1
|
Cifuente JO, Colleoni C, Kalscheuer R, Guerin ME. Architecture, Function, Regulation, and Evolution of α-Glucans Metabolic Enzymes in Prokaryotes. Chem Rev 2024; 124:4863-4934. [PMID: 38606812 PMCID: PMC11046441 DOI: 10.1021/acs.chemrev.3c00811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Bacteria have acquired sophisticated mechanisms for assembling and disassembling polysaccharides of different chemistry. α-d-Glucose homopolysaccharides, so-called α-glucans, are the most widespread polymers in nature being key components of microorganisms. Glycogen functions as an intracellular energy storage while some bacteria also produce extracellular assorted α-glucans. The classical bacterial glycogen metabolic pathway comprises the action of ADP-glucose pyrophosphorylase and glycogen synthase, whereas extracellular α-glucans are mostly related to peripheral enzymes dependent on sucrose. An alternative pathway of glycogen biosynthesis, operating via a maltose 1-phosphate polymerizing enzyme, displays an essential wiring with the trehalose metabolism to interconvert disaccharides into polysaccharides. Furthermore, some bacteria show a connection of intracellular glycogen metabolism with the genesis of extracellular capsular α-glucans, revealing a relationship between the storage and structural function of these compounds. Altogether, the current picture shows that bacteria have evolved an intricate α-glucan metabolism that ultimately relies on the evolution of a specific enzymatic machinery. The structural landscape of these enzymes exposes a limited number of core catalytic folds handling many different chemical reactions. In this Review, we present a rationale to explain how the chemical diversity of α-glucans emerged from these systems, highlighting the underlying structural evolution of the enzymes driving α-glucan bacterial metabolism.
Collapse
Affiliation(s)
- Javier O. Cifuente
- Instituto
Biofisika (UPV/EHU, CSIC), University of
the Basque Country, E-48940 Leioa, Spain
| | - Christophe Colleoni
- University
of Lille, CNRS, UMR8576-UGSF -Unité de Glycobiologie Structurale
et Fonctionnelle, F-59000 Lille, France
| | - Rainer Kalscheuer
- Institute
of Pharmaceutical Biology and Biotechnology, Heinrich Heine University, 40225 Dusseldorf, Germany
| | - Marcelo E. Guerin
- Structural
Glycobiology Laboratory, Department of Structural and Molecular Biology, Molecular Biology Institute of Barcelona (IBMB), Spanish
National Research Council (CSIC), Barcelona Science Park, c/Baldiri Reixac 4-8, Tower R, 08028 Barcelona, Catalonia, Spain
| |
Collapse
|
2
|
Alghamdi MA, Hussien RA, Zheng Y, Patel HP, Asencion Diez MD, A. Iglesias A, Liu D, Ballicora MA. Site-directed mutagenesis of Serine-72 reveals the location of the fructose 6-phosphate regulatory site of the Agrobacterium tumefaciens ADP-glucose pyrophosphorylase. Protein Sci 2022; 31:e4376. [PMID: 35762722 PMCID: PMC9234290 DOI: 10.1002/pro.4376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/27/2022] [Accepted: 06/05/2022] [Indexed: 11/10/2022]
Abstract
The allosteric regulation of ADP-glucose pyrophosphorylase is critical for the biosynthesis of glycogen in bacteria and starch in plants. The enzyme from Agrobacterium tumefaciens is activated by fructose 6-phosphate (Fru6P) and pyruvate (Pyr). The Pyr site has been recently found, but the site where Fru6P binds has remained unknown. We hypothesize that a sulfate ion previously found in the crystal structure reveals a part of the regulatory site mimicking the presence of the phosphoryl moiety of the activator Fru6P. Ser72 interacts with this sulfate ion and, if the hypothesis is correct, Ser72 would affect the interaction with Fru6P and activation of the enzyme. Here, we report structural, binding, and kinetic analysis of Ser72 mutants of the A. tumefaciens ADP-glucose pyrophosphorylase. By X-ray crystallography, we found that when Ser72 was replaced by Asp or Glu side chain carboxylates protruded into the sulfate-binding pocket. They would present a strong steric and electrostatic hindrance to the phosphoryl moiety of Fru6P, while being remote from the Pyr site. In agreement, we found that Fru6P could not activate or bind to S72E or S72D mutants, whereas Pyr was still an effective activator. These mutants also blocked the binding of the inhibitor AMP. This could potentially have biotechnological importance in obtaining enzyme forms insensitive to inhibition. Other mutations in this position (Ala, Cys, and Trp) confirmed the importance of Ser72 in regulation. We propose that the ADP-glucose pyrophosphorylase from A. tumefaciens have two distinct sites for Fru6P and Pyr working in tandem to regulate glycogen biosynthesis.
