1
|
Liu WB, Fermin D, Xu AL, Kopp JB, Xu Q. Single-cell RNA sequencing data locate ALDH1A2-mediated retinoic acid synthetic pathway to glomerular parietal epithelial cells. Exp Biol Med (Maywood) 2024; 249:10167. [PMID: 39360029 PMCID: PMC11444976 DOI: 10.3389/ebm.2024.10167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 08/22/2024] [Indexed: 10/04/2024] Open
Abstract
Aldehyde dehydrogenase 1, family member A2, is a retinoic acid-synthesizing enzyme encoded by Aldh1a2 in mice and ALDH1A2 in humans. This enzyme is indispensable for kidney development, but its role in kidney physiology and pathophysiology remains to be fully defined. In this review, we mined single-cell and single-nucleus RNA sequencing databases of mouse and human kidneys and found that glomerular parietal epithelial cells (PECs) express a full set of genes encoding proteins needed for cellular vitamin A uptake, intracellular transport, and metabolism into retinoic acid. In particular, Aldh1a2/ALDH1A2 mRNAs are selectively enriched in mouse and human PECs. Aldh1a2 expression in PECs is greatly increased in a mouse model of anti-glomerular basement membrane glomerulonephritis and moderately induced in a mouse model of ischemia-reperfusion acute kidney injury. Aldh1a2 expression in PECs is substantially repressed in a chronic kidney disease mouse model combining diabetes, hypertension, and partial nephrectomy and is moderately repressed in mouse models of focal segmental glomerulosclerosis and diabetic nephropathy. Single-nucleus RNA sequencing data show that ALDH1A2 mRNA expression in PECs is diminished in patients with chronic kidney disease associated with diabetes, hypertension and polycystic kidney disease. In addition to data mining, we also performed Spearman's rank correlation coefficient analyses and identified gene transcripts correlated with Aldh1a2/ALDH1A2 transcripts in mouse PECs and PEC subtypes, and in human PECs of healthy subjects and patients with AKI or CKD. Furthermore, we conducted Gene Ontology pathway analyses and identified the biological pathways enriched among these Aldh1a2/ALDH1A2-correlated genes. Our data mining and analyses led us to hypothesize that ALDH1A2-mediated retinoic acid synthesis in PECs plays a yet-undefined role in the kidney and that its dysregulation mediates injury. Conditional, PEC-selective Aldh1a2 knockout, RNA silencing and transgenic mouse models will be useful tools to test this hypothesis. Clinical studies on genetics, epigenetics, expression and functions of ALDH1A2 and other genes needed for retinoic acid biosynthesis and signaling are also warranted.
Collapse
Affiliation(s)
- Wen-Bin Liu
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Damian Fermin
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, MI, United States
| | - An-Long Xu
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jeffrey B. Kopp
- Kidney Disease Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Qihe Xu
- Renal Sciences and Integrative Chinese Medicine Laboratory, Department of Inflammation Biology, School of Immunology & Microbial Sciences, Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom
| |
Collapse
|
2
|
DiKun KM, Tang XH, Fu L, Choi ME, Lu C, Gudas LJ. Retinoic acid receptor α activity in proximal tubules prevents kidney injury and fibrosis. Proc Natl Acad Sci U S A 2024; 121:e2311803121. [PMID: 38330015 PMCID: PMC10873609 DOI: 10.1073/pnas.2311803121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 12/18/2023] [Indexed: 02/10/2024] Open
Abstract
Chronic kidney disease (CKD) is characterized by a gradual loss of kidney function and affects ~13.4% of the global population. Progressive tubulointerstitial fibrosis, driven in part by proximal tubule (PT) damage, is a hallmark of late stages of CKD and contributes to the development of kidney failure, for which there are limited treatment options. Normal kidney development requires signaling by vitamin A (retinol), which is metabolized to retinoic acid (RA), an endogenous agonist for the RA receptors (RARα, β, γ). RARα levels are decreased in a mouse model of diabetic nephropathy and restored with RA administration; additionally, RA treatment reduced fibrosis. We developed a mouse model in which a spatiotemporal (tamoxifen-inducible) deletion of RARα in kidney PT cells of adult mice causes mitochondrial dysfunction, massive PT injury, and apoptosis without the use of additional nephrotoxic substances. Long-term effects (3 to 4.5 mo) of RARα deletion include increased PT secretion of transforming growth factor β1, inflammation, interstitial fibrosis, and decreased kidney function, all of which are major features of human CKD. Therefore, RARα's actions in PTs are crucial for PT homeostasis, and loss of RARα causes injury and a key CKD phenotype.
Collapse
Affiliation(s)
- Krysta M. DiKun
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, NY10065
- Weill Cornell Graduate School of Medical Sciences, New York, NY10065
| | - Xiao-Han Tang
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, NY10065
| | - Leiping Fu
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, NY10065
| | - Mary E. Choi
- New York Presbyterian Hospital, New York, NY10065
- Division of Nephrology and Hypertension, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY10065
| | | | - Lorraine J. Gudas
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, NY10065
- Weill Cornell Graduate School of Medical Sciences, New York, NY10065
- Department of Urology, New York, NY10065
| |
Collapse
|
3
|
DiKun KM, Gudas LJ. Vitamin A and retinoid signaling in the kidneys. Pharmacol Ther 2023; 248:108481. [PMID: 37331524 PMCID: PMC10528136 DOI: 10.1016/j.pharmthera.2023.108481] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/18/2023] [Accepted: 06/14/2023] [Indexed: 06/20/2023]
Abstract
Vitamin A (VA, retinol) and its metabolites (commonly called retinoids) are required for the proper development of the kidney during embryogenesis, but retinoids also play key roles in the function and repair of the kidney in adults. Kidneys filter 180-200 liters of blood per day and each kidney contains approximately 1 million nephrons, which are often referred to as the 'functional units' of the kidney. Each nephron consists of a glomerulus and a series of tubules (proximal tubule, loop of Henle, distal tubule, and collecting duct) surrounded by a network of capillaries. VA is stored in the liver and converted to active metabolites, most notably retinoic acid (RA), which acts as an agonist for the retinoic acid receptors ((RARs α, β, and γ) to regulate gene transcription. In this review we discuss some of the actions of retinoids in the kidney after injury. For example, in an ischemia-reperfusion model in mice, injury-associated loss of proximal tubule (PT) differentiation markers occurs, followed by re-expression of these differentiation markers during PT repair. Notably, healthy proximal tubules express ALDH1a2, the enzyme that metabolizes retinaldehyde to RA, but transiently lose ALDH1a2 expression after injury, while nearby myofibroblasts transiently acquire RA-producing capabilities after injury. These results indicate that RA is important for renal tubular injury repair and that compensatory mechanisms exist for the generation of endogenous RA by other cell types upon proximal tubule injury. ALDH1a2 levels also increase in podocytes, epithelial cells of the glomeruli, after injury, and RA promotes podocyte differentiation. We also review the ability of exogenous, pharmacological doses of RA and receptor selective retinoids to treat numerous kidney diseases, including kidney cancer and diabetic kidney disease, and the emerging genetic evidence for the importance of retinoids and their receptors in maintaining or restoring kidney function after injury. In general, RA has a protective effect on the kidney after various types of injuries (eg. ischemia, cytotoxic actions of chemicals, hyperglycemia related to diabetes). As more research into the actions of each of the three RARs in the kidney is carried out, a greater understanding of the actions of vitamin A is likely to lead to new insights into the pathology of kidney disorders and the development of new therapies for kidney diseases.
Collapse
Affiliation(s)
- Krysta M DiKun
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, NY, USA; New York Presbyterian Hospital, New York, NY, USA; Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Lorraine J Gudas
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, NY, USA; Department of Urology, Weill Cornell Medicine, New York, NY, USA; New York Presbyterian Hospital, New York, NY, USA; Weill Cornell Graduate School of Medical Sciences, New York, NY, USA.
| |
Collapse
|
4
|
Focak M, Suljevic D. Ameliorative Effects of Propolis and Royal Jelly against CCl 4 -Induced Hepatotoxicity and Nephrotoxicity in Wistar Rats. Chem Biodivers 2023; 20:e202200948. [PMID: 36416002 DOI: 10.1002/cbdv.202200948] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/22/2022] [Indexed: 11/24/2022]
Abstract
Carbon tetrachloride (CCl4 ) is known to have hepatotoxic and nephrotoxic effects. During the two-month CCl4 exposure of Wistar rats, propolis extract (PE) and royal jelly (RJ) were added in order to test the potential protective effect against hepato-renal injury. Ketonuria, proteinuria, high creatinine and urea levels are the result of CCl4 -induced nephrotoxicity. Severe disorders of hematological indicators indicate anemia; high values of leukocytes indicate inflammatory condition. Cytogenetic impairments in hepatocytes, aggregation of platelets, and hypoproteinemia indicate severe liver impairment. Results suggest a more significant protective role of RJ compared to PE. Both extracts regulated proteinuria, ketonuria, hypoproteinemia and reduced platelet aggregation in the hepatic circulation. The increase in the number of erythrocytes (RBC) suggest protective effects against anemia; the decrease in the number of leukocytes can be linked to anti-inflammatory effects. PE and RJ have a beneficial effect against hepato-renal injury, anemia and anti-inflammatory conditions caused by CCl4 .
Collapse
Affiliation(s)
- Muhamed Focak
- Department of Biology, University of Sarajevo-Faculty of Science, Bosnia and Herzegovina
| | - Damir Suljevic
- Department of Biology, University of Sarajevo-Faculty of Science, Bosnia and Herzegovina
| |
Collapse
|
5
|
Rojo-Trejo MH, Robles-Osorio ML, Sabath E. Liposoluble vitamins A and E in kidney disease. World J Nephrol 2022; 11:96-104. [PMID: 35733655 PMCID: PMC9160709 DOI: 10.5527/wjn.v11.i3.96] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/15/2021] [Accepted: 04/21/2022] [Indexed: 02/06/2023] Open
Abstract
Kidney disease (KD) is characterized by the presence of elevated oxidative stress, and this is postulated as contributing to the high cardiovascular morbidity and mortality in these individuals. Chronic KD (CKD) is related to high grade inflammatory condition and pro-oxidative state that aggravates the progression of the disease by damaging primary podocytes. Liposoluble vitamins (vitamin A and E) are potent dietary antioxidants that have also anti-inflammatory and antiapoptotic functions. Vitamin deficits in CKD patients are a common issue, and multiple causes are related to them: Anorexia, dietary restrictions, food cooking methods, dialysis losses, gastrointestinal malabsorption, etc. The potential benefit of retinoic acid (RA) and α-tocopherol have been described in animal models and in some human clinical trials. This review provides an overview of RA and α tocopherol in KD.
