1
|
Huang S, Wei S, Jiao H, Huang S, Li Q, Wang Z, Tang Y, Chen L, Lu J. Establishment of Nile Tilapia Primary Cell Culture Methods and In Vitro Cell Knockdown Techniques. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 27:18. [PMID: 39621127 DOI: 10.1007/s10126-024-10380-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/05/2024] [Indexed: 02/26/2025]
Abstract
As an important aquaculture species and research model, Nile tilapia (Oreochromis niloticus) has not yet been systematically studied for the isolation, culture, and in vitro gene manipulation techniques of primary cells from various tissues. This study aimed to explore methods for isolating primary cells from various tissues, as well as developing in vitro gene manipulation techniques in Nile tilapia. Four different Nile tilapia tissues were enzymatically digested and separated using trypsin or collagenase. Collagenase (0.1%) was used for the digestion of the gonads, liver, and heart, while trypsin (0.25%) showed better adhesion efficiency for spleen tissue. Moreover, we assessed EGFP fluorescence intensity and cell survival rates following transfection with empty siRNA (siRNA-NC), lentivirus (LV-NC), and six adeno-associated virus (AAV-NC) serotypes (AAV2-NC, AAV5-NC, AAV6-NC, AAV8-NC, AAV9-NC, AAV-DJ-NC) in gonadal cells. The results demonstrated that cells transfected with siRNA-NC and LV-NC showed the highest levels of green fluorescent protein expression and survival rates in primary gonadal cells, compared to AAC-NC. Subsequently, we knocked down the Kdm6bb gene in Nile tilapia primary gonadal cells by transfecting them with LV-Kdm6bb and siRNA-Kdm6bb. qPCR and immunofluorescence analyses demonstrated a significant reduction in Kdm6bb mRNA levels following transfection with siRNA-Kdm6bb compared to siRNA-NC, and with LV-Kdm6bb compared to LV-NC. This study offers valuable tools for the validation of primary cell isolation and in vitro molecular regulatory mechanisms and functions in Nile tilapia.
Collapse
Affiliation(s)
- Siqi Huang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Shicen Wei
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - He Jiao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Songqian Huang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Qini Li
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Zhe Wang
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Yuhao Tang
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Liangbiao Chen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, People's Republic of China.
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, People's Republic of China.
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China.
| | - Jigang Lu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, People's Republic of China.
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, People's Republic of China.
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
2
|
Souza VVD, Moreira DP, Braz-Mota S, Valente W, Cotta GC, Rodrigues MDS, Nóbrega RH, Corrêa RDS, Hoyos DCDM, Sanches EA, Val AL, Lacerda SMDSN. Simulated climate change and atrazine contamination can synergistically impair zebrafish testicular function. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174173. [PMID: 38925398 DOI: 10.1016/j.scitotenv.2024.174173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 05/25/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
Elements that interfere with reproductive processes can have profound impacts on population and the equilibrium of ecosystems. Global warming represents the major environmental challenge of the 21st century, as it will affect all forms of life in the coming decades. Another coexisting concern is the persistent pollution by pesticides, particularly the herbicide Atrazine (ATZ), which is responsible for a significant number of contamination incidents in surface waters worldwide. While it is hypothesized that climate changes will significantly enhance the toxic effects of pesticides, the actual impact of these phenomena remain largely unexplored. Here, we conducted a climate-controlled room experiment to assess the interactive effects of the projected 2100 climate scenario and environmentally realistic ATZ exposures on the reproductive function of male zebrafish. The gonadosomatic index significantly decreased in fish kept in the extreme scenario. Cellular alterations across spermatogenesis phases led to synergic decreased sperm production and increased germ cell sloughing and death. ATZ exposure alone or combined with climate change effects, disrupted the transcription levels of key genes involved in steroidogenesis, hormone signaling and spermatogenesis regulation. An additive modulation with decreased 11-KT production and increased E2 levels was also evidenced, intensifying the effects of androgen/estrogen imbalance. Moreover, climate change and ATZ independently induced oxidative stress, upregulation of proapoptotic gene and DNA damage in post-meiotic germ cell, but the negative effects of ATZ were greater at extreme scenario. Ultimately, exposure to simulated climate changes severely impaired fertilization capacity, due to a drastic reduction in sperm motility and/or viability. These findings indicate that the future climate conditions have the potential to considerably enhance the toxicity of ATZ at low concentrations, leading to significant deleterious consequences for fish reproductive function and fertility. These may provide relevant information to supporting healthcare and environmental managers in decision-making related to climate changes and herbicide regulation.
Collapse
Affiliation(s)
- Victor Ventura de Souza
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Davidson Peruci Moreira
- Laboratory of Ichthiohistology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Susana Braz-Mota
- Laboratory of Ecophysiology and Molecular Evolution, Brazilian National Institute for Research in the Amazon, Manaus, Amazonas, Brazil
| | - Wanderson Valente
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Gustavo Caldeira Cotta
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Maira da Silva Rodrigues
- Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Rafael Henrique Nóbrega
- Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Rebeca Dias Serafim Corrêa
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Eduardo Antônio Sanches
- Faculty of Agricultural Sciences of Vale do Ribeira, São Paulo State University (UNESP), Brazil
| | - Adalberto Luís Val
- Laboratory of Ecophysiology and Molecular Evolution, Brazilian National Institute for Research in the Amazon, Manaus, Amazonas, Brazil
| | | |
Collapse
|
3
|
Ren Y, Tao Y, Sun Z, Wang Y, Li W, He Z, Wang G, Yang Y, Hou J. Evaluation of Female Recipient Infertility and Donor Spermatogonial Purification for Germ Cell Transplantation in Paralichthys olivaceus. Animals (Basel) 2024; 14:2887. [PMID: 39409837 PMCID: PMC11476266 DOI: 10.3390/ani14192887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/25/2024] [Accepted: 10/03/2024] [Indexed: 10/20/2024] Open
Abstract
Since the advent of germ cell transplantation (GCT), it has been widely used in shortening the fish breeding cycle, sex-controlled breeding and the protection of rare and endangered fish. In this study, the effectiveness of female sterile recipient preparation and donor stem cell isolation and purification were comprehensively evaluated for spermatogonial stem cell transplantation (SSCT) in Paralichthys olivaceus. The best way to prepare sterile recipients was found to be giving three-year-old fish four intraovarian injections of busulfan (20 mg/kg body weight) combined with exposure to a high temperature (28 °C) after the spawning season compared with the two other ways, which induced apoptosis of most of the endogenous germ cells, resulting in shrinkage of the spawning plate and enlargement of the ovarian lumen. Further analysis showed that both the gonadosomatic index and germ-cell-specific vasa expression were significantly lower than those of the natural-temperature group before treatment (p < 0.05). A high percentage (>60.00%) of spermatogonial stem cells (SSCs) were obtained after isolation and purification and were transplanted into the prepared recipients. After three weeks of SSCT, the numbers of PKH26-labeled SSCs were increased in the ovaries of the recipients. These findings provide a basis for the establishment of an ideal SSCT technique using P. olivaceus females as the recipients, ultimately contributing to the efficient conservation of male germplasm resources and effective breeding.
Collapse
Affiliation(s)
- Yuqin Ren
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao 066100, China; (Y.R.); (Y.T.); (Z.S.); (Y.W.); (Z.H.); (G.W.); (Y.Y.)
- Bohai Sea Fishery Research Center, Chinese Academy of Fishery Science, Qinhuangdao 066100, China
| | - Yuehong Tao
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao 066100, China; (Y.R.); (Y.T.); (Z.S.); (Y.W.); (Z.H.); (G.W.); (Y.Y.)
- Bohai Sea Fishery Research Center, Chinese Academy of Fishery Science, Qinhuangdao 066100, China
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding Genetics, Shanghai Ocean University, Shanghai 201306, China
| | - Zhaohui Sun
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao 066100, China; (Y.R.); (Y.T.); (Z.S.); (Y.W.); (Z.H.); (G.W.); (Y.Y.)
- Bohai Sea Fishery Research Center, Chinese Academy of Fishery Science, Qinhuangdao 066100, China
| | - Yufen Wang
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao 066100, China; (Y.R.); (Y.T.); (Z.S.); (Y.W.); (Z.H.); (G.W.); (Y.Y.)
- Bohai Sea Fishery Research Center, Chinese Academy of Fishery Science, Qinhuangdao 066100, China
| | - Weidong Li
- Tangshan Haidu Aquatic Food Co., Ltd., Tangshan 063000, China;
| | - Zhongwei He
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao 066100, China; (Y.R.); (Y.T.); (Z.S.); (Y.W.); (Z.H.); (G.W.); (Y.Y.)
- Bohai Sea Fishery Research Center, Chinese Academy of Fishery Science, Qinhuangdao 066100, China
| | - Guixing Wang
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao 066100, China; (Y.R.); (Y.T.); (Z.S.); (Y.W.); (Z.H.); (G.W.); (Y.Y.)
- Bohai Sea Fishery Research Center, Chinese Academy of Fishery Science, Qinhuangdao 066100, China
| | - Yucong Yang
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao 066100, China; (Y.R.); (Y.T.); (Z.S.); (Y.W.); (Z.H.); (G.W.); (Y.Y.)
- Bohai Sea Fishery Research Center, Chinese Academy of Fishery Science, Qinhuangdao 066100, China
| | - Jilun Hou
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao 066100, China; (Y.R.); (Y.T.); (Z.S.); (Y.W.); (Z.H.); (G.W.); (Y.Y.)
- Bohai Sea Fishery Research Center, Chinese Academy of Fishery Science, Qinhuangdao 066100, China
| |
Collapse
|
4
|
Cabrita E, Pacchiarini T, Fatsini E, Sarasquete C, Herráez MP. Post-thaw quality assessment of testicular fragments as a source of spermatogonial cells for surrogate production in the flatfish Solea senegalensis. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:1971-1985. [PMID: 37644252 DOI: 10.1007/s10695-023-01232-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023]
Abstract
Cryopreservation of germ cells would facilitate the availability of cells at any time allowing the selection of donors and maintaining quality control for further applications such as transplantation and germline recovery. In the present study, we analyzed the efficiency of four cryopreservation protocols applied either to isolated cell suspensions or to testes fragments from Senegalese sole. In testes fragments, the quality of cryopreserved germ cells was analyzed in vitro in terms of cell recovery, integrity and viability, DNA integrity (fragmentation and apoptosis), and lipid peroxidation (malondialdehyde levels). Transplantation of cryopreserved germ cells was performed to check the capacity of cells to in vivo incorporate into the gonadal primordium of Senegalese sole early larval stages (6 days after hatching (dah), pelagic live), during metamorphosis (10 dah) and at post-metamorphic stages (16 dah and 20 dah, benthonic life). Protocols incorporating dimethyl sulfoxide (DMSO) as a cryoprotectant showed higher number of recovered spermatogonia, especially in samples cryopreserved with L-15 + DMSO (0.39 ± 0.18 × 106 cells). Lipid peroxidation and DNA fragmentation were also significantly lower in this treatment compared with other treatments. An important increase in oxidation (MDA levels) was detected in samples containing glycerol as a cryoprotectant, reflected also in terms of DNA damage. Transplantation of L-15 + DMSO cryopreserved germ cells into larvae during early metamorphosis (10 dah, 5.2 mm) showed higher incorporation of cells (27.30 ± 5.27%) than other larval stages (lower than 11%). Cryopreservation of germ cells using testes fragments frozen with L-15 + DMSO was demonstrated to be a useful technique to store Senegalese sole germline.
Collapse
Affiliation(s)
- Elsa Cabrita
- Centre of Marine Sciences-CCMAR, University of Algarve, Campus Gambelas, 8005-139, Faro, Portugal.
| | - Tiziana Pacchiarini
- Sea4tech, Incubadora de Alta Tecnología INCUBAZUL, Edificio Europa, Zona Franca de Cádiz, Cádiz, Spain
| | - Elvira Fatsini
- Centre of Marine Sciences-CCMAR, University of Algarve, Campus Gambelas, 8005-139, Faro, Portugal
| | - Carmen Sarasquete
- Institute of Marine Science of Andalusia- ICMAN.CSIC, Av Republica Saharaui 2, 11510 Puerto Real, Cádiz, Spain
| | - María Paz Herráez
- Dept. Biologia Molecular, Facultad de Biologia, Universidad de León, 24071, León, Spain
| |
Collapse
|
5
|
López LS, Monzani PS, Carvalho GB, de Siqueira Silva DH, Vianna NC, Yasui GS, Senhorini JA. Cryopreservation and transplantation of spermatogonia stem cells in piracanjuba Brycon orbignyanus (Characiformes: Characidae), an endangered fish species. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:2117-2135. [PMID: 39331242 DOI: 10.1007/s10695-024-01406-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Piracanjuba (Brycon orbignyanus) is an endangered fish species from the Neotropical region. The establishment of a cryobank using spermatogonial stem cells (SSCs) and subsequent production of a germline chimera is thus a promising strategy for such species. In the present work, procedures for the isolation and cryopreservation of piracanjuba SSCs and subsequent transplantation into sterile recipients were established. The piracanjuba SSCs were obtained by Percoll density gradient centrifugation and differential plating. SSC fractions were evaluated by relative ddx4 expression, alkaline phosphatase activity, and light microscopy. SSC cryopreservation was performed using five cryoprotectants at three different concentrations. The mix of the cells from the 20% and 30% Percoll density gradients showed 58.35 ± 0.03% purity of SSCs. The purity of SSCs increased to 66.00 ± 0.01% after differential plating. The relative ddx4 expression was 3.5 times higher in cells from the Percoll density gradient centrifugation than in the gonad and cells after differential plating. Propanediol (1 M) was the most effective cryoprotector evaluated (P = 1.000), showing 90.75 ± 1.85% cell viability. Freshly isolated and cryopreserved cells from the Percoll density gradient centrifugation were transplanted into a sterile male adult triploid hybrid with germ cell-less gonads. SSCs were observed in the germinal epithelium of the testes of recipients 20 days after transplantation. The results are promising for obtaining functional germline chimeras in Neotropical fish. Consequently, although the number of males used for the experiment was borderline, the procedures established here can be applied in future actions for the conservation and reconstitution of the piracanjuba in case of extinction.
Collapse
Affiliation(s)
- Lucia Suárez López
- Institute of Bioscience, São Paulo State University, Botucatu, São Paulo, Brazil.
- Laboratory of Fish Biotechnology, Chico Mendes Institute of Biodiversity Conservation/National Center for Research and Conservation of Continental Aquatic Biodiversity, Pirassununga, São Paulo, Brazil.
