1
|
Scuderi S, Kang TY, Jourdon A, Nelson A, Yang L, Wu F, Anderson GM, Mariani J, Tomasini L, Sarangi V, Abyzov A, Levchenko A, Vaccarino FM. Specification of human brain regions with orthogonal gradients of WNT and SHH in organoids reveals patterning variations across cell lines. Cell Stem Cell 2025:S1934-5909(25)00141-9. [PMID: 40315847 DOI: 10.1016/j.stem.2025.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 03/10/2025] [Accepted: 04/09/2025] [Indexed: 05/04/2025]
Abstract
The repertoire of neurons and their progenitors depends on their location along the antero-posterior and dorso-ventral axes of the neural tube. To model these axes, we designed the Dual Orthogonal-Morphogen Assisted Patterning System (Duo-MAPS) diffusion device to expose spheres of induced pluripotent stem cells (iPSCs) to concomitant orthogonal gradients of a posteriorizing and a ventralizing morphogen, activating WNT and SHH signaling, respectively. Comparison with single-cell transcriptomes from the fetal human brain revealed that Duo-MAPS-patterned organoids generated an extensive diversity of neuronal lineages from the forebrain, midbrain, and hindbrain. WNT and SHH crosstalk translated into early patterns of gene expression programs associated with the generation of specific brain lineages with distinct functional networks. Human iPSC lines showed substantial interindividual and line-to-line variations in their response to morphogens, highlighting that genetic and epigenetic variations may influence regional specification. Morphogen gradients promise to be a key approach to model the brain in its entirety.
Collapse
Affiliation(s)
- Soraya Scuderi
- Program in Neurodevelopment and Regeneration, Yale University, New Haven, CT 06520, USA; Child Study Center, Yale University, New Haven, CT 06520, USA
| | - Tae-Yun Kang
- Program in Neurodevelopment and Regeneration, Yale University, New Haven, CT 06520, USA; Systems Biology Institute, Yale University, West Haven, CT 06516, USA; Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Alexandre Jourdon
- Program in Neurodevelopment and Regeneration, Yale University, New Haven, CT 06520, USA; Child Study Center, Yale University, New Haven, CT 06520, USA
| | - Alex Nelson
- Program in Neurodevelopment and Regeneration, Yale University, New Haven, CT 06520, USA; Child Study Center, Yale University, New Haven, CT 06520, USA
| | - Liang Yang
- Program in Neurodevelopment and Regeneration, Yale University, New Haven, CT 06520, USA; Systems Biology Institute, Yale University, West Haven, CT 06516, USA; Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Feinan Wu
- Program in Neurodevelopment and Regeneration, Yale University, New Haven, CT 06520, USA; Child Study Center, Yale University, New Haven, CT 06520, USA
| | | | - Jessica Mariani
- Program in Neurodevelopment and Regeneration, Yale University, New Haven, CT 06520, USA; Child Study Center, Yale University, New Haven, CT 06520, USA
| | - Livia Tomasini
- Program in Neurodevelopment and Regeneration, Yale University, New Haven, CT 06520, USA; Child Study Center, Yale University, New Haven, CT 06520, USA
| | - Vivekananda Sarangi
- Program in Neurodevelopment and Regeneration, Yale University, New Haven, CT 06520, USA; Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Alexej Abyzov
- Program in Neurodevelopment and Regeneration, Yale University, New Haven, CT 06520, USA; Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Andre Levchenko
- Program in Neurodevelopment and Regeneration, Yale University, New Haven, CT 06520, USA; Systems Biology Institute, Yale University, West Haven, CT 06516, USA; Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA.
| | - Flora M Vaccarino
- Program in Neurodevelopment and Regeneration, Yale University, New Haven, CT 06520, USA; Child Study Center, Yale University, New Haven, CT 06520, USA; Department of Neuroscience, Yale University, New Haven, CT 06520, USA; Yale Stem Cell Center, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
2
|
Scuderi S, Kang TY, Jourdon A, Yang L, Wu F, Nelson A, Anderson GM, Mariani J, Sarangi V, Abyzov A, Levchenko A, Vaccarino FM. Specification of human regional brain lineages using orthogonal gradients of WNT and SHH in organoids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.18.594828. [PMID: 38798404 PMCID: PMC11118582 DOI: 10.1101/2024.05.18.594828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The repertory of neurons generated by progenitor cells depends on their location along antero-posterior and dorso-ventral axes of the neural tube. To understand if recreating those axes was sufficient to specify human brain neuronal diversity, we designed a mesofluidic device termed Duo-MAPS to expose induced pluripotent stem cells (iPSC) to concomitant orthogonal gradients of a posteriorizing and a ventralizing morphogen, activating WNT and SHH signaling, respectively. Comparison of single cell transcriptomes with fetal human brain revealed that Duo-MAPS-patterned organoids generated the major neuronal lineages of the forebrain, midbrain, and hindbrain. Morphogens crosstalk translated into early patterns of gene expression programs predicting the generation of specific brain lineages. Human iPSC lines from six different genetic backgrounds showed substantial differences in response to morphogens, suggesting that interindividual genomic and epigenomic variations could impact brain lineages formation. Morphogen gradients promise to be a key approach to model the brain in its entirety.
