1
|
Bai H, Lewitus E, Li Y, Thomas PV, Zemil M, Merbah M, Peterson CE, Thuraisamy T, Rees PA, Hajduczki A, Dussupt V, Slike B, Mendez-Rivera L, Schmid A, Kavusak E, Rao M, Smith G, Frey J, Sims A, Wieczorek L, Polonis V, Krebs SJ, Ake JA, Vasan S, Bolton DL, Joyce MG, Townsley S, Rolland M. Contemporary HIV-1 consensus Env with AI-assisted redesigned hypervariable loops promote antibody binding. Nat Commun 2024; 15:3924. [PMID: 38724518 PMCID: PMC11082178 DOI: 10.1038/s41467-024-48139-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 04/19/2024] [Indexed: 05/12/2024] Open
Abstract
An effective HIV-1 vaccine must elicit broadly neutralizing antibodies (bnAbs) against highly diverse Envelope glycoproteins (Env). Since Env with the longest hypervariable (HV) loops is more resistant to the cognate bnAbs than Env with shorter HV loops, we redesigned hypervariable loops for updated Env consensus sequences of subtypes B and C and CRF01_AE. Using modeling with AlphaFold2, we reduced the length of V1, V2, and V5 HV loops while maintaining the integrity of the Env structure and glycan shield, and modified the V4 HV loop. Spacers are designed to limit strain-specific targeting. All updated Env are infectious as pseudoviruses. Preliminary structural characterization suggests that the modified HV loops have a limited impact on Env's conformation. Binding assays show improved binding to modified subtype B and CRF01_AE Env but not to subtype C Env. Neutralization assays show increases in sensitivity to bnAbs, although not always consistently across clades. Strikingly, the HV loop modification renders the resistant CRF01_AE Env sensitive to 10-1074 despite the absence of a glycan at N332.
Collapse
Affiliation(s)
- Hongjun Bai
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Eric Lewitus
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Yifan Li
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Paul V Thomas
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
- Emerging Infectious Disease Branch, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Michelle Zemil
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Mélanie Merbah
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Caroline E Peterson
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
- Emerging Infectious Disease Branch, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Thujitha Thuraisamy
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Phyllis A Rees
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
- Emerging Infectious Disease Branch, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Agnes Hajduczki
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
- Emerging Infectious Disease Branch, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Vincent Dussupt
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Bonnie Slike
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Letzibeth Mendez-Rivera
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Annika Schmid
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Erin Kavusak
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Mekhala Rao
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Gabriel Smith
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Jessica Frey
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Alicea Sims
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Lindsay Wieczorek
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Victoria Polonis
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Shelly J Krebs
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Julie A Ake
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Sandhya Vasan
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Diane L Bolton
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - M Gordon Joyce
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
- Emerging Infectious Disease Branch, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Samantha Townsley
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Morgane Rolland
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA.
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA.
| |
Collapse
|
2
|
Sankhala RS, Dussupt V, Chen WH, Bai H, Martinez EJ, Jensen JL, Rees PA, Hajduczki A, Chang WC, Choe M, Yan L, Sterling SL, Swafford I, Kuklis C, Soman S, King J, Corbitt C, Zemil M, Peterson CE, Mendez-Rivera L, Townsley SM, Donofrio GC, Lal KG, Tran U, Green EC, Smith C, de Val N, Laing ED, Broder CC, Currier JR, Gromowski GD, Wieczorek L, Rolland M, Paquin-Proulx D, van Dyk D, Britton Z, Rajan S, Loo YM, McTamney PM, Esser MT, Polonis VR, Michael NL, Krebs SJ, Modjarrad K, Joyce MG. Antibody targeting of conserved sites of vulnerability on the SARS-CoV-2 spike receptor-binding domain. Structure 2024; 32:131-147.e7. [PMID: 38157856 PMCID: PMC11145656 DOI: 10.1016/j.str.2023.11.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/14/2023] [Accepted: 11/30/2023] [Indexed: 01/03/2024]
Abstract
Given the continuous emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VoCs), immunotherapeutics that target conserved epitopes on the spike (S) glycoprotein have therapeutic advantages. Here, we report the crystal structure of the SARS-CoV-2 S receptor-binding domain (RBD) at 1.95 Å and describe flexibility and distinct conformations of the angiotensin-converting enzyme 2 (ACE2)-binding site. We identify a set of SARS-CoV-2-reactive monoclonal antibodies (mAbs) with broad RBD cross-reactivity including SARS-CoV-2 Omicron subvariants, SARS-CoV-1, and other sarbecoviruses and determine the crystal structures of mAb-RBD complexes with Ab246 and CR3022 mAbs targeting the class IV site, WRAIR-2134, which binds the recently designated class V epitope, and WRAIR-2123, the class I ACE2-binding site. The broad reactivity of class IV and V mAbs to conserved regions of SARS-CoV-2 VoCs and other sarbecovirus provides a framework for long-term immunotherapeutic development strategies.
Collapse
Affiliation(s)
- Rajeshwer S Sankhala
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Vincent Dussupt
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Wei-Hung Chen
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Hongjun Bai
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Elizabeth J Martinez
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Jaime L Jensen
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Phyllis A Rees
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Agnes Hajduczki
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - William C Chang
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Misook Choe
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Lianying Yan
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA
| | - Spencer L Sterling
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA
| | - Isabella Swafford
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Caitlin Kuklis
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Sandrine Soman
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Jocelyn King
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Courtney Corbitt
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Michelle Zemil
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Caroline E Peterson
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Letzibeth Mendez-Rivera
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Samantha M Townsley
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Gina C Donofrio
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Kerri G Lal
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Ursula Tran
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Ethan C Green
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA
| | - Clayton Smith
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA; Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD, USA
| | - Natalia de Val
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA; Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD, USA
| | - Eric D Laing
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA
| | - Christopher C Broder
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA
| | - Jeffrey R Currier
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Gregory D Gromowski
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Lindsay Wieczorek
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Morgane Rolland
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Dominic Paquin-Proulx
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Dewald van Dyk
- Antibody Discovery and Protein Engineering (ADPE), BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Zachary Britton
- Antibody Discovery and Protein Engineering (ADPE), BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Saravanan Rajan
- Antibody Discovery and Protein Engineering (ADPE), BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Yueh Ming Loo
- Vaccines and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Patrick M McTamney
- Vaccines and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Mark T Esser
- Vaccines and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Victoria R Polonis
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Nelson L Michael
- Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Shelly J Krebs
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA.