Collapse
Affiliation(s)
- Mashael A. Alghamdi
- Department of Chemistry and BiochemistryLoyola University ChicagoChicagoIllinois
- Department of ChemistryImam Mohammad Ibn Saud Islamic University (IMSIU)RiyadhSaudi Arabia
| | - Rania A. Hussien
- Department of Chemistry and BiochemistryLoyola University ChicagoChicagoIllinois
- Department of ChemistryAl Baha UniversityAl BahaSaudi Arabia
| | - Yuanzhang Zheng
- Department of Chemistry and BiochemistryLoyola University ChicagoChicagoIllinois
| | - Hiral P. Patel
- Department of Chemistry and BiochemistryLoyola University ChicagoChicagoIllinois
| | - Matías D. Asencion Diez
- Department of Chemistry and BiochemistryLoyola University ChicagoChicagoIllinois
- Instituto de Agrobiotecnología del Litoral (UNL‐CONICET)FBCB Paraje “El Pozo”, CCT‐Santa FeSanta FeArgentina
| | - Alberto A. Iglesias
- Instituto de Agrobiotecnología del Litoral (UNL‐CONICET)FBCB Paraje “El Pozo”, CCT‐Santa FeSanta FeArgentina
| | - Dali Liu
- Department of Chemistry and BiochemistryLoyola University ChicagoChicagoIllinois
| | - Miguel A. Ballicora
- Department of Chemistry and BiochemistryLoyola University ChicagoChicagoIllinois
| |
Collapse
|
3
|
Kim KH. Outliers in SAR and QSAR: 4. effects of allosteric protein-ligand interactions on the classical quantitative structure-activity relationships. Mol Divers 2022; 26:3057-3092. [PMID: 35192113 DOI: 10.1007/s11030-021-10365-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/10/2021] [Indexed: 11/26/2022]
Abstract
Effects of allosteric interactions on the classical structure-activity relationship (SAR) and quantitative SAR (QSAR) have been investigated. Apprehending the outliers in SAR and QSAR studies can improve the quality, predictability, and use of QSAR in designing unknown compounds in drug discovery research. We explored allosteric protein-ligand interactions as a possible source of outliers in SAR/QSAR. We used glycogen phosphorylase as an example of a protein that has an allosteric site. Examination of the ligand-bound x-ray crystal structures of glycogen phosphorylase revealed that many inhibitors bound at more than one binding site. The results of QSAR analyses of the inhibitors included a QSAR that recognized an outlier bound at a distinctive allosteric binding site. The case provided an example of constructive use of QSAR identifying outliers with alternative binding modes. Other allosteric QSARs that captured our attention were the inverted parabola/bilinear QSARs. The x-ray crystal structures and the QSAR analyses indicated that the inverted parabola QSARs could be associated with the conformational changes in the allosteric interactions. Our results showed that the normal parabola, as well as the inverted parabola QSARs, can describe the allosteric interactions. Examination of the ligand-bound X-ray crystal structures of glycogen phosphorylase revealed that many inhibitors bound at more than one binding site. The results of QSAR analyses of the inhibitors included a QSAR that recognized an outlier bound at a distinctive allosteric binding site.
Collapse
|
4
|
Ferretti MV, Hussien RA, Ballicora MA, Iglesias AA, Figueroa CM, Asencion Diez MD. The ADP-glucose pyrophosphorylase from Melainabacteria: a comparative study between photosynthetic and non-photosynthetic bacterial sources. Biochimie 2021; 192:30-37. [PMID: 34560201 DOI: 10.1016/j.biochi.2021.09.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/11/2021] [Accepted: 09/20/2021] [Indexed: 11/18/2022]
Abstract
Until recently, the cyanobacterial phylum only included oxygenic photosynthesizer members. The discovery of Melainabacteria as a group of supposed non-photosynthetic cyanobacteria asked to revisit such scenario. From metagenomic data, we were able to identify sequences encoding putative ADP-glucose pyrophosphorylases (ADP-GlcPPase) from free-living and intestinal Melainabacteria. The respective genes were de novo synthesized and over-expressed in Escherichia coli. The purified recombinant proteins from both Melainabacteria species were active as ADP-GlcPPases, exhibiting Vmax values of 2.3 (free-living) and 7.1 U/mg (intestinal). The enzymes showed similar S0.5 values (∼0.3 mM) for ATP, while the one from the intestinal source exhibited a 6-fold higher affinity toward glucose-1P. Both recombinant ADP-GlcPPases were sensitive to glucose-6P activation (A0.5 ∼0.3 mM) and Pi and ADP inhibition (I0.5 between 0.2 and 3 mM). Interestingly, the enzymes from Melainabacteria were insensitive to 3-phosphoglycerate, which is the principal activator of ADP-GlcPPases from photosynthetic cyanobacteria. As far as we know, this is the first biochemical characterization of an active enzyme from Melainabacteria. This work contributes to a better understanding of the evolution of allosteric regulation in the ADP-GlcPPase family, which is critical for synthesizing the main reserve polysaccharide in prokaryotes (glycogen) and plants (starch). In addition, our results offer further information to discussions regarding the phylogenetic position of Melainabacteria.
