1
|
Wachtl G, Schád É, Huszár K, Palazzo A, Ivics Z, Tantos Á, Orbán TI. Functional Characterization of the N-Terminal Disordered Region of the piggyBac Transposase. Int J Mol Sci 2022; 23:10317. [PMID: 36142241 PMCID: PMC9499001 DOI: 10.3390/ijms231810317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/22/2022] [Accepted: 09/03/2022] [Indexed: 01/15/2023] Open
Abstract
The piggyBac DNA transposon is an active element initially isolated from the cabbage looper moth, but members of this superfamily are also present in most eukaryotic evolutionary lineages. The functionally important regions of the transposase are well described. There is an RNase H-like fold containing the DDD motif responsible for the catalytic DNA cleavage and joining reactions and a C-terminal cysteine-rich domain important for interaction with the transposon DNA. However, the protein also contains a ~100 amino acid long N-terminal disordered region (NTDR) whose function is currently unknown. Here we show that deletion of the NTDR significantly impairs piggyBac transposition, although the extent of decrease is strongly cell-type specific. Moreover, replacing the NTDR with scrambled but similarly disordered sequences did not rescue transposase activity, indicating the importance of sequence conservation. Cell-based transposon excision and integration assays reveal that the excision step is more severely affected by NTDR deletion. Finally, bioinformatic analyses indicated that the NTDR is specific for the piggyBac superfamily and is also present in domesticated, transposase-derived proteins incapable of catalyzing transposition. Our results indicate an essential role of the NTDR in the "fine-tuning" of transposition and its significance in the functions of piggyBac-originated co-opted genes.
Collapse
Affiliation(s)
- Gerda Wachtl
- Institute of Enzymology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, 1117 Budapest, Hungary
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, 1117 Budapest, Hungary
| | - Éva Schád
- Institute of Enzymology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, 1117 Budapest, Hungary
| | - Krisztina Huszár
- Institute of Enzymology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, 1117 Budapest, Hungary
| | - Antonio Palazzo
- Department of Biology, University of Bari “Aldo Moro”, 70125 Bari, Italy
| | - Zoltán Ivics
- Transposition and Genome Engineering, Division of Medical Biotechnology, Paul Ehrlich Institute, 63225 Langen, Germany
| | - Ágnes Tantos
- Institute of Enzymology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, 1117 Budapest, Hungary
| | - Tamás I. Orbán
- Institute of Enzymology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, 1117 Budapest, Hungary
| |
Collapse
|
2
|
Kors S, Costello JL, Schrader M. VAP Proteins - From Organelle Tethers to Pathogenic Host Interactors and Their Role in Neuronal Disease. Front Cell Dev Biol 2022; 10:895856. [PMID: 35756994 PMCID: PMC9213790 DOI: 10.3389/fcell.2022.895856] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/25/2022] [Indexed: 12/26/2022] Open
Abstract
Vesicle-associated membrane protein (VAMP)-associated proteins (VAPs) are ubiquitous ER-resident tail-anchored membrane proteins in eukaryotic cells. Their N-terminal major sperm protein (MSP) domain faces the cytosol and allows them to interact with a wide variety of cellular proteins. Therefore, VAP proteins are vital to many cellular processes, including organelle membrane tethering, lipid transfer, autophagy, ion homeostasis and viral defence. Here, we provide a timely overview of the increasing number of VAPA/B binding partners and discuss the role of VAPA/B in maintaining organelle-ER interactions and cooperation. Furthermore, we address how viruses and intracellular bacteria hijack VAPs and their binding partners to induce interactions between the host ER and pathogen-containing compartments and support pathogen replication. Finally, we focus on the role of VAP in human disease and discuss how mutated VAPB leads to the disruption of cellular homeostasis and causes amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Suzan Kors
- *Correspondence: Suzan Kors, ; Michael Schrader,
| | | | | |
Collapse
|
3
|
Atkinson SC, Audsley MD, Lieu KG, Marsh GA, Thomas DR, Heaton SM, Paxman JJ, Wagstaff KM, Buckle AM, Moseley GW, Jans DA, Borg NA. Recognition by host nuclear transport proteins drives disorder-to-order transition in Hendra virus V. Sci Rep 2018; 8:358. [PMID: 29321677 PMCID: PMC5762688 DOI: 10.1038/s41598-017-18742-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/15/2017] [Indexed: 01/04/2023] Open
Abstract
Hendra virus (HeV) is a paramyxovirus that causes lethal disease in humans, for which no vaccine or antiviral agent is available. HeV V protein is central to pathogenesis through its ability to interact with cytoplasmic host proteins, playing key antiviral roles. Here we use immunoprecipitation, siRNA knockdown and confocal laser scanning microscopy to show that HeV V shuttles to and from the nucleus through specific host nuclear transporters. Spectroscopic and small angle X-ray scattering studies reveal HeV V undergoes a disorder-to-order transition upon binding to either importin α/β1 or exportin-1/Ran-GTP, dependent on the V N-terminus. Importantly, we show that specific inhibitors of nuclear transport prevent interaction with host transporters, and reduce HeV infection. These findings emphasize the critical role of host-virus interactions in HeV infection, and potential use of compounds targeting nuclear transport, such as the FDA-approved agent ivermectin, as anti-HeV agents.