Collapse
|
3
|
Leventoux N, Morimoto S, Ishikawa M, Nakamura S, Ozawa F, Kobayashi R, Watanabe H, Supakul S, Okamoto S, Zhou Z, Kobayashi H, Kato C, Hirokawa Y, Aiba I, Takahashi S, Shibata S, Takao M, Yoshida M, Endo F, Yamanaka K, Kokubo Y, Okano H. Aberrant CHCHD2-associated mitochondriopathy in Kii ALS/PDC astrocytes. Acta Neuropathol 2024; 147:84. [PMID: 38750212 DOI: 10.1007/s00401-024-02734-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/28/2024] [Accepted: 04/15/2024] [Indexed: 05/25/2024]
Abstract
Amyotrophic Lateral Sclerosis/Parkinsonism-Dementia Complex (ALS/PDC), a rare and complex neurological disorder, is predominantly observed in the Western Pacific islands, including regions of Japan, Guam, and Papua. This enigmatic condition continues to capture medical attention due to affected patients displaying symptoms that parallel those seen in either classical amyotrophic lateral sclerosis (ALS) or Parkinson's disease (PD). Distinctly, postmortem examinations of the brains of affected individuals have shown the presence of α-synuclein aggregates and TDP-43, which are hallmarks of PD and classical ALS, respectively. These observations are further complicated by the detection of phosphorylated tau, accentuating the multifaceted proteinopathic nature of ALS/PDC. The etiological foundations of this disease remain undetermined, and genetic investigations have yet to provide conclusive answers. However, emerging evidence has implicated the contribution of astrocytes, pivotal cells for maintaining brain health, to neurodegenerative onset, and likely to play a significant role in the pathogenesis of ALS/PDC. Leveraging advanced induced pluripotent stem cell technology, our team cultivated multiple astrocyte lines to further investigate the Japanese variant of ALS/PDC (Kii ALS/PDC). CHCHD2 emerged as a significantly dysregulated gene when disease astrocytes were compared to healthy controls. Our analyses also revealed imbalances in the activation of specific pathways: those associated with astrocytic cilium dysfunction, known to be involved in neurodegeneration, and those related to major neurological disorders, including classical ALS and PD. Further in-depth examinations revealed abnormalities in the mitochondrial morphology and metabolic processes of the affected astrocytes. A particularly striking observation was the reduced expression of CHCHD2 in the spinal cord, motor cortex, and oculomotor nuclei of patients with Kii ALS/PDC. In summary, our findings suggest a potential reduction in the support Kii ALS/PDC astrocytes provide to neurons, emphasizing the need to explore the role of CHCHD2 in maintaining mitochondrial health and its implications for the disease.
Collapse
Affiliation(s)
- Nicolas Leventoux
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Satoru Morimoto
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
- Keio Regenerative Medicine Research Centre, Keio University, Kanagawa, Japan
- Division of Neurodegenerative Disease Research, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
- Department of Oncologic Pathology, Mie University Graduate School of Medicine, Mie, Japan
| | - Mitsuru Ishikawa
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Shiho Nakamura
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
- Keio Regenerative Medicine Research Centre, Keio University, Kanagawa, Japan
- Division of Neurodegenerative Disease Research, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Fumiko Ozawa
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
- Keio Regenerative Medicine Research Centre, Keio University, Kanagawa, Japan
- Division of Neurodegenerative Disease Research, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Reona Kobayashi
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Hirotaka Watanabe
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
- Keio Regenerative Medicine Research Centre, Keio University, Kanagawa, Japan
| | - Sopak Supakul
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Satoshi Okamoto
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Zhi Zhou
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Hiroya Kobayashi
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
- Keio Regenerative Medicine Research Centre, Keio University, Kanagawa, Japan
- Division of Neurodegenerative Disease Research, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Chris Kato
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
- Keio Regenerative Medicine Research Centre, Keio University, Kanagawa, Japan
- Division of Neurodegenerative Disease Research, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Yoshifumi Hirokawa
- Department of Oncologic Pathology, Mie University Graduate School of Medicine, Mie, Japan
| | - Ikuko Aiba
- Department of Neurology, NHO, Higashinagoya National Hospital, Aichi, Japan
| | - Shinichi Takahashi
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
- Keio Regenerative Medicine Research Centre, Keio University, Kanagawa, Japan
- Department of Neurology and Stroke, International Medical Centre, Saitama Medical University, Saitama, Japan
| | - Shinsuke Shibata
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
- Division of Microscopic Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Masaki Takao
- Department of Clinical Laboratory, National Centre of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | - Mari Yoshida
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Aichi, Japan
| | - Fumito Endo
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Aichi, Japan
| | - Koji Yamanaka
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Aichi, Japan
| | - Yasumasa Kokubo
- Kii ALS/PDC Research Centre, Mie University Graduate School of Regional Innovation Studies, Mie, Japan.
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan.
- Keio Regenerative Medicine Research Centre, Keio University, Kanagawa, Japan.