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, São Paulo, Brazil.
- Department of Aquaculture, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), No. 3918. Zona Playitas, Carretera Ensenada, 22860, Tijuana, Baja California, Mexico.
| | - Paulo Sérgio Monzani
- Institute of Bioscience, São Paulo State University, Botucatu, São Paulo, Brazil
- Laboratory of Fish Biotechnology, Chico Mendes Institute of Biodiversity Conservation/National Center for Research and Conservation of Continental Aquatic Biodiversity, Pirassununga, São Paulo, Brazil
| | - Gabriella Braga Carvalho
- Laboratory of Fish Biotechnology, Chico Mendes Institute of Biodiversity Conservation/National Center for Research and Conservation of Continental Aquatic Biodiversity, Pirassununga, São Paulo, Brazil
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Diógenes Henrique de Siqueira Silva
- Study Group on the Reproduction of Amazonian Fishes, Biology Faculty, Federal University of the South and Southeast of Pará, Marabá, Pará, Brazil
| | | | - George Shigueki Yasui
- Laboratory of Fish Biotechnology, Chico Mendes Institute of Biodiversity Conservation/National Center for Research and Conservation of Continental Aquatic Biodiversity, Pirassununga, São Paulo, Brazil
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, São Paulo, Brazil
| | - José Augusto Senhorini
- Institute of Bioscience, São Paulo State University, Botucatu, São Paulo, Brazil
- Laboratory of Fish Biotechnology, Chico Mendes Institute of Biodiversity Conservation/National Center for Research and Conservation of Continental Aquatic Biodiversity, Pirassununga, São Paulo, Brazil
| |
Collapse
|
6
|
Zhao X, Chen Y, Li R, Men Y, Yan K, Li Z, Cai W, He Y, Qi J. Immune Rejection Mediated by prf1 and gzmb Affects the Colonization of Fat Greenling ( Hexagrammos otakii) Spermatogonia in Heterotransplantation. Int J Mol Sci 2024; 25:5157. [PMID: 38791196 PMCID: PMC11121654 DOI: 10.3390/ijms25105157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Fish germ cell transplantation holds great potential for conserving endangered species, improving cultured fish breeds, and exploring reproductive techniques. However, low transplantation efficiency is a common issue in heterotransplantation. This study transplanted fat greenling (Hexagrammos otakii) spermatogonia into the testes of spotted sea bass (Lateolabrax maculatus) to investigate factors that might affect the colonization and fixation of heterologous transplanted germ cells. Results indicated that transplanted fat greenling spermatogonia cells were successfully detected in the early transplantation phase in spotted sea bass. Their numbers gradually decreased over time, and after 10 days post-transplantation, more than 90% of the transplanted cells underwent apoptosis. Transcriptome sequencing analysis of the testes of spotted sea bass and fat greenling spermatogonia on days 1 and 10 post-transplantation revealed that this apoptosis process involved many immune-related genes and their associated signaling pathways. Acute immune rejection marker genes prf1 and gzmb were detected in the spotted sea bass testes, while immune tolerance genes lck and zap-70 were expressed in the fat greenling spermatogonia. Additionally, differential expression of prf1 and gzmb genes was screened from spotted sea bass, with experimental evidence indicating that PRF1 and GZMB protein from spotted sea bass primarily induce apoptosis in transplanted fat greenling spermatogonia via the mitochondrial apoptosis pathway, at the protein level. This suggests that the difficulties in heterotransplantation are primarily related to acute immune rejection, with PRF1 and GZMB playing significant roles.
Collapse
Affiliation(s)
- Xi Zhao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (X.Z.); (Y.C.); (R.L.); (Y.M.); (K.Y.); (Z.L.); (W.C.); (Y.H.)
| | - Ying Chen
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (X.Z.); (Y.C.); (R.L.); (Y.M.); (K.Y.); (Z.L.); (W.C.); (Y.H.)
| | - Rui Li
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (X.Z.); (Y.C.); (R.L.); (Y.M.); (K.Y.); (Z.L.); (W.C.); (Y.H.)
| | - Yu Men
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (X.Z.); (Y.C.); (R.L.); (Y.M.); (K.Y.); (Z.L.); (W.C.); (Y.H.)
| | - Kai Yan
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (X.Z.); (Y.C.); (R.L.); (Y.M.); (K.Y.); (Z.L.); (W.C.); (Y.H.)
| | - Zibin Li
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (X.Z.); (Y.C.); (R.L.); (Y.M.); (K.Y.); (Z.L.); (W.C.); (Y.H.)
| | - Wenxiu Cai
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (X.Z.); (Y.C.); (R.L.); (Y.M.); (K.Y.); (Z.L.); (W.C.); (Y.H.)
| | - Yan He
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (X.Z.); (Y.C.); (R.L.); (Y.M.); (K.Y.); (Z.L.); (W.C.); (Y.H.)
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institute, Ocean University of China, Sanya 572000, China
| | - Jie Qi
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (X.Z.); (Y.C.); (R.L.); (Y.M.); (K.Y.); (Z.L.); (W.C.); (Y.H.)
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institute, Ocean University of China, Sanya 572000, China
| |
Collapse
|
7
|
Vigoya AAA, da Costa DF, de Oliveira MA, Butzge AJ, Rosa IF, Doretto LB, Martinez ERM, Digmayer M, Nóbrega RH. Time-efficient germ cell transplantation from goldfish ( Carassius auratus) into adult common carp ( Cyprinus carpio). Anim Reprod 2024; 21:e20230121. [PMID: 38384725 PMCID: PMC10878544 DOI: 10.1590/1984-3143-ar2023-0121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/15/2024] [Indexed: 02/23/2024] Open
Abstract
Germ cell transplantation in fish is a promising technique for surrogate broodstock parents with broader application in aquaculture and conserving endangered and valuable genetic resources. Herein, we describe the establishment of an intrapapillary xenogeneic transplant of germ cells from sexually mature goldfish (C. auratus) males into common carp (C. carpio) males cytoablated with a thermochemical treatment (two doses of busulfan at 40 mg/kg at 35°C). To analyze the presence and development of donor germ cells in recipient testes, donor germ cells were labeled with PKH26, a fluorescent cell membrane dye, before transplantation. Our results demonstrated that thermochemical treatment caused effective spermatogenesis suppression and pronounced germ cell loss. Moreover, transplanted spermatogonial cells were able to colonize the recipients' testes, resume spermatogenesis, and generate spermatozoa within eight weeks after germ cell transplantation. These findings suggested that recipient testes provided suitable conditions for the survival, colonization, proliferation, and differentiation of donor spermatogonia from a related species. This study indicated that recipients' testes exhibited a high degree of plasticity to accept and support xenogeneic donor germ cells, which were able to form sperm in a short time frame. This approach has significant implications for assisted animal reproduction, biotechnology, conservation, and the production of valuable genetic resources and endangered fish species.
Collapse
Affiliation(s)
- Angel Andreas Arias Vigoya
- Centro de Aquicultura, Universidade Estadual Paulista, Jaboticabal, SP, Brasil
- Facultad de Medicina Veterinaria y Zootecnia, Fundación Universitaria San Martín, Bogotá, Colombia
| | - Daniel Fernandes da Costa
- Departamento de Biologia Estrutural e Funcional, Instituto de Biosciências, Universidade Estadual Paulista, Botucatu, SP, Brasil
| | - Marcos Antônio de Oliveira
- Centro de Aquicultura, Universidade Estadual Paulista, Jaboticabal, SP, Brasil
- Departamento de Biologia Estrutural e Funcional, Instituto de Biosciências, Universidade Estadual Paulista, Botucatu, SP, Brasil
| | - Arno Juliano Butzge
- Departamento de Biologia Estrutural e Funcional, Instituto de Biosciências, Universidade Estadual Paulista, Botucatu, SP, Brasil
| | - Ivana Felipe Rosa
- Departamento de Biologia Estrutural e Funcional, Instituto de Biosciências, Universidade Estadual Paulista, Botucatu, SP, Brasil
| | - Lucas Benites Doretto
- Departamento de Biologia Estrutural e Funcional, Instituto de Biosciências, Universidade Estadual Paulista, Botucatu, SP, Brasil
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | | | - Melanie Digmayer
- Departamento de Biologia Estrutural e Funcional, Instituto de Biosciências, Universidade Estadual Paulista, Botucatu, SP, Brasil
| | - Rafael Henrique Nóbrega
- Departamento de Biologia Estrutural e Funcional, Instituto de Biosciências, Universidade Estadual Paulista, Botucatu, SP, Brasil
| |
Collapse
|
8
|
Vigoya AAA, Martinez ERM, Digmayer M, de Oliveira MA, Butzge AJ, Rosa IF, Doretto LB, Nóbrega RH. Characterization and enrichment of spermatogonial stem cells of common carp (Cyprinus carpio). Theriogenology 2024; 214:233-244. [PMID: 37939542 DOI: 10.1016/j.theriogenology.2023.10.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 11/10/2023]
Abstract
Spermatogenesis is a systematically organized process that ensures uninterrupted sperm production in which the spermatogonial stem cells (SSCs) play a crucial role. However, the existing absence of teleost-specific molecular markers for SSCs presents a notable challenge. Herein we characterized phenotypically the spermatogonial stem cells using specific molecular markers and transmission electron microscopy. Moreover, we also describe a simple method to suppress common carp spermatogenesis using the combination of Busulfan and thermo-chemical treatment, and finally, we isolate and enrich the undifferentiated spermatogonial fraction. Our results showed that C-kit, GFRα1, and POU2 proteins were expressed by germ cells, meanwhile, undifferentiated spermatogonial populations preferentially expressed GFRα1 and POU2. Moreover, the combination of high temperature (35 °C) and Busulfan (40 mg/kg/BW) effectively suppressed the spermatogenesis of common carp males. Additionally, the amh expression analysis showed differences between the control (26 °C) when compared to 35 °C with a single or two Busulfan doses, confirming that the testes were depleted by the association of Busulfan at high temperatures. In an attempt to isolate the undifferentiated spermatogonial fraction, we used the Percoll discontinuous density gradient. Thus, we successfully dissociated the carp whole testes in different cellular fractions; subsequently, we isolated and enriched the undifferentiated spermatogonial population. Therefore, our results suggest that probably both GFRα-1 and POU2 are highly conserved factors expressed in common carp germinative epithelium and that these molecules were well conserved along the evolutionary process. Furthermore, the enriched undifferentiated spermatogonial population developed here can be used in further germ cell transplantation experiments to preserve and propagate valued and endangered fish species.
Collapse
Affiliation(s)
- Angel A A Vigoya
- Aquaculture Center of São Paulo State University, CAUNESP, Jaboticabal, 14884-900, São Paulo, Brazil; Faculty of Veterinary Medicine and Animal Science, San Martín University Foundation (FUSM), Bogotá, 760030, Colombia
| | - Emanuel R M Martinez
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, 01049-010, Brazil
| | - Melanie Digmayer
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, 01049-010, Brazil
| | - Marcos A de Oliveira
- Aquaculture Center of São Paulo State University, CAUNESP, Jaboticabal, 14884-900, São Paulo, Brazil; Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, 01049-010, Brazil
| | - Arno J Butzge
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, 01049-010, Brazil
| | - Ivana F Rosa
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, 01049-010, Brazil
| | - Lucas B Doretto
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, 01049-010, Brazil; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Qingdao, 266071, China.
| | - Rafael H Nóbrega
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, 01049-010, Brazil.
| |
Collapse
|
9
|
Majhi SK. Generation of surrogate goldfish Carassius auratus progeny from common carp Cyprinus carpio parents. 3 Biotech 2023; 13:27. [PMID: 36590242 PMCID: PMC9794659 DOI: 10.1007/s13205-022-03424-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 12/07/2022] [Indexed: 12/29/2022] Open
Abstract
Surrogate broodstock technology can increase the production efficiency of commercially important fishes that are difficult to breed in confinement and aid the propagation and recovery of endangered populations. In this study, we report the application of germ cell (GC) transplantation (GCT) for increasing the numbers of progeny produced by small-bodied ornamental fishes by using sexually mature adult fish as recipients. The GCs isolated from prepubertal male goldfish (Carassius auratus) donors (n = 5) were transplanted through the genital papilla into the gonads of adult common carp (Cyprinus carpio) recipients. The endogenous GCs of the recipient were depleted using busulfan (40 mg/kg body weight [BW]; in five doses at 2-week intervals) and high-temperature (38 °C) treatments. Within 4 months after GCT, the donor GCs recolonised the recipients' gonads and resumed gametogenesis. The presence of donor-derived gametes was confirmed through polymerase chain reaction-restriction fragment length polymorphism analysis in all the surrogate common carp males and females. Artificial fertilisation and induced spawning between surrogate males and females yielded pure goldfish progeny; the fertilisation and hatching rates were similar to those of the controls. These results suggest that GCT could also be potentially applied in commercial aquaculture, mainly to increase the numbers of progeny obtained from small-bodied fishes those having low gamete counts.
Collapse
Affiliation(s)
- Sullip Kumar Majhi
- ICAR-National Bureau of Fish Genetic Resources, Canal Ring Road, Dilkhusa P.O., Lucknow, Uttar Pradesh 226 002 India
- Visakhapatnam Research Centre of CIFT, Ocean View Layout, Pandurangapuram, Andhra University P.O., Visakhapatnam, 530003 India
| |
Collapse
|
10
|
Kayo D, Kanda S, Okubo K. Allogeneic testes transplanted into partially castrated adult medaka (Oryzias latipes) can produce donor-derived offspring by natural mating over a prolonged period. ZOOLOGICAL LETTERS 2022; 8:10. [PMID: 35879745 PMCID: PMC9310406 DOI: 10.1186/s40851-022-00195-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Generally, successful testis transplantation has been considered to require immune suppression in the recipient to avoid rejection of the transplanted tissue. In the present study, we demonstrate in medaka that allogeneic adult testicular tissue will engraft in adult recipients immediately after partial castration without the use of immunosuppressive drugs. The allografted testes are retained in the recipient's body for at least 3 months and are able to produce viable sperm that yield offspring after natural mating. Some recipients showed a high frequency (over 60%) of offspring derived from spermatozoa produced by the transplanted testicular tissue. Histological analyses showed that allografted testicular tissues included both germ cells and somatic cells that had become established within an immunocompetent recipient testis. The relative simplicity of this testis transplantation approach will benefit investigations of the basic processes of reproductive immunology and will improve the technique of gonadal tissue transplantation.
Collapse
Affiliation(s)
- Daichi Kayo
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Science, The University of Tokyo, Bunkyo, Tokyo, 113-8657, Japan.