Collapse
Affiliation(s)
- Sarah C Atkinson
- Infection & Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Michelle D Audsley
- Infection & Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Kim G Lieu
- Infection & Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Glenn A Marsh
- CSIRO Livestock Industries, Australian Animal Health Laboratory, Victoria, Australia
| | - David R Thomas
- Infection & Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Steven M Heaton
- Infection & Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Jason J Paxman
- La Trobe Institute for Molecular Sciences and Department of Biochemistry and Genetics, La Trobe University, Melbourne, Victoria, Australia
| | - Kylie M Wagstaff
- Infection & Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Ashley M Buckle
- Infection & Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Gregory W Moseley
- Infection & Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - David A Jans
- Infection & Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia.
| | - Natalie A Borg
- Infection & Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
4
|
Lazar T, Schad E, Szabo B, Horvath T, Meszaros A, Tompa P, Tantos A. Intrinsic protein disorder in histone lysine methylation. Biol Direct 2016; 11:30. [PMID: 27356874 PMCID: PMC4928265 DOI: 10.1186/s13062-016-0129-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 05/17/2016] [Indexed: 11/21/2022] Open
Abstract
Histone lysine methyltransferases (HKMTs), catalyze mono-, di- and trimethylation of lysine residues, resulting in a regulatory pattern that controls gene expression. Their involvement in many different cellular processes and diseases makes HKMTs an intensively studied protein group, but scientific interest so far has been concentrated mostly on their catalytic domains. In this work we set out to analyze the structural heterogeneity of human HKMTs and found that many contain long intrinsically disordered regions (IDRs) that are conserved through vertebrate species. Our predictions show that these IDRs contain several linear motifs and conserved putative binding sites that harbor cancer-related SNPs. Although there are only limited data available in the literature, some of the predicted binding regions overlap with interacting segments identified experimentally. The importance of a disordered binding site is illustrated through the example of the ternary complex between MLL1, menin and LEDGF/p75. Our suggestion is that intrinsic protein disorder plays an as yet unrecognized role in epigenetic regulation, which needs to be further elucidated through structural and functional studies aimed specifically at the disordered regions of HKMTs. Reviewers: This article was reviewed by Arne Elofsson and Piotr Zielenkiewicz.
Collapse
Affiliation(s)
- Tamas Lazar
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary.,Pázmány Péter Catholic University, Faculty of Information Technology and Bionics, Práter utca 50/a, 1083, Budapest, Hungary
| | - Eva Schad
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary
| | - Beata Szabo
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary
| | - Tamas Horvath
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary
| | - Attila Meszaros
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary
| | - Peter Tompa
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary.,VIB Structural Biology Research Center (SBRC), Pleinlaan 2, 1050, Brussels, Belgium.,Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Agnes Tantos
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary.