Collapse
Affiliation(s)
- María V Ferretti
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Bioquímica y Ciencias Biológicas, Santa Fe, Argentina
| | - Rania A Hussien
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL, USA; Department of Chemistry, Al Baha University, Al Baha, Saudi Arabia
| | - Miguel A Ballicora
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL, USA
| | - Alberto A Iglesias
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Bioquímica y Ciencias Biológicas, Santa Fe, Argentina
| | - Carlos M Figueroa
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Bioquímica y Ciencias Biológicas, Santa Fe, Argentina
| | - Matías D Asencion Diez
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Bioquímica y Ciencias Biológicas, Santa Fe, Argentina.
| |
Collapse
|
5
|
Liu L, Yuan M, Jin Y, Zhou G, Li T, Li L, Peng H, Chen W. Tunable Dual-Effector Allostery System for Nucleic Acid Analysis with Enhanced Sensitivity and an Extended Dynamic Range. Anal Chem 2021; 93:8170-8177. [PMID: 34096261 DOI: 10.1021/acs.analchem.1c00055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the last few years, studies have demonstrated the existence of dual-effector allosteric cooperativity in nature and the mechanism underlying enhanced activation/inhibition performance. In this work, we design an artificial dual-effector allostery system for the construction of a dynamic biosensor that can achieve nucleic acid detection with superior sensitivity and across an extraordinary broad detection range. Our dual-effector allostery-regulated biosensor is based on the multibranched hybridization chain reaction (mHCR) involving three hairpins (H1, H2, and H3). In the presence of the target nucleic acid, the mHCR is initiated via cascading strand displacement events. The products of mHCR are then captured on the electrode surface based on the mechanism of the multivalent proximity ligation assay (mPLA) and the multivalent binding assay (mBA). The subsequent conjugation of streptavidin-modified horseradish peroxidase (SA-HRP) can lead to an increase in the electrochemical signal. Importantly, two distinct allosteric activation sites and two distinct allosteric inhibition sites in H1 are designed to fine-tune the nucleic acid detection sensitivity and the dynamic range. Using this new dual-effector allostery tool, we report the detection of nucleic acid at a dynamic range spanning 10-1012 aM, 11 orders of magnitude showing the broadest dynamic range reported to date with an allosteric regulation biosensor construct.
Collapse
Affiliation(s)
- Liangliang Liu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, P. R. China
| | - Mengmeng Yuan
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, P. R. China
| | - Yuxia Jin
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, P. R. China
| | - Guobao Zhou
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, P. R. China
| | - Tuqiang Li
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, P. R. China
| | - Lei Li
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, P. R. China
| | - Huaping Peng
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou 350108, P. R. China
| | - Wei Chen
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou 350108, P. R. China
| |
Collapse
|
6
|
Anzai T, Imamura S, Ishihama A, Shimada T. Expanded roles of pyruvate-sensing PdhR in transcription regulation of the Escherichia coli K-12 genome: fatty acid catabolism and cell motility. Microb Genom 2020; 6. [PMID: 32975502 PMCID: PMC7660256 DOI: 10.1099/mgen.0.000442] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The transcription factor PdhR has been recognized as the master regulator of the pyruvate catabolism pathway in Escherichia coli, including both NAD-linked oxidative decarboxylation of pyruvate to acetyl-CoA by PDHc (pyruvate dehydrogenase complex) and respiratory electron transport of NADH to oxygen by Ndh-CyoABCD enzymes. To identify the whole set of regulatory targets under the control of pyruvate-sensing PdhR, we performed genomic SELEX (gSELEX) screening in vitro. A total of 35 PdhR-binding sites were identified along the E. coli K-12 genome, including previously identified targets. Possible involvement of PdhR in regulation of the newly identified target genes was analysed in detail by gel shift assay, RT-qPCR and Northern blot analysis. The results indicated the participation of PdhR in positive regulation of fatty acid degradation genes and negative regulation of cell mobility genes. In fact, GC analysis indicated an increase in free fatty acids in the mutant lacking PdhR. We propose that PdhR is a bifunctional global regulator for control of a total of 16–23 targets, including not only the genes involved in central carbon metabolism but also some genes for the surrounding pyruvate-sensing cellular pathways such as fatty acid degradation and flagella formation. The activity of PdhR is controlled by pyruvate, the key node between a wide variety of metabolic pathways, including generation of metabolic energy and cell building blocks.