- Present address: Laboratory of Molecular Ethology, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, 980-8577, Japan.
| | - Shinji Kanda
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, 277-8564, Japan
| | - Kataaki Okubo
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Science, The University of Tokyo, Bunkyo, Tokyo, 113-8657, Japan
| |
Collapse
|
11
|
Begum S, Gnanasree SM, Anusha N, Senthilkumaran B. Germ cell markers in fishes - A review. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2022.03.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Ryu JH, Xu L, Wong TT. Advantages, Factors, Obstacles, Potential Solutions, and Recent Advances of Fish Germ Cell Transplantation for Aquaculture-A Practical Review. Animals (Basel) 2022; 12:ani12040423. [PMID: 35203131 PMCID: PMC8868515 DOI: 10.3390/ani12040423] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/05/2022] [Accepted: 02/06/2022] [Indexed: 12/11/2022] Open
Abstract
Simple Summary This review aims to provide practical information and viewpoints regarding fish germ cell transplantation for enhancing its commercial applications. We reviewed and summarized the data from more than 70 important studies and described the advantages, obstacles, recent advances, and future perspectives of fish germ cell transplantation. We concluded and proposed the critical factors for achieving better success and various options for germ cell transplantation with their pros and cons. Additionally, we discussed why this technology has not actively been utilized for commercial purposes, what barriers need to be overcome, and what potential solutions can advance its applications in aquaculture. Abstract Germ cell transplantation technology enables surrogate offspring production in fish. This technology has been expected to mitigate reproductive barriers, such as long generation time, limited fecundity, and complex broodstock management, enhancing seed production and productivity in aquaculture. Many studies of germ cell transplantation in various fish species have been reported over a few decades. So far, surrogate offspring production has been achieved in many commercial species. In addition, the knowledge of fish germ cell biology and the related technologies that can enhance transplantation efficiency and productivity has been developed. Nevertheless, the commercial application of this technology still seems to lag behind, indicating that the established models are neither beneficial nor cost-effective enough to attract potential commercial users of this technology. Furthermore, there are existing bottlenecks in practical aspects such as impractical shortening of generation time, shortage of donor cells with limited resources, low efficiency, and unsuccessful surrogate offspring production in some fish species. These obstacles need to be overcome through further technology developments. Thus, we thoroughly reviewed the studies on fish germ cell transplantation reported to date, focusing on the practicality, and proposed potential solutions and future perspectives.
Collapse
|
13
|
Xie X, Tichopád T, Kislik G, Langerová L, Abaffy P, Šindelka R, Franěk R, Fučíková M, Steinbach C, Shah MA, Šauman I, Chen F, Pšenička M. Isolation and Characterization of Highly Pure Type A Spermatogonia From Sterlet ( Acipenser ruthenus) Using Flow-Cytometric Cell Sorting. Front Cell Dev Biol 2021; 9:772625. [PMID: 34957105 PMCID: PMC8708567 DOI: 10.3389/fcell.2021.772625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/08/2021] [Indexed: 12/17/2022] Open
Abstract
Sturgeons are among the most ancient linages of actinopterygians. At present, many sturgeon species are critically endangered. Surrogate production could be used as an affordable and a time-efficient method for endangered sturgeons. Our study established a method for identifying and isolating type A spermatogonia from different developmental stages of testes using flow cytometric cell sorting (FCM). Flow cytometric analysis of a whole testicular cell suspension showed several well-distinguished cell populations formed according to different values of light scatter parameters. FCM of these different cell populations was performed directly on glass slides for further immunocytochemistry to identify germ cells. Results showed that the cell population in gate P1 on a flow cytometry plot (with high forward scatter and high side scatter parameter values) contains the highest amount of type A spermatogonia. The sorted cell populations were characterized by expression profiles of 10 germ cell specific genes. The result confirmed that setting up for the P1 gate could precisely sort type A spermatogonia in all tested testicular developmental stages. The P2 gate, which was with lower forward scatter and side scatter values mostly, contained type B spermatogonia at a later maturing stage. Moreover, expressions of plzf, dnd, boule, and kitr were significantly higher in type A spermatogonia than in later developed germ cells. In addition, plzf was firstly found as a reliable marker to identify type A spermatogonia, which filled the gap of identification of spermatogonial stem cells in sterlet. It is expected to increase the efficiency of germ stem cell culture and transplantation with plzf identification. Our study thus first addressed a phenotypic characterization of a pure type A spermatogonia population in sterlet. FCM strategy can improve the production of sturgeons with surrogate broodstock and further the analysis of the cellular and molecular mechanisms of sturgeon germ cell development.
Collapse
Affiliation(s)
- Xuan Xie
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in České Budějovice, Vodňany, Czechia
| | - Tomáš Tichopád
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in České Budějovice, Vodňany, Czechia
| | - Galina Kislik
- Imaging Methods Core Facility at BIOCEV, Operated by Faculty of Science, Charles University in Prague, Vestec, Czechia
| | - Lucie Langerová
- Laboratory of Gene Expression, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czechia
| | - Pavel Abaffy
- Laboratory of Gene Expression, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czechia
| | - Radek Šindelka
- Laboratory of Gene Expression, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czechia
| | - Roman Franěk
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in České Budějovice, Vodňany, Czechia
| | - Michaela Fučíková
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in České Budějovice, Vodňany, Czechia
| | - Christoph Steinbach
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in České Budějovice, Vodňany, Czechia
| | - Mujahid Ali Shah
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in České Budějovice, Vodňany, Czechia
| | - Ivo Šauman
- Biology Center of the Czech Academy of Sciences, Institute of Entomology, České Budějovice, Czechia
- University of South Bohemia, Faculty of Science, České Budějovice, Czechia
| | - Fan Chen
- Department of Pharmacology, C_DAT, University Medicine Greifswald, Greifswald, Germany
| | - Martin Pšenička
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in České Budějovice, Vodňany, Czechia
| |
Collapse
|
14
|
Zhou L, Wang X, Liu Q, Yang J, Xu S, Wu Z, Wang Y, You F, Song Z, Li J. Successful Spermatogonial Stem Cells Transplantation within Pleuronectiformes: First Breakthrough at inter-family Level in Marine Fish. Int J Biol Sci 2021; 17:4426-4441. [PMID: 34803508 PMCID: PMC8579436 DOI: 10.7150/ijbs.63266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 10/06/2021] [Indexed: 11/12/2022] Open
Abstract
As a promising biotechnology, fish germ cell transplantation shows potentials in conservation germplasm resource, propagation of elite species, and generation of transgenic individuals. In this study, we successfully transplanted the Japanese flounder (P. olivaceus), summer flounder (P. dentatus), and turbot (S. maximus) spermatogonia into triploid Japanese flounder larvae, and achieved high transplantation efficiency of 100%, 75-95% and 33-50% by fluorescence tracking and molecular analysis, respectively. Eventually, donor-derived spermatozoa produced offspring by artificial insemination. We only found male and intersex chimeras in inter-family transplantations, while male and female chimeras in both intra-species and intra-genus transplantations. Moreover, the intersex chimeras could mature and produce turbot functional spermatozoa. We firstly realized inter-family transplantation in marine fish species. These results demonstrated successful spermatogonial stem cells transplantation within Pleuronectiformes, suggesting the germ cells migration, incorporation and maturation within order were conserved across a wide range of teleost species.
Collapse
Affiliation(s)
- Li Zhou
- The Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,College of Life Science, Ningde Normal University, Engineering Research Center of Mindong Aquatic Product Deep-Processing, Fujian Province University, Ningde, China
| | - Xueying Wang
- The Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Qinghua Liu
- The Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jingkun Yang
- The Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Shihong Xu
- The Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhihao Wu
- The Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Yanfeng Wang
- The Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Feng You
- The Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Zongcheng Song
- Weihai Shenghang Aquatic Product Science and Technology Co. Ltd., Weihai, China
| | - Jun Li
- The Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
15
|
Hayashida T, Higuchi K, Hashimoto H, Kazeto Y, Eba T, Yoshikawa S, Goto R, Okita K, Takashi T, Ishii K, Yamashita T, Kumon K, Gen K. Gonadal sex differentiation and early ovarian/testicular development in cultured Pacific bluefin tuna, Thunnus orientalis (Temminck et Schlegel). Theriogenology 2021; 173:56-63. [PMID: 34333168 DOI: 10.1016/j.theriogenology.2021.07.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/23/2021] [Accepted: 07/23/2021] [Indexed: 02/07/2023]
Abstract
Pacific bluefin tuna (PBT), Thunnus orientalis, is one of the most important species for aquaculture in Japan. Recently, the reduction in muscle fat content associated with sexual maturation in farmed PBT has become a serious problem. To develop technologies for inducing sterility, detailed and reliable data on gonadal development in PBT are needed. Here, we demonstrated the process of gonadal sex differentiation, and of early ovarian and testicular development during the immature stages in PBT. Gonadal sex differentiation was first characterized by the formation of the ovarian cavity in female and of the efferent ducts in male 57 days post hatching (dph). The gonads then differentiated into ovaries or testes according to the genotypic sex until 83 dph. During this period, primordial germ cells, oogonia, and type-A spermatogonia were solitarily distributed in the gonads, and the number of germ cells did not differ between sexes. After gonadal sex differentiation, gonads of PBTs developed in a sexually dimorphic manner: proliferation and differentiation of germ cells occurred earlier in the ovaries than in the testes. The oogonia in ovaries formed cysts at 185 dph, but the type-A spermatogonia were solitarily distributed in testes at this stage, and cysts of type-A spermatogonia were first observed at 247 dph. Moreover, the oogonia entered meiosis and differentiated into chromatin-nucleolus stage oocytes until 247 dph, and subsequently into peri-nucleolus stage oocytes until 285 dph, whereas the type-A spermatogonia differentiated into type-B spermatogonia, spermatocytes, spermatids, and spermatozoa from 446 dph onwards. We believe the results of this study provide the necessary basis for future studies on sterile PBT production.
Collapse
Affiliation(s)
- Takao Hayashida
- Nagasaki Field Station, Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 1551-8 Taira-machi, Nagasaki, Nagasaki, 851-2213, Japan; Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo, 108-8477, Japan.
| | - Kentaro Higuchi
- Nagasaki Field Station, Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 1551-8 Taira-machi, Nagasaki, Nagasaki, 851-2213, Japan
| | - Hiroshi Hashimoto
- Amami Field Station, Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 955 Hyou, Setouchi, Kagoshima, 894-2414, Japan
| | - Yukinori Kazeto
- Tamaki Field Station, Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 224-1 Hiruda, Tamaki, Mie, 519-0423, Japan
| | - Takeshi Eba
- Amami Field Station, Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 955 Hyou, Setouchi, Kagoshima, 894-2414, Japan
| | - Sota Yoshikawa
- Nagasaki Prefectural Institute of Fisheries, 1551-4 Taira-machi, Nagasaki, Nagasaki, 851-2213, Japan
| | - Rie Goto
- Nishiura Station, South Ehime Fisheries Research Center, Ehime University, 25-1 Uchidomari, Minamiuwa, Ehime, 798-4206, Japan
| | - Kogen Okita
- Nagasaki Field Station, Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 1551-8 Taira-machi, Nagasaki, Nagasaki, 851-2213, Japan
| | - Toshinori Takashi
- Nagasaki Field Station, Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 1551-8 Taira-machi, Nagasaki, Nagasaki, 851-2213, Japan
| | - Keita Ishii
- Nagasaki Field Station, Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 1551-8 Taira-machi, Nagasaki, Nagasaki, 851-2213, Japan
| | - Takashi Yamashita
- Amami Field Station, Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 955 Hyou, Setouchi, Kagoshima, 894-2414, Japan
| | - Kazunori Kumon
- Amami Field Station, Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 955 Hyou, Setouchi, Kagoshima, 894-2414, Japan
| | - Koichiro Gen
- Nagasaki Field Station, Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 1551-8 Taira-machi, Nagasaki, Nagasaki, 851-2213, Japan.
| |
Collapse
|
16
|
de Siqueira-Silva DH, Dos Santos Silva AP, da Silva Costa R, Senhorini JA, Ninhaus-Silveira A, Veríssimo-Silveira R. Preliminary study on testicular germ cell isolation and transplantation in an endangered endemic species Brycon orbignyanus (Characiformes: Characidae). FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:767-776. [PMID: 30937624 DOI: 10.1007/s10695-019-00631-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 03/07/2019] [Indexed: 06/09/2023]
Abstract
We aimed to develop a simplified protocol for transplantation of Brycon orbignyanus spermatogonial stem cells (SSCs) into Astyanax altiparanae testes. Brycon orbignyanus testes were enzymatically digested and SSC purified by a discontinuous density gradient. Endogenous spermatogenesis was suppressed in A. altiparanae using busulfan or by incubation at 35 °C water, and SSCs from B. orbignyanus labeled with PKH26 were injected into their testes via the urogenital papilla. Twenty-two hours post-transplantation, labeled spermatogonia were observed in A. altiparanae tubular lumen. After 7 days, spermatogonia proliferated in the epithelium, and 21 days post-transplantation, sperm was observed in the lumen. Of surviving host fish, nearly 67% of those treated with busulfan and 85% of those held in warm water showed labeled cells in host germinal epithelium. The present study standardized, by a simple and accessible method, germ cell transplantation between sexually mature Characiformes fish species. This is the first report of xenogenic SSC transplantation in this fish order.
Collapse
Affiliation(s)
- Diógenes Henrique de Siqueira-Silva
- Campus de Ilha Solteira, Departament of Biology and Animal Science, L.I.NEO - Laboratório de Ictiologia Neotropical, UNESP - Univ. Estadual Paulista, Avenida Brasil Centro, 56, Ilha Solteira, Sao Paulo, 15385-000, Brazil.
- Campus de São José do Rio Preto, Post-Graduation Program in Animal Biology, UNESP - Univ. Estadual Paulista, Rua Cristovão Colombo, Jardim Nazareth, 2265, São José do Rio Preto, Sao Paulo, 15504-000, Brazil.
