1
|
Li H, Chen Z, Zhu W, Ni X, Wang J, Fu L, Chen J, Li T, Tang L, Yang Y, Zhang F, Wang J, Zhou B, Chen F, Lü P. The MaNAP1-MaMADS1 transcription factor module mediates ethylene-regulated peel softening and ripening in banana. THE PLANT CELL 2024; 37:koae282. [PMID: 39422253 DOI: 10.1093/plcell/koae282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/19/2024]
Abstract
The banana (Musa spp.) peel undergoes rapid softening during ripening, leading to finger drop and a shortened shelf life. The regulatory mechanism behind this process remains to be elucidated. In this study, we confirmed the role of peel softening in banana finger drop and uncovered the underlying transcriptional regulatory network. Cell wall-related (CWR) genes were substantially upregulated in both the peel and finger drop zone during ethylene-induced ripening. Transcriptome analysis and genome-wide profiling of chromatin accessibility and transcription factor (TF) binding revealed that two key regulators of fruit ripening, Musa acuminata NAC-like, Activated by apetala3/Pistillata1 (MaNAP1) and MaMADS1, regulate CWR genes by directly binding to their promoters or by targeting other ripening-related TFs to form a hierarchical regulatory network. Notably, MaNAP1 and MaMADS1 were directly targeted by ETHYLENE INSENSITIVE3 (MaEIN3), and MaNAP1 and MaMADS1 associated with tissue-specific histone modifications, enabling them to integrate MaEIN3-mediated ethylene signaling and undergo epigenetic regulation. Overexpression of MaNAP1, MaMADS1, or other identified regulatory TFs upregulated CWR genes and promoted peel softening. Our findings unveil a MaNAP1-MaMADS1-centered regulatory cascade governing banana peel softening and finger drop, offering potential targets for enhancing banana texture and shelf life.
Collapse
Affiliation(s)
- Hua Li
- College of Horticulture, Center for Plant Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China
| | - Zhuo Chen
- College of Horticulture, Center for Plant Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenjun Zhu
- College of Horticulture, Center for Plant Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xueting Ni
- College of Horticulture, Center for Plant Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Junru Wang
- College of Horticulture, Center for Plant Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lufeng Fu
- College of Horticulture, Center for Plant Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jialin Chen
- College of Horticulture, Center for Plant Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Tianpu Li
- College of Horticulture, Center for Plant Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lingxian Tang
- College of Horticulture, Center for Plant Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yingjie Yang
- College of Horticulture, Center for Plant Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Fukun Zhang
- College of Horticulture, Center for Plant Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiashui Wang
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Biyan Zhou
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Faxing Chen
- College of Horticulture, Center for Plant Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Peitao Lü
- College of Horticulture, Center for Plant Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China
| |
Collapse
|
2
|
Roy A, Chaurasia H, Kumar B, Kumari N, Jaiswal S, Srivastava M, Iquebal MA, Angadi UB, Kumar D. FEAtl: a comprehensive web-based expression atlas for functional genomics in tropical and subtropical fruit crops. BMC PLANT BIOLOGY 2024; 24:890. [PMID: 39343895 PMCID: PMC11440752 DOI: 10.1186/s12870-024-05595-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/16/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Fruit crops, including tropical and subtropical fruits like Avocado (Persea americana), Fig (Ficus carica), Date Palm (Phoenix dactylifera), Mango (Mangifera indica), Guava (Psidium guajava), Papaya (Carica papaya), Pineapple (Ananas comosus), and Banana (Musa acuminata) are economically vital, contributing significantly to global agricultural output, as classified by the FAO's World Programme for the Census of Agriculture. Advancements in next-generation sequencing, have transformed fruit crop breeding by providing in-depth genomic and transcriptomic data. RNA sequencing enables high-throughput analysis of gene expression, and functional genomics, crucial for addressing horticultural challenges and enhancing fruit production. The genomic and expression data for key tropical and sub-tropical fruit crops is currently lacking a comprehensive expression atlas, revealing a significant gap in resources for horticulturists who require a unified platform with diverse datasets across various conditions and cultivars. RESULTS The Fruit Expression Atlas (FEAtl), available at http://backlin.cabgrid.res.in/FEAtl/ , is a first-ever extensive and unified expression atlas for tropical and subtropical fruit crops developed using 3-tier architecture. The expressivity of coding and non-coding genes, encompassing 2,060 RNA-Seq samples across 91 tissue types and 177 BioProjects, it provides a comprehensive view of gene expression patterns for different tissues under various conditions. FEAtl features multiple tabs that cater to different aspects of the dataset, namely, Home, About, Analyze, Statistics, and Team and contains seven central functional modules: Transcript Information,Sample Information, Expression Profiles in FPKM and TPM, Functional Analysis, Genes Based on Tau Score, and Search for Specific Gene. The expression of a transcript of interest can be easily queried by searching by tissue ID and transcript type. Expression data can be displayed as a heat map, along with functional descriptions as well as Gene Ontology and Kyoto Encyclopedia of Genes and Genomes. CONCLUSIONS This atlas represents a groundbreaking compilation of a wide array of information pertaining to eight distinct fruit crops and serves as a fundamental resource for comparative analysis among different fruit species and is a catalyst for functional genomic studies. Database availability: http://backlin.cabgrid.res.in/FEAtl/ .