| |
Collapse
|
5
|
Gupta G, Song J. C-Terminal Auto-Regulatory Motif of Hepatitis C Virus NS5B Interacts with Human VAPB-MSP to Form a Dynamic Replication Complex. PLoS One 2016; 11:e0147278. [PMID: 26784321 PMCID: PMC4718513 DOI: 10.1371/journal.pone.0147278] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 01/02/2016] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C virus (HCV) is a pathogen of global importance and nearly 200 million people are chronically infected with HCV. HCV is an enveloped single-stranded RNA virus, which is characteristic of the formation of the host membrane associated replication complex. Previous functional studies have already established that the human ER-anchored VAPB protein acts as a host factor to form a complex with HCV NS5A and NS5B, which may be established as a drug target. However, there is lacking of biophysical characterization of the structures and interfaces of the complex, partly due to the dynamic nature of the complex formation and dissociation, which is extensively involved in intrinsically-disordered domains. Here by an integrated use of domain dissection and NMR spectroscopy, for the first time we have successfully deciphered that the HCV NS5B utilizes its auto-regulatory C-linker to bind the VAPB-MSP domain to form a dynamic complex. This finding implies that the NS5B C-linker is capable of playing dual roles by a switch between the folded and disordered states. Interestingly, our previous and present studies together reveal that both HCV NS5A and NS5B bind to the MSP domains of the dimeric VAP with significantly overlapped interfaces and similar affinities. The identification that EphA2 and EphA5 bind to the MSP domain with higher affinity than EphA4 provides a biophysical basis for further exploring whether other than inducing ALS-like syndrome, the HCV infection might also trigger pathogenesis associated with signalling pathways mediated by EphA2 and EphA5.
Collapse
Affiliation(s)
- Garvita Gupta
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Jianxing Song
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
- * E-mail:
| |
Collapse
|
6
|
Fuzzy complexes: Specific binding without complete folding. FEBS Lett 2015; 589:2533-42. [PMID: 26226339 DOI: 10.1016/j.febslet.2015.07.022] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/20/2015] [Accepted: 07/21/2015] [Indexed: 12/17/2022]
Abstract
Specific molecular recognition is assumed to require a well-defined set of contacts and devoid of conformational and interaction ambiguities. Growing experimental evidence demonstrates however, that structural multiplicity or dynamic disorder can be retained in protein complexes, termed as fuzziness. Fuzzy regions establish alternative contacts between specific partners usually via transient interactions. Nature often tailors the dynamic properties of these segments via post-translational modifications or alternative splicing to fine-tune affinity. Most experimentally characterized fuzzy complexes are involved in regulation of gene-expression, signal transduction and cell-cycle regulation. Fuzziness is also characteristic to viral protein complexes, cytoskeleton structure, and surprisingly in a few metabolic enzymes. A plausible role of fuzzy complexes in increasing half-life of intrinsically disordered proteins is also discussed.
Collapse
|
7
|
Qin S, Ren Y, Fu X, Shen J, Chen X, Wang Q, Bi X, Liu W, Li L, Liang G, Yang C, Shui W. Multiple ligand detection and affinity measurement by ultrafiltration and mass spectrometry analysis applied to fragment mixture screening. Anal Chim Acta 2015; 886:98-106. [PMID: 26320641 DOI: 10.1016/j.aca.2015.06.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 05/20/2015] [Accepted: 06/04/2015] [Indexed: 12/11/2022]
Abstract
Binding affinity of a small molecule drug candidate to a therapeutically relevant biomolecular target is regarded the first determinant of the candidate's efficacy. Although the ultrafiltration-LC/MS (UF-LC/MS) assay enables efficient ligand discovery for a specific target from a mixed pool of compounds, most previous analysis allowed for relative affinity ranking of different ligands. Moreover, the reliability of affinity measurement for multiple ligands with UF-LC/MS has hardly been strictly evaluated. In this study, we examined the accuracy of K(d) determination through UF-LC/MS by comparison with classical ITC measurement. A single-point K(d) calculation method was found to be suitable for affinity measurement of multiple ligands bound to the same target when binding competition is minimized. A second workflow based on analysis of the unbound fraction of compounds was then developed, which simplified sample preparation as well as warranted reliable ligand discovery. The new workflow implemented in a fragment mixture screen afforded rapid and sensitive detection of low-affinity ligands selectively bound to the RNA polymerase NS5B of hepatitis C virus. More importantly, ligand identification and affinity measurement for mixture-based fragment screens by UF-LC/MS were in good accordance with single ligand evaluation by conventional SPR analysis. This new approach is expected to become a valuable addition to the arsenal of high-throughput screening techniques for fragment-based drug discovery.