- Campus de Ilha Solteira, Departamento de Biologia e Zootecnia, L.I.NEO - Laboratório de Ictiologia Neotropical, UNESP -Univ. Estadual Paulista, Rua Monção, 226, Zona Norte, Sao Paulo, Brazil.
| | - Amanda Pereira Dos Santos Silva
- Campus de São José do Rio Preto, Post-Graduation Program in Animal Biology, UNESP - Univ. Estadual Paulista, Rua Cristovão Colombo, Jardim Nazareth, 2265, São José do Rio Preto, Sao Paulo, 15504-000, Brazil
| | - Raphael da Silva Costa
- Campus de São José do Rio Preto, Post-Graduation Program in Animal Biology, UNESP - Univ. Estadual Paulista, Rua Cristovão Colombo, Jardim Nazareth, 2265, São José do Rio Preto, Sao Paulo, 15504-000, Brazil
| | - José Augusto Senhorini
- CEPTA-ICMBIO - National Center for Research and Conservation of Continental Fish, Chico Mendes Institute of Biodiversity Conservation, Rodovia Pref. Euberto Nemesio Pereira de Godoy, Pirassununga, Sao Paulo, 13630-970, Brazil
| | - Alexandre Ninhaus-Silveira
- Campus de Ilha Solteira, Departament of Biology and Animal Science, L.I.NEO - Laboratório de Ictiologia Neotropical, UNESP - Univ. Estadual Paulista, Avenida Brasil Centro, 56, Ilha Solteira, Sao Paulo, 15385-000, Brazil
- Campus de São José do Rio Preto, Post-Graduation Program in Animal Biology, UNESP - Univ. Estadual Paulista, Rua Cristovão Colombo, Jardim Nazareth, 2265, São José do Rio Preto, Sao Paulo, 15504-000, Brazil
| | - Rosicleire Veríssimo-Silveira
- Campus de Ilha Solteira, Departament of Biology and Animal Science, L.I.NEO - Laboratório de Ictiologia Neotropical, UNESP - Univ. Estadual Paulista, Avenida Brasil Centro, 56, Ilha Solteira, Sao Paulo, 15385-000, Brazil
- Campus de São José do Rio Preto, Post-Graduation Program in Animal Biology, UNESP - Univ. Estadual Paulista, Rua Cristovão Colombo, Jardim Nazareth, 2265, São José do Rio Preto, Sao Paulo, 15504-000, Brazil
| |
Collapse
|
17
|
Jin YH, Robledo D, Hickey JM, McGrew MJ, Houston RD. Surrogate broodstock to enhance biotechnology research and applications in aquaculture. Biotechnol Adv 2021; 49:107756. [PMID: 33895331 PMCID: PMC8192414 DOI: 10.1016/j.biotechadv.2021.107756] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/23/2021] [Accepted: 04/17/2021] [Indexed: 01/08/2023]
Abstract
Aquaculture is playing an increasingly important role in meeting global demands for seafood, particularly in low and middle income countries. Genetic improvement of aquaculture species has major untapped potential to help achieve this, with selective breeding and genome editing offering exciting avenues to expedite this process. However, limitations to these breeding and editing approaches include long generation intervals of many fish species, alongside both technical and regulatory barriers to the application of genome editing in commercial production. Surrogate broodstock technology facilitates the production of donor-derived gametes in surrogate parents, and comprises transplantation of germ cells of donors into sterilised recipients. There are many successful examples of intra- and inter-species germ cell transfer and production of viable offspring in finfish, and this leads to new opportunities to address the aforementioned limitations. Firstly, surrogate broodstock technology raises the opportunity to improve genome editing via the use of cultured germ cells, to reduce mosaicism and potentially enable in vivo CRISPR screens in the progeny of surrogate parents. Secondly, the technology has pertinent applications in preservation of aquatic genetic resources, and in facilitating breeding of high-value species which are otherwise difficult to rear in captivity. Thirdly, it holds potential to drastically reduce the effective generation interval in aquaculture breeding programmes, expediting the rate of genetic gain. Finally, it provides new opportunities for dissemination of tailored, potentially genome edited, production animals of high genetic merit for farming. This review focuses on the state-of-the-art of surrogate broodstock technology, and discusses the next steps for its applications in research and production. The integration and synergy of genomics, genome editing, and reproductive technologies have exceptional potential to expedite genetic gain in aquaculture species in the coming decades. Genetic improvement in aquaculture species has a major role in global food security. Advances in biotechnology provide new opportunities to support aquaculture breeding. Advances in biotechnology provide new opportunities to support aquaculture breeding. Donor-derived gametes can be produced from surrogate broodstock of several aquaculture species. Surrogate broodstock technology provides new opportunities for application of genome editing. Surrogate broodstock can accelerate genetic gain, and improve dissemination of elite germplasm.
Collapse
Affiliation(s)
- Ye Hwa Jin
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin EH25 9RG, UK
| | - Diego Robledo
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin EH25 9RG, UK
| | - John M Hickey
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin EH25 9RG, UK
| | - Mike J McGrew
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin EH25 9RG, UK
| | - Ross D Houston
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin EH25 9RG, UK.
| |
Collapse
|
18
|
Heat-induced triploids in Brycon amazonicus: a strategic fish species for aquaculture and conservation. ZYGOTE 2021; 29:372-376. [PMID: 33818341 DOI: 10.1017/s0967199421000125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Triploidization plays an important role in aquaculture and surrogate technologies. In this study, we induced triploidy in the matrinxã fish (Brycon amazonicus) using a heat-shock technique. Embryos at 2 min post fertilization (mpf) were heat shocked at 38°C, 40°C, or 42°C for 2 min. Untreated, intact embryos were used as a control. Survival rates during early development were monitored and ploidy status was confirmed using flow cytometry and nuclear diameter analysis of erythrocytes. The hatching rate reduced with heat-shock treatment, and heat-shock treatments at 42°C resulted in no hatching events. Optimal results were obtained at 40°C with 95% of larvae exhibiting triploidy. Therefore, we report that heat-shock treatments of embryos (2 mpf) at 40°C for 2 min is an effective way to induce triploid individuals in B. amazonicus.
Collapse
|
19
|
In Vitro Induction of Teleost PGCs. Methods Mol Biol 2021. [PMID: 33606224 DOI: 10.1007/978-1-0716-0970-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Primordial germ cells (PGCs) are unique cells in an embryo. These cells contain all genetic information and therefore represent the best source to store maternal and paternal genomes until embryo cryopreservation is achieved. However, the number of these cells in an embryo is very low limiting their potential application in cryopreservation and surrogate production. However, it was assumed that the induction of fish PGCs in vitro is not possible because in vivo they inherit germ plasm. In this chapter, we describe a successful differentiation protocol explaining the crucial factors and steps for in vitro PGC generation.
Collapse
|
20
|
Bera A, Chadha NK, Dasgupta S, Chakravarty S, Sawant PB. Hypoxia-mediated inhibition of cholesterol synthesis leads to disruption of nocturnal sex steroidogenesis in the gonad of koi carp, Cyprinus carpio. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:2421-2435. [PMID: 33034795 DOI: 10.1007/s10695-020-00887-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 10/01/2020] [Indexed: 06/11/2023]
Abstract
Reproductively mature koi carps (Cyprinus carpio) showed a prominent diurnal variation of sex steroids with sustained nocturnal rise. Exposure to chronic hypoxia (DO < 0.8 mg/l) disrupted nocturnal sex steroid production in koi carp gonads. Inhibition of sex steroidogenesis is linked to the down-regulation of HMG-Co A reductase (p < 0.05), which acts as a rate-limiting enzyme in the mevalonate pathway for cholesterol production. HMG-CoA reductase inhibition was obvious in the gonads and liver of both sexes during 18.00 h and 21.00 h resulting in hypocholesterolemia (p < 0.05). The levels of sex steroids, such as estradiol, testosterone, and 11-keto-testosterone in gonads were depleted below the optimum levels owing to disruption of de novo cholesterol synthesis along with attenuation of HDL-cholesterol level in serum. Inhibition of melatonin under hypoxic conditions indicates disruption of melatonin effects on the hypothalamus-pituitary-gonadal (HPG) axis of koi carp. Under severe hypoxic stress, koi carp promoted energy conservation by switching over to the triglyceride (TGA) pathway instead of the mevalonate pathway to suppress cholesterol production. Chronic hypoxia inhibited cholesterol synthesis, a prerequisite for gonadal maturation. It promoted TGA production, as an alternative energy source, suggesting a probable mitigation strategy adopted by hypoxia-tolerant fish to deal with low dissolved oxygen frequently occurring in aquatic bodies.
Collapse
Affiliation(s)
- Aritra Bera
- ICAR- Central Institute of Brackishwater Aquaculture , Chennai, Tamil Nadu, 600028, India
| | - Narinder Kumar Chadha
- ICAR-Central Institute of Fisheries Education , Versova, Mumbai, Maharashtra, 400061, India
| | - Subrata Dasgupta
- ICAR-Central Institute of Fisheries Education, Kolkata Centre, Sector V, Salt Lake City, Kolkata, West Bengal, 700091, India
| | - Srijit Chakravarty
- ICAR-Central Institute of Fisheries Education , Versova, Mumbai, Maharashtra, 400061, India
| | | |
Collapse
|
21
|
Xu D, Yoshino T, de Bello Cioffi M, Yoshikawa H, Ino Y, Yazawa R, Dos Santos Nassif Lacerda SM, Takeuchi Y. Production of donor-derived eggs after ovarian germ cell transplantation into the gonads of adult, germ cell-less, triploid hybrid fish†. Biol Reprod 2020; 103:1289-1299. [PMID: 32940693 DOI: 10.1093/biolre/ioaa168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 08/05/2020] [Accepted: 09/15/2020] [Indexed: 12/13/2022] Open
Abstract
In animals, spermatogonial transplantation in sterile adult males is widely developed; however, despite its utility, ovarian germ cell transplantation is not well developed. We previously showed that the interspecific hybrid offspring of sciaenid was a suitable model for germ cell transplantation studies as they have germ cell-less gonads. However, all these gonads have testis-like characteristics. Here, we tested whether triploidization in hybrid embryos could result in germ cell-less ovary development. Gonadal structure dimorphism and sex-specific gene expression patterns were examined in 6-month-old triploid hybrids (3nHybs). Thirty-one percent of 3nHybs had germ cell-less gonads with an ovarian cavity. cyp19a1a and foxl2, ovarian differentiation-related genes, were expressed in these gonads, whereas dmrt1 and vasa were not expressed, suggesting ovary-like germ cell-less gonad development. Some (26%) 3nHybs had testis-like germ cell-less gonads. Ovarian germ cells collected from homozygous green fluorescent protein (GFP) transgenic blue drum (BD) (Nibea mitsukurii) were transplanted into 6-month-old 3nHybs gonads via the urogenital papilla or oviduct. After 9 months, the recipients were crossed with wild type BD. Among the six 3nHyb recipients that survived, one female and one male produced fertile eggs and motile sperm carrying gfp-specific DNA sequences. Progeny tests revealed that all F1 offspring possessed gfp-specific DNA sequences, suggesting that these recipients produced only donor-derived eggs or sperm. Histological observation confirmed donor-derived gametogenesis in the 3nHyb recipients' gonads. Overall, triploidization reduces male-biased sex differentiation in germ cell-less gonads. We report, for the first time, donor-derived egg production in an animal via direct ovarian germ cell transplantation into a germ cell-less ovary.
Collapse
Affiliation(s)
- Dongdong Xu
- Marine Fisheries Institute of Zhejiang Province, Zhoushan, P.R. China.,Department of Aquatic Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Tasuku Yoshino
- Department of Aquatic Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | | | | | - Yasuko Ino
- National Fisheries University, Shimonoseki, Japan
| | - Ryosuke Yazawa
- Department of Aquatic Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | | | - Yutaka Takeuchi
- Noto Center for Fisheries Science and Technology, Faculty of Biological Science and Technology, Kanazawa University, Ishikawa, Japan
| |
Collapse
|
22
|
Cryopreservation of testicular tissue from Murray River Rainbowfish, Melanotaenia fluviatilis. Sci Rep 2020; 10:19355. [PMID: 33168894 PMCID: PMC7653925 DOI: 10.1038/s41598-020-76378-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 10/26/2020] [Indexed: 11/14/2022] Open
Abstract
Globally, fish populations are in decline from overfishing, habitat destruction and poor water quality. Recent mass fish deaths in Australia’s Murray–Darling Basin highlight the need for improved conservation methods for endangered fish species. Cryopreservation of testicular tissue allows storage of early sperm precursor cells for use in generating new individuals via surrogacy. We describe successful isolation and cryopreservation of spermatogonia in an Australian rainbowfish. Testis histology showed rainbowfish spermatogonia are large (> 10 μm) and stain positive for Vasa, an early germ line-specific protein. Using size-based flow cytometry, testis cell suspensions were sorted through “A” (> 9 μm) and “B” gates (2–5 μm); the A gate produced significantly more Vasa-positive cells (45.0% ± 15.2%) than the “B” gate (0.0% ± 0.0%) and an unsorted control (22.9% ± 9.5%, p < 0.0001). The most successful cryoprotectant for “large cell” (> 9 μm) viability (72.6% ± 10.5%) comprised 1.3 M DMSO, 0.1 M trehalose and 1.5% BSA; cell viability was similar to fresh controls (78.8% ± 10.5%) and significantly better than other cryoprotectants (p < 0.0006). We have developed a protocol to cryopreserve rainbowfish testicular tissue and recover an enriched population of viable spermatogonia. This is the first step in developing a biobank of reproductive tissues for this family, and other Australian fish species, in the Australian Frozen Zoo.
Collapse
|
23
|
Enhanced Enrichment of Medaka Ovarian Germline Stem Cells by a Combination of Density Gradient Centrifugation and Differential Plating. Biomolecules 2020; 10:biom10111477. [PMID: 33114294 PMCID: PMC7690863 DOI: 10.3390/biom10111477] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/12/2020] [Accepted: 10/22/2020] [Indexed: 01/08/2023] Open
Abstract
Fish ovarian germline stem cells (OGSCs) have great potential in various biological fields due to their ability to generate large numbers of mature eggs. Therefore, selective enrichment of OGSCs is a prerequisite for successful applications. To determine the optimal conditions for the enrichment of OGSCs from Japanese medaka (Oryzias latipes), we evaluated the effects of Percoll density gradient centrifugation (PDGC), differential plating (DP), and a combination of both methods. Based on cell morphology and gene expression of germ cell-specific Vasa and OGSC-specific Nanos2, we demonstrated that of seven density fractions obtained following PDGC, the 30-35% density fraction contained the highest proportion of OGSCs, and that Matrigel was the most effective biomolecule for the enrichment of Oryzias latipes OGSCs by DP in comparison to laminin, fibronectin, gelatin, and poly-l-lysine. Furthermore, we confirmed that PDGC and DP in combination significantly enhanced the efficiency of OGSC enrichment. The enriched cells were able to localize in the gonadal region at a higher efficiency compared to non-enriched ovarian cells when transplanted into the developing larvae. Our approach provides an efficient way to enrich OGSCs without using OGSC-specific surface markers or transgenic strains expressing OGSC-specific reporter proteins.