Collapse
Affiliation(s)
- Anupama Roy
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
- The Graduate School, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Himanshushekhar Chaurasia
- Mechanical Processing Division (MPD), ICAR-Central Institute for Research on Cotton Technology, Mumbai, Maharashtra, 400019, India
| | - Baibhav Kumar
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Naina Kumari
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Sarika Jaiswal
- The Graduate School, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Manish Srivastava
- Division of Fruits and Horticultural Technology (FHT), ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Mir Asif Iquebal
- The Graduate School, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Ulavappa B Angadi
- The Graduate School, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Dinesh Kumar
- The Graduate School, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| |
Collapse
|
3
|
Donadio JLS, Prado SBRD, Soares CG, Tamarossi RI, Heidor R, Moreno FS, Fabi JP. Ripe papaya pectins inhibit the proliferation of colon cancer spheroids and the formation of chemically induced aberrant crypts in rats colons. Carbohydr Polym 2024; 331:121878. [PMID: 38388061 DOI: 10.1016/j.carbpol.2024.121878] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/28/2023] [Accepted: 01/25/2024] [Indexed: 02/24/2024]
Abstract
Pectins are a class of soluble polysaccharides that can have anticancer properties through several mechanisms. This study aimed to characterize the molecular structure of water-soluble fractions (WSF) derived from ripe and unripe papayas and assess their biological effects in two models: the 3D colon cancer spheroids to measure cell viability and cytotoxicity, and the in vivo model to investigate the inhibition of preneoplastic lesions in rats. WSF yield was slightly higher in ripe papaya, and both samples mainly consisted of pectin. Both pectins inhibited the growth of colon cancer HT29 and HCT116 spheroids. Unripe pectin disturbed HT29/NIH3T3 spheroid formation, decreased HCT116 spheroid viability, and increased spheroid cytotoxicity. Ripe pectin had a more substantial effect on the reduction of spheroid viability for HT29 spheroids. Furthermore, in vivo experiments on a rat model revealed a decrease in aberrant crypt foci (ACF) formation for both pectins and increased apoptosis in colonocytes for ripe papaya pectins. The results suggest potential anticancer properties of papaya pectin, with ripe pectin showing a higher potency.
Collapse
Affiliation(s)
- Janaina L S Donadio
- University of São Paulo, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, Av. Prof. Lineu Prestes 580, São Paulo, SP, Brazil; Food Research Center (FoRC), CEPID-FAPESP, Research Innovation and Dissemination Centers, São Paulo Research Foundation, Rua do Lago, 250, São Paulo, SP, Brazil
| | | | - Caroline Giacomelli Soares
- University of São Paulo, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, Av. Prof. Lineu Prestes 580, São Paulo, SP, Brazil
| | - Rodrigo Invernort Tamarossi
- University of São Paulo, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, Av. Prof. Lineu Prestes 580, São Paulo, SP, Brazil
| | - Renato Heidor
- University of São Paulo, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, Av. Prof. Lineu Prestes 580, São Paulo, SP, Brazil
| | - Fernando Salvador Moreno
- University of São Paulo, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, Av. Prof. Lineu Prestes 580, São Paulo, SP, Brazil
| | - João Paulo Fabi
- University of São Paulo, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, Av. Prof. Lineu Prestes 580, São Paulo, SP, Brazil; Food Research Center (FoRC), CEPID-FAPESP, Research Innovation and Dissemination Centers, São Paulo Research Foundation, Rua do Lago, 250, São Paulo, SP, Brazil; Food and Nutrition Research Center (NAPAN), University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
4
|
Pedrosa LDF, Nascimento KR, Soares CG, Oliveira DPD, de Vos P, Fabi JP. Unveiling Plant-Based Pectins: Exploring the Interplay of Direct Effects, Fermentation, and Technological Applications in Clinical Research with a Focus on the Chemical Structure. PLANTS (BASEL, SWITZERLAND) 2023; 12:2750. [PMID: 37514364 PMCID: PMC10384513 DOI: 10.3390/plants12142750] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023]
Abstract
Pectin, a plant-derived polysaccharide, possesses immense technological and biological application value. Several variables influence pectin's physicochemical aspects, resulting in different fermentations, interactions with receptors, and other functional properties. Some of those variables are molecular weight, degree of methylation and blockiness, and monosaccharide composition. Cancer cell cytotoxicity, important fermentation-related byproducts, immunomodulation, and technological application were found in cell culture, animal models, and preclinical and clinical assessments. One of the greater extents of recent pectin technological usage involves nanoencapsulation methods for many different compounds, ranging from chemotherapy and immunotherapy to natural extracts from fruits and other sources. Structural modification (modified pectin) is also utilized to enhance the use of dietary fiber. Although pectin is already recognized as a component of significant importance, there is still a need for a comprehensive review that delves into its intricate relationships with biological effects, which depend on the source and structure of pectin. This review covers all levels of clinical research, including cell culture, animal studies, and clinical trials, to understand how the plant source and pectin structures influence the biological effects in humans and some technological applications of pectin regarding human health.