| | - Kayvon Modjarrad
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - M Gordon Joyce
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA.
| |
Collapse
|
3
|
Juraska M, Bai H, deCamp AC, Magaret CA, Li L, Gillespie K, Carpp LN, Giorgi EE, Ludwig J, Molitor C, Hudson A, Williamson BD, Espy N, Simpkins B, Rudnicki E, Shao D, Rossenkhan R, Edlefsen PT, Westfall DH, Deng W, Chen L, Zhao H, Bhattacharya T, Pankow A, Murrell B, Yssel A, Matten D, York T, Beaume N, Gwashu-Nyangiwe A, Ndabambi N, Thebus R, Karuna ST, Morris L, Montefiori DC, Hural JA, Cohen MS, Corey L, Rolland M, Gilbert PB, Williamson C, Mullins JI. Prevention efficacy of the broadly neutralizing antibody VRC01 depends on HIV-1 envelope sequence features. Proc Natl Acad Sci U S A 2024; 121:e2308942121. [PMID: 38241441 PMCID: PMC10823214 DOI: 10.1073/pnas.2308942121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 11/13/2023] [Indexed: 01/21/2024] Open
Abstract
In the Antibody Mediated Prevention (AMP) trials (HVTN 704/HPTN 085 and HVTN 703/HPTN 081), prevention efficacy (PE) of the monoclonal broadly neutralizing antibody (bnAb) VRC01 (vs. placebo) against HIV-1 acquisition diagnosis varied according to the HIV-1 Envelope (Env) neutralization sensitivity to VRC01, as measured by 80% inhibitory concentration (IC80). Here, we performed a genotypic sieve analysis, a complementary approach to gaining insight into correlates of protection that assesses how PE varies with HIV-1 sequence features. We analyzed HIV-1 Env amino acid (AA) sequences from the earliest available HIV-1 RNA-positive plasma samples from AMP participants diagnosed with HIV-1 and identified Env sequence features that associated with PE. The strongest Env AA sequence correlate in both trials was VRC01 epitope distance that quantifies the divergence of the VRC01 epitope in an acquired HIV-1 isolate from the VRC01 epitope of reference HIV-1 strains that were most sensitive to VRC01-mediated neutralization. In HVTN 704/HPTN 085, the Env sequence-based predicted probability that VRC01 IC80 against the acquired isolate exceeded 1 µg/mL also significantly associated with PE. In HVTN 703/HPTN 081, a physicochemical-weighted Hamming distance across 50 VRC01 binding-associated Env AA positions of the acquired isolate from the most VRC01-sensitive HIV-1 strain significantly associated with PE. These results suggest that incorporating mutation scoring by BLOSUM62 and weighting by the strength of interactions at AA positions in the epitope:VRC01 interface can optimize performance of an Env sequence-based biomarker of VRC01 prevention efficacy. Future work could determine whether these results extend to other bnAbs and bnAb combinations.
Collapse
Affiliation(s)
- Michal Juraska
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA98109
| | - Hongjun Bai
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD20910
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD20817
| | - Allan C. deCamp
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA98109
| | - Craig A. Magaret
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA98109
| | - Li Li
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA98109
| | - Kevin Gillespie
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA98109
| | - Lindsay N. Carpp
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA98109
| | - Elena E. Giorgi
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA98109
| | - James Ludwig
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA98109
| | - Cindy Molitor
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA98109
| | - Aaron Hudson
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA98109
| | - Brian D. Williamson
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA98109
- Biostatistics Division, Kaiser Permanente Washington Health Research Institute, Seattle, WA98101
| | - Nicole Espy
- Science and Technology Policy Fellowships, American Association for the Advancement of Science, Washington, DC20005
| | - Brian Simpkins
- Department of Computer Science, Pitzer College, Claremont, CA91711
| | - Erika Rudnicki
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA98109
| | - Danica Shao
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA98109
| | - Raabya Rossenkhan
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA98109
| | - Paul T. Edlefsen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA98109
| | - Dylan H. Westfall
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA98195
| | - Wenjie Deng
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA98195
| | - Lennie Chen
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA98195
| | - Hong Zhao
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA98195
| | | | - Alec Pankow
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, Solna171 77, Sweden
| | - Ben Murrell
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, Solna171 77, Sweden
| | - Anna Yssel
- Institute of Infectious Disease and Molecular Medicine, and Wellcome Centre for Infectious Diseases Research in Africa, Department of Pathology, Faculty of Health Sciences, University of Cape Town and National Health Laboratory Service, Cape Town7701, South Africa
| | - David Matten
- Institute of Infectious Disease and Molecular Medicine, and Wellcome Centre for Infectious Diseases Research in Africa, Department of Pathology, Faculty of Health Sciences, University of Cape Town and National Health Laboratory Service, Cape Town7701, South Africa
| | - Talita York
- Institute of Infectious Disease and Molecular Medicine, and Wellcome Centre for Infectious Diseases Research in Africa, Department of Pathology, Faculty of Health Sciences, University of Cape Town and National Health Laboratory Service, Cape Town7701, South Africa
| | - Nicolas Beaume
- Institute of Infectious Disease and Molecular Medicine, and Wellcome Centre for Infectious Diseases Research in Africa, Department of Pathology, Faculty of Health Sciences, University of Cape Town and National Health Laboratory Service, Cape Town7701, South Africa