Collapse
|
24
|
Abualreesh M, Myers JN, Gurbatow J, Johnson A, Xing D, Wang J, Li S, Coogan M, Vo K, El Husseini N, Dunham RA, Butts IAE. Development of a spermatogonia cryopreservation protocol for blue catfish, Ictalurus furcatus. Cryobiology 2020; 97:46-52. [PMID: 33058900 DOI: 10.1016/j.cryobiol.2020.10.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 01/23/2023]
Abstract
Sustainability of channel catfish, Ictalurus punctatus ♀ × blue catfish, Ictalurus furcatus ♂ hybrid aquaculture relies on new innovative technologies to maximize fry output. Transplanting spermatogonial stem cells (SSCs) from blue catfish into channel catfish hosts has the potential to greatly increase gamete availability and improve hybrid catfish fry outputs. Cryopreservation would make these cells readily accessible for xenogenesis, but a freezing protocol for blue catfish testicular tissues has not yet been fully developed. Therefore, the objectives of this experiment were to identify the best permeating [dimethyl sulfoxide (DMSO), ethylene glycol (EG), glycerol, methanol] and non-permeating (lactose or trehalose with egg yolk or BSA) cryoprotectants, their optimal concentrations, and the best freezing rates (-0.5, -1.0, -5.0, -10 °C/min until -80 °C) that yield the highest number of viable type A spermatogonia cells. Results showed that all of these factors had significant impacts on post-thaw cell production and viability. DMSO was the most efficient permeating cryoprotectant at a concentration of 1.0 M. The optimal concentration of each cryoprotectant depended on the specific cryoprotectant due to interactions between the two factors. Of the non-permeating cryoprotectants, 0.2 M lactose with egg yolk consistently improved type A spermatogonia production and viability beyond that of the 1.0 M DMSO control. The overall best freezing rate was consistent at -1 °C/min, but similar results were obtained using -0.5 °C/min. Overall, we recommend cryopreserving blue catfish testicular tissues in 1.0 M DMSO with 0.2 M lactose and egg yolk at a rate of either -0.5 or -1 °C/min to achieve the best cryopreservation outcomes. Continued development of cryopreservation protocols for blue catfish and other species will make spermatogonia available for xenogenic applications and genetic improvement programs.
Collapse
Affiliation(s)
- Muyassar Abualreesh
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Jaelen N Myers
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Jeremy Gurbatow
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Andrew Johnson
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - De Xing
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Jinhai Wang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Shangjia Li
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Michael Coogan
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Khoi Vo
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA; Department of Aquaculture and Technology, Can Tho Technical Economic College, Can Tho, Viet Nam
| | - Nour El Husseini
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA; Department of Animal and Avian Sciences, University of Maryland, College Park, MD, 20742, USA
| | - Rex A Dunham
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Ian A E Butts
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA.
| |
Collapse
|
25
|
Xu D, Yoshino T, Konishi J, Yoshikawa H, Ino Y, Yazawa R, Dos Santos Nassif Lacerda SM, de França LR, Takeuchi Y. Germ cell-less hybrid fish: ideal recipient for spermatogonial transplantation for the rapid production of donor-derived sperm†. Biol Reprod 2020; 101:492-500. [PMID: 31132090 DOI: 10.1093/biolre/ioz045] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2019] [Indexed: 12/14/2022] Open
Abstract
An interspecific hybrid marine fish that developed a testis-like gonad without any germ cells, i.e., a germ cell-less gonad, was produced by hybridizing a female blue drum Nibea mitsukurii with a male white croaker Pennahia argentata. In this study, we evaluated the suitability of the germ cell-less fish as a recipient by transplanting donor testicular cells directly into the gonads through the urogenital papilla. The donor testicular cells were collected from hemizygous transgenic, green fluorescent protein (gfp) (+/-) blue drum, and transplanted into the germ cell-less gonads of the 6-month-old adult hybrid croakers. Fluorescent and histological observations showed the colonization, proliferation, and differentiation of transplanted spermatogonial cells in the gonads of hybrid croakers. The earliest production of spermatozoa in a hybrid recipient was observed at 7 weeks post-transplantation (pt), and 10% of the transplanted recipients produced donor-derived gfp-positive spermatozoa by 25 weeks pt. Sperm from the hybrid recipients were used to fertilize eggs from wild-type blue drums, and approximately 50% of the resulting offspring were gfp-positive, suggesting that all offspring originated from donor-derived sperm that were produced in the transplanted gfp (+/-) germ cells. To the best of our knowledge, this is the first report of successful spermatogonial transplantation using a germ cell-less adult fish as a recipient. This transplantation system has considerable advantages, such as the use of comparatively simple equipment and procedures, and rapid generation of donor-derived spermatogenesis and offspring, and presents numerous applications in commercial aquaculture.
Collapse
Affiliation(s)
- Dongdong Xu
- Marine Fishery Institute of Zhejiang Province, Key Lab of Mariculture and Enhancement of Zhejiang Province, Zhoushan, Zhejiang Province, PR China.,Division of Fisheries Resource Sciences, Faculty of Fisheries, Kagoshima University, Shimoarata 4-50-20, Kagoshima City, Japan
| | - Tasuku Yoshino
- Department of Marine Bioscience, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo, Japan
| | - Junpei Konishi
- Department of Marine Bioscience, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo, Japan
| | - Hiroyuki Yoshikawa
- Department of Applied Aquabiology, National Fisheries University, Japan Fisheries Research and Education Agency, 2-7-1 Nagata-Honmachi, Shimonoseki, Japan
| | - Yasuko Ino
- Department of Applied Aquabiology, National Fisheries University, Japan Fisheries Research and Education Agency, 2-7-1 Nagata-Honmachi, Shimonoseki, Japan
| | - Ryosuke Yazawa
- Department of Marine Bioscience, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo, Japan
| | | | - Luiz Renato de França
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Yutaka Takeuchi
- Division of Fisheries Resource Sciences, Faculty of Fisheries, Kagoshima University, Shimoarata 4-50-20, Kagoshima City, Japan.,The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
26
|
Majhi SK, Chowdhury M, Kumar S, Singh RK, Mohindra V, Lal KK. Resumption of donor-origin spermatogenesis in senescent goldfish Carassius auratus (Linnaeus, 1758) following spermatogonial cell therapy. PeerJ 2020. [DOI: 10.7717/peerj.9116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Stem cell research has come into prominence because of its applications in assisted reproductive technology and the treatment of deadly diseases. In teleost fishes, spermatogonial stem cells have been effectively used to produce surrogate gametes and progeny through germ cell transplantation technique. The present study is the first report of an innovative application of stem cell therapy in fish species for revitalising the reproductive competence of senescent individuals. Senescent male goldfish, Carassius auratus, approximately 10 years of age were procured from a fish-breeding farm and were reared locally in the lab for an additional two years. The senescence of the individuals was then evaluated and confirmed using histological analysis, gonadal index assessment, and germ-cell specific vasa gene expression. Analyses revealed absence of spermatogonial cells and other germ cells in the testes of the senescent fish (n = 5). Spermatogonial cells from sexually immature C. auratus male donor were isolated using discontinuous percoll gradients, labelled with the fluorescent dye PKH-26, and transplanted into the gonads of senescent C. auratus males through urogenital papilla. Six months after the transplant, spermatozoa were collected through applying gentle manual pressure on the abdomen and were observed under a microscope. All C. auratus males with the transplant had produced spermatozoa from the transplanted cells. This was confirmed by the retention of PKH-26 in the spermatozoa and diagnostic SSR locus. Gravid C. auratus females were artificially inseminated with the spermatozoa of those senescent males and natural spawning was allowed. As a result viable progeny were produced. These observation suggests that the reproductive competence of senescent male fishes can be revitalised through spermatogonial stem cell therapy to produce functional gametes.
Collapse
|
27
|
Ichida K, Kawamura W, Miwa M, Iwasaki Y, Kubokawa T, Hayashi M, Yazawa R, Yoshizaki G. Specific visualization of live type A spermatogonia of Pacific bluefin tuna using fluorescent dye-conjugated antibodies†. Biol Reprod 2020; 100:1637-1647. [PMID: 30934056 DOI: 10.1093/biolre/ioz047] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 01/31/2019] [Accepted: 03/31/2019] [Indexed: 11/12/2022] Open
Abstract
During our previous work toward establishing surrogate broodstock that can produce donor-derived gametes by germ cell transplantation, we found that only type A spermatogonia (ASGs) have the potency to colonize recipient gonads. Therefore, the ability to visualize ASGs specifically would allow the sequential analysis of donor cell behavior in the recipient gonads. Here we produced monoclonal antibodies that could recognize the cell surface antigens of ASGs in Pacific bluefin tuna (Thunnus orientalis), with the aim of visualizing live ASGs. We generated monoclonal antibodies by inoculating Pacific bluefin tuna testicular cells containing ASGs into mice and then screened them using cell-based enzyme-linked immunosorbent assay (ELISA), immunocytochemistry, flow cytometry (FCM), and immunohistochemistry, which resulted in the selection of two antibodies (Nos. 152 and 180) from a pool of 1152 antibodies. We directly labeled these antibodies with fluorescent dye, which allowed ASG-like cells to be visualized in a one-step procedure using immunocytochemistry. Molecular marker analyses against the FCM-sorted fluorescent cells confirmed that ASGs were highly enriched in the antibody-positive fraction. To evaluate the migratory capability of the ASGs, we transplanted visualized cells into the peritoneal cavity of nibe croaker (Nibea mitsukurii) larvae. This resulted in incorporated fluorescent cells labeled with antibody No. 152 being detected in the recipient gonads, suggesting that the visualized ASGs possessed migratory and incorporation capabilities. Thus, the donor germ cell visualization method that was developed in this study will facilitate and simplify Pacific bluefin tuna germ cell transplantation.
Collapse
Affiliation(s)
- Kensuke Ichida
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Wataru Kawamura
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Misako Miwa
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Yoshiko Iwasaki
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Tsubasa Kubokawa
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Makoto Hayashi
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki, Japan
| | - Ryosuke Yazawa
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Goro Yoshizaki
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| |
Collapse
|
28
|
Dias GCM, Batlouni SR, Cassel M, Chehade C, De Jesus LWO, Branco GS, Camargo MP, Borella MI. Isolation, in vitro study, and stem cell markers for type A spermatogonia in a Characiformes species. Mol Reprod Dev 2020; 87:783-799. [PMID: 32557886 DOI: 10.1002/mrd.23394] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/31/2020] [Accepted: 06/04/2020] [Indexed: 12/20/2022]
Abstract
The objective of this study was to establish a protocol for the characterization, isolation, and culture of type A spermatogonia using specific molecular markers for these cells in fish. To this end, adult Prochilodus lineatus testes were collected and digested enzymatically and the resulting testicular suspension was separated using a discontinuous Percoll gradient, followed by differential plating. The cell cultures obtained were monitored for 15 days and analyzed using the immunofluorescence method with anti-Vasa, anti-GFRα1, and anti-OCT4 antibodies. Spermatogonial enrichment was also performed using flow cytometry. Although discontinuous Percoll gradient centrifugation followed by differential plating enabled the removal of differentiated germ cells and somatic cells, enriching the pool of type A spermatogonia, the enrichment of type A spermatogonia through flow cytometry of samples without Percoll proved to be more efficient. Prominent cell agglomerates that were characterized according to different stem cell markers as type A spermatogonia were observed during the 15 days of the cell culture. The use of immunoperoxidase and western blot analysis methods confirmed the specificity of the markers for type A spermatogonia of P. lineatus. When combined with specific cell culture conditions, the positive characterization of these molecular markers clarified certain aspects of spermatogonial regulation, such as survival and proliferation. Finally, understanding the regulation of the in vitro germ cell maintenance process may contribute to the enhancement of in vivo and in vitro reproduction techniques of endangered or aquaculture fish species.
Collapse
Affiliation(s)
- Gisele C M Dias
- Fish Endocrinology Laboratory, Department of Cell and Developmental Biology, Biomedical Sciences Institute, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Sérgio R Batlouni
- Aquaculture Center of São Paulo State University (CAUNESP), São Paulo State University (UNESP), Campus Jaboticabal, Jaboticabal, São Paulo, Brazil
| | - Mônica Cassel
- Department of Education - Bachelor of Science in Animal Science, Mato Grosso Federal Institute of Education, Science, and Technology, Campus Alta Floresta, Alta Floresta, Mato Grosso, Brazil
| | - Chayrra Chehade
- Fish Endocrinology Laboratory, Department of Cell and Developmental Biology, Biomedical Sciences Institute, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Lázaro W O De Jesus
- Laboratory of Applied Animal Morphophysiology, Department of Histology and Embryology, Institute of Biological Sciences and Health, Federal University of Alagoas, Campus A. C. Simões, Maceió, Alagoas, Brazil
| | - Giovana S Branco
- Fish Endocrinology Laboratory, Department of Cell and Developmental Biology, Biomedical Sciences Institute, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Marília P Camargo
- Fish Endocrinology Laboratory, Department of Cell and Developmental Biology, Biomedical Sciences Institute, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Maria I Borella
- Fish Endocrinology Laboratory, Department of Cell and Developmental Biology, Biomedical Sciences Institute, University of São Paulo, São Paulo, São Paulo, Brazil
| |
Collapse
|
29
|
Meagre Argyrosomus regius (Asso, 1801) Stem Spermatogonia: Histological Characterization, Immunostaining, In Vitro Proliferation, and Cryopreservation. Animals (Basel) 2020; 10:ani10050851. [PMID: 32423131 PMCID: PMC7278407 DOI: 10.3390/ani10050851] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 01/01/2023] Open
Abstract
The meagre, Argyrosomus regius, is a valued fish species of which aquaculture production might be supported by the development of a stem germ cell xenotransplantation technology. Meagre males were sampled at a fish farm in the Ionian Sea (Italy) at the beginning and end of the reproductive season. Small and large Type A undifferentiated spermatogonia were histologically identified in the germinal epithelium. Among the tested stemness markers, anti-oct4 and anti-vasa antibodies labeled cells likely corresponding to the small single Type A spermatogonia; no labeling was obtained with anti-GFRA1 and anti-Nanos2 antibodies. Two types of single A spermatogonia were purified via density gradient centrifugation of enzymatically digested testes. Testes from fish in active spermatogenesis resulted in a more efficient spermatogonial stem cell (SSC) yield. After cell seeding, meagre SSCs showed active proliferation from Day 7 to Day 21 and were cultured up to Day 41. After cryopreservation in dimethyl-sulfoxide-based medium, cell viability was 28.5%. In conclusion, these results indicated that meagre SSCs could be isolated, characterized, cultured in vitro, successfully cryopreserved, and used after thawing. This is a first step towards the development of a xenotransplantation technology that might facilitate the reproduction of this valuable species in captivity.