Collapse
Affiliation(s)
- Lucas de Freitas Pedrosa
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Karen Rebouças Nascimento
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil
| | - Caroline Giacomelli Soares
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil
| | - Débora Preceliano de Oliveira
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil
| | - Paul de Vos
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - João Paulo Fabi
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil
- Food and Nutrition Research Center (NAPAN), University of São Paulo, São Paulo 05508-000, SP, Brazil
- Food Research Center (FoRC), CEPID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo 05508-080, SP, Brazil
| |
Collapse
|
5
|
Wang Y, Fan Z, Zhai Y, Huang H, Vainstein A, Ma H. Polygalacturonase gene family analysis identifies FcPG12 as a key player in fig (Ficus carica L.) fruit softening. BMC PLANT BIOLOGY 2023; 23:320. [PMID: 37316788 DOI: 10.1186/s12870-023-04315-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/25/2023] [Indexed: 06/16/2023]
Abstract
BACKGROUND The fig (Ficus carica L.) tree has high economic value. However, its fruit have a short shelf life due to rapid softening. Polygalacturonases (PGs) are essential hydrolases, responsible for the pectin degradation that plays a key role in fruit softening. However, fig PG genes and their regulators have not yet been characterized. RESULTS In this study, 43 FcPGs were identified in the fig genome. They were non-uniformly distributed on 13 chromosomes, and tandem repeat PG gene clusters were found on chromosomes 4 and 5. Ka/Ks calculation and collinear analysis indicated negative selection as the main driver of FcPG family expansion. Fourteen FcPGs were found expressed in fig fruit with FPKM values > 10, of which seven were positively correlated, and three, negatively correlated with fruit softening. Eleven FcPGs were upregulated and two downregulated in response to ethephon treatment. FcPG12, a member of the tandem repeat cluster on chromosome 4, was selected for further analyses due to its sharp increment in transcript abundance during fruit softening and its response to ethephon treatment. Transient overexpression of FcPG12 led to decreased fig fruit firmness and increased PG enzyme activity in the tissue. Two ethylene response factor (ERF)-binding GCC-box sites were found on the FcPG12 promoter. Yeast one-hybrid and dual luciferase assays showed that FcERF5 binds directly to the FcPG12 promoter and upregulates its expression. Transient overexpression of FcERF5 upregulated FcPG12 expression, thereby increasing PG activity and fruit softening. CONCLUSIONS Our study identified FcPG12 as a key PG gene in fig fruit softening, and its direct positive regulation by FcERF5. The results provide new information on the molecular regulation of fig fruit softening.
Collapse
Affiliation(s)
- Yuan Wang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Zhiyi Fan
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yanlei Zhai
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Hantang Huang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Alexander Vainstein
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Huiqin Ma
- College of Horticulture, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
6
|
Bai M, Tong P, Luo Q, Shang N, Huang H, Huai B, Wu H. CgPG21 is involved in the degradation of the cell wall during the secretory cavity formation in Citrus grandis 'Tomentosa' fruits. PLANT CELL REPORTS 2023:10.1007/s00299-023-03032-7. [PMID: 37219583 DOI: 10.1007/s00299-023-03032-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 05/04/2023] [Indexed: 05/24/2023]
Abstract
MAIN CONCLUSION CgPG21 is mainly located in the cell wall, participates in the intercellular layer degradation of the cell wall during the formation of secretory cavity in the intercellular space-forming and lumen-expanding stages. The secretory cavity is a common structure in Citrus plants and is the main site for synthesis and accumulation of medicinal ingredients. The secretory cavity is formed in lysogenesis, when epithelial cells enter a process of programmed cell death. Pectinases are known to be involved in degradation of the cell wall during the cytolysis of secretory cavity cells, but the changes in cell structure, the dynamic characteristics of cell wall polysaccharides and the related genes regulating cell wall degradation are unclear. In this study, electron microscopy and cell wall polysaccharide-labeling techniques were used to study the main characteristics of cell wall degradation of the secreting cavity of Citrus grandis 'Tomentosa' fruits. At the same time, the full CDS length of the pectinase gene CgPG21 was cloned, encoding a protein composed of 480 amino acids. CgPG21 is mainly located in the cell wall, participates in the degradation of the intercellular layer of the cell wall during the development of the secretory cavity, and plays an important role in the formation of the secretory cavity in the intercellular space-forming and lumen-expanding stages. With the development of secretory cavity, the cell wall polysaccharides of epithelial cells gradually degrade. CgPG21 is mainly involved in the intercellular layer degradation.
Collapse
Affiliation(s)
- Mei Bai
- Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Natural Medicine, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, 510642, China.
- Maoming Branch Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, 525000, China.
| | - Panpan Tong
- Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Natural Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Qun Luo
- Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Natural Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Na Shang
- Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Natural Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Hailan Huang
- Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Natural Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Bin Huai
- Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Natural Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Hong Wu
- Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Natural Medicine, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, 510642, China.
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China.
- Maoming Branch Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, 525000, China.
| |
Collapse
|
7
|
Chang LY, Sargent SA, Kim J, Brecht JK. Delaying ripening using 1-MCP reveals chilling injury symptom development at the putative chilling threshold temperature for mature green banana. FRONTIERS IN PLANT SCIENCE 2022; 13:966789. [PMID: 36186023 PMCID: PMC9515583 DOI: 10.3389/fpls.2022.966789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 08/24/2022] [Indexed: 06/16/2023]
Abstract
Storage at the putative chilling threshold temperature (CTT) to avoid chilling injury still limits postharvest handling of tropical fruit like banana in that ripening may occur at the CTT. To determine whether chilling injury (CI) symptoms would develop in mature green (MG) banana fruit if the CTT exposure was extended by inhibiting ethylene action and thus ripening, 1-methylcyclopropene (1-MCP) was applied. Individual 'fingers' from multiple 'clusters' of MG bananas were either immersed in water or 50 μg L-1 1-MCP (a.i.) solution and each treatment was divided into three subgroups for storage at 5.0°C (severe CI), 13.0°C (mild CI), or 14.0°C (CTT) ± 0.1°C. 1-MCP delayed ripening in terms of color change for 10 days for fruit stored at the CTT. Ethylene production by fruit at 5.0°C remained around 0.04 ng kg-1 s-1 with no obvious increase during 31-day storage. Ethylene production at 14.0°C (-1-MCP/+1-MCP) increased on Day 33 while increasing on Day 38 for 13.0°C fruit without 1-MCP and on Day 39 for fruit with 1-MCP. Peak climacteric ethylene occurred on Days 44 and 39 for 13.0 and 14.0°C fruit without 1-MCP, respectively, and on Days 59 and 51 for 13.0°C and 14.0°C 1-MCP-treated fruit, respectively. As hypothesized, longer exposure of MG banana fruit to the CTT of 14.0°C without onset of ripening as was allowed by prior 1-MCP treatment allowed CI to develop at that normally non-chilling temperature. Vascular browning was the first visual and most sensitive CI symptom in the experiment and was observed on Day 4 at 5.0°C, Day 10 at 13.0°C, Day 19 at 14.0°C without 1-MCP, and on Day 28 at 14.0°C with 1-MCP. Using a 1-MCP pre-treatment to remove the influence of ethylene from bananas stored at 13°C or 14°C also resulted in slight reduction in vascular browning severity. In conclusion, a putative safe temperature may become a CI temperature if the shelf-life-limiting factor is removed, allowing longer exposure. Chilling at the CTT caused relatively mild injury on fruit, and vascular browning is a sensitive indicator of CI status, while the light-adapted quantum yield of photosystem II [Y(II)] could be a non-destructive indicator of early CI stress in MG banana. Fruit at 13.0/14.0°C developed CI symptoms slightly later with 1-MCP than without 1-MCP. This suggests that ethylene might be involved in early CI symptom development.