Collapse
Affiliation(s)
| | | | - Ernesto Sabath
- Department of Renal Medicine, Nutrition School, Universidad Autónoma de Querétaro, Querétaro 76090, Mexico
| |
Collapse
|
6
|
Serum Retinal and Retinoic Acid Predict the Development of Type 2 Diabetes Mellitus in Korean Subjects with Impaired Fasting Glucose from the KCPS-II Cohort. Metabolites 2021; 11:metabo11080510. [PMID: 34436451 PMCID: PMC8398291 DOI: 10.3390/metabo11080510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/24/2021] [Accepted: 07/30/2021] [Indexed: 11/29/2022] Open
Abstract
We aimed to investigate whether retinal and retinoic acid (RA), which are newly discovered biomarkers from our previous research, reliably predict type 2 diabetes mellitus (T2DM) development in subjects with impaired fasting glucose (IFG). Among the Korean Cancer Prevention Study (KCPS)-II cohort, subjects were selected and matched by age and sex (IFG-IFG group, n = 100 vs. IFG-DM group, n = 100) for study 1. For real-world validation of two biomarkers (study 2), other participants in the KCPS-II cohort who had IFG at baseline (n = 500) were selected. Targeted LC/MS was used to analyze the baseline serum samples; retinal and RA levels were quantified. In study 1, we revealed that both biomarkers were significantly decreased in the IFG-DM group (retinal, p = 0.017; RA, p < 0.001). The obese subjects in the IFG-DM group showed markedly lower retinal (p = 0.030) and RA (p = 0.003) levels than those in the IFG-IFG group. In study 2, the results for the two metabolites tended to be similar to those of study 1, but no significant difference was observed. Notably, the predictive ability for T2DM was enhanced when the metabolites were added to conventional risk factors for T2DM in both studies (study 1, AUC 0.682 → 0.775; study 2, AUC 0.734 → 0.786). The results suggest that retinal- and RA-related metabolic pathways are altered before the onset of T2DM.
Collapse
|
7
|
Abstract
Recently, research data have shown that vitamin A (VA, retinol) as a micronutrient participates in the regulation of glucose and lipid metabolism. Since diabetes is a metabolic disease, it is imperative to reveal the relationship of VA and diabetes. This review was aimed to summarize the current understanding of VA and its metabolites in diabetes. Since April of 2020, the authors have searched the PubMed using key words and retrieved articles that focused on diabetes and VA or its metabolites. Based on the published data, it appears that the development of type 1 diabetes leads to reduction of blood VA level in human and animals, and increase of hepatic VA store in experimental animals. On the other hand, the mutual impacts of type 2 diabetes and VA intake and blood VA level on each other appear to be uncertain. Retinoic acid, the active metabolite of VA, has been studied extensively for the treatment of diabetic complications. The current data appear to indicate that the development of diabetes is associated with changes of VA metabolism. More carefully designed clinical and laboratory experiments are needed to reveal the impacts of diabetes on VA metabolism and the role of VA in the development and treatment of diabetes.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Gastroenterology, Affiliated Puren Hospital of Wuhan University of Science and Technology, Wuhan, China
| | - Tiannan Wang
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, Tennessee, USA
| | - Xinge Hu
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, Tennessee, USA
| | - Guoxun Chen
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, Tennessee, USA
| |
Collapse
|
8
|
Chen A, Liu Y, Lu Y, Lee K, He JC. Disparate roles of retinoid acid signaling molecules in kidney disease. Am J Physiol Renal Physiol 2021; 320:F683-F692. [PMID: 33645319 PMCID: PMC8174805 DOI: 10.1152/ajprenal.00045.2021] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Retinoid acid (RA) is synthesized mainly in the liver and has multiple functions in development, cell differentiation and proliferation, and regulation of inflammation. RA has been used to treat multiple diseases, such as cancer and skin disorders. The kidney is a major organ for RA metabolism, which is altered in the diseased condition. RA is known to have renal-protective effects in multiple animal models of kidney disease. RA has been shown to ameliorate podocyte injury through induction of expression of differentiation markers and regeneration of podocytes from its progenitor cells in animal models of kidney disease. The effects of RA in podocytes are mediated mainly by activation of the cAMP/PKA pathway via RA receptor-α (RARα) and activation of its downstream transcription factor, Kruppel-like factor 15. Screening of RA signaling molecules in human kidney disease has revealed RAR responder protein 1 (RARRES1) as a risk gene for glomerular disease progression. RARRES1, a podocyte-specific growth arrest gene, is regulated by high doses of both RA and TNF-α. Mechanistically, RARRES1 is cleaved by matrix metalloproteinases to generate soluble RARRES1, which then induces podocyte apoptosis through interaction with intracellular RIO kinase 1. Therefore, a high dose of RA may induce podocyte toxicity through upregulation of RARRES1. Based on the current findings, to avoid potential side effects, we propose three strategies to develop future therapies of RA for glomerular disease: 1) develop RARα- and Kruppel-like factor 15-specific agonists, 2) use the combination of a low dose of RAR-α agonist with phosphodiesterase 4 inhibitors, and 3) use a combination of RARα agonist with RARRES1 inhibitors.NEW & NOTEWORTHY Retinoic acid (RA) exerts pleotropic cellular effects, including induction of cell differentiation while inhibiting proliferation and inflammation. These effects are mediated by both RA responsive element-dependent or -independent pathways. In kidneys, RA confers renoprotection by signaling through podocyte RA receptor (RAR)α and activation of cAMP/PKA/Kruppel-like factor 15 pathway to promote podocyte differentiation. Nevertheless, in kidney disease settings, RA can also promote podocyte apoptosis and loss through downstream expression of RAR responder protein 1, a recently described risk factor for glomerular disease progression. These disparate roles of RA underscore the complexity of its effects in kidney homeostasis and disease, and a need to target specific RA-mediated pathways for effective therapeutic treatments against kidney disease progression.
Collapse
Affiliation(s)
- Anqun Chen
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Second Xiangya Hospital at Central South University, Changsha, China
| | - Yu Liu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Second Xiangya Hospital at Central South University, Changsha, China
| | - Yu Lu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Second Xiangya Hospital at Central South University, Changsha, China
- Department of Health Sciences, Boston University College of Health and Rehabilitation Sciences: Sargent College, Boston University, Boston, Massachusetts
| | - Kyung Lee
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - John Cijiang He
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
- Renal Program, James J. Peters Veterans Affairs Medical Center, Bronx, New York
| |
Collapse
|
9
|
Papadimitriou A, Romagnani P, Angelotti ML, Noor M, Corcoran J, Raby K, Wilson PD, Li J, Fraser D, Piedagnel R, Hendry BM, Xu Q. Collecting duct cells show differential retinoic acid responses to acute versus chronic kidney injury stimuli. Sci Rep 2020; 10:16683. [PMID: 33028882 PMCID: PMC7542174 DOI: 10.1038/s41598-020-73099-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/07/2020] [Indexed: 01/14/2023] Open
Abstract
Retinoic acid (RA) activates RA receptors (RAR), resulting in RA response element (RARE)-dependent gene expression in renal collecting duct (CD). Emerging evidence supports a protective role for this activity in acute kidney injury (AKI) and chronic kidney disease (CKD). Herein, we examined this activity in RARE-LacZ transgenic mice and by RARE-Luciferase reporter assays in CD cells, and investigated how this activity responds to neurotransmitters and mediators of kidney injury. In RARE-LacZ mice, Adriamycin-induced heavy albuminuria was associated with reduced RA/RAR activity in CD cells. In cultured CD cells, RA/RAR activity was repressed by acetylcholine, albumin, aldosterone, angiotensin II, high glucose, cisplatin and lipopolysaccharide, but was induced by aristolochic acid I, calcitonin gene-related peptide, endothelin-1, gentamicin, norepinephrine and vasopressin. Compared with age-matched normal human CD cells, CD-derived renal cystic epithelial cells from patients with autosomal recessive polycystic kidney disease (ARPKD) had significantly lower RA/RAR activity. Synthetic RAR agonist RA-568 was more potent than RA in rescuing RA/RAR activity repressed by albumin, high glucose, angiotensin II, aldosterone, cisplatin and lipopolysaccharide. Hence, RA/RAR in CD cells is a convergence point of regulation by neurotransmitters and mediators of kidney injury, and may be a novel therapeutic target.
Collapse
Affiliation(s)
- Alexandros Papadimitriou
- Renal Sciences and Integrative Chinese Medicine Laboratory, Department of Inflammation Biology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Paola Romagnani
- Department of Clinical and Experimental Biomedical Sciences, University of Florence, Florence, Italy
| | - Maria Lucia Angelotti
- Department of Clinical and Experimental Biomedical Sciences, University of Florence, Florence, Italy
| | - Mazhar Noor
- Renal Sciences and Integrative Chinese Medicine Laboratory, Department of Inflammation Biology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Jonathan Corcoran
- The Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| | - Katie Raby
- University College London, UCL Centre for Nephrology, Royal Free Hospital, London, UK
| | - Patricia D Wilson
- University College London, UCL Centre for Nephrology, Royal Free Hospital, London, UK
| | - Joan Li
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Donald Fraser
- Wales Kidney Research Unit, Heath Park Campus, Cardiff, UK
| | - Remi Piedagnel
- National Institute for Health and Medical Research (INSERM), Unité Mixte de Recherche (UMR)-S1155, Tenon Hospital, Sorbonne Universités, Paris, France
| | - Bruce M Hendry
- Renal Sciences and Integrative Chinese Medicine Laboratory, Department of Inflammation Biology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Qihe Xu
- Renal Sciences and Integrative Chinese Medicine Laboratory, Department of Inflammation Biology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK.
| |
Collapse
|
10
|
Demir E, Aslan A. Protective effect of pristine C60 fullerene nanoparticle in combination with curcumin against hyperglycemia-induced kidney damage in diabetes caused by streptozotocin. J Food Biochem 2020; 44:e13470. [PMID: 32914898 DOI: 10.1111/jfbc.13470] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/11/2020] [Accepted: 08/21/2020] [Indexed: 12/18/2022]
Abstract
The present study aims to examine the protective effects of C60 fullerene (C60), Curcumin (CUR; Curcuma longa), C60 + CUR combination against oxidative stress, apoptosis, and changes in cellular level in kidney tissue of diabetic rats. Treatment practices were administered separately to groups for 8 weeks following the approval of diabetes induction. It was observed that the treatment groups had increased antioxidant potential, decreased oxidative stress levels, decreased cholesterol, alpha tocopherol, retinol levels along with improved important changes in fatty acid metabolism compared with the diabetic group. C60, CUR, and C60 + CUR were also determined to act in the direction of reducing kidney damage by activating apoptotic pathways. It can be concluded based on these findings that C60, CUR, and especially C60 + CUR combination has beneficial properties in maintaining kidney tissue and function by effectively preventing oxidative stress, apoptotic changes, and changes at the cellular level in kidney tissue under hyperglycemia conditions. PRACTICAL APPLICATIONS: C60 and CUR have various biological activities which can be indicated as antioxidant, anti-inflammatory, anticancer, neuroprotective, and hepatoprotective. It has been reported that C60 and CUR protect the cells against oxidative injury brought about by reactive oxygen species (ROS). Data acquired from the present study puts forth that C60 and C60 + CUR may be promising agents to prevent damage induced by hyperglycemic conditions in kidney tissue.