- Division of Neurodegenerative Disease Research, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan.
| |
Collapse
|
4
|
Li Y, Li Z, Wang C, Yang M, He Z, Wang F, Zhang Y, Li R, Gong Y, Wang B, Fan B, Wang C, Chen L, Li H, Shi P, Wang N, Wei Z, Wang YL, Jin L, Du P, Dong J, Jiao J. Spatiotemporal transcriptome atlas reveals the regional specification of the developing human brain. Cell 2023; 186:5892-5909.e22. [PMID: 38091994 DOI: 10.1016/j.cell.2023.11.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 08/14/2023] [Accepted: 11/13/2023] [Indexed: 12/24/2023]
Abstract
Different functional regions of brain are fundamental for basic neurophysiological activities. However, the regional specification remains largely unexplored during human brain development. Here, by combining spatial transcriptomics (scStereo-seq) and scRNA-seq, we built a spatiotemporal developmental atlas of multiple human brain regions from 6-23 gestational weeks (GWs). We discovered that, around GW8, radial glia (RG) cells have displayed regional heterogeneity and specific spatial distribution. Interestingly, we found that the regional heterogeneity of RG subtypes contributed to the subsequent neuronal specification. Specifically, two diencephalon-specific subtypes gave rise to glutamatergic and GABAergic neurons, whereas subtypes in ventral midbrain were associated with the dopaminergic neurons. Similar GABAergic neuronal subtypes were shared between neocortex and diencephalon. Additionally, we revealed that cell-cell interactions between oligodendrocyte precursor cells and GABAergic neurons influenced and promoted neuronal development coupled with regional specification. Altogether, this study provides comprehensive insights into the regional specification in the developing human brain.
Collapse
Affiliation(s)
- Yanxin Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Medical School, University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhongqiu Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Medical School, University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Changliang Wang
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou 510799, China
| | - Min Yang
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Ziqing He
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou 510799, China; Faculty of Health Sciences University of Macau, Macau 999078, China
| | - Feiyang Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Medical School, University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuehong Zhang
- Tongzhou Maternal and Child Health Hospital of Beijing, Beijing 101100, China
| | - Rong Li
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Department of Obstetrics and Gynecology, Ministry of Education, Center for Reproductive Medicine, Peking University Third Hospital, Beijing 100191, China; National Clinical Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Yunxia Gong
- Tongzhou Maternal and Child Health Hospital of Beijing, Beijing 101100, China
| | - Binhong Wang
- Tongzhou Maternal and Child Health Hospital of Beijing, Beijing 101100, China
| | - Baoguang Fan
- Tongzhou Maternal and Child Health Hospital of Beijing, Beijing 101100, China
| | - Chunyue Wang
- Tongzhou Maternal and Child Health Hospital of Beijing, Beijing 101100, China
| | - Lei Chen
- Six Medical Center, Chinese PLA General Hospital, Beijing 100048, China
| | - Hong Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Medical School, University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Peifu Shi
- Annoroad Gene Technology, Beijing 100176, China
| | - Nana Wang
- Annoroad Gene Technology, Beijing 100176, China
| | - Zhifeng Wei
- Annoroad Gene Technology, Beijing 100176, China
| | - Yan-Ling Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Medical School, University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Lei Jin
- Institute of Reproductive and Child Health, Peking University, National Health Commission Key Laboratory, Peking University, Beijing 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China.
| | - Peng Du
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China.
| | - Ji Dong
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou 510799, China.
| | - Jianwei Jiao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Medical School, University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
5
|
Angelopoulou E, Bougea A, Paudel YN, Georgakopoulou VE, Papageorgiou SG, Piperi C. Genetic Insights into the Molecular Pathophysiology of Depression in Parkinson's Disease. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1138. [PMID: 37374342 DOI: 10.3390/medicina59061138] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/05/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023]
Abstract
Background and Objectives: Parkinson's disease (PD) is a clinically heterogeneous disorder with poorly understood pathological contributing factors. Depression presents one of the most frequent non-motor PD manifestations, and several genetic polymorphisms have been suggested that could affect the depression risk in PD. Therefore, in this review we have collected recent studies addressing the role of genetic factors in the development of depression in PD, aiming to gain insights into its molecular pathobiology and enable the future development of targeted and effective treatment strategies. Materials and Methods: we have searched PubMed and Scopus databases for peer-reviewed research articles published in English (pre-clinical and clinical studies as well as relevant reviews and meta-analyses) investigating the genetic architecture and pathophysiology of PD depression. Results: in particular, polymorphisms in genes related to the serotoninergic pathway (sodium-dependent serotonin transporter gene, SLC6A4, tryptophan hydrolase-2 gene, TPH2), dopamine metabolism and neurotransmission (dopamine receptor D3 gene, DRD3, aldehyde dehydrogenase 2 gene, ALDH2), neurotrophic factors (brain-derived neurotrophic factor gene, BDNF), endocannabinoid system (cannabinoid receptor gene, CNR1), circadian rhythm (thyrotroph embryonic factor gene, TEF), the sodium-dependent neutral amino acid transporter B(0)AT2 gene, SLC6A15), and PARK16 genetic locus were detected as altering susceptibility to depression among PD patients. However, polymorphisms in the dopamine transporter gene (SLC6A3), monoamine oxidase A (MAOA) and B (MAOB) genes, catechol-O-methyltransferase gene (COMT), CRY1, and CRY2 have not been related to PD depression. Conclusions: the specific mechanisms underlying the potential role of genetic diversity in PD depression are still under investigation, however, there is evidence that they may involve neurotransmitter imbalance, mitochondrial impairment, oxidative stress, and neuroinflammation, as well as the dysregulation of neurotrophic factors and their downstream signaling pathways.