Collapse
Affiliation(s)
- Lan-Yen Chang
- Division of Crop Improvement, Tainan District Agricultural Research and Extension Station, Tainan, Taiwan
- Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
| | - Steven A. Sargent
- Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
| | - Jeongim Kim
- Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
| | - Jeffrey K. Brecht
- Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
| |
Collapse
|
8
|
Choi HR, Baek MW, Jeong CS, Tilahun S. Comparative Transcriptome Analysis of Softening and Ripening-Related Genes in Kiwifruit Cultivars Treated with Ethylene. Curr Issues Mol Biol 2022; 44:2593-2613. [PMID: 35735618 PMCID: PMC9221576 DOI: 10.3390/cimb44060177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 11/17/2022] Open
Abstract
This work presents the transcriptome analysis of green ‘Hayward’ (Actinidia deliciosa) and gold ‘Haegeum’ (Actinidia chinensis) kiwifruit cultivars after treatment with ethylene for three days at 25 °C. Illumina high-throughput sequencing platform was used to sequence total mRNAs and the transcriptome gene set was constructed by de novo assembly. A total of 1287 and 1724 unigenes were differentially expressed during the comparison of ethylene treatment with control in green ‘Hayward’ and gold ‘Haegeum’, respectively. From the differentially expressed unigenes, 594 and 906 were upregulated, and 693 and 818 were downregulated in the green and gold kiwifruit cultivars, respectively, when treated with ethylene. We also identified a list of genes that were expressed commonly and exclusively in the green and gold kiwifruit cultivars treated with ethylene. Several genes were expressed differentially during the ripening of kiwifruits, and their cumulative effect brought about the softening- and ripening-related changes. This work also identified and categorized genes related to softening and other changes during ripening. Furthermore, the transcript levels of 12 selected representative genes from the differentially expressed genes (DEGs) identified in the transcriptome analysis were confirmed via quantitative real-time PCR (qRT-PCR) to validate the reliability of the expression profiles obtained from RNA-Seq. The data obtained from the present study will add to the information available on the molecular mechanisms of the effects of ethylene during the ripening of kiwifruits. This study will also provide resources for further studies of the genes related to ripening, helping kiwifruit breeders and postharvest technologists to improve ripening quality.
Collapse
Affiliation(s)
- Han Ryul Choi
- Department of Horticulture, Kangwon National University, Chuncheon 24341, Korea; (H.R.C.); (M.W.B.)
- Interdisciplinary Program in Smart Agriculture, Kangwon National Uinversity, Chuncheon 24341, Korea
| | - Min Woo Baek
- Department of Horticulture, Kangwon National University, Chuncheon 24341, Korea; (H.R.C.); (M.W.B.)
- Interdisciplinary Program in Smart Agriculture, Kangwon National Uinversity, Chuncheon 24341, Korea
| | - Cheon Soon Jeong
- Department of Horticulture, Kangwon National University, Chuncheon 24341, Korea; (H.R.C.); (M.W.B.)
- Interdisciplinary Program in Smart Agriculture, Kangwon National Uinversity, Chuncheon 24341, Korea
- Correspondence: (C.S.J.); (S.T.); Tel.: +82-033-250-6409 (C.S.J.)
| | - Shimeles Tilahun
- Department of Horticulture, Kangwon National University, Chuncheon 24341, Korea; (H.R.C.); (M.W.B.)
- Agriculture and Life Science Research Institute, Kangwon National University, Chuncheon 24341, Korea
- Department of Horticulture and Plant Sciences, Jimma University, Jimma 378, Ethiopia
- Correspondence: (C.S.J.); (S.T.); Tel.: +82-033-250-6409 (C.S.J.)
| |
Collapse
|
9
|
Pedrosa LDF, Raz A, Fabi JP. The Complex Biological Effects of Pectin: Galectin-3 Targeting as Potential Human Health Improvement? Biomolecules 2022; 12:289. [PMID: 35204790 PMCID: PMC8961642 DOI: 10.3390/biom12020289] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 02/07/2023] Open
Abstract
Galectin-3 is the only chimeric representative of the galectin family. Although galectin-3 has ubiquitous regulatory and physiological effects, there is a great number of pathological environments where galectin-3 cooperatively participates. Pectin is composed of different chemical structures, such as homogalacturonans, rhamnogalacturonans, and side chains. The study of pectin's major structural aspects is fundamental to predicting the impact of pectin on human health, especially regarding distinct molecular modulation. One of the explored pectin's biological activities is the possible galectin-3 protein regulation. The present review focuses on revealing the structure/function relationship of pectins, their fragments, and their biological effects. The discussion highlighted by this review shows different effects described within in vitro and in vivo experimental models, with interesting and sometimes contradictory results, especially regarding galectin-3 interaction. The review demonstrates that pectins are promissory food-derived molecules for different bioactive functions. However, galectin-3 inhibition by pectin had been stated in literature before, although it is not a fully understood, experimentally convincing, and commonly agreed issue. It is demonstrated that more studies focusing on structural analysis and its relation to the observed beneficial effects, as well as substantial propositions of cause and effect alongside robust data, are needed for different pectin molecules' interactions with galectin-3.