Collapse
Affiliation(s)
- Shanshan Qin
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; High-throughput Molecular Drug Discovery Center, Tianjin Joint Academy of Biotechnology and Medicine, Tianjin 300457, China
| | - Yiran Ren
- High-throughput Molecular Drug Discovery Center, Tianjin Joint Academy of Biotechnology and Medicine, Tianjin 300457, China
| | - Xu Fu
- High-throughput Molecular Drug Discovery Center, Tianjin Joint Academy of Biotechnology and Medicine, Tianjin 300457, China
| | - Jie Shen
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Xin Chen
- High-throughput Molecular Drug Discovery Center, Tianjin Joint Academy of Biotechnology and Medicine, Tianjin 300457, China
| | - Quan Wang
- High-throughput Molecular Drug Discovery Center, Tianjin Joint Academy of Biotechnology and Medicine, Tianjin 300457, China
| | - Xin Bi
- Institute of Elemento-organic Chemistry, Nankai University, Tianjin 300071, China
| | - Wenjing Liu
- High-throughput Molecular Drug Discovery Center, Tianjin Joint Academy of Biotechnology and Medicine, Tianjin 300457, China
| | - Lixin Li
- High-throughput Molecular Drug Discovery Center, Tianjin Joint Academy of Biotechnology and Medicine, Tianjin 300457, China
| | - Guangxin Liang
- Institute of Elemento-organic Chemistry, Nankai University, Tianjin 300071, China
| | - Cheng Yang
- High-throughput Molecular Drug Discovery Center, Tianjin Joint Academy of Biotechnology and Medicine, Tianjin 300457, China
| | - Wenqing Shui
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| |
Collapse
|
8
|
Chen X, Qin S, Chen S, Li J, Li L, Wang Z, Wang Q, Lin J, Yang C, Shui W. A ligand-observed mass spectrometry approach integrated into the fragment based lead discovery pipeline. Sci Rep 2015; 5:8361. [PMID: 25666181 PMCID: PMC4322365 DOI: 10.1038/srep08361] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 01/19/2015] [Indexed: 02/07/2023] Open
Abstract
In fragment-based lead discovery (FBLD), a cascade combining multiple orthogonal technologies is required for reliable detection and characterization of fragment binding to the target. Given the limitations of the mainstream screening techniques, we presented a ligand-observed mass spectrometry approach to expand the toolkits and increase the flexibility of building a FBLD pipeline especially for tough targets. In this study, this approach was integrated into a FBLD program targeting the HCV RNA polymerase NS5B. Our ligand-observed mass spectrometry analysis resulted in the discovery of 10 hits from a 384-member fragment library through two independent screens of complex cocktails and a follow-up validation assay. Moreover, this MS-based approach enabled quantitative measurement of weak binding affinities of fragments which was in general consistent with SPR analysis. Five out of the ten hits were then successfully translated to X-ray structures of fragment-bound complexes to lay a foundation for structure-based inhibitor design. With distinctive strengths in terms of high capacity and speed, minimal method development, easy sample preparation, low material consumption and quantitative capability, this MS-based assay is anticipated to be a valuable addition to the repertoire of current fragment screening techniques.
Collapse
Affiliation(s)
- Xin Chen
- College of Life Sciences, Nankai University, Tianjin 300071, China
- High-throughput Molecular Drug Discovery Center, Tianjin Joint Academy of Biotechnology and Medicine, Tianjin 300457, China
| | - Shanshan Qin
- College of Life Sciences, Nankai University, Tianjin 300071, China
- High-throughput Molecular Drug Discovery Center, Tianjin Joint Academy of Biotechnology and Medicine, Tianjin 300457, China
| | - Shuai Chen
- College of Life Sciences, Nankai University, Tianjin 300071, China
- High-throughput Molecular Drug Discovery Center, Tianjin Joint Academy of Biotechnology and Medicine, Tianjin 300457, China
| | - Jinlong Li
- College of Life Sciences, Nankai University, Tianjin 300071, China
- State Key Laboratory of Medicinal Chemical and Department of Pharmacy, Nankai University, Tianjin 300071, China
| | - Lixin Li
- High-throughput Molecular Drug Discovery Center, Tianjin Joint Academy of Biotechnology and Medicine, Tianjin 300457, China
| | - Zhongling Wang
- College of Life Sciences, Nankai University, Tianjin 300071, China
- High-throughput Molecular Drug Discovery Center, Tianjin Joint Academy of Biotechnology and Medicine, Tianjin 300457, China
| | - Quan Wang
- College of Life Sciences, Nankai University, Tianjin 300071, China
- High-throughput Molecular Drug Discovery Center, Tianjin Joint Academy of Biotechnology and Medicine, Tianjin 300457, China
| | - Jianping Lin
- High-throughput Molecular Drug Discovery Center, Tianjin Joint Academy of Biotechnology and Medicine, Tianjin 300457, China