Collapse
Affiliation(s)
- Efthalia Angelopoulou
- Department of Neurology, Eginition University Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 M. Asias Street, 11527 Athens, Greece
| | - Anastasia Bougea
- Department of Neurology, Eginition University Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Yam Nath Paudel
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Subang Jaya 46150, Selangor, Malaysia
| | | | - Sokratis G Papageorgiou
- Department of Neurology, Eginition University Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 M. Asias Street, 11527 Athens, Greece
| |
Collapse
|
6
|
Su L, Li R, Zhang Z, Liu J, Du J, Wei H. Identification of altered exosomal microRNAs and mRNAs in Alzheimer's disease. Ageing Res Rev 2022; 73:101497. [PMID: 34710587 DOI: 10.1016/j.arr.2021.101497] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by decreased memory and cognitive functions. Exosomes carry a variety of important information such as proteins, lipids, DNA and RNA of mother cells. It is reported that exosomes play critical roles in nervous system physiology and neurodegenerative diseases. However, the functions of exosomes in AD progression are not fully elucidated. In this study, we detected the expression pattern of mRNAs and miRNAs in exosomes derived from the AD and health mice. A total of 1320 mRNAs and 29 miRNAs were differentially expressed in exosomes between the two groups. Subsequently, the downregulation of Chi3l1 and upregulation of Rhog in AD mice were verified by qRT-PCR. Meanwhile, the downregulation of miR-148a-5p and upregulation of miR-27a-5p in AD group were also tested by qRT-PCR. The functions of differentially expressed mRNAs and potential target genes of miRNAs were determined by GO and KEGG analysis. According to the ceRNA hypothesis, we established an integrated ceRNA network of circRNA-lncRNA-miRNA-mRNA. In conclusion, exosomal lncRNAs, mRNAs, circRNAs and miRNAs were identified to participate in the progression of AD which might be possible biomarkers and therapeutic targets for AD.
Collapse
Affiliation(s)
- Lining Su
- Department of Basic Medicine, Hebei North University, Zhangjiakou, China.
| | - Renqing Li
- Department of Basic Medicine, Hebei North University, Zhangjiakou, China.
| | - Zhiqing Zhang
- Department of Basic Medicine, Hebei North University, Zhangjiakou, China.
| | - Jijia Liu
- Department of Basic Medicine, Hebei North University, Zhangjiakou, China.
| | - Jingkao Du
- Department of Basic Medicine, Hebei North University, Zhangjiakou, China.
| | - Huiping Wei
- Department of Basic Medicine, Hebei North University, Zhangjiakou, China.
| |
Collapse
|
7
|
Spatiotemporal expression of sonic hedgehog signalling molecules in the embryonic mesencephalic dopaminergic neurons. Gene Expr Patterns 2021; 42:119217. [PMID: 34767969 DOI: 10.1016/j.gep.2021.119217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/09/2021] [Accepted: 11/07/2021] [Indexed: 11/22/2022]
Abstract
Midbrain dopaminergic neurons (mDA) play an important role in controlling the voluntary motor movement, reward, and emotion-based behaviour. Differentiation of mDA neurons from progenitors depends on several secreted proteins, such as sonic hedgehog (SHH). The present study attempted to elucidate the possible role(s) of some SHH signaling components (Ptch1, Gli1, Gli2 and Gli3) in the spatiotemporal development of mDA neurons along the rostrocaudal axis of the midbrain and their possible roles in differentiation and survival of mDA neurons and the significance of using in vitro models for studying the development of mDA neurons. At E12 and E14, only Ptch1 and Gli1 were expressed in ventrolateral midbrain domains. All examined SHH signalling molecules were not detected in mDA area. Whereas, in MN9D cells, many SHH signalling molecules were expressed and co-localized with the dopaminergic marker; tyrosine hydroxylase (TH), and their expression were upregulated with SHH treatment of the MN9D cells. These results suggest that mDA neurons differentiation and survival might be independent of SHH in the late developmental stages (E12-18). Besides, MN9D cell line is not the ideal in vitro model for investigating the differentiation of mDA and hence, the ventral midbrain primary culture might be favored over MN9D line.
Collapse
|
8
|
Flores-Dorantes MT, Díaz-López YE, Gutiérrez-Aguilar R. Environment and Gene Association With Obesity and Their Impact on Neurodegenerative and Neurodevelopmental Diseases. Front Neurosci 2020; 14:863. [PMID: 32982666 PMCID: PMC7483585 DOI: 10.3389/fnins.2020.00863] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 07/24/2020] [Indexed: 12/12/2022] Open
Abstract
Obesity is a multifactorial disease in which environmental conditions and several genes play an important role in the development of this disease. Obesity is associated with neurodegenerative diseases (Alzheimer, Parkinson, and Huntington diseases) and with neurodevelopmental diseases (autism disorder, schizophrenia, and fragile X syndrome). Some of the environmental conditions that lead to obesity are physical activity, alcohol consumption, socioeconomic status, parent feeding behavior, and diet. Interestingly, some of these environmental conditions are shared with neurodegenerative and neurodevelopmental diseases. Obesity impairs neurodevelopment abilities as memory and fine-motor skills. Moreover, maternal obesity affects the cognitive function and mental health of the offspring. The common biological mechanisms involved in obesity and neurodegenerative/neurodevelopmental diseases are insulin resistance, pro-inflammatory cytokines, and oxidative damage, among others, leading to impaired brain development or cell death. Obesogenic environmental conditions are not the only factors that influence neurodegenerative and neurodevelopmental diseases. In fact, several genes implicated in the leptin-melanocortin pathway (LEP, LEPR, POMC, BDNF, MC4R, PCSK1, SIM1, BDNF, TrkB, etc.) are associated with obesity and neurodegenerative and neurodevelopmental diseases. Moreover, in the last decades, the discovery of new genes associated with obesity (FTO, NRXN3, NPC1, NEGR1, MTCH2, GNPDA2, among others) and with neurodegenerative or neurodevelopmental diseases (APOE, CD38, SIRT1, TNFα, PAI-1, TREM2, SYT4, FMR1, TET3, among others) had opened new pathways to comprehend the common mechanisms involved in these diseases. In conclusion, the obesogenic environmental conditions, the genes, and the interaction gene-environment would lead to a better understanding of the etiology of these diseases.
