sub-type profiling and chemoresistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2021; 4:934-945. [PMID: 35582382 PMCID: PMC8992439 DOI: 10.20517/cdr.2021.62] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/01/2021] [Accepted: 09/24/2021] [Indexed: 11/27/2022]
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide. It has also been demonstrated that over the last ten years the incidence of CRC among younger people below the age of 50 is also increasing. Screening for colorectal cancer is of utmost importance; the rationale behind screening is to target the malignancy and reduce the incidence and mortality of the disease. Diagnostic methods to screen for incidence or relapse are therefore a requisite to detect cancer as early as possible. Scientific findings demonstrate that many deaths are due to lack of screening and therefore early identification will lead to greater survivability. In colorectal cancer, diagnostic tests include liquid biopsy biomarkers. Since the discovery of microRNAs (miRNAs), many studies have demonstrated the relationship between miRNAs and the various sub-types of CRC. Several miRNAs have been identified after analysing serum or plasma samples in patients, and such miRNAs were found to be significantly dysregulated. Such findings place the possibility of miRNAs to be at the epicentre of novel diagnostic techniques for CRC identification and sub-type stratification, including other characteristics associated with CRC development such as patient prognosis. The following review serves to underline the latest findings for miRNAs with such potential for routine diagnostic employment in CRC diagnostics and treatments.
Collapse
Affiliation(s)
- Alfred Buhagiar
- Faculty of Medicine and Surgery, University of Malta, Msida 2080, Malta
| | - Elisa Seria
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida 2080, Malta
| | - Miriana Borg
- Faculty of medical sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Joseph Borg
- Faculty of Health Sciences, University of Malta, Msida 2080, Malta
| | - Duncan Ayers
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida 2080, Malta
- Faculty of Biology, Medicine and Health Sciences, The University of Manchester, Manchester M13 9PL, UK
| |
Collapse
|
50
|
Durán-Vinet B, Araya-Castro K, Calderón J, Vergara L, Weber H, Retamales J, Araya-Castro P, Leal-Rojas P. CRISPR/Cas13-Based Platforms for a Potential Next-Generation Diagnosis of Colorectal Cancer through Exosomes Micro-RNA Detection: A Review. Cancers (Basel) 2021; 13:4640. [PMID: 34572866 PMCID: PMC8466426 DOI: 10.3390/cancers13184640] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is the third most prevalent cancer with the second highest mortality rate worldwide. CRC is a heterogenous disease with multiple risk factors associated, including obesity, smoking, and use of alcohol. Of total CRC cases, 60% are diagnosed in late stages, where survival can drop to about 10%. CRC screening programs are based primarily on colonoscopy, yet this approach is invasive and has low patient adherence. Therefore, there is a strong incentive for developing molecular-based methods that are minimally invasive and have higher patient adherence. Recent reports have highlighted the importance of extracellular vesicles (EVs), specifically exosomes, as intercellular communication vehicles with a broad cargo, including micro-RNAs (miRNAs). These have been syndicated as robust candidates for diagnosis, primarily for their known activities in cancer cells, including immunoevasion, tumor progression, and angiogenesis, whereas miRNAs are dysregulated by cancer cells and delivered by cancer-derived exosomes (CEx). Quantitative polymerase chain reaction (qPCR) has shown good results detecting specific cancer-derived exosome micro-RNAs (CEx-miRNAs) associated with CRC, but qPCR also has several challenges, including portability and sensitivity/specificity issues regarding experiment design and sample quality. CRISPR/Cas-based platforms have been presented as cost-effective, ultrasensitive, specific, and robust clinical detection tools in the presence of potential inhibitors and capable of delivering quantitative and qualitative real-time data for enhanced decision-making to healthcare teams. Thereby, CRISPR/Cas13-based technologies have become a potential strategy for early CRC diagnosis detecting CEx-miRNAs. Moreover, CRISPR/Cas13-based platforms' ease of use, scalability, and portability also showcase them as a potential point-of-care (POC) technology for CRC early diagnosis. This study presents two potential CRISPR/Cas13-based methodologies with a proposed panel consisting of four CEx-miRNAs, including miR-126, miR-1290, miR-23a, and miR-940, to streamline novel applications which may deliver a potential early diagnosis and prognosis of CRC.
Collapse
Affiliation(s)
- Benjamín Durán-Vinet
- Scientific and Technological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Temuco 4780000, Chile; (B.D.-V.); (K.A.-C.); (H.W.)
- Center of Excellence in Translational Medicine (CEMT), Biomedicine and Translational Research Laboratory, Universidad de La Frontera, Temuco 4780000, Chile;
| | - Karla Araya-Castro
- Scientific and Technological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Temuco 4780000, Chile; (B.D.-V.); (K.A.-C.); (H.W.)
- Innovation and Entrepreneurship Institute (iDEAUFRO), Universidad de La Frontera, Temuco 4780000, Chile
| | - Juan Calderón
- Center for Genetics and Genomics, School of Medicine, Institute of Science and Innovation in Medicine (ICIM), Clínica Alemana, Universidad del Desarrollo, Santiago 8320000, Chile;
| | - Luis Vergara
- Center of Excellence in Translational Medicine (CEMT), Biomedicine and Translational Research Laboratory, Universidad de La Frontera, Temuco 4780000, Chile;
- Doctoral Program in Cell and Applied Molecular Biology, Universidad de La Frontera, Temuco 4780000, Chile
| | - Helga Weber
- Scientific and Technological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Temuco 4780000, Chile; (B.D.-V.); (K.A.-C.); (H.W.)
- Center of Excellence in Translational Medicine (CEMT), Biomedicine and Translational Research Laboratory, Universidad de La Frontera, Temuco 4780000, Chile;
| | - Javier Retamales
- Chilean Cooperative Group for Oncologic Research (GOCCHI), Santiago 8320000, Chile;
| | - Paulina Araya-Castro
- School of Medicine, Clínica Alemana, Universidad del Desarrollo, Santiago 8320000, Chile;
| | - Pamela Leal-Rojas
- Scientific and Technological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Temuco 4780000, Chile; (B.D.-V.); (K.A.-C.); (H.W.)
- Center of Excellence in Translational Medicine (CEMT), Biomedicine and Translational Research Laboratory, Universidad de La Frontera, Temuco 4780000, Chile;
- Department of Agricultural Sciences and Natural Resources, Faculty of Agricultural and Forestry Science, Universidad de La Frontera, Temuco 4780000, Chile
| |
Collapse
|