| | - Asanda Gwashu-Nyangiwe
- Institute of Infectious Disease and Molecular Medicine, and Wellcome Centre for Infectious Diseases Research in Africa, Department of Pathology, Faculty of Health Sciences, University of Cape Town and National Health Laboratory Service, Cape Town7701, South Africa
| | - Nonkululeko Ndabambi
- Institute of Infectious Disease and Molecular Medicine, and Wellcome Centre for Infectious Diseases Research in Africa, Department of Pathology, Faculty of Health Sciences, University of Cape Town and National Health Laboratory Service, Cape Town7701, South Africa
| | - Ruwayhida Thebus
- Institute of Infectious Disease and Molecular Medicine, and Wellcome Centre for Infectious Diseases Research in Africa, Department of Pathology, Faculty of Health Sciences, University of Cape Town and National Health Laboratory Service, Cape Town7701, South Africa
| | - Shelly T. Karuna
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA98109
| | - Lynn Morris
- HIV Virology Section, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg2192, South Africa
- Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg2000, South Africa
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban4041, South Africa
| | | | - John A. Hural
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA98109
| | - Myron S. Cohen
- Institute of Global Health and Infectious Diseases, The University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Lawrence Corey
- Department of Medicine, University of Washington, Seattle, WA98195
- Department of Laboratory Medicine, University of Washington, Seattle, WA98195
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA98109
| | - Morgane Rolland
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD20910
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD20817
| | - Peter B. Gilbert
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA98109
- Department of Biostatistics, University of Washington, Seattle, WA98195
- Department of Global Health, University of Washington, Seattle, WA98195
| | - Carolyn Williamson
- Institute of Infectious Disease and Molecular Medicine, and Wellcome Centre for Infectious Diseases Research in Africa, Department of Pathology, Faculty of Health Sciences, University of Cape Town and National Health Laboratory Service, Cape Town7701, South Africa
| | - James I. Mullins
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA98195
- Department of Global Health, University of Washington, Seattle, WA98195
- Department of Microbiology, University of Washington, Seattle, WA98109
| |
Collapse
|
4
|
Martin F, Marcelino JM, Palladino C, Bártolo I, Tracana S, Moranguinho I, Gonçalves P, Mateus R, Calado R, Borrego P, Leitner T, Clemente S, Taveira N. Long-Term and Low-Level Envelope C2V3 Stimulation by Highly Diverse Virus Isolates Leads to Frequent Development of Broad and Elite Antibody Neutralization in HIV-1-Infected Individuals. Microbiol Spectr 2022; 10:e0163422. [PMID: 36445130 PMCID: PMC9769935 DOI: 10.1128/spectrum.01634-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 10/29/2022] [Indexed: 12/03/2022] Open
Abstract
A minority of HIV-1-infected patients produce broadly neutralizing antibodies (bNAbs). Identification of viral and host correlates of bNAb production may help develop vaccines. We aimed to characterize the neutralizing response and viral and host-associated factors in Angola, which has one of the oldest, most dynamic, and most diverse HIV-1 epidemics in the world. Three hundred twenty-two HIV-1-infected adults from Angola were included in this retrospective study. Phylogenetic analysis of C2V3C3 env gene sequences was used for virus subtyping. Env-binding antibody reactivity was tested against polypeptides comprising the C2, V3, and C3 regions. Neutralizing-antibody responses were determined against a reference panel of tier 2 Env pseudoviruses in TZM-bl cells; neutralizing epitope specificities were predicted using ClustVis. All subtypes were found, along with untypeable strains and recombinant forms. Notably, 56% of the patients developed cross neutralizing, broadly neutralizing, or elite neutralizing responses. Broad and elite neutralization was associated with longer infection time, subtype C, lower CD4+ T cell counts, higher age, and higher titer of C2V3C3-specific antibodies relative to failure to develop bNAbs. Neutralizing antibodies targeted the V3-glycan supersite in most patients. V3 and C3 regions were significantly less variable in elite neutralizers than in weak neutralizers and nonneutralizers, suggesting an active role of V3C3-directed bNAbs in controlling HIV-1 replication and diversification. In conclusion, prolonged and low-level envelope V3C3 stimulation by highly diverse and ancestral HIV-1 isolates promotes the frequent elicitation of bNAbs. These results provide important clues for the development of an effective HIV-1 vaccine. IMPORTANCE Studies on neutralization by antibodies and their determinants in HIV-1-infected individuals have mostly been conducted in relatively recent epidemics caused by subtype B and C viruses. Results have suggested that elicitation of broadly neutralizing antibodies (bNAbs) is uncommon. The mechanisms underlying the elicitation of bNAbs are still largely unknown. We performed the first characterization of the plasma neutralizing response in a cohort of HIV-1-infected patients from Angola. Angola is characterized by an old and dynamic epidemic caused by highly diverse HIV-1 variants. Remarkably, more than half of the patients produced bNAbs, mostly targeting the V3-glycan supersite in HIV-1. This was associated with higher age, longer infection time, lower CD4+ T cell counts, subtype C infection, or higher titer of C2V3C3-specific antibodies relative to patients that did not develop bNAbs. These results may help develop the next generation of vaccine candidates for HIV-1.