Collapse
Affiliation(s)
- Takumi Anzai
- School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan
| | - Sousuke Imamura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Akira Ishihama
- Micro-Nanotechnology Research Center, Hosei University, Koganei, Tokyo, Japan
| | - Tomohiro Shimada
- School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan
| |
Collapse
|
7
|
Asencion Diez MD, Figueroa CM, Esper MC, Mascarenhas R, Aleanzi MC, Liu D, Ballicora MA, Iglesias AA. On the simultaneous activation of Agrobacterium tumefaciens ADP-glucose pyrophosphorylase by pyruvate and fructose 6-phosphate. Biochimie 2020; 171-172:23-30. [PMID: 32014504 DOI: 10.1016/j.biochi.2020.01.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 01/28/2020] [Indexed: 11/19/2022]
Abstract
Bacterial ADP-glucose pyrophosphorylases are allosterically regulated by metabolites that are key intermediates of central pathways in the respective microorganism. Pyruvate (Pyr) and fructose 6-phosphate (Fru6P) activate the enzyme from Agrobacterium tumefaciens by increasing Vmax about 10- and 20-fold, respectively. Here, we studied the combined effect of both metabolites on the enzyme activation. Our results support a model in which there is a synergistic binding of these two activators to two distinct sites and that each activator leads the enzyme to distinct active forms with different properties. In presence of both activators, Pyr had a catalytically dominant effect over Fru6P determining the active conformational state. By mutagenesis we obtained enzyme variants still sensitive to Pyr activation, but in which the allosteric signal by Fru6P was disrupted. This indicated that the activation mechanism for each effector was not the same. The ability for this enzyme to have more than one allosteric activator site, active forms, and allosteric signaling mechanisms is critical to expand the evolvability of its regulation. These synergistic interactions between allosteric activators may represent a feature in other allosteric enzymes.
Collapse
Affiliation(s)
- Matías D Asencion Diez
- Instituto de Agrobiotecnología Del Litoral, UNL, CONICET, FBCB, Colectora Ruta Nacional 168 Km 0, 3000, Santa Fe, Argentina; Department of Chemistry and Biochemistry, Loyola University Chicago, 1068 W. Sheridan Rd., Chicago, IL, 60660, USA
| | - Carlos M Figueroa
- Instituto de Agrobiotecnología Del Litoral, UNL, CONICET, FBCB, Colectora Ruta Nacional 168 Km 0, 3000, Santa Fe, Argentina
| | - María C Esper
- Instituto de Agrobiotecnología Del Litoral, UNL, CONICET, FBCB, Colectora Ruta Nacional 168 Km 0, 3000, Santa Fe, Argentina
| | - Romila Mascarenhas
- Department of Chemistry and Biochemistry, Loyola University Chicago, 1068 W. Sheridan Rd., Chicago, IL, 60660, USA
| | - Mabel C Aleanzi
- Instituto de Agrobiotecnología Del Litoral, UNL, CONICET, FBCB, Colectora Ruta Nacional 168 Km 0, 3000, Santa Fe, Argentina
| | - Dali Liu
- Department of Chemistry and Biochemistry, Loyola University Chicago, 1068 W. Sheridan Rd., Chicago, IL, 60660, USA
| | - Miguel A Ballicora
- Department of Chemistry and Biochemistry, Loyola University Chicago, 1068 W. Sheridan Rd., Chicago, IL, 60660, USA.
| | - Alberto A Iglesias
- Instituto de Agrobiotecnología Del Litoral, UNL, CONICET, FBCB, Colectora Ruta Nacional 168 Km 0, 3000, Santa Fe, Argentina.