Collapse
|
30
|
Xie X, Nóbrega R, Pšenička M. Spermatogonial Stem Cells in Fish: Characterization, Isolation, Enrichment, and Recent Advances of In Vitro Culture Systems. Biomolecules 2020; 10:E644. [PMID: 32331205 PMCID: PMC7226347 DOI: 10.3390/biom10040644] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 12/14/2022] Open
Abstract
Spermatogenesis is a continuous and dynamic developmental process, in which a single diploid spermatogonial stem cell (SSC) proliferates and differentiates to form a mature spermatozoon. Herein, we summarize the accumulated knowledge of SSCs and their distribution in the testes of teleosts. We also reviewed the primary endocrine and paracrine influence on spermatogonium self-renewal vs. differentiation in fish. To provide insight into techniques and research related to SSCs, we review available protocols and advances in enriching undifferentiated spermatogonia based on their unique physiochemical and biochemical properties, such as size, density, and differential expression of specific surface markers. We summarize in vitro germ cell culture conditions developed to maintain proliferation and survival of spermatogonia in selected fish species. In traditional culture systems, sera and feeder cells were considered to be essential for SSC self-renewal, in contrast to recently developed systems with well-defined media and growth factors to induce either SSC self-renewal or differentiation in long-term cultures. The establishment of a germ cell culture contributes to efficient SSC propagation in rare, endangered, or commercially cultured fish species for use in biotechnological manipulation, such as cryopreservation and transplantation. Finally, we discuss organ culture and three-dimensional models for in vitro investigation of fish spermatogenesis.
Collapse
Affiliation(s)
- Xuan Xie
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in Ceske Budejovice, Zátiší 728/II, 389 25 Vodňany, Czech Republic;
| | - Rafael Nóbrega
- Reproductive and Molecular Biology Group, Department of Morphology, Institute of Biosciences, São Paulo State University, Botucatu, SP 18618-970, Brazil;
| | - Martin Pšenička
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in Ceske Budejovice, Zátiší 728/II, 389 25 Vodňany, Czech Republic;
| |
Collapse
|
31
|
Crespo D, Assis LHC, van de Kant HJG, de Waard S, Safian D, Lemos MS, Bogerd J, Schulz RW. Endocrine and local signaling interact to regulate spermatogenesis in zebrafish: follicle-stimulating hormone, retinoic acid and androgens. Development 2019; 146:dev.178665. [PMID: 31597660 DOI: 10.1242/dev.178665] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 10/01/2019] [Indexed: 01/07/2023]
Abstract
Retinoic acid (RA) is crucial for mammalian spermatogonia differentiation, and stimulates Stra8 expression, a gene required for meiosis. Certain fish species, including zebrafish, have lost the stra8 gene. While RA still seems important for spermatogenesis in fish, it is not known which stage(s) respond to RA or whether its effects are integrated into the endocrine regulation of spermatogenesis. In zebrafish, RA promoted spermatogonia differentiation, supported androgen-stimulated meiosis, and reduced spermatocyte and spermatid apoptosis. Follicle-stimulating hormone (Fsh) stimulated RA production. Expressing a dominant-negative RA receptor variant in germ cells clearly disturbed spermatogenesis but meiosis and spermiogenesis still took place, although sperm quality was low in 6-month-old adults. This condition also activated Leydig cells. Three months later, spermatogenesis apparently had recovered, but doubling of testis weight demonstrated hypertrophy, apoptosis/DNA damage among spermatids was high and sperm quality remained low. We conclude that RA signaling is important for zebrafish spermatogenesis but is not of crucial relevance. As Fsh stimulates androgen and RA production, germ cell-mediated, RA-dependent reduction of Leydig cell activity may form a hitherto unknown intratesticular negative-feedback loop.
Collapse
Affiliation(s)
- Diego Crespo
- Reproductive Biology Group, Division Developmental Biology, Department Biology, Science Faculty, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Luiz H C Assis
- Reproductive Biology Group, Division Developmental Biology, Department Biology, Science Faculty, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Henk J G van de Kant
- Reproductive Biology Group, Division Developmental Biology, Department Biology, Science Faculty, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Sjors de Waard
- Reproductive Biology Group, Division Developmental Biology, Department Biology, Science Faculty, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Diego Safian
- Reproductive Biology Group, Division Developmental Biology, Department Biology, Science Faculty, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Moline S Lemos
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Jan Bogerd
- Reproductive Biology Group, Division Developmental Biology, Department Biology, Science Faculty, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Rüdiger W Schulz
- Reproductive Biology Group, Division Developmental Biology, Department Biology, Science Faculty, Utrecht University, Utrecht 3584 CH, The Netherlands .,Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen NO-5817, Norway
| |
Collapse
|
32
|
Majhi SK, Maurya PK, Kumar S, Mohindra V, Lal KK. Depletion of endogenous germ cells in striped catfish Pangasianodon hypophthalmus (Sauvage, 1878) by heat-chemical treatments. Reprod Domest Anim 2019; 54:1560-1566. [PMID: 31494986 DOI: 10.1111/rda.13564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/07/2019] [Accepted: 09/02/2019] [Indexed: 01/15/2023]
Abstract
Germ cell (GC) transplantation (GCT) is a proven powerful reproductive technique to enhance the production efficiency of domesticated animals and aid to the recovery of endangered germ lines. In mammals, several methods have been adopted for the eradication of GCs such as treatment with cytotoxic drugs, irradiation, cold ischaemia and hyperthermic treatment. Some of these methods have also been tried in fishes, and conditions for sterilization of gonads have been established. Here, we report the production of GC-depleted male striped catfish Pangasianodon hypophthalmus in 12 weeks by the combination of heat and chemical treatments. The cytotoxic drug busulphan (40 mg/kg) was intraperitoneally injected into the animals at 2-week intervals (six doses in total) and maintained in water at 38°C between weeks 1 and 12. The effectiveness of the treatment was assessed using gonadal index and histology. At the end of 12 weeks, very severe gonadal degeneration was observed in fish treated with the heat-chemical combination, and 100% of sampled fish (n = 5) were found devoid of endogenous GCs. On contrary, high temperature alone caused minor gonadal degeneration. Results obtained in this study suggest that endogenous GCs of large-bodied fish such as P. hypophthalmus can also be sterilized by heat and chemical treatments within a considerably short period.
Collapse
Affiliation(s)
| | | | - Santosh Kumar
- ICAR-National Bureau of Fish Genetic Resources, Lucknow, India
| | | | | |
Collapse
|
33
|
Ichida K, Hayashi M, Miwa M, Kitada R, Takahashi M, Fujihara R, Boonanuntanasarn S, Yoshizaki G. Enrichment of transplantable germ cells in salmonids using a novel monoclonal antibody by magnetic-activated cell sorting. Mol Reprod Dev 2019; 86:1810-1821. [PMID: 31544311 DOI: 10.1002/mrd.23275] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 08/30/2019] [Indexed: 01/24/2023]
Abstract
In the fish germ cell transplantation system, only type A spermatogonia (ASGs) and oogonia are known to be incorporated into the recipient genital ridges, where they undergo gametogenesis. Therefore, high colonization efficiency can be achieved by enriching undifferentiated germ cells out of whole testicular cells. In this study, we used magnetic-activated cell sorting (MACS) for enriching undifferentiated germ cells of rainbow trout using a monoclonal antibody that recognizes a specific antigen located on the germ cell membrane. We screened the antibodies to be used for MACS by performing immunohistochemistry on rainbow trout gonads. Two antibodies, nos. 172 and 189, showed strong signals for ASGs and oogonia. Next, we performed MACS with antibody no. 172 using gonadal cells isolated from vasa-gfp rainbow trout showing GFP in undifferentiated germ cells. We found that GFP-positive cells are highly enriched in antibody no. 172-positive fractions. Finally, to examine the transplantability of MACS-enriched cells, we intraperitoneally transplanted sorted or unsorted cells into recipient larvae. We observed that transplantability of sorted cells, particularly ovarian cells, were significantly higher than that of unsorted cells. Therefore, MACS with antibody no. 172 could enrich ASGs and oogonia and become a powerful tool to improve transplantation efficiency in salmonids.
Collapse
Affiliation(s)
- Kensuke Ichida
- School of Animal Production Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Makoto Hayashi
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki, Japan
| | - Misako Miwa
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Ryota Kitada
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Momo Takahashi
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Ryo Fujihara
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Surintorn Boonanuntanasarn
- School of Animal Production Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Goro Yoshizaki
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| |
Collapse
|
34
|
Franěk R, Tichopád T, Fučíková M, Steinbach C, Pšenička M. Production and use of triploid zebrafish for surrogate reproduction. Theriogenology 2019; 140:33-43. [PMID: 31425935 DOI: 10.1016/j.theriogenology.2019.08.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/29/2019] [Accepted: 08/12/2019] [Indexed: 11/30/2022]
Abstract
We report for the first time, a comparison of two approaches for artificially induced triploidy in zebrafish (Danio rerio) using cold shock and heat shock treatments. Of the two methods, heat shock treatment proved more effective with a triploid production rate of 100% in particular females. Subsequently, triploid zebrafish larvae were used as recipients for intraperitoneal transplantation of ovarian and testicular cells originating from vas:EGFP strain in order to verify their suitability for surrogate reproduction. Production of donor-derived sperm was achieved in 23% of testicular cell recipients and 16% of ovarian cell recipients, indicating the suitability of triploids as surrogate hosts for germ cell transplantation. Success of the transplantation was confirmed by positive GFP signal detected in gonads of dissected fish and stripped sperm. Germline transmission was confirmed by fertilization tests followed by PCR analysis of embryos with GFP specific primers. Reproductive success of germline chimera triploids evaluated as fertilization rate and progeny development was comparable to control groups.
Collapse
Affiliation(s)
- Roman Franěk
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic.
| | - Tomáš Tichopád
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic.
| | - Michaela Fučíková
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic.
| | - Christoph Steinbach
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic.
| | - Martin Pšenička
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic.
| |
Collapse
|
35
|
A state-of-the-art review of surrogate propagation in fish. Theriogenology 2019; 133:216-227. [DOI: 10.1016/j.theriogenology.2019.03.032] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 03/30/2019] [Indexed: 12/20/2022]
|
36
|
Franěk R, Tichopád T, Steinbach C, Xie X, Lujić J, Marinović Z, Horváth Á, Kašpar V, Pšenička M. Preservation of female genetic resources of common carp through oogonial stem cell manipulation. Cryobiology 2019; 87:78-85. [DOI: 10.1016/j.cryobiol.2019.01.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/30/2019] [Accepted: 01/30/2019] [Indexed: 11/27/2022]
|
37
|
Xie X, Li P, Pšenička M, Ye H, Steinbach C, Li C, Wei Q. Optimization of In Vitro Culture Conditions of Sturgeon Germ Cells for Purpose of Surrogate Production. Animals (Basel) 2019; 9:ani9030106. [PMID: 30901855 PMCID: PMC6466142 DOI: 10.3390/ani9030106] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 03/02/2019] [Indexed: 01/11/2023] Open
Abstract
Simple Summary The sturgeon is among the most ancient of actinopterygian fishes. Most species of sturgeon are listed as critically endangered due to habitat alteration caused by damming of rivers, pollution and overharvesting. Germ cell transplant is a useful tool to save these endangered species. To expand germ cell populations and sustain the supply for long periods for transplant, we established basal culture conditions for sturgeon germ cells. Germ cell mitotic activity has been enhanced by eliminating gonad somatic cells, supplementing with growth factor and using an alternative to fetal bovine serum. The optimal condition identified was purified germ cells cultured in serum-free medium supplemented with leukemia inhibitory factor (LIF) and glial cell line-derived neurotrophic factor (GDNF) at 21 °C. Cultured sterlet germ cells showed development after transplant into Russian sturgeon. The study provided useful information for sturgeon germ cell culture. Abstract To expand germ cell populations and provide a consistent supply for transplantation, we established basal culture conditions for sturgeon germ cells and subsequently increased their mitotic activity by eliminating gonad somatic cells, supplementing with growth factor, and replacing fetal bovine serum (FBS). The initial basal culture conditions were Leibovitz’s L-15 medium (pH 8.0) supplemented with 5% FBS (p < 0.001) at 21 °C. Proliferation of germ cells was significantly enhanced and maintained for longer periods by elimination of gonad somatic cells and culture under feeder-cell free conditions, with addition of leukemia inhibitory factor and glial-cell-derived neurotrophic factor (p < 0.001). A serum-free culture medium improved germ cell proliferation compared to the L-15 with FBS (p < 0.05). Morphology remained similar to that of fresh germ cells for at least 40 d culture. Germline-specific gene expression analysis revealed no significant changes to germ cells before and after culture. Sterlet Acipenser ruthenus germ cells cultured more than 40 days showed development after transplant into Russian sturgeon Acipenser gueldenstaedtii. Polymerase chain reaction showed 33.3% of recipient gonads to contain sterlet cells after four months. This study developed optimal culture condition for sturgeon germ cells. Germ cells after 40 d culture developed in recipient gonads. This study provided useful information for culture of sturgeon germ cells.
Collapse
Affiliation(s)
- Xuan Xie
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China.
- Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 38925 Vodňany, Czech Republic.
| | - Ping Li
- Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 38925 Vodňany, Czech Republic.
- Marine College, Shandong Universit, Weihai 264209, China.
| | - Martin Pšenička
- Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 38925 Vodňany, Czech Republic.
| | - Huan Ye
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China.
- Sino-Czech Joint Laboratory for Fish Conservation and Biotechnology, Yangtze River Fisheries Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China.
| | - Christoph Steinbach
- Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 38925 Vodňany, Czech Republic.
| | - Chuangju Li
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China.
- Sino-Czech Joint Laboratory for Fish Conservation and Biotechnology, Yangtze River Fisheries Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China.
| | - Qiwei Wei
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China.