Collapse
Affiliation(s)
- Francisco Martin
- Research Institute for Medicine, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - José Maria Marcelino
- Research Institute for Medicine, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
- Centro de Investigação Interdisciplinar Egas Moniz, Instituto Universitário Egas Moniz, Caparica, Portugal
| | - Claudia Palladino
- Research Institute for Medicine, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Inês Bártolo
- Research Institute for Medicine, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Susana Tracana
- Research Institute for Medicine, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Inês Moranguinho
- Research Institute for Medicine, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Paloma Gonçalves
- Research Institute for Medicine, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Rita Mateus
- Research Institute for Medicine, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Rita Calado
- Research Institute for Medicine, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Pedro Borrego
- Research Institute for Medicine, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Thomas Leitner
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | | | - Nuno Taveira
- Research Institute for Medicine, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
- Centro de Investigação Interdisciplinar Egas Moniz, Instituto Universitário Egas Moniz, Caparica, Portugal
| |
Collapse
|
5
|
Enhancement of CD4 Binding, Host Cell Entry, and Sensitivity to CD4bs Antibody Inhibition Conferred by a Natural but Rare Polymorphism in the HIV-1 Envelope. J Virol 2022; 96:e0185121. [PMID: 35862673 PMCID: PMC9327689 DOI: 10.1128/jvi.01851-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
A rare but natural polymorphism in the HIV-1 envelope (Env) glycoprotein, lysine at position 425 was selected as a mutation conferring resistance to maraviroc (MVC) in vitro. N425K has not been identified in HIV-infected individuals failing an MVC-based treatment. This study reports that the rare K425 polymorphism in an HIV-1 subtype A Env has increased affinity for CD4, resulting in faster host cell entry kinetics and the ability to scavenge for low cell surface expression of CD4 to mediate entry. Whereas the subtype A wild-type isolate-74 Env (N425) is inhibited by soluble (s) CD4, HIV-1 with K425 A74 Env shows enhanced infection and the ability to infect CCR5+ cells when pretreated with sCD4. Upon adding K425 or N425 HIV-1 to CD4+/CCR5+ cells along with RANTES/CCL3, only K425 HIV-1 was able to infect cells when CCR5 recycled/returned to the cell surface at 12 h post-treatment. These findings suggest that upon binding to CD4, K425 Env may maintain a stable State 2 "open" conformation capable of engaging CCR5 for entry. Only K425 was significantly more sensitivity than wild-type N425 A74 to inhibition by the CD4 binding site (bs) compound, BMS-806, the CD4bs antibody, VRC01 and N6, and the single-chain CD4i antibody, SCm9. K425 A74 was also capable of activating B cells expressing the VRC01 surface immunoglobulin. In summary, despite increased replicative fitness, we propose that K425 HIV-1 may be counterselected within infected individuals if K425 HIV-1 is rapidly eliminated by CD4bs-neutralizing antibodies. IMPORTANCE Typically, a natural amino acid polymorphism is found as the wild-type sequence in the HIV-1 population if it provides a selective advantage to the virus. The natural K425 polymorphism in HIV-1 Env results in higher host cell entry efficiency and greater replicative fitness by virtue of its high binding affinity to CD4. The studies presented herein suggest that the rare K425 HIV-1, compared to the common N425 HIV-1, may be more sensitive to inhibition by CD4bs-neutralizing antibodies (i.e., antibodies that bind to the CD4 binding pocket on the HIV-1 envelope glycoprotein). If CD4bs antibodies did emerge in an infected individual, the K425 HIV-1 may be hypersensitive to inhibition, and thus this K425 virus variant may be removed from the HIV-1 swarm despite its higher replication fitness. Studies are now underway to determine whether addition of the K425 polymorphism into the Envelope-based HIV-1 vaccines could enhance protective immunity.
Collapse
|
6
|
Welles HC, King HAD, Nettey L, Cavett N, Gorman J, Zhou T, Tsybovsky Y, Du R, Song K, Nguyen R, Ambrozak D, Ransier A, Schramm CA, Doria-Rose NA, Swanstrom AE, Hoxie JA, LaBranche C, Montefiori DC, Douek DC, Kwong PD, Mascola JR, Roederer M, Mason RD. Broad coverage of neutralization-resistant SIV strains by second-generation SIV-specific antibodies targeting the region involved in binding CD4. PLoS Pathog 2022; 18:e1010574. [PMID: 35709309 PMCID: PMC9242510 DOI: 10.1371/journal.ppat.1010574] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 06/29/2022] [Accepted: 05/06/2022] [Indexed: 11/19/2022] Open
Abstract
Both SIV and SHIV are powerful tools for evaluating antibody-mediated prevention and treatment of HIV-1. However, owing to a lack of rhesus-derived SIV broadly neutralizing antibodies (bnAbs), testing of bnAbs for HIV-1 prevention or treatment has thus far been performed exclusively in the SHIV NHP model using bnAbs from HIV-1-infected individuals. Here we describe the isolation and characterization of multiple rhesus-derived SIV bnAbs capable of neutralizing most isolates of SIV. Eight antibodies belonging to two clonal families, ITS102 and ITS103, which target unique epitopes in the CD4 binding site (CD4bs) region, were found to be broadly neutralizing and together neutralized all SIV strains tested. A rare feature of these bnAbs and two additional antibody families, ITS92 and ITS101, which mediate strain-specific neutralizing activity against SIV from sooty mangabeys (SIVsm), was their ability to achieve near complete (i.e. 100%) neutralization of moderately and highly neutralization-resistant SIV. Overall, these newly identified SIV bnAbs highlight the potential for evaluating HIV-1 prophylactic and therapeutic interventions using fully simian, rhesus-derived bnAbs in the SIV NHP model, thereby circumventing issues related to rapid antibody clearance of human-derived antibodies, Fc mismatch and limited genetic diversity of SHIV compared to SIV.
Collapse
Affiliation(s)
- Hugh C. Welles
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Hannah A. D. King
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, United States of America
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Leonard Nettey
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Nicole Cavett
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jason Gorman
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Tongqing Zhou
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Yaroslav Tsybovsky
- Vaccine Research Center Electron Microscopy Unit, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Renguang Du
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kaimei Song
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Richard Nguyen
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - David Ambrozak
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Amy Ransier
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Chaim A. Schramm
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Nicole A. Doria-Rose
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Adrienne E. Swanstrom
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - James A. Hoxie
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Celia LaBranche
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - David C. Montefiori
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Daniel C. Douek
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Peter D. Kwong
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - John R. Mascola
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Mario Roederer
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Rosemarie D. Mason
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
7
|
Lewitus E, Townsley SM, Li Y, Donofrio GC, Dearlove BL, Bai H, Sanders-Buell E, O’Sullivan AM, Bose M, Kibuuka H, Maganga L, Nitayaphan S, Sawe FK, Eller LA, Michael NL, Polonis VR, Ake JA, Vasan S, Robb ML, Tovanabutra S, Krebs SJ, Rolland M. HIV-1 infections with multiple founders associate with the development of neutralization breadth. PLoS Pathog 2022; 18:e1010369. [PMID: 35303045 PMCID: PMC8967031 DOI: 10.1371/journal.ppat.1010369] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 03/30/2022] [Accepted: 02/16/2022] [Indexed: 12/21/2022] Open
Abstract
Eliciting broadly neutralizing antibodies (bnAbs) is a cornerstone of HIV-1 vaccine strategies. Comparing HIV-1 envelope (env) sequences from the first weeks of infection to the breadth of antibody responses observed several years after infection can help define viral features critical to vaccine design. We investigated the relationship between HIV-1 env genetics and the development of neutralization breadth in 70 individuals enrolled in a prospective acute HIV-1 cohort. Half of the individuals who developed bnAbs were infected with multiple HIV-1 founder variants, whereas all individuals with limited neutralization breadth had been infected with single HIV-1 founders. Accordingly, at HIV-1 diagnosis, env diversity was significantly higher in participants who later developed bnAbs compared to those with limited breadth (p = 0.012). This association between founder multiplicity and the subsequent development of neutralization breadth was also observed in 56 placebo recipients in the RV144 vaccine efficacy trial. In addition, we found no evidence that neutralization breath was heritable when analyzing env sequences from the 126 participants. These results demonstrate that the presence of slightly different HIV-1 variants in acute infection could promote the induction of bnAbs, suggesting a novel vaccine strategy, whereby an initial immunization with a cocktail of minimally distant antigens would be able to initiate bnAb development towards breadth. Vaccines against viral pathogens protect through the induction of broadly neutralizing antibodies (bnAbs). No HIV-1 vaccine has successfully elicited bnAbs, and a successful HIV-1 vaccine will need to accelerate the process of development of a broadly neutralizing response that typically takes a couple of years to develop in natural infection. We studied diversity in the HIV-1 envelope gene from initial infection to several years out in 126 individuals from two cohorts. We showed that the development of bnAbs at 2–3 years was not due to transmissible viral genetics, but rather associated with diversity during the first month of infection. We propose that designing a vaccine that mimics an infection with multiple, minimally distant founder variants may successfully elicit the development of bnAbs and provide effective prophylaxis against HIV-1.