| |
Collapse
|
8
|
Ogasawara H, Ishizuka T, Yamaji K, Kato Y, Shimada T, Ishihama A. Regulatory role of pyruvate-sensing BtsSR in biofilm formation by Escherichia coli K-12. FEMS Microbiol Lett 2019; 366:5675631. [PMID: 31834370 DOI: 10.1093/femsle/fnz251] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 12/12/2019] [Indexed: 12/29/2022] Open
Abstract
Pyruvate, the key regulator in connection of a variety of metabolic pathways, influences transcription of the Escherichia coli genome through controlling the activity of two pyruvate-sensing two-component systems (TCSs), BtsSR and PyrSR. Previously, we identified the whole set of regulatory targets of PyrSR with low-affinity to pyruvate. Using gSELEX screening system, we found here that BtsSR with high-affinity to pyruvate regulates more than 100 genes including as many as 13 transcription factors genes including the csgD gene encoding the master regulator of biofilm formation. CsgD regulates more than 20 target genes including the csg operons encoding the Curli fimbriae. In addition, we identified the csgBAC as one of the regulatory targets of BtsR, thus indicating the involvement of two pyruvate-dependent regulatory pathways of the curli formation: indirect regulation by CsgD; and direct regulation by BtsR. Based on the findings of the whole set of regulatory targets by two pyruvate-sensing BtsR and PyrR, we further propose an innovative concept that the pyruvate level-dependent regulation of different gene sets takes place through two pyruvate-sensing TCS systems, high-affinity BtsSR and low-affinity PyrSR to pyruvate.
Collapse
Affiliation(s)
- Hiroshi Ogasawara
- Research Center for Supports to Advanced Science, Division of Gene Research, Shinshu University, Tokida 3-15-1, Ueda, Nagano 386-8567, Japan.,Research Center for Fungal and Microbial Dynamism, Shinshu University, Minamiminowa 8304, Kamiina, Nagano 399-4598, Japan.,Academic Assembly School of Humanities and Social Sciences Institute of Humanities, Shinshu University, Asahi 3-1-1, Matsumoto, 390-8621, Japan
| | - Toshiyuki Ishizuka
- Research Center for Supports to Advanced Science, Division of Gene Research, Shinshu University, Tokida 3-15-1, Ueda, Nagano 386-8567, Japan
| | - Kotaro Yamaji
- Research Center for Supports to Advanced Science, Division of Gene Research, Shinshu University, Tokida 3-15-1, Ueda, Nagano 386-8567, Japan
| | - Yuki Kato
- Research Center for Supports to Advanced Science, Division of Gene Research, Shinshu University, Tokida 3-15-1, Ueda, Nagano 386-8567, Japan
| | - Tomohiro Shimada
- School of Agriculture, Meiji University, 1-1-1 Higashi Mita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Akira Ishihama
- Research Center for Micro-Nano Technology, Hosei University, 3-7-2 Kajino-cho, Koganei, Tokyo 184-8584, Japan
| |
Collapse
|
9
|
Bhayani JA, Hill BL, Sharma A, Iglesias AA, Olsen KW, Ballicora MA. Mapping of a Regulatory Site of the Escherichia coli ADP-Glucose Pyrophosphorylase. Front Mol Biosci 2019; 6:89. [PMID: 31608288 PMCID: PMC6773804 DOI: 10.3389/fmolb.2019.00089] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 09/06/2019] [Indexed: 11/13/2022] Open
Abstract
The enzyme ADP-glucose pyrophosphorylase (ADP-Glc PPase) controls the biosynthesis of glycogen in bacteria and starch in plants. It is regulated by various activators in different organisms according to their metabolic characteristics. In Escherichia coli, the major allosteric activator is fructose 1,6-bisphosphate (FBP). Other potent activator analogs include 1,6-hexanediol bisphosphate (HBP) and pyridoxal 5'-phosphate (PLP). Recently, a crystal structure with FBP bound was reported (PDB ID: 5L6S). However, it is possible that the FBP site found is not directly responsible for the activation of the enzyme. We hypothesized FBP activates by binding one of its phosphate groups to another site ("P1") in which a sulfate molecule was observed. In the E. coli enzyme, Arg40, Arg52, and Arg386 are part of this "P1" pocket and tightly complex this sulfate, which is also present in the crystal structures of ADP-Glc PPases from Agrobacterium tumefaciens and Solanum tuberosum. To test this hypothesis, we modeled alternative binding conformations of FBP, HBP, and PLP into "P1." In addition, we performed a scanning mutagenesis of Arg residues near potential phosphate binding sites ("P1," "P2," "P3"). We found that Arg40 and Arg52 are essential for FBP and PLP binding and activation. In addition, mutation of Arg386 to Ala decreased the apparent affinity for the activators more than 35-fold. We propose that the activator binds at this "P1" pocket, as well as "P2." Arg40 and Arg52 are highly conserved residues and they may be a common feature to complex the phosphate moiety of different sugar phosphate activators in the ADP-Glc PPase family.