Collapse
Affiliation(s)
- María Teresa Flores-Dorantes
- Laboratorio de Biología Molecular y Farmacogenómica, Centro de Investigación de Ciencia y Tecnología Aplicada de Tabasco, División Académica de Ciencias Básicas, Universidad Juárez Autónoma de Tabasco, Villahermosa, Mexico
| | - Yael Efren Díaz-López
- Laboratorio de Enfermedades Metabólicas: Obesidad y Diabetes, Hospital Infantil de México “Federico Gómez,”Mexico City, Mexico
- División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Ruth Gutiérrez-Aguilar
- Laboratorio de Enfermedades Metabólicas: Obesidad y Diabetes, Hospital Infantil de México “Federico Gómez,”Mexico City, Mexico
- División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| |
Collapse
|
9
|
Gene expression signature of antidepressant treatment response/non-response in Flinders Sensitive Line rats subjected to maternal separation. Eur Neuropsychopharmacol 2020; 31:69-85. [PMID: 31813757 DOI: 10.1016/j.euroneuro.2019.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/11/2019] [Accepted: 11/20/2019] [Indexed: 12/21/2022]
Abstract
Neurobiological underpinnings of treatment-resistant depression, a debilitating condition associated with significant functional impairment, have not been elucidated. Consequently, the aim of this study was to use animal models of response and resistance to antidepressant treatment, in an attempt to identify differences in associated transcriptional responses. Flinders Sensitive Line rats were subjected to maternal separation (MS) and chronically treated with Escitalopram or Nortriptyline. Antidepressants reduced immobility time in the forced swim test in non-MS rats, while lack of antidepressant behavioural response was observed in MS animals. We developed a novel bioinformatic algorithm that enabled identification of transcriptional signatures in hippocampus and pre-frontal cortex that discriminate vehicle- and antidepressant-treated subjects in both MS and non-MS rats. Functional annotation analysis showed that in antidepressant-responder rats the most enriched pathways included IQGAPs activation, toll-like receptor trafficking, energy metabolism, and regulation of endopeptidase activity. The analysis of interacting proteins implicated synaptic vesicles and neurotransmitter release, ubiquitin regulation, cytoskeleton organisation and carbohydrate metabolism. In contrast, in treatment-resistant MS rats, main expression changes were revealed in ribosomal proteins, inflammatory responses, transcriptional/epigenetic regulation, and small GTPases. Susceptibility signature shared Rtn1, Zdhhc5, Igsf6, and Sim1 genes with the latest depression GWAS meta-analysis, while antidepressant resistance signature shared Ctnnd1, Rbms3, Atp1a3, and Pla2r1 genes. In conclusion, this study demonstrated that distinct transcriptional signatures are associated with behavioural response or non-response to antidepressant treatment. The identification of genes involved in antidepressant response will increase the comprehension of the neurobiological underpinnings of treatment-resistant depression, thus contributing to identification of novel therapeutic targets.
Collapse
|
10
|
The Temporal Neurogenesis Patterning of Spinal p3-V3 Interneurons into Divergent Subpopulation Assemblies. J Neurosci 2019; 40:1440-1452. [PMID: 31826942 DOI: 10.1523/jneurosci.1518-19.2019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 12/01/2019] [Accepted: 12/06/2019] [Indexed: 11/21/2022] Open
Abstract
Neuronal diversity provides the spinal cord with the functional flexibility required to perform complex motor tasks. Spinal neurons arise during early embryonic development with the establishment of spatially and molecularly discrete progenitor domains that give rise to distinct, but highly heterogeneous, postmitotic interneuron (IN) populations. Our previous studies have shown that Sim1-expressing V3 INs, originating from the p3 progenitor domain, are anatomically and physiologically divergent. However, the developmental logic guiding V3 subpopulation diversity remains elusive. In specific cases of other IN classes, neurogenesis timing can play a role in determining the ultimate fates and unique characteristics of distinctive subpopulations. To examine whether neurogenesis timing contributes to V3 diversity, we systematically investigated the temporal neurogenesis profiles of V3 INs in the mouse spinal cord. Our work uncovered that V3 INs were organized into either early-born [embryonic day 9.5 (E9.5) to E10.5] or late-born (E11.5-E12.5) neurogenic waves. Early-born V3 INs displayed both ascending and descending commissural projections and clustered into subgroups across dorsoventral spinal laminae. In contrast, late-born V3 INs became fate-restricted to ventral laminae and displayed mostly descending and local commissural projections and uniform membrane properties. Furthermore, we found that the postmitotic transcription factor, Sim1, although expressed in all V3 INs, exclusively regulated the dorsal clustering and electrophysiological diversification of early-born, but not late-born, V3 INs, which indicates that neurogenesis timing may enable newborn V3 INs to interact with different postmitotic differentiation pathways. Thus, our work demonstrates neurogenesis timing as a developmental mechanism underlying the postmitotic differentiation of V3 INs into distinct subpopulation assemblies.SIGNIFICANCE STATEMENT Interneuron (IN) diversity empowers the spinal cord with the computation flexibility required to perform appropriate sensorimotor control. As such, uncovering the developmental logic guiding spinal IN diversity is fundamental to understanding the development of movement. In our current work, through a focus on the cardinal spinal V3 IN population, we investigated the role of neurogenesis timing on IN diversity. We uncovered that V3 INs are organized into early-born [embryonic day 9.5 (E9.5) to E10.5] or late-born (E11.5-E12.5) neurogenic waves, where late-born V3 INs display increasingly restricted subpopulation fates. Next, to better understand the consequences of V3 neurogenesis timing, we investigated the time-dependent functions of the Sim1 transcription factor, which is expressed in postmitotic V3 INs. Interestingly, Sim1 exclusively regulated the diversification of early-born, but not late-born, V3 INs. Thus, our current work indicates neurogenesis timing can modulate the functions of early postmitotic transcription factors and, thus, subpopulation fate specifications.