Collapse
Affiliation(s)
- Ersin Demir
- Department of Agricultural Biotechnology, Faculty of Agriculture and Natural Sciences, Duzce University, Duzce, Turkey
| | - Abdullah Aslan
- Department of Biology-Molecular Biology and Genetics Program, Faculty of Science, Firat University, Elazig, Turkey
| |
Collapse
|
11
|
Ma Z, Jiang L, Li G, Liang D, Li L, Liu L, Jiang C. Design, synthesis of 1,3-dimethylpyrimidine-2,4-diones as potent and selective aldehyde dehydrogenase 1A1 (ALDH1A1) inhibitors with glucose consumption improving activity. Bioorg Chem 2020; 101:103971. [DOI: 10.1016/j.bioorg.2020.103971] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/13/2020] [Accepted: 05/22/2020] [Indexed: 11/27/2022]
|
12
|
Muraoka H, Hasegawa K, Sakamaki Y, Minakuchi H, Kawaguchi T, Yasuda I, Kanda T, Tokuyama H, Wakino S, Itoh H. Role of Nampt-Sirt6 Axis in Renal Proximal Tubules in Extracellular Matrix Deposition in Diabetic Nephropathy. Cell Rep 2020; 27:199-212.e5. [PMID: 30943401 DOI: 10.1016/j.celrep.2019.03.024] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 02/16/2019] [Accepted: 03/07/2019] [Indexed: 10/27/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) metabolism plays a critical role in kidneys. We previously reported that decreased secretion of a NAD+ precursor, nicotinamide mononucleotide (NMN), from proximal tubules (PTs) can trigger diabetic albuminuria. In the present study, we investigated the role of NMN-producing enzyme nicotinamide phosphoribosyltransferase (Nampt) in diabetic nephropathy. The expression of Nampt in PTs was downregulated in streptozotocin (STZ)-treated diabetic mice when they exhibited albuminuria. This albuminuria was ameliorated in PT-specific Nampt-overexpressing transgenic (TG) mice. PT-specific Nampt-conditional knockout (Nampt CKO) mice exhibited TBM thickening and collagen deposition, which were associated with the upregulation of the profibrogenic gene TIMP-1. Nampt CKO mice also exhibited the downregulation of sirtuins, particularly in Sirt6. PT-specific Sirt6-knockout mice exhibited enhanced fibrotic phenotype resembling that of Nampt CKO mice with increased Timp1 expression. In conclusion, the Nampt-Sirt6 axis in PTs serves as a key player in fibrogenic extracellular matrix remodeling in diabetic nephropathy.
Collapse
Affiliation(s)
- Hirokazu Muraoka
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Kazuhiro Hasegawa
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Yusuke Sakamaki
- Department of Internal Medicine, Tokyo Dental College Ichikawa General Hospital, Chiba 272-8583, Japan
| | - Hitoshi Minakuchi
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Takahisa Kawaguchi
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Itaru Yasuda
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Takeshi Kanda
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Hirobumi Tokuyama
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Shu Wakino
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo 160-8582, Japan.
| | - Hiroshi Itoh
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo 160-8582, Japan
| |
Collapse
|
13
|
Liang D, Fan Y, Yang Z, Zhang Z, Liu M, Liu L, Jiang C. Discovery of coumarin-based selective aldehyde dehydrogenase 1A1 inhibitors with glucose metabolism improving activity. Eur J Med Chem 2019; 187:111923. [PMID: 31816557 DOI: 10.1016/j.ejmech.2019.111923] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 11/28/2019] [Accepted: 11/28/2019] [Indexed: 02/06/2023]
Abstract
Overexpression of aldehyde dehydrogenase 1A1 (ALDH1A1) is associated with the occurrence and development of obesity and insulin resistance. Herein, a series of coumarin-based ALDH1A1 inhibitors were designed, synthesized and evaluated. Among them, compounds 10, 14 and 26 exhibited potent inhibitory activity against ALDH1A1 and high selectivity over ALDH1A2, ALDH1A3, ALDH2 and ALDH3A1. Optimized compound 10 showed markedly improved pharmacokinetic characters and ADME profiles comparing to the lead compound 1. In vitro study demonstrated that 10 alleviated palmitic acid-induced impairment of glucose consumption in HepG2 cells.
Collapse
Affiliation(s)
- Dailin Liang
- Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, 210009, China; Department of Medicinal Chemistry, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, 210009, China
| | - Yazhou Fan
- Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, 210009, China
| | - Zhou Yang
- Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, 210009, China; Department of Medicinal Chemistry, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, 210009, China
| | - Zhenguo Zhang
- Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, 210009, China; Department of Medicinal Chemistry, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, 210009, China
| | - Meiyang Liu
- Department of Medicinal Chemistry, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, 210009, China
| | - Li Liu
- Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, 210009, China.
| | - Cheng Jiang
- Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, 210009, China; Department of Medicinal Chemistry, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, 210009, China.
| |
Collapse
|
14
|
All-Trans Retinoic Acid Attenuates Fibrotic Processes by Downregulating TGF-β1/Smad3 in Early Diabetic Nephropathy. Biomolecules 2019; 9:biom9100525. [PMID: 31557800 PMCID: PMC6843855 DOI: 10.3390/biom9100525] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/04/2019] [Accepted: 09/18/2019] [Indexed: 02/07/2023] Open
Abstract
Diabetic nephropathy (DN) involves damage associated to hyperglycemia and oxidative stress. Renal fibrosis is a major pathologic feature of DN. The aim of this study was to evaluate anti-fibrogenic and renoprotective effects of all-trans retinoic acid (ATRA) in isolated glomeruli and proximal tubules of diabetic rats. Diabetes was induced by single injection of streptozotocin (STZ, 60 mg/Kg). ATRA (1 mg/Kg) was administered daily by gavage, from days 3–21 after STZ injection. ATRA attenuated kidney injury through the reduction of proteinuria, renal hypertrophy, increase in natriuresis, as well as early markers of damage such as β2-microglobulin, kidney injury molecule-1 (KIM-1), and neutrophil gelatinase-associated lipocalin (NGAL). The following parameters increased: macrophage infiltration, localization of alpha-smooth muscle actin (αSMA)-positive cells in renal tissue, and pro-fibrotic proteins such as transforming growth factor-β (TGF-β1), laminin beta 1 (LAM-β1), and collagens IV and I. Remarkably, ATRA treatment ameliorated these alterations and attenuated expression and nuclear translocation of Smad3, with increment of glomerular and tubular Smad7. The diabetic condition decreased expression of retinoic acid receptor alpha (RAR-α) through phosphorylation in serine residues mediated by the activation of c-Jun N-terminal kinase (JNK). ATRA administration restored the expression of RAR-α and inhibited direct interactions of JNK/RAR-α. ATRA prevented fibrogenesis through down-regulation of TGF-β1/Smad3 signaling.
Collapse
|
15
|
Tamaki M, Tominaga T, Fujita Y, Koezuka Y, Ichien G, Murakami T, Kishi S, Yamamoto K, Abe H, Nagai K, Doi T. All-trans retinoic acid suppresses bone morphogenetic protein 4 in mouse diabetic nephropathy through a unique retinoic acid response element. Am J Physiol Endocrinol Metab 2019; 316:E418-E431. [PMID: 30601699 DOI: 10.1152/ajpendo.00218.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Diabetic nephropathy (DN) causes mesangial matrix expansion, which results in glomerulosclerosis and renal failure. Collagen IV (COL4) is a major component of the mesangial matrix that is positively regulated by bone morphogenetic protein 4 (BMP4)/suppressor of mothers against decapentaplegic (Smad1) signaling. Because previous studies showed that retinoids treatment had a beneficial effect on kidney disease, we investigated the therapeutic potential of retinoids in DN, focusing especially on the regulatory mechanism of BMP4. Diabetes was induced with streptozotocin in 12-wk-old male Crl:CD1(ICR) mice, and, 1 mo later, we initiated intraperitoneal injection of all-trans retinoic acid (ATRA) three times weekly. Glomerular matrix expansion, which was associated with increased BMP4, phosphorylated Smad1, and COL4 expression, worsened in diabetic mice at 24 wk of age. ATRA administration alleviated DN and downregulated BMP4, phosopho-Smad1, and COL4. In cultured mouse mesangial cells, treatment with ATRA or a retinoic acid receptor-α (RARα) agonist significantly decreased BMP4 and COL4 expression. Genomic analysis suggested two putative retinoic acid response elements (RAREs) for the mouse Bmp4 gene. Chromatin immunoprecipitation analysis and reporter assays indicated a putative RARE of the Bmp4 gene, located 11,488-11,501 bp upstream of exon 1A and bound to RARα and retinoid X receptor (RXR), which suppressed BMP4 expression after ATRA addition. ATRA suppressed BMP4 via binding of a RARα/RXR heterodimer to a unique RARE, alleviating glomerular matrix expansion in diabetic mice. These findings provide a novel regulatory mechanism for treatment of DN.
Collapse
Affiliation(s)
- Masanori Tamaki
- Department of Nephrology, Institute of Biomedical Sciences, Tokushima University Graduate School , Tokushima , Japan
| | - Tatsuya Tominaga
- Department of Nephrology, Institute of Biomedical Sciences, Tokushima University Graduate School , Tokushima , Japan
| | - Yui Fujita
- Department of Nephrology, Institute of Biomedical Sciences, Tokushima University Graduate School , Tokushima , Japan
| | | | | | - Taichi Murakami
- Department of Nephrology, Institute of Biomedical Sciences, Tokushima University Graduate School , Tokushima , Japan
| | - Seiji Kishi
- Department of Nephrology, Institute of Biomedical Sciences, Tokushima University Graduate School , Tokushima , Japan
| | | | - Hideharu Abe
- Department of Nephrology, Institute of Biomedical Sciences, Tokushima University Graduate School , Tokushima , Japan
| | - Kojiro Nagai
- Department of Nephrology, Institute of Biomedical Sciences, Tokushima University Graduate School , Tokushima , Japan
| | - Toshio Doi
- Department of Nephrology, Institute of Biomedical Sciences, Tokushima University Graduate School , Tokushima , Japan
- Research Institute for Production Development , Kyoto , Japan
| |
Collapse
|
16
|
Trasino SE, Tang XH, Shevchuk MM, Choi ME, Gudas LJ. Amelioration of Diabetic Nephropathy Using a Retinoic Acid Receptor β2 Agonist. J Pharmacol Exp Ther 2018; 367:82-94. [PMID: 30054312 PMCID: PMC6123666 DOI: 10.1124/jpet.118.249375] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 07/20/2018] [Indexed: 12/17/2022] Open
Abstract
Vitamin A (VA) and its derivatives, known as retinoids, play critical roles in renal development through retinoic acid receptor β2 (RARβ2). Disruptions in VA signaling pathways are associated with the onset of diabetic nephropathy (DN). Despite the known role of RARβ2 in renal development, the effects of selective agonists for RARβ2 in a high-fat diet (HFD) model of DN are unknown. Here we examined whether AC261066 (AC261), a highly selective agonist for RARβ2, exhibited therapeutic effects in a HFD model of DN in C57BL/6 mice. Twelve weeks of AC261 administration to HFD-fed mice was well tolerated with no observable side effects. Compared with HFD-fed mice, HFD + AC261-treated mice had improved glycemic control and reductions in proteinuria and urine albumin-to-creatinine ratio. Several cellular hallmarks of DN were mitigated in HFD + AC261-treated mice, including reductions in tubule lipid droplets, podocyte (POD) effacement, endothelial cell collapse, mesangial expansion, and glomerular basement membrane thickening. Mesangial and tubule interstitial expression of the myofibroblast markers α-smooth muscle actin (α-SMA) and type IV collagen (Col-IV) was lower in HFD + AC261-treated mice compared with HFD alone. Ultrastructural and immunohistochemistry analyses showed that, compared with HFD-fed mice, HFD + AC261-treated mice showed preservation of POD foot process and slit-diaphragm morphology, an increase in the levels of slit-diagram protein podocin, and the transcription factor Wilms tumor-suppressor gene 1 in PODs. Given the need for novel DN therapies, our results warrant further studies of the therapeutic properties of AC261 in DN.