Collapse
Affiliation(s)
- Jaina A. Bhayani
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL, United States
| | - Benjamin L. Hill
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL, United States
| | - Anisha Sharma
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL, United States
| | - Alberto A. Iglesias
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral (UNL-CONICET), CCT CONICET, Santa Fe, Argentina
| | - Kenneth W. Olsen
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL, United States
| | - Miguel A. Ballicora
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL, United States
| |
Collapse
|
10
|
Structural basis of glycogen metabolism in bacteria. Biochem J 2019; 476:2059-2092. [PMID: 31366571 DOI: 10.1042/bcj20170558] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/11/2019] [Accepted: 07/15/2019] [Indexed: 01/25/2023]
Abstract
The evolution of metabolic pathways is a major force behind natural selection. In the spotlight of such process lies the structural evolution of the enzymatic machinery responsible for the central energy metabolism. Specifically, glycogen metabolism has emerged to allow organisms to save available environmental surplus of carbon and energy, using dedicated glucose polymers as a storage compartment that can be mobilized at future demand. The origins of such adaptive advantage rely on the acquisition of an enzymatic system for the biosynthesis and degradation of glycogen, along with mechanisms to balance the assembly and disassembly rate of this polysaccharide, in order to store and recover glucose according to cell energy needs. The first step in the classical bacterial glycogen biosynthetic pathway is carried out by the adenosine 5'-diphosphate (ADP)-glucose pyrophosphorylase. This allosteric enzyme synthesizes ADP-glucose and acts as a point of regulation. The second step is carried out by the glycogen synthase, an enzyme that generates linear α-(1→4)-linked glucose chains, whereas the third step catalyzed by the branching enzyme produces α-(1→6)-linked glucan branches in the polymer. Two enzymes facilitate glycogen degradation: glycogen phosphorylase, which functions as an α-(1→4)-depolymerizing enzyme, and the debranching enzyme that catalyzes the removal of α-(1→6)-linked ramifications. In this work, we rationalize the structural basis of glycogen metabolism in bacteria to the light of the current knowledge. We describe and discuss the remarkable progress made in the understanding of the molecular mechanisms of substrate recognition and product release, allosteric regulation and catalysis of all those enzymes.
Collapse
|
11
|
Hill BL, Mascarenhas R, Patel HP, Asencion Diez MD, Wu R, Iglesias AA, Liu D, Ballicora MA. Structural analysis reveals a pyruvate-binding activator site in the Agrobacterium tumefaciens ADP-glucose pyrophosphorylase. J Biol Chem 2019; 294:1338-1348. [PMID: 30401744 DOI: 10.1074/jbc.ra118.004246] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 10/21/2018] [Indexed: 11/06/2022] Open
Abstract
The pathways for biosynthesis of glycogen in bacteria and starch in plants are evolutionarily and biochemically related. They are regulated primarily by ADP-glucose pyrophosphorylase, which evolved to satisfy metabolic requirements of a particular organism. Despite the importance of these two pathways, little is known about the mechanism that controls pyrophosphorylase activity or the location of its allosteric sites. Here, we report pyruvate-bound crystal structures of ADP-glucose pyrophosphorylase from the bacterium Agrobacterium tumefaciens, identifying a previously elusive activator site for the enzyme. We found that the tetrameric enzyme binds two molecules of pyruvate in a planar conformation. Each binding site is located in a crevice between the C-terminal domains of two subunits where they stack via a distinct β-helix region. Pyruvate interacts with the side chain of Lys-43 and with the peptide backbone of Ser-328 and Gly-329 from both subunits. These structural insights led to the design of two variants with altered regulatory properties. In one variant (K43A), the allosteric effect was absent, whereas in the other (G329D), the introduced Asp mimicked the presence of pyruvate. The latter generated an enzyme that was preactivated and insensitive to further activation by pyruvate. Our study furnishes a deeper understanding of how glycogen biosynthesis is regulated in bacteria and the mechanism by which transgenic plants increased their starch production. These insights will facilitate rational approaches to enzyme engineering for starch production in crops of agricultural interest and will promote further study of allosteric signal transmission and molecular evolution in this important enzyme family.