Collapse
|
11
|
Chleilat E, Mallmann R, Spanagel R, Klugbauer N, Krieglstein K, Roussa E. Spatiotemporal Role of Transforming Growth Factor Beta 2 in Developing and Mature Mouse Hindbrain Serotonergic Neurons. Front Cell Neurosci 2019; 13:427. [PMID: 31619968 PMCID: PMC6763588 DOI: 10.3389/fncel.2019.00427] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 09/06/2019] [Indexed: 12/31/2022] Open
Abstract
Transforming growth factor betas are integral molecular components of the signalling cascades defining development and survival of several neuronal groups. Among TGF-β ligands, TGF-β2 has been considered as relatively more important during development. We have generated a conditional knockout mouse of the Tgf-β2 gene with knock-in of an EGFP reporter and subsequently a mouse line with cell-type specific deletion of TGF-β2 ligand from Krox20 expressing cells (i.e., in cells from rhombomeres r3 and r5). We performed a phenotypic analysis of the hindbrain serotonergic system during development and in adulthood, determined the neurochemical profile in hindbrain and forebrain, and assessed behavioural performance of wild type and mutant mice. Mutant mice revealed significantly decreased number of caudal 5-HT neurons at embryonic day (E) 14, and impaired development of caudal dorsal raphe, median raphe, raphe magnus, and raphe obscurus neurons at E18, a phenotype that was largely restored and even overshot in dorsal raphe of mutant adult mice. Serotonin levels were decreased in hindbrain but significantly increased in cortex of adult mutant mice, though without any behavioural consequences. These results highlight differential and temporal dependency of developing and adult neurons on TGF-β2. The results also indicate TGF-β2 being directly or indirectly potent to modulate neurotransmitter synthesis and metabolism. The novel floxed TGF-β2 mouse model is a suitable tool for analysing the in vivo functions of TGF-β2 during development and in adulthood in many organs.
Collapse
Affiliation(s)
- Enaam Chleilat
- Institute of Anatomy and Cell Biology, Department of Molecular Embryology, Faculty of Medicine, Albert Ludwigs University Freiburg, Freiburg, Germany
| | - Robert Mallmann
- Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, Albert Ludwigs University Freiburg, Freiburg, Germany
| | - Rainer Spanagel
- Institute of Psychopharmacology, Central Institute of Mental Health (ZI), Heidelberg University, Mannheim, Germany
| | - Norbert Klugbauer
- Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, Albert Ludwigs University Freiburg, Freiburg, Germany
| | - Kerstin Krieglstein
- Institute of Anatomy and Cell Biology, Department of Molecular Embryology, Faculty of Medicine, Albert Ludwigs University Freiburg, Freiburg, Germany
| | - Eleni Roussa
- Institute of Anatomy and Cell Biology, Department of Molecular Embryology, Faculty of Medicine, Albert Ludwigs University Freiburg, Freiburg, Germany
| |
Collapse
|
12
|
Feuerstein M, Chleilat E, Khakipoor S, Michailidis K, Ophoven C, Roussa E. Expression patterns of key Sonic Hedgehog signaling pathway components in the developing and adult mouse midbrain and in the MN9D cell line. Cell Tissue Res 2017; 370:211-225. [PMID: 28799057 PMCID: PMC5640734 DOI: 10.1007/s00441-017-2664-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 06/22/2017] [Accepted: 06/23/2017] [Indexed: 12/29/2022]
Abstract
The temporal dynamic expression of Sonic Hedgehog (SHH) and signaling during early midbrain dopaminergic (mDA) neuron development is one of the key players in establishing mDA progenitor diversity. However, whether SHH signaling is also required during later developmental stages and in mature mDA neurons is less understood. We study the expression of SHH receptors Ptch1 and Gas1 (growth arrest-specific 1) and of the transcription factors Gli1, Gli2 and Gli3 in mouse midbrain during embryonic development [embryonic day (E) 12.5 onwards)], in newborn and adult mice using in situ hybridization and immunohistochemistry. Moreover, we examine the expression and regulation of dopaminergic neuronal progenitor markers, midbrain dopaminergic neuronal markers and markers of the SHH signaling pathway in undifferentiated and butyric acid-treated (differentiated) MN9D cells in the presence or absence of exogenous SHH in vitro by RT-PCR, immunoblotting and immunocytochemistry. Gli1 was expressed in the lateral mesencephalic domains, whereas Gli2 and Gli3 were expressed dorsolaterally and complemented by ventrolateral expression of Ptch1. Co-localization with tyrosine hydroxylase could not be observed. GAS1 was exclusively expressed in the dorsal mesencephalon at E11.5 and co-localized with Ki67. In contrast, MN9D cells expressed all the genes investigated and treatment of the cells with butyric acid significantly upregulated their expression. The results suggest that SHH is only indirectly involved in the differentiation and survival of mDA neurons and that the MN9D cell line is a valuable model for investigating early development but not the differentiation and survival of mDA neurons.