Collapse
Affiliation(s)
- Lucas de Freitas Pedrosa
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508000, SP, Brazil;
| | - Avraham Raz
- Department of Oncology and Pathology, School of Medicine, Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA;
| | - João Paulo Fabi
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508000, SP, Brazil;
- Food and Nutrition Research Center (NAPAN), University of São Paulo, São Paulo 05508080, SP, Brazil
- Food Research Center (FoRC), CEPID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo 05508080, SP, Brazil
| |
Collapse
|
10
|
Zhang H, Zhang Y, Wang P, Zhang J. Transcriptome profiling of genes associated with fruit firmness in the melon variety 'Baogua' ( Cucumis melo ssp. agrestis Jeffrey). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:301-313. [PMID: 35400878 PMCID: PMC8943068 DOI: 10.1007/s12298-022-01131-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 01/10/2022] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
UNLABELLED Fruit firmness is an important trait of melons due to its effect on fresh fruit consumption, storage, and transport. However, information on the expression of genes influencing the fruit firmness of 'Baogua' (BG) melon (Cucumis melo ssp. agrestis Jeffrey) remains rare. This study aimed to identify the key genes associated with the firmness of BG fruit sampled at 14 and 28 days after pollination (dap) via transcriptome sequencing. A total of 1113 up-regulated and 2224 down-regulated differentially expressed genes (DEGs) were identified. The main Gene Ontology terms assigned to the DEGs were phosphotransferase activity, alcohol group as acceptor, protein phosphorylation, and protein kinase activity. The enriched KEGG pathways involving the DEGs were starch and sucrose metabolism, diterpenoid biosynthesis, plant hormone signal transduction, and MAPK signaling pathway-plant. In addition, qRT-PCR verified that four GAL genes, namely, CmGAL1-4, were differentially expressed at 0, 7, 14, 21, and 28 dap. Our data revealed that CmGAL1 expression was highest at 21 dap. However, the expression levels of CmGAL2-4 were highest at 14 dap. The sequence of CmGAL1 was similar to the sequences of homologs from melon and cucumber. Subcellular localization analysis revealed CmGAL1 was located in the cell membrane and cytoplasm. Our findings implied that fruit development at 14 dap, which is a key time-point, varies considerably from fruit development at 28 dap. Our present study provides new information on the genes associated with BG fruit firmness and help improve the storage and transport of BG fruit prior to processing. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-022-01131-5.
Collapse
Affiliation(s)
- Huijun Zhang
- School of Life Sciences, Huaibei Normal University, Huaibei, 235000 Anhui Province China
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Anhui Jianghuai Horticulture Seeds Co., Ltd, Huaibei, 235000 Anhui Province China
| | - Yan Zhang
- School of Life Sciences, Huaibei Normal University, Huaibei, 235000 Anhui Province China
| | - Pengcheng Wang
- Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei, 230031 Anhui Province China
- Key Laboratory of Intelligent Seedling Breeding in Vegetable Factory, Ma-an-shan, 238200 Anhui Province China
- Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crops, Hefei, 230031 Anhui Province China
| | - Jian Zhang
- Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei, 230031 Anhui Province China
- Key Laboratory of Intelligent Seedling Breeding in Vegetable Factory, Ma-an-shan, 238200 Anhui Province China
- Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crops, Hefei, 230031 Anhui Province China
| |
Collapse
|
11
|
Mathiazhagan M, Chidambara B, Hunashikatti LR, Ravishankar KV. Genomic Approaches for Improvement of Tropical Fruits: Fruit Quality, Shelf Life and Nutrient Content. Genes (Basel) 2021; 12:1881. [PMID: 34946829 PMCID: PMC8701245 DOI: 10.3390/genes12121881] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/23/2021] [Accepted: 11/16/2021] [Indexed: 12/17/2022] Open
Abstract
The breeding of tropical fruit trees for improving fruit traits is complicated, due to the long juvenile phase, generation cycle, parthenocarpy, polyploidy, polyembryony, heterozygosity and biotic and abiotic factors, as well as a lack of good genomic resources. Many molecular techniques have recently evolved to assist and hasten conventional breeding efforts. Molecular markers linked to fruit development and fruit quality traits such as fruit shape, size, texture, aroma, peel and pulp colour were identified in tropical fruit crops, facilitating Marker-assisted breeding (MAB). An increase in the availability of genome sequences of tropical fruits further aided in the discovery of SNP variants/Indels, QTLs and genes that can ascertain the genetic determinants of fruit characters. Through multi-omics approaches such as genomics, transcriptomics, metabolomics and proteomics, the identification and quantification of transcripts, including non-coding RNAs, involved in sugar metabolism, fruit development and ripening, shelf life, and the biotic and abiotic stress that impacts fruit quality were made possible. Utilizing genomic assisted breeding methods such as genome wide association (GWAS), genomic selection (GS) and genetic modifications using CRISPR/Cas9 and transgenics has paved the way to studying gene function and developing cultivars with desirable fruit traits by overcoming long breeding cycles. Such comprehensive multi-omics approaches related to fruit characters in tropical fruits and their applications in breeding strategies and crop improvement are reviewed, discussed and presented here.