Collapse
Affiliation(s)
- Benjamin L Hill
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois 60660
| | - Romila Mascarenhas
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois 60660
| | - Hiral P Patel
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois 60660
| | - Matías D Asencion Diez
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois 60660; Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral-Consejo Nacional de Investigaciones Científicas y Técnicas (UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas (FBCB) Paraje "El Pozo," Centro Científico Tecnológico (CCT)-Santa Fe, Colectora Ruta Nacional, 168 km 0, 3000 Santa Fe, Argentina
| | - Rui Wu
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois 60660
| | - Alberto A Iglesias
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral-Consejo Nacional de Investigaciones Científicas y Técnicas (UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas (FBCB) Paraje "El Pozo," Centro Científico Tecnológico (CCT)-Santa Fe, Colectora Ruta Nacional, 168 km 0, 3000 Santa Fe, Argentina
| | - Dali Liu
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois 60660
| | - Miguel A Ballicora
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois 60660.
| |
Collapse
|
12
|
Regulatory Properties of the ADP-Glucose Pyrophosphorylase from the Clostridial Firmicutes Member Ruminococcus albus. J Bacteriol 2018; 200:JB.00172-18. [PMID: 29941423 DOI: 10.1128/jb.00172-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 06/19/2018] [Indexed: 11/20/2022] Open
Abstract
ADP-glucose pyrophosphorylase from Firmicutes is encoded by two genes (glgC and glgD) leading to a heterotetrameric protein structure, unlike those in other bacterial phyla. The enzymes from two groups of Firmicutes, Bacillales and Lactobacillales, present dissimilar kinetic and regulatory properties. Nevertheless, no ADP-glucose pyrophosphorylase from Clostridiales, the third group in Firmicutes, has been characterized. For this reason, we cloned the glgC and glgD genes from Ruminococcus albus Different quaternary forms of the enzyme (GlgC, GlgD, and GlgC/GlgD) were purified to homogeneity and their kinetic parameters were analyzed. We observed that GlgD is an inactive monomer when expressed alone but increased the catalytic efficiency of the heterotetramer (GlgC/GlgD) compared to the homotetramer (GlgC). The heterotetramer is regulated by fructose-1,6-bisphosphate, phosphoenolpyruvate, and NAD(P)H. The first characterization of the Bacillales enzyme suggested that heterotetrameric ADP-glucose pyrophosphorylases from Firmicutes were unregulated. Our results, together with data from Lactobacillales, indicate that heterotetrameric Firmicutes enzymes are mostly regulated. Thus, the ADP-glucose pyrophosphorylase from Bacillales seems to have distinctive insensitivity to regulation.IMPORTANCE The enzymes involved in glycogen synthesis from Firmicutes have been less characterized in comparison with other bacterial groups. We performed kinetic and regulatory characterization of the ADP-glucose pyrophosphorylase from Ruminococcus albus Our results showed that this protein that belongs to different groups from Firmicutes (Bacillales, Lactobacillales, and Clostridiales) presents dissimilar features. This study contributes to the understanding of how this critical enzyme for glycogen biosynthesis is regulated in the Firmicutes group, whereby we propose that these heterotetrameric enzymes, with the exception of Bacillales, are allosterically regulated. Our results provide a better understanding of the evolutionary relationship of this enzyme family in Firmicutes.
Collapse
|
13
|
Ebrecht AC, Solamen L, Hill BL, Iglesias AA, Olsen KW, Ballicora MA. Allosteric Control of Substrate Specificity of the Escherichia coli ADP-Glucose Pyrophosphorylase. Front Chem 2017; 5:41. [PMID: 28674689 PMCID: PMC5474683 DOI: 10.3389/fchem.2017.00041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 06/07/2017] [Indexed: 11/29/2022] Open
Abstract
The substrate specificity of enzymes is crucial to control the fate of metabolites to different pathways. However, there is growing evidence that many enzymes can catalyze alternative reactions. This promiscuous behavior has important implications in protein evolution and the acquisition of new functions. The question is how the undesirable outcomes of in vivo promiscuity can be prevented. ADP-glucose pyrophosphorylase from Escherichia coli is an example of an enzyme that needs to select the correct substrate from a broad spectrum of alternatives. This selection will guide the flow of carbohydrate metabolism toward the synthesis of reserve polysaccharides. Here, we show that the allosteric activator fructose-1,6-bisphosphate plays a role in such selection by increasing the catalytic efficiency of the enzyme toward the use of ATP rather than other nucleotides. In the presence of fructose-1,6-bisphosphate, the kcat/S0.5 for ATP was near ~600-fold higher that other nucleotides, whereas in the absence of activator was only ~3-fold higher. We propose that the allosteric regulation of certain enzymes is an evolutionary mechanism of adaptation for the selection of specific substrates.