Collapse
Affiliation(s)
- Eric Lewitus
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| | - Samantha M. Townsley
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| | - Yifan Li
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| | - Gina C. Donofrio
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| | - Bethany L. Dearlove
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| | - Hongjun Bai
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| | - Eric Sanders-Buell
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| | - Anne Marie O’Sullivan
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| | - Meera Bose
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| | - Hannah Kibuuka
- Makerere University Walter Reed Project, Kampala, Uganda
| | - Lucas Maganga
- National Institute for Medical Research-Mbeya Medical Research Center, Mbeya, Tanzania
| | | | - Fredrick K. Sawe
- Kenya Medical Research Institute/U.S. Army Medical Research Directorate-Africa/Kenya-Henry Jackson Foundation MRI, Kericho, Kenya
| | - Leigh Anne Eller
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| | - Nelson L. Michael
- Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Victoria R. Polonis
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Julie A. Ake
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Sandhya Vasan
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| | - Merlin L. Robb
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| | - Sodsai Tovanabutra
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| | - Shelly J. Krebs
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| | - Morgane Rolland
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
8
|
Limited Evidence for a Relationship between HIV-1 Glycan Shield Features in Early Infection and the Development of Neutralization Breadth. J Virol 2021; 95:e0079721. [PMID: 34160251 PMCID: PMC8354232 DOI: 10.1128/jvi.00797-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Identifying whether viral features present in acute HIV-1 infection predetermine the development of neutralization breadth is critical to vaccine design. Incorporating such features in vaccine antigens could initiate cross-reactive antibody responses that could sufficiently protect vaccinees from HIV-1 infection despite the uniqueness of each founder virus. To understand the relationship between Env determinants and the development of neutralization breadth, we focused on 197 individuals enrolled in two cohorts in Thailand and East Africa (RV144 and RV217) and followed since their diagnosis in acute or early HIV-1 infection. We analyzed the distribution of variable loop lengths and glycans, as well as the predicted density of the glycan shield, and compared these envelope features to the neutralization breadth data obtained 3 years after infection (n = 121). Our study revealed limited evidence for glycan shield features that associate with the development of neutralization breadth. While the glycan shield tended to be denser in participants who subsequently developed breadth, no significant relationship was found between the size of glycan holes and the development of neutralization breadth. The parallel analysis of 3,000 independent Env sequences showed no evidence of directional evolution of glycan shield features since the beginning of the epidemic. Together, our results highlight that glycan shield features in acute and early HIV-1 infection may not play a role determinant enough to dictate the development of neutralization breadth and instead suggest that the glycan shield’s reactive properties that are associated with immune evasion may have a greater impact. IMPORTANCE A major goal of HIV-1 vaccine research is to design vaccine candidates that elicit potent broadly neutralizing antibodies (bNAbs). Different viral features have been associated with the development of bNAbs, including the glycan shield on the surface of the HIV-1 Envelope (Env). Here, we analyzed data from two cohorts of individuals who were followed from early infection to several years after infection spanning multiple HIV-1 subtypes. We compared Env glycan features in HIV-1 sequences obtained in early infection to the potency and breadth of neutralizing antibodies measured 1 to 3 years after infection. We found limited evidence of glycan shield properties that associate with the development of neutralization breadth in these cohorts. These results may have important implications for antigen design in future vaccine strategies and emphasize that HIV-1 vaccines will need to rely on a complex set of properties to elicit neutralization breadth.
Collapse
|
9
|
Duerr R, Crosse KM, Valero-Jimenez AM, Dittmann M. SARS-CoV-2 Portrayed against HIV: Contrary Viral Strategies in Similar Disguise. Microorganisms 2021; 9:1389. [PMID: 34198973 PMCID: PMC8307803 DOI: 10.3390/microorganisms9071389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/06/2021] [Accepted: 06/07/2021] [Indexed: 11/16/2022] Open
Abstract
SARS-CoV-2 and HIV are zoonotic viruses that rapidly reached pandemic scale, causing global losses and fear. The COVID-19 and AIDS pandemics ignited massive efforts worldwide to develop antiviral strategies and characterize viral architectures, biological and immunological properties, and clinical outcomes. Although both viruses have a comparable appearance as enveloped viruses with positive-stranded RNA and envelope spikes mediating cellular entry, the entry process, downstream biological and immunological pathways, clinical outcomes, and disease courses are strikingly different. This review provides a systemic comparison of both viruses' structural and functional characteristics, delineating their distinct strategies for efficient spread.