Collapse
Affiliation(s)
- Steven E Trasino
- Departments of Pharmacology (S.E.T., X.-H.T., L.J.G.) and Pathology (M.M.S.) and Division of Nephrology and Hypertension, Department of Medicine (M.E.C.), Weill Cornell Medical College of Cornell University, School of Urban Public Health, Nutrition Program, Hunter College, City University of New York (S.E.T.), and NewYork-Presbyterian Hospital-Weill Cornell Medical Center (M.E.C.), New York, New York
| | - Xiao-Han Tang
- Departments of Pharmacology (S.E.T., X.-H.T., L.J.G.) and Pathology (M.M.S.) and Division of Nephrology and Hypertension, Department of Medicine (M.E.C.), Weill Cornell Medical College of Cornell University, School of Urban Public Health, Nutrition Program, Hunter College, City University of New York (S.E.T.), and NewYork-Presbyterian Hospital-Weill Cornell Medical Center (M.E.C.), New York, New York
| | - Maria M Shevchuk
- Departments of Pharmacology (S.E.T., X.-H.T., L.J.G.) and Pathology (M.M.S.) and Division of Nephrology and Hypertension, Department of Medicine (M.E.C.), Weill Cornell Medical College of Cornell University, School of Urban Public Health, Nutrition Program, Hunter College, City University of New York (S.E.T.), and NewYork-Presbyterian Hospital-Weill Cornell Medical Center (M.E.C.), New York, New York
| | - Mary E Choi
- Departments of Pharmacology (S.E.T., X.-H.T., L.J.G.) and Pathology (M.M.S.) and Division of Nephrology and Hypertension, Department of Medicine (M.E.C.), Weill Cornell Medical College of Cornell University, School of Urban Public Health, Nutrition Program, Hunter College, City University of New York (S.E.T.), and NewYork-Presbyterian Hospital-Weill Cornell Medical Center (M.E.C.), New York, New York
| | - Lorraine J Gudas
- Departments of Pharmacology (S.E.T., X.-H.T., L.J.G.) and Pathology (M.M.S.) and Division of Nephrology and Hypertension, Department of Medicine (M.E.C.), Weill Cornell Medical College of Cornell University, School of Urban Public Health, Nutrition Program, Hunter College, City University of New York (S.E.T.), and NewYork-Presbyterian Hospital-Weill Cornell Medical Center (M.E.C.), New York, New York
| |
Collapse
|
17
|
Xu J, Zhang M, Zhang X, Yang H, Sun B, Wang Z, Zhou Y, Wang S, Liu X, Liu L. Contribution of Hepatic Retinaldehyde Dehydrogenase Induction to Impairment of Glucose Metabolism by High-Fat-Diet Feeding in C57BL/6J Mice. Basic Clin Pharmacol Toxicol 2018; 123:539-548. [PMID: 29753302 DOI: 10.1111/bcpt.13039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 04/27/2018] [Indexed: 11/27/2022]
Abstract
Obesity and insulin resistance are associated with overexpression of retinaldehyde dehydrogenase 1 (RALDH1). We aimed to investigate the roles of hepatic RALDH1 induction in glucose metabolism impairment using mice fed with high-fat-diet (HFD). Mice were fed with HFD for 8 weeks and treated with RALDH inhibitor citral for another 4 weeks. Oral glucose tolerance test (OGTT), pyruvate tolerance test (PTT) and insulin tolerance test were performed. Expressions of phosphoenolpyruvate carboxykinase 1 (PCK1), glucokinase (GCK) and RALDH1 were measured. Therapeutic effects of citral were also documented in diabetic rats. Effects of retinaldehyde on PCK1 and GCK expressions were examined in rat primary hepatocytes and HepG2 cells. The results showed that HFD mice were characterized by hyperlipidaemia and insulin resistance, accompanied by significantly increased RALDH1 activity and expression. Citral (10 and 50 mg/kg) ameliorated HFD-induced hyperlipidaemia and insulin resistance, as demonstrated by the improved fasting glucose, insulin levels and lipid profiles. OGTT and PTT demonstrated that citral reversed HFD-induced glucose disposal impairment and glucose production enhancement. Citral also reversed the increased PCK1 expression and decreased GCK expression by HFD. Citral therapeutic effects were reconfirmed in diabetic rats. In vitro data indicated that retinaldehyde had the strongest PCK1 induction in primary hepatocytes of diabetic rats compared with HFD rats and control rats, in line with the increased RALDH1 expression. Citral reversed the retinaldehyde-induced PCK1 expression in primary rat hepatocytes and HepG2 cells. In conclusion, RALDH1 induction impaired glucose metabolism partly via modulating PCK1 and GCK expressions. Citral improved glucose metabolism through inhibiting RALDH activity.
Collapse
Affiliation(s)
- Jiong Xu
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Mian Zhang
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiangping Zhang
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hanyu Yang
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Binbin Sun
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zhongjian Wang
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yaqian Zhou
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Shuting Wang
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiaodong Liu
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Li Liu
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
18
|
Aluksanasuwan S, Khamchun S, Thongboonkerd V. Targeted functional investigations guided by integrative proteome network analysis revealed significant perturbations of renal tubular cell functions induced by high glucose. Proteomics 2017; 17. [DOI: 10.1002/pmic.201700151] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 06/09/2017] [Accepted: 06/23/2017] [Indexed: 12/24/2022]
Affiliation(s)
- Siripat Aluksanasuwan
- Medical Proteomics Unit, Office for Research and Development; and Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital; and Center for Research in Complex Systems Science; Mahidol University; Bangkok Thailand
| | - Supaporn Khamchun
- Medical Proteomics Unit, Office for Research and Development; and Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital; and Center for Research in Complex Systems Science; Mahidol University; Bangkok Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development; and Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital; and Center for Research in Complex Systems Science; Mahidol University; Bangkok Thailand
| |
Collapse
|
19
|
Aluksanasuwan S, Sueksakit K, Fong-Ngern K, Thongboonkerd V. Role of HSP60 (HSPD1) in diabetes-induced renal tubular dysfunction: regulation of intracellular protein aggregation, ATP production, and oxidative stress. FASEB J 2017; 31:2157-2167. [PMID: 28196897 DOI: 10.1096/fj.201600910rr] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 01/23/2017] [Indexed: 12/28/2022]
Abstract
Because underlying mechanisms of diabetic nephropathy/tubulopathy remained poorly understood, we aimed to define a key protein involving in hyperglycemia-induced renal tubular dysfunction. All altered renal proteins identified from previous large-scale proteome studies were subjected to global protein network analysis, which revealed heat shock protein 60 (HSP60, also known as HSPD1) as the central node of protein-protein interactions. Functional validation was performed using small interfering RNA (siRNA) to knock down HSP60 (siHSP60). At 48 h after exposure to high glucose (HG) (25 mM), Madin-Darby canine kidney (MDCK) renal tubular cells transfected with controlled siRNA (siControl) had significantly increased level of HSP60 compared to normal glucose (NG) (5.5 mM), whereas siHSP60-transfected cells showed a dramatically decreased HSP60 level. siHSP60 modestly increased intracellular protein aggregates in both NG and HG conditions. Luciferin-luciferase assay showed that HG modestly increased intracellular ATP, and siHSP60 further enhanced such an increase. OxyBlot assay showed significantly increased level of oxidized proteins in HG-treated siControl-transfected cells, whereas siHSP60 caused marked increase of oxidized proteins under the NG condition. However, the siHSP60-induced accumulation of oxidized proteins was abolished by HG. In summary, our data demonstrated that HSP60 plays roles in regulation of intracellular protein aggregation, ATP production, and oxidative stress in renal tubular cells. Its involvement in HG-induced tubular cell dysfunction was most likely via regulation of intracellular ATP production.-Aluksanasuwan, S., Sueksakit, K., Fong-ngern, K., Thongboonkerd, V. Role of HSP60 (HSPD1) in diabetes-induced renal tubular dysfunction: regulation of intracellular protein aggregation, ATP production, and oxidative stress.
Collapse
Affiliation(s)
- Siripat Aluksanasuwan
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Center for Research in Complex Systems Science, Mahidol University, Bangkok, Thailand
| | - Kanyarat Sueksakit
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Center for Research in Complex Systems Science, Mahidol University, Bangkok, Thailand
| | - Kedsarin Fong-Ngern
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Center for Research in Complex Systems Science, Mahidol University, Bangkok, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; .,Center for Research in Complex Systems Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
20
|
Yoshioka H, Usuda H, Fukuishi N, Nonogaki T, Onosaka S. Carbon Tetrachloride-Induced Nephrotoxicity in Mice Is Prevented by Pretreatment with Zinc Sulfate. Biol Pharm Bull 2017; 39:1042-6. [PMID: 27251508 DOI: 10.1248/bpb.b16-00078] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Carbon tetrachloride (CCl4) is commonly used as a chemical inducer of experimental liver injury. In addition, many studies showed that CCl4 can induce kidney damage. In the current study, we evaluated the protective effect of zinc (Zn) against CCl4-induced nephrotoxicity. We hypothesized that this protective effect would result from the ability of Zn to serve as an inducer of metallothionein (MT), a known endogenous scavenger of free radicals. We administered Zn (as ZnSO4) 50 mg/kg subcutaneously once daily for 3 successive days prior to a single intraperitoneal administration of CCl4 4 g/kg in male ddY mice. Our results showed that Zn pretreatment significantly decreased creatinine and blood urea nitrogen levels and reduced renal histopathological damage at 6 h post-CCl4 injection, observations consistent with enhanced antioxidative activity in the kidney. Moreover, kidney MT levels in the Zn+CCl4-treated group decreased by greater than 70% compared with levels in the Zn-alone group, implying that MT was consumed by CCl4-induced radicals. These findings suggest that prophylaxis with Zn protects mice from CCl4-induced acute nephrotoxicity, presumably by induction of MT, which in turn scavenges radicals induced by CCl4 exposure.