Collapse
Affiliation(s)
- Melanie Feuerstein
- Institute of Anatomy and Cell Biology, Department of Molecular Embryology, Faculty of Medicine, University of Freiburg, Albertstrasse 17, D-79104, Freiburg, Germany
| | - Enaam Chleilat
- Institute of Anatomy and Cell Biology, Department of Molecular Embryology, Faculty of Medicine, University of Freiburg, Albertstrasse 17, D-79104, Freiburg, Germany
| | - Shokoufeh Khakipoor
- Institute of Anatomy and Cell Biology, Department of Molecular Embryology, Faculty of Medicine, University of Freiburg, Albertstrasse 17, D-79104, Freiburg, Germany
| | - Konstantinos Michailidis
- Neuroanatomy, Faculty of Medicine, University of Freiburg, Albertstrasse 17, D-79104, Freiburg, Germany
| | - Christian Ophoven
- Institute of Anatomy and Cell Biology, Department of Molecular Embryology, Faculty of Medicine, University of Freiburg, Albertstrasse 17, D-79104, Freiburg, Germany
| | - Eleni Roussa
- Institute of Anatomy and Cell Biology, Department of Molecular Embryology, Faculty of Medicine, University of Freiburg, Albertstrasse 17, D-79104, Freiburg, Germany. .,Neuroanatomy, Faculty of Medicine, University of Freiburg, Albertstrasse 17, D-79104, Freiburg, Germany.
| |
Collapse
|
13
|
Woodard GE, Jardín I, Berna-Erro A, Salido GM, Rosado JA. Regulators of G-protein-signaling proteins: negative modulators of G-protein-coupled receptor signaling. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 317:97-183. [PMID: 26008785 DOI: 10.1016/bs.ircmb.2015.02.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Regulators of G-protein-signaling (RGS) proteins are a category of intracellular proteins that have an inhibitory effect on the intracellular signaling produced by G-protein-coupled receptors (GPCRs). RGS along with RGS-like proteins switch on through direct contact G-alpha subunits providing a variety of intracellular functions through intracellular signaling. RGS proteins have a common RGS domain that binds to G alpha. RGS proteins accelerate GTPase and thus enhance guanosine triphosphate hydrolysis through the alpha subunit of heterotrimeric G proteins. As a result, they inactivate the G protein and quickly turn off GPCR signaling thus terminating the resulting downstream signals. Activity and subcellular localization of RGS proteins can be changed through covalent molecular changes to the enzyme, differential gene splicing, and processing of the protein. Other roles of RGS proteins have shown them to not be solely committed to being inhibitors but behave more as modulators and integrators of signaling. RGS proteins modulate the duration and kinetics of slow calcium oscillations and rapid phototransduction and ion signaling events. In other cases, RGS proteins integrate G proteins with signaling pathways linked to such diverse cellular responses as cell growth and differentiation, cell motility, and intracellular trafficking. Human and animal studies have revealed that RGS proteins play a vital role in physiology and can be ideal targets for diseases such as those related to addiction where receptor signaling seems continuously switched on.
Collapse
Affiliation(s)
- Geoffrey E Woodard
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA; Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Isaac Jardín
- Department of Physiology, University of Extremadura, Caceres, Spain
| | - A Berna-Erro
- Department of Physiology, University of Extremadura, Caceres, Spain
| | - Gines M Salido
- Department of Physiology, University of Extremadura, Caceres, Spain
| | - Juan A Rosado
- Department of Physiology, University of Extremadura, Caceres, Spain
| |
Collapse
|
14
|
Shim JW, Dodge TR, Hammond MA, Wallace JM, Zhou FC, Yokota H. Physical weight loading induces expression of tryptophan hydroxylase 2 in the brain stem. PLoS One 2014; 9:e85095. [PMID: 24416346 PMCID: PMC3885668 DOI: 10.1371/journal.pone.0085095] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 11/22/2013] [Indexed: 12/25/2022] Open
Abstract
Sustaining brain serotonin is essential in mental health. Physical activities can attenuate mental problems by enhancing serotonin signaling. However, such activity is not always possible in disabled individuals or patients with dementia. Knee loading, a form of physical activity, has been found to mimic effects of voluntary exercise. Focusing on serotonergic signaling, we addressed a question: Does local mechanical loading to the skeleton elevate expression of tryptophan hydroxylase 2 (tph2) that is a rate-limiting enzyme for brain serotonin? A 5 min knee loading was applied to mice using 1 N force at 5 Hz for 1,500 cycles. A 5-min treadmill running was used as an exercise (positive) control, and a 90-min tail suspension was used as a stress (negative) control. Expression of tph2 was determined 30 min – 2 h in three brain regions ––frontal cortex (FC), ventromedial hypothalamus (VMH), and brain stem (BS). We demonstrated for the first time that knee loading and treadmill exercise upregulated the mRNA level of tph2 in the BS, while tail suspension downregulated it. The protein level of tph2 in the BS was also upregulated by knee loading and downregulated by tail suspension. Furthermore, the downregulation of tph2 mRNA by tail suspension can be partially suppressed by pre-application of knee loading. The expression of tph2 in the FC and VMH was not significantly altered with knee loading. In this study we provided evidence that peripheral mechanical loading can activate central tph2 expression, suggesting that physical cues may mediate tph2-cathalyzed serotonergic signaling in the brain.