- Sino-Czech Joint Laboratory for Fish Conservation and Biotechnology, Yangtze River Fisheries Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China.
| |
Collapse
|
38
|
Mayer I. The Role of Reproductive Sciences in the Preservation and Breeding of Commercial and Threatened Teleost Fishes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1200:187-224. [PMID: 31471798 DOI: 10.1007/978-3-030-23633-5_7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The teleost fishes are the largest and most diverse vertebrate group, accounting for nearly half of all known vertebrate species. Teleost fish exhibit greater species diversity than any other group of vertebrates and this is reflected in the unique variety of different reproductive strategies displayed by fish. Fish have always been an important resource for humans worldwide, especially as food. While wild capture fisheries have historically been the main source of fish, the farming of fish (aquaculture) is increasingly becoming the more dominant source of food fish, and is predicted to account for 60% of total global fish production by 2030.Fishes are increasingly threatened by a wide range of anthropogenic impacts, including loss of habitat, pollution, invasive species and over-exploitation. In addition, climate change, especially the consequences of global warming, can impact fish at all levels of biological organization from the individual to the population level, influencing both physiological and ecological processes in a variety of direct and indirect ways. As such, there is an urgent need to protect and conserve the huge genetic diversity offered by this diverse vertebrate group, not just as a source of genes for contemporary breeding and for protection against the consequences of climate change and disease, but also as part of our national heritage. While the cryopreservation of reproductive cells is a means of achieving these objectives, currently only fish sperm can be successfully frozen. Due to their large size, large yolk compartment, low membrane permeability and high chilling sensitivity, successful and reproducible protocols for the cryopreservation of fish oocytes and embryos still remains elusive. However, significant advances have been made in the cryopreservation of primordial germ cells as an alternative means of conserving both paternal and maternal genomes. Although more research needs to be carried out on how these cells can be optimally applied to emerging reproductive technologies, including transplantation techniques and surrogate broodstock technologies, the successful cryopreservation of fish germ cells, and the establishment of genetic resource banks, offers the possibility of both conserving and restoring threatened species. Further, current and future conservation efforts need to consider the impact of climate change in both in situ conservation and reintroduction efforts.In conclusion, it is anticipated that the successful cryopreservation of fish germplasm will result in a range of economic, ecological and societal benefits. In partnership with emerging assisted reproductive technologies, the successful cryopreservation of fish germplasm will lead to more efficient reproduction in aquaculture, assist selective breeding programmes, and be of crucial importance to future species conservation actions.
Collapse
Affiliation(s)
- Ian Mayer
- Norwegian University of Life Sciences, Faculty of Veterinary Medicine, Oslo, Norway.
| |
Collapse
|
39
|
Maouche A, Curran E, Goupil AS, Sambroni E, Bellaiche J, Le Gac F, Lareyre JJ. New insights into the evolution, hormonal regulation, and spatiotemporal expression profiles of genes involved in the Gfra1/Gdnf and Kit/Kitlg regulatory pathways in rainbow trout testis. FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:1599-1616. [PMID: 30121735 DOI: 10.1007/s10695-018-0547-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 08/07/2018] [Indexed: 06/08/2023]
Abstract
The present study aimed to investigate whether the Gfra1/Gdnf and/or Kit/Kitlg regulatory pathways could be involved in the regulation of spermatogonial cell proliferation and/or differentiation in fish. Homologs of the mammalian gfra1, gdnf, kitr, and kitlg genes were identified in gnathostomes and reliable orthologous relationships were established using phylogenetic reconstructions and analyses of syntenic chromosomal fragments. Gene duplications and losses occurred specifically in teleost fish and members of the Salmoninae family including rainbow trout (Oncorhynchus mykiss) and Atlantic salmon (Salmo salar). Some duplicated genes exhibited distinct spatiotemporal expression profiles and were differently regulated by hormones in rainbow trout. Undifferentiated type A spermatogonia expressed higher levels of kitrb and kitra2 making them possible target cells for the gonadal kitlgb and somatic kitlga before the onset of spermatogenesis. Interestingly, gdnfa and gdnfb ohnologous genes were poorly expressed before the onset of spermatogenesis. The expression level of gdnfb was correlated with that of the vasa gene suggesting that the late increased abundance of gdnfb during spermatogenesis onset was due to the increased number of spermatogonial cells. gfra1a2 was expressed in undifferentiated type A spermatogonia whereas gfra1a1 was mainly detected in somatic cells. These observations indicate that the germinal gdnfb ligand could exert autocrine and paracrine functions on spermatogonia and on testicular somatic cells, respectively. Fsh and androgens inhibited gfra1a2 and gdnfb whereas gfra1a1 was stimulated by Fsh, androgens, and 17α, 20β progesterone. Finally, our data provide evidences that the molecular identity of the male germ stem cells changes during ontogenesis prior to spermatogenesis onset.
Collapse
Affiliation(s)
- Ahmed Maouche
- INRA, UPR 1037 Laboratory of Fish Physiology and Genomics (LPGP), BIOSIT, OUEST-genopole, Bât. 16, Campus de Beaulieu, 35042, Rennes CEDEX, France
| | - Edouard Curran
- INRA, UPR 1037 Laboratory of Fish Physiology and Genomics (LPGP), BIOSIT, OUEST-genopole, Bât. 16, Campus de Beaulieu, 35042, Rennes CEDEX, France
| | - Anne-Sophie Goupil
- INRA, UPR 1037 Laboratory of Fish Physiology and Genomics (LPGP), BIOSIT, OUEST-genopole, Bât. 16, Campus de Beaulieu, 35042, Rennes CEDEX, France
| | - Elisabeth Sambroni
- INRA, UPR 1037 Laboratory of Fish Physiology and Genomics (LPGP), BIOSIT, OUEST-genopole, Bât. 16, Campus de Beaulieu, 35042, Rennes CEDEX, France
| | - Johanna Bellaiche
- INRA, UPR 1037 Laboratory of Fish Physiology and Genomics (LPGP), BIOSIT, OUEST-genopole, Bât. 16, Campus de Beaulieu, 35042, Rennes CEDEX, France
| | - Florence Le Gac
- INRA, UPR 1037 Laboratory of Fish Physiology and Genomics (LPGP), BIOSIT, OUEST-genopole, Bât. 16, Campus de Beaulieu, 35042, Rennes CEDEX, France
| | - Jean-Jacques Lareyre
- INRA, UPR 1037 Laboratory of Fish Physiology and Genomics (LPGP), BIOSIT, OUEST-genopole, Bât. 16, Campus de Beaulieu, 35042, Rennes CEDEX, France.
| |
Collapse
|
40
|
de Siqueira-Silva DH, Saito T, Dos Santos-Silva AP, da Silva Costa R, Psenicka M, Yasui GS. Biotechnology applied to fish reproduction: tools for conservation. FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:1469-1485. [PMID: 29707740 DOI: 10.1007/s10695-018-0506-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 04/20/2018] [Indexed: 06/08/2023]
Abstract
This review discusses the new biotechnological tools that are arising and promising for conservation and enhancement of fish production, mainly regarding the endangered and the most economically important species. Two main techniques, in particular, are available to avoid extinction of endangered fish species and to improve the production of commercial species. Germ cell transplantation technology includes a number of approaches that have been studied, such as the transplantation of embryo-to-embryo blastomere, embryo-to-embryo differentiated PGC, larvae to larvae and embryo differentiated PGC, transplantation of spermatogonia from adult to larvae or between adults, and oogonia transplantation. However, the success of germ cell transplantation relies on the prior sterilization of fish, which can be performed at different stages of fish species development by means of several protocols that have been tested in order to achieve the best approach to produce a sterile fish. Among them, fish hybridization and triploidization, germline gene knockdown, hyperthermia, and chemical treatment deserve attention based on important results achieved thus far. This review currently used technologies and knowledge about surrogate technology and fish sterilization, discussing the stronger and the weaker points of each approach.
Collapse
Affiliation(s)
- Diógenes Henrique de Siqueira-Silva
- UNIFESSPA - Federal University of South and Southeast of Para - Institute for Health and Biological Studies - IESB, Faculty of Biology - FACBIO, Laboratory of Neuroscience and Behavior, Marabá, Para, Brazil.
| | - Taiju Saito
- Nishiura Station, South Ehime Fisheries Research Center, Ehime University, Uchidomari, Ainan, Japan
| | | | - Raphael da Silva Costa
- PPG in Animal Biology, UNESP - Paulista State University, São José do Rio Preto, São Paulo, Brazil
| | - Martin Psenicka
- Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Vodnany, Czech Republic
| | - George Shigueki Yasui
- Laboratory of Fish Biotechnology, National Center for Research and Conservation of Continental Fish, Chico Mendes Institute of Biodiversity Conservation, Pirassununga, São Paulo, Brazil
| |
Collapse
|
41
|
Safian D, Ryane N, Bogerd J, Schulz RW. Fsh stimulates Leydig cell Wnt5a production, enriching zebrafish type A spermatogonia. J Endocrinol 2018; 239:351-363. [PMID: 30400013 DOI: 10.1530/joe-18-0447] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 09/14/2018] [Indexed: 12/13/2022]
Abstract
Follicle-stimulating hormone (Fsh) modulates vertebrate spermatogenesis by regulating somatic cell functions in the testis. We have found previously that zebrafish Fsh stimulated the differentiating proliferation of type A undifferentiated spermatogonia (Aund) in an androgen-independent manner by regulating the production of growth factors and other signaling molecules in both Sertoli (SCs) and Leydig cells (LCs). For example, Fsh triggered the release of Igf3 that subsequently activated β-catenin signaling to promote the differentiating proliferation of Aund. In the present study, we report that Fsh moreover uses the non-canonical Wnt pathway to promote the proliferation and accumulation of Aund. Initially, we found that the stimulatory effect of Fsh on the proliferation activity of Aund was further strengthened when β-catenin signaling was inhibited, resulting in an accumulation of Aund. We then showed that this Fsh-induced accumulation of Aund was associated with increased transcript levels of the non-canonical Wnt ligand, wnt5a. In situ hybridization of insl3 mRNA, a gene expressed in LCs, combined with Wnt5a immunocytochemistry identified LCs as the cellular source of Wnt5a in the adult zebrafish testis. Addition of an antagonist of Wnt5a to incubations with Fsh decreased both the proliferation activity and the relative section area occupied by Aund, while an agonist of Wnt5a increased these same parameters for Aund. Taken together, our data suggest that Fsh triggered LCs to release Wnt5a, which then promoted the proliferation and accumulation of Aund. Hence, Fsh uses non-canonical Wnt signaling to ensure the production of Aund, while also triggering β-catenin signaling via Igf3 to ensure spermatogonial differentiation.
Collapse
Affiliation(s)
- Diego Safian
- Reproductive Biology Group, Division Developmental Biology, Department of Biology, Institute of Biodynamics and Biocomplexity, Faculty of Science, University of Utrecht, NL-3584 CH Utrecht, The Netherlands
| | - Najoua Ryane
- Reproductive Biology Group, Division Developmental Biology, Department of Biology, Institute of Biodynamics and Biocomplexity, Faculty of Science, University of Utrecht, NL-3584 CH Utrecht, The Netherlands
| | - Jan Bogerd
- Reproductive Biology Group, Division Developmental Biology, Department of Biology, Institute of Biodynamics and Biocomplexity, Faculty of Science, University of Utrecht, NL-3584 CH Utrecht, The Netherlands
| | - Rüdiger W Schulz
- Reproductive Biology Group, Division Developmental Biology, Department of Biology, Institute of Biodynamics and Biocomplexity, Faculty of Science, University of Utrecht, NL-3584 CH Utrecht, The Netherlands
- Reproduction and Developmental Biology Group, Institute of Marine Research, Nordnes, Bergen, Norway
| |
Collapse
|
42
|
Costa GM, Lacerda SM, Figueiredo AF, Leal MC, Rezende-Neto JV, França LR. Higher environmental temperatures promote acceleration of spermatogenesis in vivo in mice (Mus musculus). J Therm Biol 2018; 77:14-23. [DOI: 10.1016/j.jtherbio.2018.07.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/04/2018] [Accepted: 07/21/2018] [Indexed: 12/11/2022]
|
43
|
Yoshizaki G, Lee S. Production of live fish derived from frozen germ cells via germ cell transplantation. Stem Cell Res 2018; 29:103-110. [DOI: 10.1016/j.scr.2018.03.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 03/17/2018] [Accepted: 03/28/2018] [Indexed: 10/25/2022] Open
|
44
|
Shang M, Su B, Perera DA, Alsaqufi A, Lipke EA, Cek S, Dunn DA, Qin Z, Peatman E, Dunham RA. Testicular germ line cell identification, isolation, and transplantation in two North American catfish species. FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:717-733. [PMID: 29357082 DOI: 10.1007/s10695-018-0467-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 01/03/2018] [Indexed: 06/07/2023]
Abstract
Our aim was to transplant blue catfish germ line stem cells into blastulae of triploid channel catfish embryos to produce interspecific xenogenic catfish. The morphological structure of the gonads of blue catfish (Ictalurus furcatus) in ~ 90- to 100-day-old juveniles, two-year-old juveniles, and mature adults was studied histologically. Both oogonia (12-15 μm, diameter with distinct nucleus 7-8 μm diameter) and spermatogonia (12-15 μm, with distinct nucleus 6-7.5 μm diameter) were found in all ages of fish. The percentage of germ line stem cells was higher in younger blue catfish of both sexes. After the testicular tissue was trypsinized, a discontinuous density gradient centrifugation was performed using 70, 45, and 35% Percoll to enrich the percentage of spermatogonial stem cells (SSCs). Four distinct cell bands were generated after the centrifugation. It was estimated that 50% of the total cells in the top band were type A spermatogonia (diameter 12-15 μm) and type B spermatogonia (diameter 10-11 μm). Germ cells were confirmed with expression of vasa. Blastula-stage embryos of channel catfish (I. punctatus) were injected with freshly dissociated blue catfish testicular germ cells as donor cells for transplantation. Seventeen days after the transplantation, 33.3% of the triploid channel catfish fry were determined to be xenogenic catfish. This transplantation technique was efficient, and these xenogenic channel catfish need to be grown to maturity to verify their reproductive capacity and to verify that for the first time SSCs injected into blastulae were able to migrate to the genital ridge and colonize. These results open the possibility of artificially producing xenogenic channel catfish males that can produce blue catfish sperm and mate with normal channel catfish females naturally. The progeny would be all C × B hybrid catfish, and the efficiency of hybrid catfish production could be improved tremendously in the catfish industry.