Collapse
Affiliation(s)
| | | | | | - Kundapura V. Ravishankar
- Division of Basic Sciences, ICAR Indian Institute of Horticultural Research, Hessaraghatta Lake Post, Bengaluru 560089, India; (M.M.); (B.C.); (L.R.H.)
| |
Collapse
|
12
|
Soares CG, do Prado SBR, Andrade SCS, Fabi JP. Systems Biology Applied to the Study of Papaya Fruit Ripening: The Influence of Ethylene on Pulp Softening. Cells 2021; 10:2339. [PMID: 34571988 PMCID: PMC8467500 DOI: 10.3390/cells10092339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 11/16/2022] Open
Abstract
Papaya is a fleshy fruit that undergoes fast ethylene-induced modifications. The fruit becomes edible, but the fast pulp softening is the main factor that limits the post-harvest period. Papaya fast pulp softening occurs due to cell wall disassembling coordinated by ethylene triggering that massively expresses pectinases. In this work, RNA-seq analysis of ethylene-treated and non-treated papayas enabled a wide transcriptome overview that indicated the role of ethylene during ripening at the gene expression level. Several families of transcription factors (AP2/ERF, NAC, and MADS-box) were differentially expressed. ACO, ACS, and SAM-Mtase genes were upregulated, indicating a high rate of ethylene biosynthesis after ethylene treatment. The correlation among gene expression and physiological data demonstrated ethylene treatment can indeed simulate ripening, and regulation of changes in fruit color, aroma, and flavor could be attributed to the coordinated expression of several related genes. Especially about pulp firmness, the identification of 157 expressed genes related to cell wall metabolism demonstrated that pulp softening is accomplished by a coordinated action of several different cell wall-related enzymes. The mechanism is different from other commercially important fruits, such as strawberry, tomato, kiwifruit, and apple. The observed behavior of this new transcriptomic data confirms ethylene triggering is the main event that elicits fast pulp softening in papayas.
Collapse
Affiliation(s)
- Caroline Giacomelli Soares
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (C.G.S.); (S.B.R.d.P.)
- Food Research Center (FoRC), CEPID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo 05508-080, Brazil
| | - Samira Bernardino Ramos do Prado
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (C.G.S.); (S.B.R.d.P.)
- Food Research Center (FoRC), CEPID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo 05508-080, Brazil
| | - Sónia C. S. Andrade
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade São Paulo, São Paulo 05508-060, Brazil;
| | - João Paulo Fabi
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (C.G.S.); (S.B.R.d.P.)
- Food Research Center (FoRC), CEPID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo 05508-080, Brazil
- Food and Nutrition Research Center (NAPAN), University of São Paulo, São Paulo 05508-060, Brazil
| |
Collapse
|
13
|
do Prado SBR, Minguzzi BT, Hoffmann C, Fabi JP. Modulation of human gut microbiota by dietary fibers from unripe and ripe papayas: Distinct polysaccharide degradation using a colonic in vitro fermentation model. Food Chem 2021; 348:129071. [PMID: 33493843 DOI: 10.1016/j.foodchem.2021.129071] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 12/12/2020] [Accepted: 01/06/2021] [Indexed: 01/01/2023]
Abstract
Dietary fibers (DFs) consumption promotes a healthier gut through colonic fermentation and the modulation of different types of gut bacteria. The aim of this study is to evaluate the production of short-chain fatty acids (SCFA), metabolization of polysaccharides, and changes in the bacterial profile related to DFs extracted from the pulp of unripe and ripe papayas, using a batch colonic in vitro fermentation model. Our results show that fermentation of DFs from papayas induce the production of SCFAs and are utilized in different ways by intestinal microbiota. DFs from ripe papayas showed faster degradation by human gut microorganisms due to higher level of water-soluble polysaccharides. The fermentation of unripe papaya fibers increased the abundance of microorganisms belonging to family Clostridiaceae and genera Coprobacillus, Bulleidia, and Slackia, whereas both fibers increased Clostridium and Bacteroides, showing fruit ripeness affects the fermentation pattern of fruit fibers and their probable beneficial health aspects.
Collapse
Affiliation(s)
- Samira Bernardino Ramos do Prado
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Beatriz Toledo Minguzzi
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Christian Hoffmann
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil; Food Research Center (FoRC), CEPID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo, SP, Brazil
| | - João Paulo Fabi
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil; Food and Nutrition Research Center (NAPAN), University of São Paulo, São Paulo, SP, Brazil; Food Research Center (FoRC), CEPID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo, SP, Brazil.
| |
Collapse
|
14
|
Discovery of SNPs and InDels in papaya genotypes and its potential for marker assisted selection of fruit quality traits. Sci Rep 2021; 11:292. [PMID: 33431939 PMCID: PMC7801719 DOI: 10.1038/s41598-020-79401-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/08/2020] [Indexed: 01/29/2023] Open
Abstract
Papaya is a tropical and climacteric fruit that is recognized for its nutritional benefits and medicinal applications. Its fruits ripen quickly and show a drastic fruit softening, leading to great post-harvest losses. To overcome this scenario, breeding programs of papaya must invest in exploring the available genetic variation to continue developing superior cultivars with improved fruit quality traits. The objective of this study was to perform a whole-genome genotyping (WGG) of papaya, predict the effects of the identified variants, and develop a list of ripening-related genes (RRGs) with linked variants. The Formosa elite lines of papaya Sekati and JS-12 were submitted to WGG with an Illumina Miseq platform. The effects of variants were predicted using the snpEff program. A total of 28,451 SNPs having Ts/Tv (Transition/Transversion) ratio of 2.45 and 1,982 small insertions/deletions (InDels) were identified. Most variant effects were predicted in non-coding regions, with only 2,104 and 138 effects placed in exons and splice site regions, respectively. A total of 106 RRGs were found to be associated with 460 variants, which may be converted into PCR markers to facilitate genetic mapping and diversity studies and to apply marker-assisted selection (MAS) for specific traits in papaya breeding programs.