Collapse
Affiliation(s)
- Ralf Duerr
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA; (K.M.C.); (A.M.V.-J.); (M.D.)
| | | | | | | |
Collapse
|
10
|
Sutar J, Deshpande S, Mullick R, Hingankar N, Patel V, Bhattacharya J. Geospatial HIV-1 subtype C gp120 sequence diversity and its predicted impact on broadly neutralizing antibody sensitivity. PLoS One 2021; 16:e0251969. [PMID: 34029329 PMCID: PMC8143386 DOI: 10.1371/journal.pone.0251969] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 05/06/2021] [Indexed: 11/28/2022] Open
Abstract
Evolving diversity in globally circulating HIV-1 subtypes presents a formidable challenge in defining and developing neutralizing antibodies for prevention and treatment. HIV-1 subtype C is responsible for majority of global HIV-1 infections. In the present study, we examined the diversity in genetic signatures and attributes that differentiate region-specific HIV-1 subtype C gp120 sequences associated with virus neutralization outcomes to key bnAbs having distinct epitope specificities. A total of 1814 full length HIV-1 subtype C gp120 sequence from 37 countries were retrieved from Los Alamos National Laboratory HIV database (www.hiv.lanl.gov). The amino acid sequences were assessed for their phylogenetic association, variable loop lengths and prevalence of potential N-linked glycosylation sites (pNLGS). Responses of these sequences to bnAbs were predicted with a machine learning algorithm ‘bNAb-ReP’ and compared with those reported in the CATNAP database. Subtype C sequences from Asian countries including India differed phylogenetically when compared with that from African countries. Variable loop lengths and charges within Indian and African clusters were also found to be distinct from each other, specifically for V1, V2 and V4 loops. Pairwise analyses at each of the 25 pNLG sites indicated distinct country specific profiles. Highly significant differences (p<0.001***) were observed in prevalence of four pNLGS (N130, N295, N392 and N448) between South Africa and India, having most disease burden associated with subtype C. Our findings highlight that distinctly evolving clusters within global intra-subtype C gp120 sequences are likely to influence the disparate region-specific sensitivity of circulating HIV-1 subtype C to bnAbs.
Collapse
Affiliation(s)
- Jyoti Sutar
- HIV Vaccine Translational Research Laboratory, Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
- International AIDS Vaccine Initiative, New Delhi, India
| | - Suprit Deshpande
- HIV Vaccine Translational Research Laboratory, Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Ranajoy Mullick
- HIV Vaccine Translational Research Laboratory, Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
- International AIDS Vaccine Initiative, New Delhi, India
| | - Nitin Hingankar
- HIV Vaccine Translational Research Laboratory, Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Vainav Patel
- ICMR-National Institute for Research in Reproductive Health, Mumbai, India
| | - Jayanta Bhattacharya
- HIV Vaccine Translational Research Laboratory, Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
- International AIDS Vaccine Initiative, New Delhi, India
- * E-mail: ,
| |
Collapse
|
11
|
Mullick R, Sutar J, Hingankar N, Deshpande S, Thakar M, Sahay S, Ringe RP, Mukhopadhyay S, Patil A, Bichare S, Murugavel KG, Srikrishnan AK, Goyal R, Sok D, Bhattacharya J. Neutralization diversity of HIV-1 Indian subtype C envelopes obtained from cross sectional and followed up individuals against broadly neutralizing monoclonal antibodies having distinct gp120 specificities. Retrovirology 2021; 18:12. [PMID: 33990195 PMCID: PMC8120817 DOI: 10.1186/s12977-021-00556-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/22/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The potential use of the broadly neutralizing monoclonal antibodies (bnAbs) towards prophylaxis and treatment to HIV-1 is currently being explored. While a number of promising bnAbs have been discovered and a few of them have progressed towards clinical development, their extent of neutralization coverage with respect to global HIV-1 variants given the existence of genetically distinct subtypes and recombinants circulating globally is not clearly known. In the present study, we examined the variation in the neutralization susceptibility of pseudoviruses expressing 71 full length primary HIV-1 subtype C envs obtained from limited cross-sectional individuals over different time points against four bnAbs that target gp120 with distinct specificities: VRC01, CAP256-VRC26.25, PGDM1400 and PGT121. RESULTS We found significant variations in the susceptibility of Indian clade C to these four bnAbs. These variations were found to be distinct to that observed in African subtype C based on the existing datasets and concordant with their sequence diversity. Trend analysis indicated an increasing neutralization resistance observed over time with CAP25-VRC26.25, PGDM1400 and PGT121 when tested on pseudoviruses expressing envs obtained from 1999 to 2016. However, inconsistent trend in neutralization susceptibility was observed, when pseudoviruses expressing envs obtained from three followed up individuals were examined. Finally, through predictive analysis of the 98 Indian subtype C including those assessed in the present study by employing additive model implemented in CombiNAber ( http://www.hiv.lanl.gov ), we observed two possibilities where combinations of three bnAbs (VRC01/CAP56-VRC26.25/PGT121 and PGDM1400/CAP256-VRC26.25/PGT121) could achieve near 100% neutralization coverage. CONCLUSIONS Our findings not only indicate disparate intra-clade C genetic vis-à-vis neutralization diversities but also warrant the need for more comprehensive study using additional isolates towards comparing inter and intra-clade neutralization diversities which will be necessary for selecting the bnAb combinations suitable for optimal coverage of the region-specific HIV-1 circulating subtypes. Expanding these efforts is imperative for designing efficacious bnAb based intervention strategies for India as well as subtype C in general.
Collapse
Affiliation(s)
- Ranajoy Mullick
- HIV Vaccine Translational Research Laboratory, Translational Health Sciences & Technology Institute, Faridabad, Haryana, India
- International AIDS Vaccine Initiative, New Delhi, India
| | - Jyoti Sutar
- HIV Vaccine Translational Research Laboratory, Translational Health Sciences & Technology Institute, Faridabad, Haryana, India
- International AIDS Vaccine Initiative, New Delhi, India
| | - Nitin Hingankar
- HIV Vaccine Translational Research Laboratory, Translational Health Sciences & Technology Institute, Faridabad, Haryana, India
| | - Suprit Deshpande
- HIV Vaccine Translational Research Laboratory, Translational Health Sciences & Technology Institute, Faridabad, Haryana, India
| | - Madhuri Thakar
- ICMR-National AIDS Research Institute, Pune, Maharashtra, India
| | - Seema Sahay
- ICMR-National AIDS Research Institute, Pune, Maharashtra, India
| | - Rajesh P Ringe
- CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Sampurna Mukhopadhyay
- ICMR-National AIDS Research Institute, Pune, Maharashtra, India
- , Mississauga, ON, L5B3Y9, Canada
| | - Ajit Patil
- ICMR-National AIDS Research Institute, Pune, Maharashtra, India
| | | | | | | | - Rajat Goyal
- International AIDS Vaccine Initiative, New Delhi, India
| | - Devin Sok
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Jayanta Bhattacharya
- HIV Vaccine Translational Research Laboratory, Translational Health Sciences & Technology Institute, Faridabad, Haryana, India.