Collapse
|
21
|
Braun F, Rinschen MM, Bartels V, Frommolt P, Habermann B, Hoeijmakers JHJ, Schumacher B, Dollé MET, Müller RU, Benzing T, Schermer B, Kurschat CE. Altered lipid metabolism in the aging kidney identified by three layered omic analysis. Aging (Albany NY) 2017; 8:441-57. [PMID: 26886165 PMCID: PMC4833139 DOI: 10.18632/aging.100900] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Aging-associated diseases and their comorbidities affect the life of a constantly growing proportion of the population in developed countries. At the center of these comorbidities are changes of kidney structure and function as age-related chronic kidney disease predisposes to the development of cardiovascular diseases such as stroke, myocardial infarction or heart failure. To detect molecular mechanisms involved in kidney aging, we analyzed gene expression profiles of kidneys from adult and aged wild-type mice by transcriptomic, proteomic and targeted lipidomic methodologies. Interestingly, transcriptome and proteome analyses revealed differential expression of genes primarily involved in lipid metabolism and immune response. Additional lipidomic analyses uncovered significant age-related differences in the total amount of phosphatidylethanolamines, phosphatidylcholines and sphingomyelins as well as in subspecies of phosphatidylserines and ceramides with age. By integration of these datasets we identified Aldh1a1, a key enzyme in vitamin A metabolism specifically expressed in the medullary ascending limb, as one of the most prominent upregulated proteins in old kidneys. Moreover, ceramidase Asah1 was highly expressed in aged kidneys, consistent with a decrease in ceramide C16. In summary, our data suggest that changes in lipid metabolism are involved in the process of kidney aging and in the development of chronic kidney disease.
Collapse
Affiliation(s)
- Fabian Braun
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Markus M Rinschen
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Valerie Bartels
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Department of Cardiology and Angiology, University of Münster, Münster, Germany
| | - Peter Frommolt
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Systems Biology of Ageing Cologne, University of Cologne, Cologne, Germany
| | - Bianca Habermann
- Systems Biology of Ageing Cologne, University of Cologne, Cologne, Germany.,Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Jan H J Hoeijmakers
- Department of Cell Biology and Genetics, Medical Genetics Centre, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Björn Schumacher
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Institute for Genome Stability in Aging and Disease, Medical Faculty, University of Cologne, Cologne, Germany
| | - Martijn E T Dollé
- National Institute of Public Health and the Environment, Centre for Health Protection, Bilthoven, The Netherlands
| | - Roman-Ulrich Müller
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Systems Biology of Ageing Cologne, University of Cologne, Cologne, Germany
| | - Thomas Benzing
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Systems Biology of Ageing Cologne, University of Cologne, Cologne, Germany
| | - Bernhard Schermer
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Systems Biology of Ageing Cologne, University of Cologne, Cologne, Germany
| | - Christine E Kurschat
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
22
|
Yoshioka H, Nonogaki T, Fukuishi N, Shinohara Y, Hwang GW, Ohtani K, Miura N. Chronotoxicity of bromobenzene-induced hepatic injury in mice. J Toxicol Sci 2017; 42:251-258. [DOI: 10.2131/jts.42.251] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
| | | | | | | | - Gi-Wook Hwang
- Laboratory of Molecular and Biochemical Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University
| | - Katsumi Ohtani
- Occupational Epidemiology Research Group, Japan National Institute of Occupational Safety and Health
| | - Nobuhiko Miura
- Industrial Toxicology and Health Effects Research Group, Japan National Institute of Occupational Safety and Health
| |
Collapse
|
23
|
Yoshioka H, Nonogaki T, Fukuishi N, Onosaka S. Calcium-deficient diet attenuates carbon tetrachloride-induced hepatotoxicity in mice through suppression of lipid peroxidation and inflammatory response. Heliyon 2016; 2:e00126. [PMID: 27441297 PMCID: PMC4946292 DOI: 10.1016/j.heliyon.2016.e00126] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 06/09/2016] [Accepted: 06/17/2016] [Indexed: 01/08/2023] Open
Abstract
The aim of this study is to investigate whether a Ca-deficient diet has an attenuating effect on carbon tetrachloride (CCl4)-induced hepatotoxicity. Four-week-old male ddY mice were fed a Ca-deficient diet for 4 weeks as a part of the experimental protocol. While hypocalcemia was observed, there was no significant change in body weight. The CCl4-exposed hypocalcemic mice exhibited a significant decrease in alanine aminotransferase and aspartate aminotransferase activities at both 6 h and 24 h even though markers of renal function remained unchanged. Moreover, lipid peroxidation was impaired and total antioxidant power was partially recovered in the liver. Studies conducted in parallel with the biochemical analysis revealed that hepatic histopathological damage was attenuated 24 h post CCl4 injection in hypocalcemic mice fed the Ca-deficient diet. Finally, this diet impaired CCl4-induced inflammatory responses. Although upregulation of Ca concentration is a known indicator of terminal progression to cell death in the liver, these results suggest that Ca is also involved in other phases of CCl4-induced hepatotoxicity, via regulation of oxidative stress and inflammatory responses.
Collapse
Affiliation(s)
- Hiroki Yoshioka
- College of Pharmacy, Kinjo Gakuin University, 2-1723 Omori, Moriyamaku, Nagoya, Aichi 463-8521, Japan
- Faculty of Nutrition, Kobe Gakuin University, 518 Arise, Ikawadani-cho, Nishi-ku, Kobe, Hyogo 651-2180, Japan
- Corresponding author.
| | - Tsunemasa Nonogaki
- College of Pharmacy, Kinjo Gakuin University, 2-1723 Omori, Moriyamaku, Nagoya, Aichi 463-8521, Japan
| | - Nobuyuki Fukuishi
- College of Pharmacy, Kinjo Gakuin University, 2-1723 Omori, Moriyamaku, Nagoya, Aichi 463-8521, Japan
| | - Satomi Onosaka
- Faculty of Nutrition, Kobe Gakuin University, 518 Arise, Ikawadani-cho, Nishi-ku, Kobe, Hyogo 651-2180, Japan
| |
Collapse
|
24
|
Zhao Y, Valbuena G, Walker DH, Gazi M, Hidalgo M, DeSousa R, Oteo JA, Goez Y, Brasier AR. Endothelial Cell Proteomic Response to Rickettsia conorii Infection Reveals Activation of the Janus Kinase (JAK)-Signal Transducer and Activator of Transcription (STAT)-Inferferon Stimulated Gene (ISG)15 Pathway and Reprogramming Plasma Membrane Integrin/Cadherin Signaling. Mol Cell Proteomics 2015; 15:289-304. [PMID: 26560068 DOI: 10.1074/mcp.m115.054361] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Indexed: 11/06/2022] Open
Abstract
Rickettsia conorii is the etiologic agent of Mediterranean spotted fever, a re-emerging infectious disease with significant mortality. This Gram-negative, obligately intracellular pathogen is transmitted via tick bites, resulting in disseminated vascular endothelial cell infection with vascular leakage. In the infected human, Rickettsia conorii infects endothelial cells, stimulating expression of cytokines and pro-coagulant factors. However, the integrated proteomic response of human endothelial cells to R. conorii infection is not known. In this study, we performed quantitative proteomic profiling of primary human umbilical vein endothelial cells (HUVECs) with established R conorii infection versus those stimulated with endotoxin (LPS) alone. We observed differential expression of 55 proteins in HUVEC whole cell lysates. Of these, we observed induction of signal transducer and activator of transcription (STAT)1, MX dynamin-like GTPase (MX1), and ISG15 ubiquitin-like modifier, indicating activation of the JAK-STAT signaling pathway occurs in R. conorii-infected HUVECs. The down-regulated proteins included those involved in the pyrimidine and arginine biosynthetic pathways. A highly specific biotinylated cross-linking enrichment protocol was performed to identify dysregulation of 11 integral plasma membrane proteins that included up-regulated expression of a sodium/potassium transporter and down-regulation of α-actin 1. Analysis of Golgi and soluble Golgi fractions identified up-regulated proteins involved in platelet-endothelial adhesion, phospholipase activity, and IFN activity. Thirty four rickettsial proteins were identified with high confidence in the Golgi, plasma membrane, or secreted protein fractions. The host proteins associated with rickettsial infections indicate activation of interferon-STAT signaling pathways; the disruption of cellular adhesion and alteration of antigen presentation pathways in response to rickettsial infections are distinct from those produced by nonspecific LPS stimulation. These patterns of differentially expressed proteins suggest mechanisms of pathogenesis as well as methods for diagnosis and monitoring Rickettsia infections.
Collapse
Affiliation(s)
- Yingxin Zhao
- From the Departments of ‡Internal Medicine and §Institute for Translational Sciences, and ¶Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, Texas 77555-1060
| | | | | | | | - Marylin Hidalgo
- the **Microbiology Department, Faculty of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Rita DeSousa
- the ‡‡Centre for the Study of Vectors and Infectious Diseases Dr. Francisco Cambournac, National Institute of Health Dr. Ricardo Jorge, Águas de Moura, Av. Padre Cruz, Lisbon, 1649-016, Portugal, and
| | - Jose Antonio Oteo
- the §§Centre of Rickettsiosis and Arthropod-Borne Diseases, Hospital San Pedro-Centro de Investigation Biomedical de la Rioja (CIBIR), Logroño, La Rioja, 26006, Spain
| | | | - Allan R Brasier
- From the Departments of ‡Internal Medicine and §Institute for Translational Sciences, and ¶Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, Texas 77555-1060,
| |
Collapse
|
25
|
Abedi M, Gheisari Y. Nodes with high centrality in protein interaction networks are responsible for driving signaling pathways in diabetic nephropathy. PeerJ 2015; 3:e1284. [PMID: 26557424 PMCID: PMC4636410 DOI: 10.7717/peerj.1284] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 09/07/2015] [Indexed: 01/06/2023] Open
Abstract
In spite of huge efforts, chronic diseases remain an unresolved problem in medicine. Systems biology could assist to develop more efficient therapies through providing quantitative holistic sights to these complex disorders. In this study, we have re-analyzed a microarray dataset to identify critical signaling pathways related to diabetic nephropathy. GSE1009 dataset was downloaded from Gene Expression Omnibus database and the gene expression profile of glomeruli from diabetic nephropathy patients and those from healthy individuals were compared. The protein-protein interaction network for differentially expressed genes was constructed and enriched. In addition, topology of the network was analyzed to identify the genes with high centrality parameters and then pathway enrichment analysis was performed. We found 49 genes to be variably expressed between the two groups. The network of these genes had few interactions so it was enriched and a network with 137 nodes was constructed. Based on different parameters, 34 nodes were considered to have high centrality in this network. Pathway enrichment analysis with these central genes identified 62 inter-connected signaling pathways related to diabetic nephropathy. Interestingly, the central nodes were more informative for pathway enrichment analysis compared to all network nodes and also 49 differentially expressed genes. In conclusion, we here show that central nodes in protein interaction networks tend to be present in pathways that co-occur in a biological state. Also, this study suggests a computational method for inferring underlying mechanisms of complex disorders from raw high-throughput data.