Collapse
|
15
|
Pedrosa LDF, Lopes RG, Fabi JP. The acid and neutral fractions of pectins isolated from ripe and overripe papayas differentially affect galectin-3 inhibition and colon cancer cell growth. Int J Biol Macromol 2020; 164:2681-2690. [DOI: 10.1016/j.ijbiomac.2020.08.135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/03/2020] [Accepted: 08/17/2020] [Indexed: 12/13/2022]
|
16
|
Tong P, Huai B, Chen Y, Bai M, Wu H. CisPG21 and CisCEL16 are involved in the regulation of the degradation of cell walls during secretory cavity cell programmed cell death in the fruits of Citrus sinensis (L.) Osbeck. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 297:110540. [PMID: 32563470 DOI: 10.1016/j.plantsci.2020.110540] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/18/2020] [Accepted: 05/21/2020] [Indexed: 06/11/2023]
Abstract
Pectinase and cellulase participate in cell wall degradation during secretory cavity formation in Citrus fruits. However, it remains unknown how secretory cavity formation is regulated by pectinase and cellulase genes in a schizolysigenous model. Our Results showed that PCD was involved in the schizolysigenous formation of the secretory cavities, and pectinase was involved in the degradation of the middle lamella while pectinase combined with cellulase were responsible for the degradation of the primary cell wall. Furthermore, the expression levels of CisPG21 and CisCEL16 at the intercellular space-forming and lumen-expanding stages with the continuous degradation of the cell wall were significantly higher than those at the initial cell stage and mature stage. The in situ hybridization (ISH) results also showed that CisPG21 and CisCEL16 were mainly located in the degrading cells of secretory cavities, and signals were very strong at the intercellular space-forming and lumen-expanding stages. In conclusion, pectinase and cellulase are directly involved in the degradation of PCD cell walls during schizolysigenous formation in the secretary cavity of Citrus sinensis (L.) Osbeck fruit, while CisPG21 and CisCEL16 are important regulatory genes of pectinase and cellulose during cell wall degradation.
Collapse
Affiliation(s)
- Panpan Tong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - Bin Huai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - Ying Chen
- Shaanxi University of Chinese Medicine, Xianyang, 712046, China.
| | - Mei Bai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - Hong Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
17
|
Li X, He L, An X, Yu K, Meng N, Duan C, Pan QH. VviWRKY40, a WRKY Transcription Factor, Regulates Glycosylated Monoterpenoid Production by VviGT14 in Grape Berry. Genes (Basel) 2020; 11:genes11050485. [PMID: 32365554 PMCID: PMC7290806 DOI: 10.3390/genes11050485] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/26/2020] [Accepted: 04/28/2020] [Indexed: 11/16/2022] Open
Abstract
Glycosylated volatile precursors are important, particularly in wine grape berries, as they contribute to the final aroma in wines by releasing volatile aglycones during yeast fermentation and wine storage. Previous study demonstrated that VviGT14 was functioned as a critical monoterpene glucosyltransferase in grape berry, while the transcriptional regulation mechanism of VviGT14 was still unknown. Here we identified VviWRKY40 as a binding factor of VviGT14 promoter by both DNA pull-down and yeast one-hybrid screening, followed by a series of in vitro verification. VviWRKY40 expression pattern negatively correlated with that of VviGT14 in grape berries. And the suppressor role of VviWRKY40 was further confirmed by using the dual luciferase assay with Arabidopsis protoplast and grape cell suspension system. Furthermore, the grape suspension cell ABA treatment study showed that ABA downregulated VviWRKY40 transcript level but promoted that of VviGT14, indicating that VviWRKY40 was at the downstream of ABA signal transduction network to regulate monoterpenoid glycosylation. These data extend our knowledge of transcriptional regulation of VviGT14, and provide new targets for grape breeding to alter monoterpenoid composition.
Collapse
Affiliation(s)
- Xiangyi Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.L.); (L.H.); (X.A.); (K.Y.); (N.M.); (C.D.)
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Lei He
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.L.); (L.H.); (X.A.); (K.Y.); (N.M.); (C.D.)
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Xiaohui An
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.L.); (L.H.); (X.A.); (K.Y.); (N.M.); (C.D.)
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Keji Yu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.L.); (L.H.); (X.A.); (K.Y.); (N.M.); (C.D.)
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Nan Meng
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.L.); (L.H.); (X.A.); (K.Y.); (N.M.); (C.D.)
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Changqing Duan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.L.); (L.H.); (X.A.); (K.Y.); (N.M.); (C.D.)
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Qiu-Hong Pan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.L.); (L.H.); (X.A.); (K.Y.); (N.M.); (C.D.)