Collapse
Affiliation(s)
- Mei Shang
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
- Key Laboratory of Freshwater Aquatic Biotechnology and Genetic Breeding, Ministry of Agriculture, Heilongjiang Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, China
| | - Baofeng Su
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
- Key Laboratory of Freshwater Aquatic Biotechnology and Genetic Breeding, Ministry of Agriculture, Heilongjiang Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, China
| | - Dayan A Perera
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
- School of Agriculture, Fisheries and Human Sciences, University of Arkansas at Pine Bluff, Pine Bluff, AR, 71601, USA
| | - Ahmed Alsaqufi
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
- Department of Aquaculture and Animal Production, King Faisal University, Hofuf, Kingdom of Saudi Arabia
| | - Elizabeth A Lipke
- Department of Chemical Engineering, Auburn University, Auburn, AL, 36849, USA
| | - Sehriban Cek
- Faculty of Marine Sciences and Technology, Iskenderun Technical University, 31200, İskenderun/Hatay, Turkey
| | - David A Dunn
- Department of Chemical Engineering, Auburn University, Auburn, AL, 36849, USA
- Department of Biological Sciences, State University of New York at Oswego, Oswego, NY, 13126, USA
| | - Zhenkui Qin
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Eric Peatman
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Rex A Dunham
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA.
| |
Collapse
|
45
|
Higaki S, Todo T, Teshima R, Tooyama I, Fujioka Y, Sakai N, Takada T. Cryopreservation of male and female gonial cells by vitrification in the critically endangered cyprinid honmoroko Gnathopogon caerulescens. FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:503-513. [PMID: 29192358 DOI: 10.1007/s10695-017-0449-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 11/22/2017] [Indexed: 06/07/2023]
Abstract
We investigated the feasibility of cryopreservation of spermatogonia and oogonia in the critically endangered cyprinid honmoroko Gnathopogon caerulescens using slow-cooling (freezing) and rapid-cooling (vitrification) methods. Initially, we examined the testicular cell toxicities and glass-forming properties of the five cryoprotectants: ethylene glycol (EG), glycerol (GC), dimethyl sulfoxide (DMSO), propylene glycol (PG), and 1,3-butylene glycol (BG), and we determined cryoprotectant concentrations that are suitable for freezing and vitrification solutions, respectively. Subsequently, we prepared the freezing solutions of EG, GC, DMSO, PG, and BG at 3, 2, 3, 2, and 2 M and vitrification solutions at 7, 6, 5, 5, and 4 M, respectively. Following the cryopreservation of the testicular cells mainly containing early-stage spermatogenic cells (e.g., spermatogonia and primary spermatocytes), cells were cultured for 7 days and immunochemically stained against germ cell marker protein Vasa. Areas occupied by Vasa-positive cells indicated that vitrification led to better survival of germ cells than the freezing method, and the best result was obtained with 5 M PG, about 50% recovery of germ cells following vitrification. In the case of ovarian cells containing oogonia and stage I, II, and IIIa oocytes, vitrification with 5 M DMSO resulted the best survival of oogonia, with equivalent cell numbers to those cultured without vitrification. The present data suggest that male and female gonial cells of the endangered species G. caerulescens can be efficiently cryopreserved using suitable cryoprotectants for spermatogonia and oogonia, respectively.
Collapse
Affiliation(s)
- Shogo Higaki
- Laboratory of Cell Engineering, Department of Pharmaceutical Sciences, Ritsumeikan University, Nojihigashi 1-1-1, Kusatsu, Shiga, 525-8577, Japan
| | - Takaaki Todo
- Laboratory of Cell Engineering, Department of Pharmaceutical Sciences, Ritsumeikan University, Nojihigashi 1-1-1, Kusatsu, Shiga, 525-8577, Japan
| | - Reiko Teshima
- Laboratory of Cell Engineering, Department of Pharmaceutical Sciences, Ritsumeikan University, Nojihigashi 1-1-1, Kusatsu, Shiga, 525-8577, Japan
| | - Ikuo Tooyama
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Otsu, Shiga, 520-2192, Japan
| | - Yasuhiro Fujioka
- Lake Biwa Museum, Oroshimo 1091, Kusatsu, Shiga, 525-0001, Japan
| | - Noriyoshi Sakai
- Genetic Strains Research Center, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
| | - Tatsuyuki Takada
- Laboratory of Cell Engineering, Department of Pharmaceutical Sciences, Ritsumeikan University, Nojihigashi 1-1-1, Kusatsu, Shiga, 525-8577, Japan.
| |
Collapse
|
46
|
Ricci JMB, Martinez ERM, Butzge AJ, Doretto LB, Oliveira MA, Bombardelli RA, Bogerd J, Nóbrega RH. Characterization of vasa homolog in a neotropical catfish, Jundiá (Rhamdia quelen): Molecular cloning and expression analysis during embryonic and larval development. Gene 2018; 654:116-126. [PMID: 29454090 DOI: 10.1016/j.gene.2018.02.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 01/19/2018] [Accepted: 02/12/2018] [Indexed: 02/06/2023]
Abstract
We have characterized the full-length vasa cDNA from Jundiá, Rhamdia quelen (Heptapteridae, Siluriformes). vasa encodes a member of the DEAD-box protein family of ATP-dependent RNA helicases. This protein is highly conserved among different organisms and its role is associated with RNA metabolism. In the majority of the investigated species, vasa is restricted to the germ cell lineage and its expression has been used to study germline development in many organisms, including fish. The deduced R. quelen vasa amino acid sequence displayed high similarity with Vasa protein sequences from other organisms, and did not cluster with PL10 or P68 DEAD-box protein subfamilies. We also reported that there is no other isoform for vasa mRNA in R. quelen gonads. Expression analysis by RT-PCR and qPCR showed vasa transcripts exclusively expressed in the germ cells of R. quelen gonads. R. quelen vasa mRNA was maternally inherited, and was detected in the migrating primordial germ cells (PGCs) until 264 h post-fertilization during embryonic and larval development. This work has characterized for the first time the full-length R. quelen vasa cDNA, and describes its expression patterns during R. quelen embryonic and larval development. Our results will contribute to the basic reproductive biology of this native species, and will support studies using vasa as a germ cell marker in different biotechnological studies, such as germ cell transplantation.
Collapse
Affiliation(s)
- Juliana M B Ricci
- Reproductive and Molecular Biology Group, Department of Morphology, Institute of Bioscience of Botucatu, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Emanuel R M Martinez
- Reproductive and Molecular Biology Group, Department of Morphology, Institute of Bioscience of Botucatu, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Arno J Butzge
- Reproductive and Molecular Biology Group, Department of Morphology, Institute of Bioscience of Botucatu, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Lucas B Doretto
- Reproductive and Molecular Biology Group, Department of Morphology, Institute of Bioscience of Botucatu, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Marcos A Oliveira
- Reproductive and Molecular Biology Group, Department of Morphology, Institute of Bioscience of Botucatu, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Robie Allan Bombardelli
- Center of Engineering and Exact Sciences, Universidade Estadual do Oeste do Paraná, Rua da Faculdade 645, 85903-000 Toledo, PR, Brazil
| | - Jan Bogerd
- Reproductive Biology Group, Division Developmental Biology, Department of Biology, Faculty of Sciences, Utrecht University, Hugo R. Kruyt Building, Padualaan 8, 3584, CH, Utrecht, The Netherlands
| | - Rafael H Nóbrega
- Reproductive and Molecular Biology Group, Department of Morphology, Institute of Bioscience of Botucatu, São Paulo State University, Botucatu, São Paulo, Brazil.
| |
Collapse
|
47
|
Hayashi M, Sakuma D, Yoshizaki G. Production of functional sperm by subcutaneous auto-grafting of immature testes in rainbow trout. Mol Reprod Dev 2018; 85:155-162. [PMID: 29266562 DOI: 10.1002/mrd.22949] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 12/11/2017] [Accepted: 12/12/2017] [Indexed: 01/09/2023]
Abstract
Sexually mature individuals are indispensable for breeding programs. Salmonids require a long period before reaching sexual maturity, so we aimed to shorten the period required to obtain functional sperm by grafting immature testicular fragments into mature recipients, which we predicted would allow the grafted testicular fragments to skip the long pre-pubertal period. First, we demonstrated successful subcutaneous auto-grafting of testicular fragments in rainbow trout. Unilateral testectomy was performed, and the isolated immature testicular fragment was auto-grafted into the subcutaneous space along the back of recipient fish. The grafted testicular fragments developed synchronously with the recipients' testis remaining in its body cavity, and both eventually produced functional sperm. Next, immature testicular fragments were auto-grafted into the subcutaneous space of sexually mature males. We achieved this, without immune rejection, by isolating and cryopreserving testes from immature fish, and rearing these unilaterally testectomized fish until sexual maturity. The cryopreserved testes were then auto-grafted into the original, now spermiating fish. The grated immature testicular fragments differentiated and produced functional sperm within 5 months after grafting. By combining this grafting method with a technique to avoid immune rejection, we expect to develop a practical method for producing sperm in a shorter period in salmonids.
Collapse
Affiliation(s)
- Makoto Hayashi
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Minato-ku, Tokyo, Japan.,Life Science Center of Tsukuba Advanced Research Alliance (TARA Center), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Daika Sakuma
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Minato-ku, Tokyo, Japan
| | - Goro Yoshizaki
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Minato-ku, Tokyo, Japan
| |
Collapse
|
48
|
Hamasaki M, Takeuchi Y, Yazawa R, Yoshikawa S, Kadomura K, Yamada T, Miyaki K, Kikuchi K, Yoshizaki G. Production of Tiger Puffer Takifugu rubripes Offspring from Triploid Grass Puffer Takifugu niphobles Parents. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2017; 19:579-591. [PMID: 28942506 DOI: 10.1007/s10126-017-9777-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 09/11/2017] [Indexed: 06/07/2023]
Abstract
The tiger puffer Takifugu rubripes is one of the most popular aquacultural fish; however, there are two major obstacles to selective breeding. First, they have a long generation time of 2 or 3 years until maturation. Second, the parental tiger puffer has a body size (2-5 kg) much larger than average market size (0.6-1.0 kg). The grass puffer Takifugu niphobles is closely related to the tiger puffer and matures in half the time. Furthermore, grass puffer can be reared in small areas since their maturation weight is about 1/150 that of mature tiger puffer. Therefore, to overcome the obstacles of maturation size and generation time of tiger puffer, we generated surrogate grass puffer that can produce tiger puffer gametes through germ cell transplantation. Approximately 5000 tiger puffer testicular cells were transplanted into the peritoneal cavity of triploid grass puffer larvae at 1 day post hatching. When the recipient fish matured, both males and females produced donor-derived gametes. Through their insemination, we successfully produced donor-derived tiger puffer offspring presenting the same body surface dot pattern, number of dorsal fin rays, and DNA fingerprint as those of the donor tiger puffer, suggesting that the recipient grass puffer produced functional eggs and sperm derived from the donor tiger puffer. Although fine tunings are still needed to improve efficiencies, surrogate grass puffer are expected to accelerate the breeding process of tiger puffer because of their short generation time and small body size.
Collapse
Affiliation(s)
- Masaomi Hamasaki
- Nagasaki Prefectural Institute of Fisheries, 1551-4 Taira, Nagasaki-shi, Nagasaki, 851-2213, Japan.
| | - Yutaka Takeuchi
- Division of Fisheries Resource and Sciences, Faculty of Fisheries, Kagoshima University, 4-50-20 Shimoarata, Kagoshima-shi, Kagoshima, 890-0056, Japan
| | - Ryosuke Yazawa
- Department Marine Biosciences, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo, 108-8477, Japan
| | - Souta Yoshikawa
- Nagasaki Prefectural Institute of Fisheries, 1551-4 Taira, Nagasaki-shi, Nagasaki, 851-2213, Japan
| | - Kazushi Kadomura
- Nagasaki Prefectural Institute of Fisheries, 1551-4 Taira, Nagasaki-shi, Nagasaki, 851-2213, Japan
| | - Toshiyuki Yamada
- Nagasaki Prefectural Institute of Fisheries, 1551-4 Taira, Nagasaki-shi, Nagasaki, 851-2213, Japan
| | - Kadoo Miyaki
- Nagasaki Prefectural Institute of Fisheries, 1551-4 Taira, Nagasaki-shi, Nagasaki, 851-2213, Japan
| | - Kiyoshi Kikuchi
- Fisheries Laboratory, Graduate School of Agricultural and Life Sciences, University of Tokyo, 2971-4 Bentenjima, Maisaka, Hamamatsu-shi, Shizuoka, 431-0214, Japan
| | - Goro Yoshizaki
- Department Marine Biosciences, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo, 108-8477, Japan
| |
Collapse
|
49
|
Costa GMJ, Avelar GF, Lacerda SMSN, Figueiredo AFA, Tavares AO, Rezende-Neto JV, Martins FGP, França LR. Horse spermatogonial stem cell cryopreservation: feasible protocols and potential biotechnological applications. Cell Tissue Res 2017; 370:489-500. [PMID: 28831567 DOI: 10.1007/s00441-017-2673-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 07/09/2017] [Indexed: 01/04/2023]
Abstract
The establishment of proper conditions for spermatogonial stem cells (SSCs) cryopreservation and storage represents an important biotechnological approach for the preservation of the genetic stock of valuable animals. This study demonstrates the effects of different cryopreservation protocols on the survival rates and phenotypic expression of SSCs in horses. The cells were enzymatically isolated from testes of eight adult horses. After enrichment and characterization of germ cells in the suspension, the feasibility of several cryopreservation protocols were evaluated. Three different cryomedia compositions, associated with three different methods of freezing (vitrification, slow-freezing and fast-freezing) were evaluated. Based on the rates of viable SSCs found before and after thawing, as well as the number of recovered cells after cryopreservation, the best results were obtained utilizing the DMSO-based cryomedia associated with the slow-freezing method. In addition, when isolated cells were cultured in vitro, MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay and immunofluorescence analysis indicated that the cryopreserved cells were as metabolically active as the fresh cells and were also expressing typical SSCs proteins (VASA, NANOS2 and GFRA1). Therefore, our results indicate that equine SSCs can be cryopreserved without impairment of structure, function, or colony-forming abilities.
Collapse
Affiliation(s)
- Guilherme M J Costa
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil.
| | - Gleide F Avelar
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Samyra M S N Lacerda
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - André F A Figueiredo
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Amanda O Tavares
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - José V Rezende-Neto
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Felipe G P Martins
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Luiz R França
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil.
- National Institute for Amazonian Research (INPA), Manaus, AM, Brazil.
| |
Collapse
|
50
|
Heat and chemical treatments in adult Cyprinus carpio (Pisces cypriniformes) rapidly produce sterile gonads. Anim Reprod Sci 2017; 183:77-85. [DOI: 10.1016/j.anireprosci.2017.05.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 05/19/2017] [Accepted: 05/26/2017] [Indexed: 01/15/2023]
|