Collapse
Affiliation(s)
- Maryam Abedi
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences , Isfahan , Iran
| | - Yousof Gheisari
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences , Isfahan , Iran ; Regenerative Medicine Lab, Isfahan Kidney Diseases Research Center, Isfahan University of Medical Sciences , Isfahan , Iran
| |
Collapse
|
26
|
Yang J, Zhao Y, Kalita M, Li X, Jamaluddin M, Tian B, Edeh CB, Wiktorowicz JE, Kudlicki A, Brasier AR. Systematic Determination of Human Cyclin Dependent Kinase (CDK)-9 Interactome Identifies Novel Functions in RNA Splicing Mediated by the DEAD Box (DDX)-5/17 RNA Helicases. Mol Cell Proteomics 2015. [PMID: 26209609 DOI: 10.1074/mcp.m115.049221] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Inducible transcriptional elongation is a rapid, stereotypic mechanism for activating immediate early immune defense genes by the epithelium in response to viral pathogens. Here, the recruitment of a multifunctional complex containing the cyclin dependent kinase 9 (CDK9) triggers the process of transcriptional elongation activating resting RNA polymerase engaged with innate immune response (IIR) genes. To identify additional functional activity of the CDK9 complex, we conducted immunoprecipitation (IP) enrichment-stable isotope labeling LC-MS/MS of the CDK9 complex in unstimulated cells and from cells activated by a synthetic dsRNA, polyinosinic/polycytidylic acid [poly (I:C)]. 245 CDK9 interacting proteins were identified with high confidence in the basal state and 20 proteins in four functional classes were validated by IP-SRM-MS. These data identified that CDK9 interacts with DDX 5/17, a family of ATP-dependent RNA helicases, important in alternative RNA splicing of NFAT5, and mH2A1 mRNA two proteins controlling redox signaling. A direct comparison of the basal versus activated state was performed using stable isotope labeling and validated by IP-SRM-MS. Recruited into the CDK9 interactome in response to poly(I:C) stimulation are HSPB1, DNA dependent kinases, and cytoskeletal myosin proteins that exchange with 60S ribosomal structural proteins. An integrated human CDK9 interactome map was developed containing all known human CDK9- interacting proteins. These data were used to develop a probabilistic global map of CDK9-dependent target genes that predicted two functional states controlling distinct cellular functions, one important in immune and stress responses. The CDK9-DDX5/17 complex was shown to be functionally important by shRNA-mediated knockdown, where differential accumulation of alternatively spliced NFAT5 and mH2A1 transcripts and alterations in downstream redox signaling were seen. The requirement of CDK9 for DDX5 recruitment to NFAT5 and mH2A1 chromatin target was further demonstrated using chromatin immunoprecipitation (ChIP). These data indicate that CDK9 is a dynamic multifunctional enzyme complex mediating not only transcriptional elongation, but also alternative RNA splicing and potentially translational control.
Collapse
Affiliation(s)
- Jun Yang
- From the ‡Department of Internal Medicine; §Sealy Center for Molecular Medicine; ¶Institute for Translational Sciences
| | - Yingxin Zhao
- From the ‡Department of Internal Medicine; §Sealy Center for Molecular Medicine; ¶Institute for Translational Sciences
| | - Mridul Kalita
- §Sealy Center for Molecular Medicine; ¶Institute for Translational Sciences
| | - Xueling Li
- ¶Institute for Translational Sciences; ‖Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas
| | - Mohammad Jamaluddin
- From the ‡Department of Internal Medicine; ¶Institute for Translational Sciences
| | - Bing Tian
- From the ‡Department of Internal Medicine; §Sealy Center for Molecular Medicine; ¶Institute for Translational Sciences
| | | | - John E Wiktorowicz
- §Sealy Center for Molecular Medicine; ¶Institute for Translational Sciences; ‖Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas
| | - Andrzej Kudlicki
- §Sealy Center for Molecular Medicine; ¶Institute for Translational Sciences; ‖Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas
| | - Allan R Brasier
- From the ‡Department of Internal Medicine; §Sealy Center for Molecular Medicine; ¶Institute for Translational Sciences;
| |
Collapse
|
27
|
Molina-Jijón E, Rodríguez-Muñoz R, Namorado MDC, Bautista-García P, Medina-Campos ON, Pedraza-Chaverri J, Reyes JL. All- trans retinoic acid prevents oxidative stress-induced loss of renal tight junction proteins in type-1 diabetic model. J Nutr Biochem 2015; 26:441-54. [DOI: 10.1016/j.jnutbio.2014.11.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 11/07/2014] [Accepted: 11/19/2014] [Indexed: 12/31/2022]
|
28
|
Li X, Dai Y, Chuang PY, He JC. Induction of retinol dehydrogenase 9 expression in podocytes attenuates kidney injury. J Am Soc Nephrol 2014; 25:1933-41. [PMID: 24652806 DOI: 10.1681/asn.2013111150] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The intracellular concentration of retinoic acid is determined by two sequential oxidation reactions that convert retinol to retinoic acid. We recently demonstrated that retinoic acid synthesis is significantly impaired in glomeruli of HIV-1 transgenic mice (Tg26), a murine model of HIV-associated nephropathy. This impaired retinoic acid synthesis correlates with reduced renal expression of retinol dehydrogenase 9, which catalyzes the rate-limiting step of retinoic acid synthesis by converting retinol to retinal. Because retinoic acid has renal protective effects and can induce podocyte differentiation, we hypothesized that restoration of retinoic acid synthesis could slow the progression of renal disease. Herein, we demonstrate that overexpression of retinol dehydrogenase 9 in cultured podocytes induces the expression of podocyte differentiation markers. Furthermore, we confirm that podocyte-specific overexpression of retinol dehydrogenase 9 in mice with established kidney disease due to either HIV-associated nephropathy or adriamycin-induced nephropathy decreases proteinuria, attenuates kidney injury, and restores podocyte differentiation markers. Our data suggest that restoration of retinoic acid synthesis could be a new approach to treat kidney disease.
Collapse
Affiliation(s)
- Xuezhu Li
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China; and
| | - Yan Dai
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York; Renal Section, James J. Peters Veterans Affairs Medical Center, Bronx, New York
| | - Peter Y Chuang
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - John Cijiang He
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York; Renal Section, James J. Peters Veterans Affairs Medical Center, Bronx, New York
| |
Collapse
|
29
|
Abstract
With 3·3 billion people at risk of infection, malaria remains one of the world's most significant health problems. Increasing resistance of the main causative parasite to currently available drugs has created an urgent need to elucidate the pathogenesis of the disease in order to develop new treatments. A possible clue to such an understanding is that the malaria parasite Plasmodium falciparum selectively absorbs vitamin A from the host and appears to use it for its metabolism; serum vitamin A levels are also reduced in children with malaria. Although vitamin A is essential in low concentration for numerous biological functions, higher concentrations are cytotoxic and pro-oxidant, and potentially toxic quantities of the vitamin are stored in the liver. During their life cycle in the host the parasites remain in the liver for several days before invading the red blood cells (RBCs). The hypothesis proposed is that the parasites emerge from the liver packed with vitamin A and use retinoic acid (RA), the main biologically active metabolite of vitamin A, as a cell membrane destabilizer to invade the RBCs throughout the body. The characteristic hemolysis and anemia of malaria and other symptoms of the disease may thus be manifestations of an endogenous form of vitamin A intoxication associated with high concentrations of RA but low concentrations of retinol (ROL). Retinoic acid released from the parasites may also affect the fetus and cause preterm birth and fetal growth restriction (FGR) as a function of the membranolytic and growth inhibitory effects of these compounds, respectively. Subject to testing, the hypothesis suggests that parasite vitamin A metabolism could become a new target for the treatment and prevention of malaria.
Collapse
|
30
|
Chen G. Roles of Vitamin A Metabolism in the Development of Hepatic Insulin Resistance. ISRN HEPATOLOGY 2013; 2013:534972. [PMID: 27335827 PMCID: PMC4890907 DOI: 10.1155/2013/534972] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 08/18/2013] [Indexed: 02/07/2023]
Abstract
The increase in the number of people with obesity- and noninsulin-dependent diabetes mellitus has become a major public health concern. Insulin resistance is a common feature closely associated with human obesity and diabetes. Insulin regulates metabolism, at least in part, via the control of the expression of the hepatic genes involved in glucose and fatty acid metabolism. Insulin resistance is always associated with profound changes of the expression of hepatic genes for glucose and lipid metabolism. As an essential micronutrient, vitamin A (VA) is needed in a variety of physiological functions. The active metablite of VA, retinoic acid (RA), regulates the expression of genes through the activation of transcription factors bound to the RA-responsive elements in the promoters of RA-targeted genes. Recently, retinoids have been proposed to play roles in glucose and lipid metabolism and energy homeostasis. This paper summarizes the recent progresses in our understanding of VA metabolism in the liver and of the potential transcription factors mediating RA responses. These transcription factors are the retinoic acid receptor, the retinoid X receptor, the hepatocyte nuclear factor 4α, the chicken ovalbumin upstream promoter-transcription factor II, and the peroxisome proliferator-activated receptor β/δ. This paper also summarizes the effects of VA status and RA treatments on the glucose and lipid metabolism in vivo and the effects of retinoid treatments on the expression of insulin-regulated genes involved in the glucose and fatty acid metabolism in the primary hepatocytes. I discuss the roles of RA production in the development of insulin resistance in hepatocytes and proposes a mechanism by which RA production may contribute to hepatic insulin resistance. Given the large amount of information and progresses regarding the physiological functions of VA, this paper mainly focuses on the findings in the liver and hepatocytes and only mentions the relative findings in other tissues and cells.