- International AIDS Vaccine Initiative, New Delhi, India.
| |
Collapse
|
12
|
Cale EM, Bai H, Bose M, Messina MA, Colby DJ, Sanders-Buell E, Dearlove B, Li Y, Engeman E, Silas D, O'Sullivan AM, Mann B, Pinyakorn S, Intasan J, Benjapornpong K, Sacdalan C, Kroon E, Phanuphak N, Gramzinski R, Vasan S, Robb ML, Michael NL, Lynch RM, Bailer RT, Pagliuzza A, Chomont N, Pegu A, Doria-Rose NA, Trautmann L, Crowell TA, Mascola JR, Ananworanich J, Tovanabutra S, Rolland M. Neutralizing antibody VRC01 failed to select for HIV-1 mutations upon viral rebound. J Clin Invest 2021; 130:3299-3304. [PMID: 32182219 PMCID: PMC7259993 DOI: 10.1172/jci134395] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 03/11/2020] [Indexed: 01/04/2023] Open
Abstract
Infusion of the broadly neutralizing antibody VRC01 has been evaluated in individuals chronically infected with HIV-1. Here, we studied how VRC01 infusions affected viral rebound after cessation of antiretroviral therapy (ART) in 18 acutely treated and durably suppressed individuals. Viral rebound occurred in all individuals, yet VRC01 infusions modestly delayed rebound and participants who showed a faster decay of VRC01 in serum rebounded more rapidly. Participants with strains most sensitive to VRC01 or with VRC01 epitope motifs similar to known VRC01-susceptible strains rebounded later. Upon rebound, HIV-1 sequences were indistinguishable from those sampled at diagnosis. Across the cohort, participant-derived Env showed different sensitivity to VRC01 neutralization (including 2 resistant viruses), yet neutralization sensitivity was similar at diagnosis and after rebound, indicating the lack of selection for VRC01 resistance during treatment interruption. Our results showed that viremia rebounded despite the absence of HIV-1 adaptation to VRC01 and an average VRC01 trough of 221 μg/mL. Although VRC01 levels were insufficient to prevent a resurgent infection, knowledge that they did not mediate Env mutations in acute-like viruses is relevant for antibody-based strategies in acute infection.
Collapse
Affiliation(s)
- Evan M Cale
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Hongjun Bai
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Meera Bose
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Michael A Messina
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Donn J Colby
- SEARCH, Thai Red Cross Research Center, Bangkok, Thailand
| | - Eric Sanders-Buell
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Bethany Dearlove
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Yifan Li
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Emily Engeman
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Daniel Silas
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Anne Marie O'Sullivan
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Brendan Mann
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Suteeraporn Pinyakorn
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | | | | | - Carlo Sacdalan
- SEARCH, Thai Red Cross Research Center, Bangkok, Thailand
| | - Eugène Kroon
- SEARCH, Thai Red Cross Research Center, Bangkok, Thailand
| | | | - Robert Gramzinski
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Sandhya Vasan
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Merlin L Robb
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Nelson L Michael
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | | | - Robert T Bailer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | | | | | - Amarendra Pegu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Lydie Trautmann
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Trevor A Crowell
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Jintanat Ananworanich
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA.,SEARCH, Thai Red Cross Research Center, Bangkok, Thailand.,Department of Global Health, University of Amsterdam, Amsterdam, Netherlands
| | - Sodsai Tovanabutra
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Morgane Rolland
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | | |
Collapse
|
13
|
Predicting Antibody Neutralization Efficacy in Hypermutated Epitopes Using Monte Carlo Simulations. Polymers (Basel) 2020; 12:polym12102392. [PMID: 33080783 PMCID: PMC7602999 DOI: 10.3390/polym12102392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/09/2020] [Accepted: 10/15/2020] [Indexed: 11/19/2022] Open
Abstract
Human Immunodeficiency Virus 1 (HIV-1) evades adaptive immunity by means of its extremely high mutation rate, which allows the HIV envelope glycoprotein to continuously escape from the action of antibodies. However, some broadly neutralizing antibodies (bNAbs) targeting specific viral regions show the ability to block the infectivity of a large number of viral variants. The discovery of these antibodies opens new avenues in anti-HIV therapy; however, they are still suboptimal tools as their amplitude of action ranges between 50% and 90% of viral variants. In this context, being able to discriminate between sensitive and resistant strains to an antibody would be of great interest for the design of optimal clinical antibody treatments and to engineer potent bNAbs for clinical use. Here, we describe a hierarchical procedure to predict the antibody neutralization efficacy of multiple viral isolates to three well-known anti-CD4bs bNAbs: VRC01, NIH45-46 and 3BNC117. Our method consists of simulating the three-dimensional binding process between the gp120 and the antibody by using Protein Energy Landscape Exploration (PELE), a Monte Carlo stochastic approach. Our results clearly indicate that the binding profiles of sensitive and resistant strains to a bNAb behave differently, showing the latter’s weaker binding profiles, that can be exploited for predicting antibody neutralization efficacy in hypermutated HIV-1 strains.
Collapse
|
14
|
Jahedian S, Sadat SM, Javadi GR, Bolhassani A. Production and Evaluation of the Properties of HIV-1-Nef-MPER-V3 Fusion Protein Harboring IMT-P8 Cell Penetrating Peptide. Curr HIV Res 2020; 18:315-323. [PMID: 32532193 DOI: 10.2174/1570162x18666200612151925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/23/2020] [Accepted: 05/12/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Finding a safe and effective vaccine for HIV-1 infection is still a major concern. OBJECTIVE This study aimed to design and produce a recombinant Nef-MPER V3 protein fused with IMT-P8 using E. coli expression system to provide a potential HIV vaccine with high cellular penetrance. METHODS After synthesizing the DNA sequence of the fusion protein, the construct was inserted into the pET-28 expression vector. The recombinant protein expression was induced using 1 mM IPTG and the product was purified through affinity chromatography. Characterization of cellular delivery, toxicity and immunogenicity of the protein was carried out. RESULTS The recombinant protein was expressed and confirmed by the anti-Nef antibody through western blotting. Data analyses showed that the protein possessed no considerable toxicity effect and has improved the IMT-P8 penetration rate in comparison to a control sample. Moreover, the antigen immunogenicity of the protein induced specific humoral response in mice. CONCLUSION It was concluded that IMT-P8-Nef-MPER-V3 fusion protein has a high penetrance rate in mammalian cell line and low toxicity, thus it can be potentially considered as a vaccine against HIV-1.