Collapse
Affiliation(s)
- Joon W. Shim
- Department of Biomedical Engineering, Indiana University - Purdue University Indianapolis, Indianapolis, Indiana, United States of America
- * E-mail: (JWS) (JS); (HY) (HY)
| | - Todd R. Dodge
- Department of Biomedical Engineering, Indiana University - Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - Max A. Hammond
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, United States of America
| | - Joseph M. Wallace
- Department of Biomedical Engineering, Indiana University - Purdue University Indianapolis, Indianapolis, Indiana, United States of America
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Feng C. Zhou
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Hiroki Yokota
- Department of Biomedical Engineering, Indiana University - Purdue University Indianapolis, Indianapolis, Indiana, United States of America
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- * E-mail: (JWS) (JS); (HY) (HY)
| |
Collapse
|
15
|
Biomarkers in Parkinson's disease (recent update). Neurochem Int 2013; 63:201-29. [PMID: 23791710 DOI: 10.1016/j.neuint.2013.06.005] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 05/31/2013] [Accepted: 06/06/2013] [Indexed: 12/22/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder mostly affecting the aging population over sixty. Cardinal symptoms including, tremors, muscle rigidity, drooping posture, drooling, walking difficulty, and autonomic symptoms appear when a significant number of nigrostriatal dopaminergic neurons are already destroyed. Hence we need early, sensitive, specific, and economical peripheral and/or central biomarker(s) for the differential diagnosis, prognosis, and treatment of PD. These can be classified as clinical, biochemical, genetic, proteomic, and neuroimaging biomarkers. Novel discoveries of genetic as well as nongenetic biomarkers may be utilized for the personalized treatment of PD during preclinical (premotor) and clinical (motor) stages. Premotor biomarkers including hyper-echogenicity of substantia nigra, olfactory and autonomic dysfunction, depression, hyposmia, deafness, REM sleep disorder, and impulsive behavior may be noticed during preclinical stage. Neuroimaging biomarkers (PET, SPECT, MRI), and neuropsychological deficits can facilitate differential diagnosis. Single-cell profiling of dopaminergic neurons has identified pyridoxal kinase and lysosomal ATPase as biomarker genes for PD prognosis. Promising biomarkers include: fluid biomarkers, neuromelanin antibodies, pathological forms of α-Syn, DJ-1, amyloid β and tau in the CSF, patterns of gene expression, metabolomics, urate, as well as protein profiling in the blood and CSF samples. Reduced brain regional N-acetyl-aspartate is a biomarker for the in vivo assessment of neuronal loss using magnetic resonance spectroscopy and T2 relaxation time with MRI. To confirm PD diagnosis, the PET biomarkers include [(18)F]-DOPA for estimating dopaminergic neurotransmission, [(18)F]dG for mitochondrial bioenergetics, [(18)F]BMS for mitochondrial complex-1, [(11)C](R)-PK11195 for microglial activation, SPECT imaging with (123)Iflupane and βCIT for dopamine transporter, and urinary salsolinol and 8-hydroxy, 2-deoxyguanosine for neuronal loss. This brief review describes the merits and limitations of recently discovered biomarkers and proposes coenzyme Q10, mitochondrial ubiquinone-NADH oxidoreductase, melatonin, α-synculein index, Charnoly body, and metallothioneins as novel biomarkers to confirm PD diagnosis for early and effective treatment of PD.
Collapse
|
16
|
Serotonergic transcriptional networks and potential importance to mental health. Nat Neurosci 2012; 15:519-27. [PMID: 22366757 DOI: 10.1038/nn.3039] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Transcription regulatory networks governing the genesis, maturation and maintenance of vertebrate brain serotonin (5-HT) neurons determine the level of serotonergic gene expression and signaling throughout an animal's lifespan. Recent studies suggest that alterations in these networks can cause behavioral and physiological pathogenesis in mice. Here, we synthesize findings from vertebrate loss-of-function and gain-of-function studies to build a new model of the transcriptional regulatory networks that specify 5-HT neurons during fetal life, integrate them into CNS circuitry in early postnatal life and maintain them in adulthood. We then describe findings from animal and human genetic studies that support possible alterations in the activity of serotonergic regulatory networks in the etiology of mental illness. We conclude with a discussion of the potential utility of our model, as an experimentally well-defined molecular pathway, to predict and interpret the biological effect of genetic variation that may be discovered in the orthologous human network.
Collapse
|
17
|
|