Collapse
Affiliation(s)
- Guoxun Chen
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, TN 37996, USA
| |
Collapse
|
31
|
Mustafa MG, Petersen JR, Ju H, Cicalese L, Snyder N, Haidacher SJ, Denner L, Elferink C. Biomarker discovery for early detection of hepatocellular carcinoma in hepatitis C-infected patients. Mol Cell Proteomics 2013; 12:3640-52. [PMID: 24008390 DOI: 10.1074/mcp.m113.031252] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Chronic hepatic disease damages the liver, and the resulting wound-healing process leads to liver fibrosis and the subsequent development of cirrhosis. The leading cause of hepatic fibrosis and cirrhosis is infection with hepatitis C virus (HCV), and of the patients with HCV-induced cirrhosis, 2% to 5% develop hepatocellular carcinoma (HCC), with a survival rate of 7%. HCC is one of the leading causes of cancer-related death worldwide, and the poor survival rate is largely due to late-stage diagnosis, which makes successful intervention difficult, if not impossible. The lack of sensitive and specific diagnostic tools and the urgent need for early-stage diagnosis prompted us to discover new candidate biomarkers for HCV and HCC. We used aptamer-based fractionation technology to reduce serum complexity, differentially labeled samples (six HCV and six HCC) with fluorescent dyes, and resolved proteins in pairwise two-dimensional difference gel electrophoresis. DeCyder software was used to identify differentially expressed proteins and spots picked, and MALDI-MS/MS was used to determine that ApoA1 was down-regulated by 22% (p < 0.004) in HCC relative to HCV. Differential expression quantified via two-dimensional difference gel electrophoresis was confirmed by means of (18)O/(16)O stable isotope differential labeling with LC-MS/MS zoom scans. Technically independent confirmation was demonstrated by triple quadrupole LC-MS/MS selected reaction monitoring (SRM) assays with three peptides specific to human ApoA1 (DLATVYVDVLK, WQEEMELYR, and VSFLSALEEYTK) using (18)O/(16)O-labeled samples and further verified with AQUA peptides as internal standards for quantification. In 50 patient samples (24 HCV and 26 HCC), all three SRM assays yielded highly similar differential expression of ApoA1 in HCC and HCV patients. These results validated the SRM assays, which were independently confirmed by Western blotting. Thus, ApoA1 is a candidate member of an SRM biomarker panel for early diagnosis, prognosis, and monitoring of HCC. Future multiplexing of SRM assays for other candidate biomarkers is envisioned to develop a biomarker panel for subsequent verification and validation studies.
Collapse
Affiliation(s)
- Mehnaz G Mustafa
- Departments of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Mallipattu SK, He JC. A new mechanism for albuminuria-induced podocyte injury. J Am Soc Nephrol 2013; 24:1709-11. [PMID: 23990672 DOI: 10.1681/asn.2013070714] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Sandeep K Mallipattu
- Division of Nephrology, Department of Medicine, Stony Brook University School of Medicine, New York, New York
| | | |
Collapse
|
33
|
Cognitive enhancement with rosiglitazone links the hippocampal PPARγ and ERK MAPK signaling pathways. J Neurosci 2013; 32:16725-35a. [PMID: 23175826 DOI: 10.1523/jneurosci.2153-12.2012] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
We previously reported that the peroxisome proliferator-activated receptor γ (PPARγ) agonist rosiglitazone (RSG) improved hippocampus-dependent cognition in the Alzheimer's disease (AD) mouse model, Tg2576. RSG had no effect on wild-type littermate cognitive performance. Since extracellular signal-regulated protein kinase mitogen-activated protein kinase (ERK MAPK) is required for many forms of learning and memory that are affected in AD, and since both PPARγ and ERK MAPK are key mediators of insulin signaling, the current study tested the hypothesis that RSG-mediated cognitive improvement induces a hippocampal PPARγ pattern of gene and protein expression that converges with the ERK MAPK signaling axis in Tg2576 AD mice. In the hippocampal PPARγ transcriptome, we found significant overlap between peroxisome proliferator response element-containing PPARγ target genes and ERK-regulated, cAMP response element-containing target genes. Within the Tg2576 dentate gyrus proteome, RSG induced proteins with structural, energy, biosynthesis and plasticity functions. Several of these proteins are known to be important for cognitive function and are also regulated by ERK MAPK. In addition, we found the RSG-mediated augmentation of PPARγ and ERK2 activity during Tg2576 cognitive enhancement was reversed when hippocampal PPARγ was pharmacologically antagonized, revealing a coordinate relationship between PPARγ transcriptional competency and phosphorylated ERK that is reciprocally affected in response to chronic activation, compared with acute inhibition, of PPARγ. We conclude that the hippocampal transcriptome and proteome induced by cognitive enhancement with RSG harnesses a dysregulated ERK MAPK signal transduction pathway to overcome AD-like cognitive deficits in Tg2576 mice. Thus, PPARγ represents a signaling system that is not crucial for normal cognition yet can intercede to restore neural networks compromised by AD.
Collapse
|
34
|
Zhang J, Pippin JW, Vaughan MR, Krofft RD, Taniguchi Y, Romagnani P, Nelson PJ, Liu ZH, Shankland SJ. Retinoids augment the expression of podocyte proteins by glomerular parietal epithelial cells in experimental glomerular disease. Nephron Clin Pract 2012; 121:e23-37. [PMID: 23107969 DOI: 10.1159/000342808] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 08/14/2012] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND/AIMS A decrease in glomerular podocyte number in membranous nephropathy and focal segmental glomerulosclerosis (FSGS) ultimately underlines glomerulosclerosis and the decrease in kidney function. Recent studies have shown that in these diseases, glomerular parietal epithelial cells begin to express proteins considered unique to podocytes, and that these glomerular epithelial transition cells might serve as podocyte progenitors. Because retinoids improve many forms of experimental glomerular disease characterized by podocyte injury and loss, we asked if all-trans retinoic acid (ATRA) induces parietal epithelial cells to express podocyte proteins. METHODS ATRA or vehicle was administered to rats with experimental membranous nephropathy (passive Heymann nephritis model) and mice with experimental FSGS (anti-glomerular antibody model) following the onset of proteinuria. Immunohistochemistry staining of PAX2 (parietal epithelial cell marker), WT-1 (podocyte cell marker), and Ki-67 (proliferation marker) were performed on kidney tissues. RESULTS Compared to diseased animals receiving vehicle, ATRA statistically significantly increased the number of glomerular transition cells, defined as cells double-staining for PAX2 and WT-1, in membranous nephropathy at weeks 2, 5 and 16, and in FSGS at weeks 1 and 2. This was accompanied by an increase in the number of podocytes compared to diseased controls receiving vehicle. CONCLUSION ATRA increases the number of glomerular epithelial transition cells in experimental proteinuric glomerular diseases. Thus, ATRA may provide a useful pharmacologic approach to decipher the mechanisms underlying the possible progenitor role of parietal epithelial cells.
Collapse
Affiliation(s)
- Jiong Zhang
- Division of Nephrology, Department of Medicine, University of Washington School of Medicine, Seattle, Wash 98195-6521, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Wu P, Zhao Y, Haidacher SJ, Wang E, Parsley MO, Gao J, Sadygov RG, Starkey JM, Luxon BA, Spratt H, Dewitt DS, Prough DS, Denner L. Detection of structural and metabolic changes in traumatically injured hippocampus by quantitative differential proteomics. J Neurotrauma 2012; 30:775-88. [PMID: 22757692 DOI: 10.1089/neu.2012.2391] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Traumatic brain injury (TBI) is a complex and common problem resulting in the loss of cognitive function. In order to build a comprehensive knowledge base of the proteins that underlie these cognitive deficits, we employed unbiased quantitative mass spectrometry, proteomics, and bioinformatics to identify and quantify dysregulated proteins in the CA3 subregion of the hippocampus in the fluid percussion model of TBI in rats. Using stable isotope 18O-water differential labeling and multidimensional tandem liquid chromatography (LC)-MS/MS with high stringency statistical analyses and filtering, we identified and quantified 1002 common proteins, with 124 increased and 76 decreased. The ingenuity pathway analysis (IPA) bioinformatics tool identified that TBI had profound effects on downregulating global energy metabolism, including glycolysis, the Krebs cycle, and oxidative phosphorylation, as well as cellular structure and function. Widespread upregulation of actin-related cytoskeletal dynamics was also found. IPA indicated a common integrative signaling node, calcineurin B1 (CANB1, CaNBα, or PPP3R1), which was downregulated by TBI. Western blotting confirmed that the calcineurin regulatory subunit, CANB1, and its catalytic binding partner PP2BA, were decreased without changes in other calcineurin subunits. CANB1 plays a critical role in downregulated networks of calcium signaling and homeostasis through calmodulin and calmodulin-dependent kinase II to highly interconnected structural networks dominated by tubulins. This large-scale knowledge base lays the foundation for the identification of novel therapeutic targets for cognitive rescue in TBI.
Collapse
Affiliation(s)
- Ping Wu
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555-1060, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Li Y, Zhang Y, Li R, Chen W, Howell M, Zhang R, Chen G. The hepatic Raldh1 expression is elevated in Zucker fatty rats and its over-expression introduced the retinal-induced Srebp-1c expression in INS-1 cells. PLoS One 2012; 7:e45210. [PMID: 23028851 PMCID: PMC3441598 DOI: 10.1371/journal.pone.0045210] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 08/14/2012] [Indexed: 02/07/2023] Open
Abstract
The roles of vitamin A (VA) in the development of metabolic diseases remain unanswered. We have reported that retinoids synergized with insulin to induce the expression of sterol-regulatory element-binding protein 1c gene (Srebp-1c) expression in primary rat hepatocytes. Additionally, the hepatic Srebp-1c expression is elevated in Zucker fatty (ZF) rats, and reduced in those fed a VA deficient diet. VA is metabolized to retinoic acid (RA) for regulating gene expression. We hypothesized that the expression of RA production enzymes contributes to the regulation of the hepatic Srebp-1c expression. Therefore, we analyzed their expression levels in Zucker lean (ZL) and ZF rats. The mRNA levels of retinaldehyde dehydrogenase family 1 gene (Raldh1) were found to be higher in the isolated and cultured primary hepatocytes from ZF rats than that from ZL rats. The RALDH1 protein level was elevated in the liver of ZF rats. Retinol and retinal dose- and time-dependently induced the expression of RA responsive Cyp26a1 gene in hepatocytes and hepatoma cells. INS-1 cells were identified as an ideal tool to study the effects of RA production on the regulation of gene expression because only RA, but not retinal, induced Srebp-1c mRNA expression in them. Recombinant adenovirus containing rat Raldh1 cDNA was made and used to infect INS-1 cells. The over-expression of RALDH1 introduced the retinal-mediated induction of Srebp-1c expression in INS-1 cells. We conclude that the expression levels of the enzymes for RA production may contribute to the regulation of RA responsive genes, and determine the responses of the cells to retinoid treatments. The elevated hepatic expression of Raldh1 in ZF rats may cause the excessive RA production from retinol, and in turn, result in higher Srebp-1c expression. This excessive RA production may be one of the factors contributing to the elevated lipogenesis in the liver of ZF rats.