- State Key Laboratory of Medicinal Chemical and Department of Pharmacy, Nankai University, Tianjin 300071, China
| | - Cheng Yang
- High-throughput Molecular Drug Discovery Center, Tianjin Joint Academy of Biotechnology and Medicine, Tianjin 300457, China
- State Key Laboratory of Medicinal Chemical and Department of Pharmacy, Nankai University, Tianjin 300071, China
| | - Wenqing Shui
- College of Life Sciences, Nankai University, Tianjin 300071, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| |
Collapse
|
9
|
Fan X, Xue B, Dolan PT, LaCount DJ, Kurgan L, Uversky VN. The intrinsic disorder status of the human hepatitis C virus proteome. MOLECULAR BIOSYSTEMS 2014; 10:1345-63. [PMID: 24752801 DOI: 10.1039/c4mb00027g] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Many viral proteins or their biologically important regions are disordered as a whole, or contain long disordered regions. These intrinsically disordered proteins/regions do not possess unique structures and possess functions that complement the functional repertoire of "normal" ordered proteins and domains, with many protein functional classes being heavily dependent on the intrinsic disorder. Viruses commonly use these highly flexible regions to invade the host organisms and to hijack various host systems. These disordered regions also help viruses in adapting to their hostile habitats and to manage their economic usage of genetic material. In this article, we focus on the structural peculiarities of proteins from human hepatitis C virus (HCV) and use a wide spectrum of bioinformatics techniques to evaluate the abundance of intrinsic disorder in the completed proteomes of several human HCV genotypes, to analyze the peculiarities of disorder distribution within the individual HCV proteins, and to establish potential roles of the structural disorder in functions of ten HCV proteins. We show that the intrinsic disorder or increased flexibility is not only abundant in these proteins, but is also absolutely necessary for their functions, playing a crucial role in the proteolytic processing of the HCV polyprotein, the maturation of the individual HCV proteins, and being related to the posttranslational modifications of these proteins and their interactions with DNA, RNA, and various host proteins.
Collapse
Affiliation(s)
- Xiao Fan
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta AB T6G 2V4, Canada.
| | | | | | | | | | | |
Collapse
|
10
|
Song J. Why do proteins aggregate? "Intrinsically insoluble proteins" and "dark mediators" revealed by studies on "insoluble proteins" solubilized in pure water. F1000Res 2013; 2:94. [PMID: 24555050 PMCID: PMC3869494 DOI: 10.12688/f1000research.2-94.v1] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/20/2013] [Indexed: 12/22/2022] Open
Abstract
In 2008, I reviewed and proposed a model for our discovery in 2005 that unrefoldable and insoluble proteins could in fact be solubilized in unsalted water. Since then, this discovery has offered us and other groups a powerful tool to characterize insoluble proteins, and we have further addressed several fundamental and disease-relevant issues associated with this discovery. Here I review these results, which are conceptualized into several novel scenarios. 1) Unlike 'misfolded proteins', which still retain the capacity to fold into well-defined structures but are misled to 'off-pathway' aggregation, unrefoldable and insoluble proteins completely lack this ability and will unavoidably aggregate in vivo with ~150 mM ions, thus designated as 'intrinsically insoluble proteins (IIPs)' here. IIPs may largely account for the 'wastefully synthesized' DRiPs identified in human cells. 2) The fact that IIPs including membrane proteins are all soluble in unsalted water, but get aggregated upon being exposed to ions, logically suggests that ions existing in the background play a central role in mediating protein aggregation, thus acting as 'dark mediators'. Our study with 14 salts confirms that IIPs lack the capacity to fold into any well-defined structures. We uncover that salts modulate protein dynamics and anions bind proteins with high selectivity and affinity, which is surprisingly masked by pre-existing ions. Accordingly, I modified my previous model. 3) Insoluble proteins interact with lipids to different degrees. Remarkably, an ALS-causing P56S mutation transforms the β-sandwich MSP domain into a helical integral membrane protein. Consequently, the number of membrane-interacting proteins might be much larger than currently recognized. To attack biological membranes may represent a common mechanism by which aggregated proteins initiate human diseases. 4) Our discovery also implies a solution to the 'chicken-and-egg paradox' for the origin of primitive membranes embedded with integral membrane proteins, if proteins originally emerged in unsalted prebiotic media.