Collapse
Affiliation(s)
- Ana C Ebrecht
- Department of Chemistry and Biochemistry, Loyola University ChicagoChicago, IL, United States.,Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral (UNL-CONICET), CCT CONICETSanta Fe, Argentina
| | - Ligin Solamen
- Department of Chemistry and Biochemistry, Loyola University ChicagoChicago, IL, United States
| | - Benjamin L Hill
- Department of Chemistry and Biochemistry, Loyola University ChicagoChicago, IL, United States
| | - Alberto A Iglesias
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral (UNL-CONICET), CCT CONICETSanta Fe, Argentina
| | - Kenneth W Olsen
- Department of Chemistry and Biochemistry, Loyola University ChicagoChicago, IL, United States
| | - Miguel A Ballicora
- Department of Chemistry and Biochemistry, Loyola University ChicagoChicago, IL, United States
| |
Collapse
|
14
|
Cereijo AE, Asencion Diez MD, Dávila Costa JS, Alvarez HM, Iglesias AA. On the Kinetic and Allosteric Regulatory Properties of the ADP-Glucose Pyrophosphorylase from Rhodococcus jostii: An Approach to Evaluate Glycogen Metabolism in Oleaginous Bacteria. Front Microbiol 2016; 7:830. [PMID: 27313571 PMCID: PMC4890535 DOI: 10.3389/fmicb.2016.00830] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 05/17/2016] [Indexed: 01/29/2023] Open
Abstract
Rhodococcus spp. are oleaginous bacteria that accumulate glycogen during exponential growth. Despite the importance of these microorganisms in biotechnology, little is known about the regulation of carbon and energy storage, mainly the relationship between glycogen and triacylglycerols metabolisms. Herein, we report the molecular cloning and heterologous expression of the gene coding for ADP-glucose pyrophosphorylase (EC 2.7.7.27) of Rhodococcus jostii, strain RHA1. The recombinant enzyme was purified to electrophoretic homogeneity to accurately characterize its oligomeric, kinetic, and regulatory properties. The R. jostii ADP-glucose pyrophosphorylase is a homotetramer of 190 kDa exhibiting low basal activity to catalyze synthesis of ADP-glucose, which is markedly influenced by different allosteric effectors. Glucose-6P, mannose-6P, fructose-6P, ribose-5P, and phosphoenolpyruvate were major activators; whereas, NADPH and 6P-gluconate behaved as main inhibitors of the enzyme. The combination of glucose-6P and other effectors (activators or inhibitors) showed a cross-talk effect suggesting that the different metabolites could orchestrate a fine regulation of ADP-glucose pyrophosphorylase in R. jostii. The enzyme exhibited some degree of affinity toward ATP, GTP, CTP, and other sugar-1P substrates. Remarkably, the use of glucosamine-1P was sensitive to allosteric activation. The relevance of the fine regulation of R. jostii ADP-glucose pyrophosphorylase is further analyzed in the framework of proteomic studies already determined for the bacterium. Results support a critical role for glycogen as a temporal reserve that provides a pool of carbon able of be re-routed to produce long-term storage of lipids under certain conditions.
Collapse
Affiliation(s)
- Antonela E Cereijo
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral, CONICET, Centro Científico Tecnológico, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral Santa Fe, Argentina
| | - Matías D Asencion Diez
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral, CONICET, Centro Científico Tecnológico, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral Santa Fe, Argentina
| | - José S Dávila Costa
- Centro Regional de Investigación y Desarrollo Científico Tecnológico, Facultad de Ciencias Naturales Universidad Nacional de la Patagonia San Juan Bosco Comodoro Rivadavia, Argentina
| | - Héctor M Alvarez
- Centro Regional de Investigación y Desarrollo Científico Tecnológico, Facultad de Ciencias Naturales Universidad Nacional de la Patagonia San Juan Bosco Comodoro Rivadavia, Argentina
| | - Alberto A Iglesias
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral, CONICET, Centro Científico Tecnológico, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral Santa Fe, Argentina
| |
Collapse
|