Collapse
Affiliation(s)
- Yang Li
- Department of Nutrition, the University of Tennessee at Knoxville, Knoxville, Tennessee, United States of America
| | - Yan Zhang
- Department of Nutrition, the University of Tennessee at Knoxville, Knoxville, Tennessee, United States of America
| | - Rui Li
- Department of Nutrition, the University of Tennessee at Knoxville, Knoxville, Tennessee, United States of America
| | - Wei Chen
- Department of Nutrition, the University of Tennessee at Knoxville, Knoxville, Tennessee, United States of America
| | - Meredith Howell
- Department of Nutrition, the University of Tennessee at Knoxville, Knoxville, Tennessee, United States of America
| | - Rui Zhang
- Department of Nutrition, the University of Tennessee at Knoxville, Knoxville, Tennessee, United States of America
| | - Guoxun Chen
- Department of Nutrition, the University of Tennessee at Knoxville, Knoxville, Tennessee, United States of America
| |
Collapse
|
37
|
Starkey JM, Tilton RG. Proteomics and systems biology for understanding diabetic nephropathy. J Cardiovasc Transl Res 2012; 5:479-90. [PMID: 22581264 DOI: 10.1007/s12265-012-9372-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 05/01/2012] [Indexed: 01/07/2023]
Abstract
Like many diseases, diabetic nephropathy is defined in a histopathological context and studied using reductionist approaches that attempt to ameliorate structural changes. Novel technologies in mass spectrometry-based proteomics have the ability to provide a deeper understanding of the disease beyond classical histopathology, redefine the characteristics of the disease state, and identify novel approaches to reduce renal failure. The goal is to translate these new definitions into improved patient outcomes through diagnostic, prognostic, and therapeutic tools. Here, we review progress made in studying the proteomics of diabetic nephropathy and provide an introduction to the informatics tools used in the analysis of systems biology data, while pointing out statistical issues for consideration. Novel bioinformatics methods may increase biomarker identification, and other tools, including selective reaction monitoring, may hasten clinical validation.
Collapse
Affiliation(s)
- Jonathan M Starkey
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555-1060, USA
| | | |
Collapse
|
38
|
Retinoic acid receptor-α in HIV-associated nephropathy. Kidney Int 2011. [DOI: 10.1038/ki.2011.237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
39
|
Moore JB, Weeks ME. Proteomics and systems biology: current and future applications in the nutritional sciences. Adv Nutr 2011; 2:355-64. [PMID: 22332076 PMCID: PMC3125684 DOI: 10.3945/an.111.000554] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In the last decade, advances in genomics, proteomics, and metabolomics have yielded large-scale datasets that have driven an interest in global analyses, with the objective of understanding biological systems as a whole. Systems biology integrates computational modeling and experimental biology to predict and characterize the dynamic properties of biological systems, which are viewed as complex signaling networks. Whereas the systems analysis of disease-perturbed networks holds promise for identification of drug targets for therapy, equally the identified critical network nodes may be targeted through nutritional intervention in either a preventative or therapeutic fashion. As such, in the context of the nutritional sciences, it is envisioned that systems analysis of normal and nutrient-perturbed signaling networks in combination with knowledge of underlying genetic polymorphisms will lead to a future in which the health of individuals will be improved through predictive and preventative nutrition. Although high-throughput transcriptomic microarray data were initially most readily available and amenable to systems analysis, recent technological and methodological advances in MS have contributed to a linear increase in proteomic investigations. It is now commonplace for combined proteomic technologies to generate complex, multi-faceted datasets, and these will be the keystone of future systems biology research. This review will define systems biology, outline current proteomic methodologies, highlight successful applications of proteomics in nutrition research, and discuss the challenges for future applications of systems biology approaches in the nutritional sciences.
Collapse
Affiliation(s)
- J. Bernadette Moore
- Nutritional Sciences Division, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK,To whom correspondence should be addressed. E-mail:
| | - Mark E. Weeks
- Veterinary Laboratories Agency, New Haw, KT15 3NB, UK
| |
Collapse
|
40
|
Zhou TB, Qin YH, Lei FY, Su LN, Zhao YJ, Huang WF. All-trans retinoic acid regulates the expression of apolipoprotein E in rats with glomerulosclerosis induced by Adriamycin. Exp Mol Pathol 2011; 90:287-294. [PMID: 21385580 DOI: 10.1016/j.yexmp.2011.03.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 03/01/2011] [Accepted: 03/01/2011] [Indexed: 01/06/2023]
Abstract
Apolipoprotein E (apoE) is an important plasma protein in cholesterol homeostasis and plays a key role in the progression of glomerulosclerosis (GS). We conducted this investigation to explore whether all-trans retinoic acid (ATRA) could regulate the apoE expression in the pathological process of GS. 120 Wistar rats were divided into three groups at random: sham operation group (SHO), glomerulosclerosis model group without treatment (GS), GS model group treated with ATRA (GA); n=40, respectively. The disease of GS in rat was established by uninephrectomy and adriamycin (5mg/kg) injection. At the end of 9 and 13 weeks, 20 rats in each group were killed and the relevant samples were collected. 24-hour urine total protein (24UTP), 24-hour urine excretion for albumin (24Ualb), serum total protein (TP) and serum albumin (Alb), blood urea nitrogen (BUN), serum creatinine (Scr), total cholesterol (TC), triglyceride (TG), high-density lipoprotein (HDL), low-density lipoprotein (LDL), serum and urine apoE and glomerulosclerosis index (GSI) were measured. The protein expressions of collagen IV (Col-IV), fibronectin (FN) and apoE in glomeruli were determined by immunohistochemistry. Real-time reverse transcription polymerase chain reaction (real-time RT-PCR) was used to detect the expression of apoE mRNA in kidney. TP and Alb in GA group in 9/13-week were increased than those of GS group, however, the differences were not statistically significant. Compared with group GS at 9/13 weeks, values of 24UTP, 24Ualb, BUN, Scr, TC, TG, HDL, LDL, serum and urine apoE, and GSI in GA group that were significantly reduced, and protein expressions of Col-IV, FN and apoE in glomeruli and expression of apoE mRNA in renal tissue were significantly down-regulated by ATRA (P<0.01). In conclusion, ATRA can regulate the expression of apoE, reduce the accumulation of extracellular matrix (ECM) and step down the progression of GS.
Collapse
Affiliation(s)
- Tian-Biao Zhou
- Department of Pediatrics, The First Affiliated Hospital of GuangXi Medical University, NanNing, China
| | | | | | | | | | | |
Collapse
|
41
|
Napoli JL. Physiological insights into all-trans-retinoic acid biosynthesis. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1821:152-67. [PMID: 21621639 DOI: 10.1016/j.bbalip.2011.05.004] [Citation(s) in RCA: 257] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 05/05/2011] [Accepted: 05/12/2011] [Indexed: 01/25/2023]
Abstract
All-trans-retinoic acid (atRA) provides essential support to diverse biological systems and physiological processes. Epithelial differentiation and its relationship to cancer, and embryogenesis have typified intense areas of interest into atRA function. Recently, however, interest in atRA action in the nervous system, the immune system, energy balance and obesity has increased considerably, especially concerning postnatal function. atRA action depends on atRA biosynthesis: defects in retinoid-dependent processes increasingly relate to defects in atRA biogenesis. Considerable evidence indicates that physiological atRA biosynthesis occurs via a regulated process, consisting of a complex interaction of retinoid binding-proteins and retinoid recognizing enzymes. An accrual of biochemical, physiological and genetic data have identified specific functional outcomes for the retinol dehydrogenases, RDH1, RDH10, and DHRS9, as physiological catalysts of the first step in atRA biosynthesis, and for the retinal dehydrogenases RALDH1, RALDH2, and RALDH3, as catalysts of the second and irreversible step. Each of these enzymes associates with explicit biological processes mediated by atRA. Redundancy occurs, but seems limited. Cumulative data support a model of interactions among these enzymes with retinoid binding-proteins, with feedback regulation and/or control by atRA via modulating gene expression of multiple participants. The ratio apo-CRBP1/holo-CRBP1 participates by influencing retinol flux into and out of storage as retinyl esters, thereby modulating substrate to support atRA biosynthesis. atRA biosynthesis requires the presence of both an RDH and an RALDH: conversely, absence of one isozyme of either step does not indicate lack of atRA biosynthesis at the site. This article is part of a Special Issue entitled: Retinoid and Lipid Metabolism.
Collapse
|
42
|
Wong YF, Kopp JB, Roberts C, Scambler PJ, Abe Y, Rankin AC, Dutt N, Hendry BM, Xu Q. Endogenous retinoic acid activity in principal cells and intercalated cells of mouse collecting duct system. PLoS One 2011; 6:e16770. [PMID: 21326615 PMCID: PMC3033902 DOI: 10.1371/journal.pone.0016770] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Accepted: 12/29/2010] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Retinoic acid is the bioactive derivative of vitamin A, which plays an indispensible role in kidney development by activating retinoic acid receptors. Although the location, concentration and roles of endogenous retinoic acid in post-natal kidneys are poorly defined, there is accumulating evidence linking post-natal vitamin A deficiency to impaired renal concentrating and acidifying capacity associated with increased susceptibility to urolithiasis, renal inflammation and scarring. The aim of this study is to examine the presence and the detailed localization of endogenous retinoic acid activity in neonatal, young and adult mouse kidneys, to establish a fundamental ground for further research into potential target genes, as well as physiological and pathophysiological roles of endogenous retinoic acid in the post-natal kidneys. METHODOLOGY/PRINCIPAL FINDINGS RARE-hsp68-lacZ transgenic mice were employed as a reporter for endogenous retinoic acid activity that was determined by X-gal assay and immunostaining of the reporter gene product, β-galactosidase. Double immunostaining was performed for β-galactosidase and markers of kidney tubules to localize retinoic acid activity. Distinct pattern of retinoic acid activity was observed in kidneys, which is higher in neonatal and 1- to 3-week-old mice than that in 5- and 8-week-old mice. The activity was present specifically in the principal cells and the intercalated cells of the collecting duct system in all age groups, but was absent from the glomeruli, proximal tubules, thin limbs of Henle's loop and distal tubules. CONCLUSIONS/SIGNIFICANCE Endogenous retinoic acid activity exists in principal cells and intercalated cells of the mouse collecting duct system after birth and persists into adulthood. This observation provides novel insights into potential roles for endogenous retinoic acid beyond nephrogenesis and warrants further studies to investigate target genes and functions of endogenous retinoic acid in the kidney after birth, particularly in the collecting duct system.
Collapse
Affiliation(s)
- Yuen Fei Wong
- Department of Renal Medicine, King's College London, London, United Kingdom
| | - Jeffrey B. Kopp
- Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Catherine Roberts
- Molecular Medicine Unit, Institute of Child Health, London, United Kingdom
| | - Peter J. Scambler
- Molecular Medicine Unit, Institute of Child Health, London, United Kingdom
| | - Yoshifusa Abe
- Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | | | - Neelanjana Dutt
- Department of Histopathology, King's College Hospital, London, United Kingdom
| | - Bruce M. Hendry
- Department of Renal Medicine, King's College London, London, United Kingdom
| | - Qihe Xu
- Department of Renal Medicine, King's College London, London, United Kingdom
- * E-mail:
| |
Collapse
|