Collapse
Affiliation(s)
- Jianxing Song
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 119260, Singapore ; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119260, Singapore
| |
Collapse
|
11
|
Tantos A, Szabo B, Lang A, Varga Z, Tsylonok M, Bokor M, Verebelyi T, Kamasa P, Tompa K, Perczel A, Buday L, Lee SH, Choo Y, Han KH, Tompa P. Multiple fuzzy interactions in the moonlighting function of thymosin-β4. INTRINSICALLY DISORDERED PROTEINS 2013; 1:e26204. [PMID: 28516021 PMCID: PMC5424802 DOI: 10.4161/idp.26204] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 08/15/2013] [Accepted: 08/18/2013] [Indexed: 12/19/2022]
Abstract
Thymosine β4 (Tß4) is a 43 amino acid long intrinsically disordered protein (IDP), which was initially identified as an actin-binding and sequestering molecule. Later it was described to have multiple other functions, such as regulation of endothelial cell differentiation, blood vessel formation, wound repair, cardiac cell migration, and survival.1 The various functions of Tβ4 are mediated by interactions with distinct and structurally unrelated partners, such as PINCH, ILK, and stabilin-2, besides the originally identified G-actin. Although the cellular readout of these interactions and the formation of these complexes have been thoroughly described, no attempt was made to study these interactions in detail, and to elucidate the thermodynamic, kinetic, and structural underpinning of this range of moonlighting functions. Because Tβ4 is mostly disordered, and its 4 described partners are structurally unrelated (the CTD of stabilin-2 is actually fully disordered), it occurred to us that this system might be ideal to characterize the structural adaptability and ensuing moonlighting functions of IDPs. Unexpectedly, we found that Tβ4 engages in multiple weak, transient, and fuzzy interactions, i.e., it is capable of mediating distinct yet specific interactions without adapting stable folded structures.
Collapse
Affiliation(s)
- Agnes Tantos
- Institute of Enzymology; Research Centre for Natural Sciences; Hungarian Academy of Sciences; Budapest, Hungary
| | - Beata Szabo
- Institute of Enzymology; Research Centre for Natural Sciences; Hungarian Academy of Sciences; Budapest, Hungary
| | - Andras Lang
- Eötvös Loránd University; Institute of Chemistry; Budapest, Hungary
| | - Zoltan Varga
- Institute of Enzymology; Research Centre for Natural Sciences; Hungarian Academy of Sciences; Budapest, Hungary
| | - Maksym Tsylonok
- VIB Department of Structural Biology; Vrije Universiteit Brussel; Brussels, Belgium
| | - Monika Bokor
- Institute for Solid State Physics and Optics; Wigner Research Centre for Physics of the Hungarian Academy of Sciences; Budapest, Hungary
| | - Tamas Verebelyi
- Institute for Solid State Physics and Optics; Wigner Research Centre for Physics of the Hungarian Academy of Sciences; Budapest, Hungary
| | - Pawel Kamasa
- Institute for Solid State Physics and Optics; Wigner Research Centre for Physics of the Hungarian Academy of Sciences; Budapest, Hungary
| | - Kalman Tompa
- Institute for Solid State Physics and Optics; Wigner Research Centre for Physics of the Hungarian Academy of Sciences; Budapest, Hungary
| | - Andras Perczel
- Eötvös Loránd University; Institute of Chemistry; Budapest, Hungary
| | - Laszlo Buday
- Institute of Enzymology; Research Centre for Natural Sciences; Hungarian Academy of Sciences; Budapest, Hungary
| | - Si Hyung Lee
- Division of Biosystems Research; Korea Research Institute of Bioscience and Biotechnology; Daejeon, Republic of Korea
| | - Yejin Choo
- Division of Biosystems Research; Korea Research Institute of Bioscience and Biotechnology; Daejeon, Republic of Korea
| | - Kyou-Hoon Han
- Division of Biosystems Research; Korea Research Institute of Bioscience and Biotechnology; Daejeon, Republic of Korea
- Department of Bioinformatics; University of Science and Technology; Daejeon, Republic of Korea
| | - Peter Tompa
- Institute of Enzymology; Research Centre for Natural Sciences; Hungarian Academy of Sciences; Budapest, Hungary
- VIB Department of Structural Biology; Vrije Universiteit Brussel; Brussels, Belgium
| |
Collapse
|