Collapse
Affiliation(s)
- Shekoufa Jahedian
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Seyed Mehdi Sadat
- Department of Hepatitis, AIDS and Blood-borne Diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Gholam Reza Javadi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis, AIDS and Blood-borne Diseases, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
15
|
Joyce MG, Sankhala RS, Chen WH, Choe M, Bai H, Hajduczki A, Yan L, Sterling SL, Peterson CE, Green EC, Smith C, de Val N, Amare M, Scott P, Laing ED, Broder CC, Rolland M, Michael NL, Modjarrad K. A Cryptic Site of Vulnerability on the Receptor Binding Domain of the SARS-CoV-2 Spike Glycoprotein. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.03.15.992883. [PMID: 32511298 PMCID: PMC7217142 DOI: 10.1101/2020.03.15.992883] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
SARS-CoV-2 is a zoonotic virus that has caused a pandemic of severe respiratory disease-COVID-19-within several months of its initial identification. Comparable to the first SARS-CoV, this novel coronavirus's surface Spike (S) glycoprotein mediates cell entry via the human ACE-2 receptor, and, thus, is the principal target for the development of vaccines and immunotherapeutics. Molecular information on the SARS-CoV-2 S glycoprotein remains limited. Here we report the crystal structure of the SARS-CoV-2 S receptor-binding-domain (RBD) at a the highest resolution to date, of 1.95 Å. We identified a set of SARS-reactive monoclonal antibodies with cross-reactivity to SARS-CoV-2 RBD and other betacoronavirus S glycoproteins. One of these antibodies, CR3022, was previously shown to synergize with antibodies that target the ACE-2 binding site on the SARS-CoV RBD and reduce viral escape capacity. We determined the structure of CR3022, in complex with the SARS-CoV-2 RBD, and defined a broadly reactive epitope that is highly conserved across betacoronaviruses. This epitope is inaccessible in the "closed" prefusion S structure, but is accessible in "open" conformations. This first-ever resolution of a human antibody in complex with SARS-CoV-2 and the broad reactivity of this set of antibodies to a conserved betacoronavirus epitope will allow antigenic assessment of vaccine candidates, and provide a framework for accelerated vaccine, immunotherapeutic and diagnostic strategies against SARS-CoV-2 and related betacoronaviruses.
Collapse
Affiliation(s)
- M. Gordon Joyce
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Rajeshwer S. Sankhala
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Wei-Hung Chen
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Misook Choe
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Hongjun Bai
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Agnes Hajduczki
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Lianying Yan
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA, Bethesda, MD, USA
| | - Spencer L. Sterling
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA, Bethesda, MD, USA
| | - Caroline E. Peterson
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Ethan C. Green
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA, Bethesda, MD, USA
- Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Clayton Smith
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD, USA
| | - Natalia de Val
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD, USA
| | - Mihret Amare
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Paul Scott
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Eric D. Laing
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA, Bethesda, MD, USA
| | - Christopher C. Broder
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA, Bethesda, MD, USA
| | - Morgane Rolland
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Nelson L. Michael
- Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Kayvon Modjarrad
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| |
Collapse
|
16
|
Duerr R, Gorny MK. V2-Specific Antibodies in HIV-1 Vaccine Research and Natural Infection: Controllers or Surrogate Markers. Vaccines (Basel) 2019; 7:vaccines7030082. [PMID: 31390725 PMCID: PMC6789775 DOI: 10.3390/vaccines7030082] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/26/2019] [Accepted: 07/27/2019] [Indexed: 12/20/2022] Open
Abstract
Most human immunodeficiency virus (HIV) vaccine trials have lacked efficacy and empirical vaccine lead targets are scarce. Thus far, the only independent correlate of reduced risk of HIV-1 acquisition in humans is elevated levels of V2-specific antibodies identified in the modestly protective RV144 vaccine trial. Ten years after RV144, human and non-human primate vaccine studies have reassessed the potential contribution of V2-specific antibodies to vaccine efficacy. In addition, studies of natural HIV-1 infection in humans have provided insight into the development of V1V2-directed antibody responses and their impact on clinical parameters and disease progression. Functionally diverse anti-V2 monoclonal antibodies were isolated and their structurally distinct V2 epitope regions characterized. After RV144, a plethora of research studies were performed using different model systems, immunogens, protocols, and challenge viruses. These diverse studies failed to provide a clear picture regarding the contribution of V2 antibodies to vaccine efficacy. Here, we summarize the biological functions and clinical findings associated with V2-specific antibodies and discuss their impact on HIV vaccine research.
Collapse
Affiliation(s)
- Ralf Duerr
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA.
| | - Miroslaw K Gorny
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
17
|
Impact of HIV-1 Diversity on Its Sensitivity to Neutralization. Vaccines (Basel) 2019; 7:vaccines7030074. [PMID: 31349655 PMCID: PMC6789624 DOI: 10.3390/vaccines7030074] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 12/15/2022] Open
Abstract
The HIV-1 pandemic remains a major burden on global public health and a vaccine to prevent HIV-1 infection is highly desirable but has not yet been developed. Among the many roadblocks to achieve this goal, the high antigenic diversity of the HIV-1 envelope protein (Env) is one of the most important and challenging to overcome. The recent development of broadly neutralizing antibodies has considerably improved our knowledge on Env structure and its interplay with neutralizing antibodies. This review aims at highlighting how the genetic diversity of HIV-1 thwarts current, and possibly future, vaccine developments. We will focus on the impact of HIV-1 Env diversification on the sensitivity to neutralizing antibodies and the repercussions of this continuous process at a population level.
Collapse
|