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
- Correspondence: ; Tel.: +86-010-62737136
| |
Collapse
|
18
|
Huang W, Chen M, Zhao T, Han F, Zhang Q, Liu X, Jiang C, Zhong C. Genome-Wide Identification and Expression Analysis of Polygalacturonase Gene Family in Kiwifruit ( Actinidia chinensis) during Fruit Softening. PLANTS (BASEL, SWITZERLAND) 2020; 9:E327. [PMID: 32143507 PMCID: PMC7154832 DOI: 10.3390/plants9030327] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 02/28/2020] [Accepted: 02/28/2020] [Indexed: 11/17/2022]
Abstract
Polygalacturonase (PG) is an essential hydrolytic enzyme responsible for pectin degradation and thus plays an important role in fruit softening and other cell separation processes. PG protein is encoded by a multigene family, however, the members of PG gene family in kiwifruit (Actinidia chinensis) have not been extensively identified. In this study, a total of 51 AcPG genes in kiwifruit genome were identified. They are phylogenetically clustered into seven clades, and of them AcPG4 and AcPG18 with other known PG genes involved in fruit softening from peach, pear, papaya and melon form a small cluster together. The members of kiwifruit PG gene family consist of three to nine exons and two to eight introns, and their exon/intron structures are generally conserved in all clades except the clade D and E. During fruit softening of kiwifruit 'Donghong' under ambient temperature, cell wall modifying enzymes, including PG, PL (pectate and pectin lyases), and PE (pectinesterase, also known as pectin methylesterase, PME) showed a different activity profile, and of them, PG and PE activities largely correlated with the change of pectin content and firmness. Moreover, only 11 AcPG genes were highly or moderately expressed in softening fruit, and of which three AcPG genes (AcPG4, AcPG18, and AcPG8, especially the former two) has been found to strongly correlate with the profile of PG activity and pectin content, as well as fruit firmness, suggesting that they maybe play an important role in fruit softening. Thus, our findings not only benefit the functional characterization of kiwifruit PG genes, but also provide a subset of potential PG candidate genes for further genetic manipulation.
Collapse
Affiliation(s)
- Wenjun Huang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (W.H.); (M.C.); (T.Z.); (F.H.); (Q.Z.); (C.J.)
- Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- Engineering Laboratory for Kiwifruit Industrial Technology, Chinese Academy of Sciences, Wuhan 430074, China
| | - Meiyan Chen
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (W.H.); (M.C.); (T.Z.); (F.H.); (Q.Z.); (C.J.)
- Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- Engineering Laboratory for Kiwifruit Industrial Technology, Chinese Academy of Sciences, Wuhan 430074, China
| | - Tingting Zhao
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (W.H.); (M.C.); (T.Z.); (F.H.); (Q.Z.); (C.J.)
- Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- Engineering Laboratory for Kiwifruit Industrial Technology, Chinese Academy of Sciences, Wuhan 430074, China
| | - Fei Han
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (W.H.); (M.C.); (T.Z.); (F.H.); (Q.Z.); (C.J.)
- Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- Engineering Laboratory for Kiwifruit Industrial Technology, Chinese Academy of Sciences, Wuhan 430074, China
| | - Qi Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (W.H.); (M.C.); (T.Z.); (F.H.); (Q.Z.); (C.J.)
- Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- Engineering Laboratory for Kiwifruit Industrial Technology, Chinese Academy of Sciences, Wuhan 430074, China
| | - Xiaoli Liu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (W.H.); (M.C.); (T.Z.); (F.H.); (Q.Z.); (C.J.)
- Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- Engineering Laboratory for Kiwifruit Industrial Technology, Chinese Academy of Sciences, Wuhan 430074, China
| | - Changying Jiang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (W.H.); (M.C.); (T.Z.); (F.H.); (Q.Z.); (C.J.)
- Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Caihong Zhong
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (W.H.); (M.C.); (T.Z.); (F.H.); (Q.Z.); (C.J.)
- Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- Engineering Laboratory for Kiwifruit Industrial Technology, Chinese Academy of Sciences, Wuhan 430074, China
| |
Collapse
|
19
|
Pectin Interaction with Immune Receptors is Modulated by Ripening Process in Papayas. Sci Rep 2020; 10:1690. [PMID: 32015377 PMCID: PMC6997392 DOI: 10.1038/s41598-020-58311-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 01/07/2020] [Indexed: 01/05/2023] Open
Abstract
Dietary fibers have been shown to exert immune effects via interaction with pattern recognition receptors (PRR) such as toll-like receptors (TLR) and nucleotide-binding oligomerization domain (NOD)-like receptors. Pectin is a dietary fiber that interacts with PRR depending on its chemical structure. Papaya pectin retains different chemical structures at different ripening stages. How this influence PRR signaling is unknown. The aim of this work was to determine how ripening influences pectin structures and their ability to interact with TLR2, 3, 4, 5 and 9, and NOD1 and 2. It was evaluated the interaction of the water-soluble fractions rich in pectin extracted from unripe to ripe papayas. The pectin extracted from ripe papayas activated all the TLR and, to a lesser extent, the NOD receptors. The pectin extracted from unripe papayas also activated TLR2, 4 and 5 but inhibited the activation of TLR3 and 9. The differences in pectin structures are the higher methyl esterification and smaller galacturonan chains of pectin from ripe papayas. Our finding might lead to selection of ripening stages for tailored modulation of PRR to support or attenuate immunity.
Collapse
|
20
|
Metabolome and proteome of ethylene-treated papayas reveal different pathways to volatile compounds biosynthesis. Food Res Int 2020; 131:108975. [PMID: 32247445 DOI: 10.1016/j.foodres.2019.108975] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 12/23/2019] [Accepted: 12/31/2019] [Indexed: 11/20/2022]
Abstract
Papayas undergo fast postharvest changes triggered by the plant hormone ethylene. Some important pathways have been analyzed in limited studies (transcriptomics and targeted metabolomics); however, broad use of proteomics or untargeted metabolomics have not yet been used in papayas. In this study, two groups of green papayas (150 days after anthesis-physiological maturity for papayas) were treated with ethylene at different times (6 and 12 h) and their metabolic changes in fruit pulp were evaluated with untargeted metabolomics (general metabolites and volatile compounds) and proteomics. Polar metabolites exhibited distinct patterns, especially with regard to some amino and fatty acids during stimulated ripening. In particular, glutamate increased through a possible gamma aminobutyric acid (GABA) shunt and/or proteases activity. Moreover, the stimulated ripening altered the volatile compounds and the protein profiles. The results suggest that changes in membrane breakdown and the resulting oxidative processes could be responsible for volatile compound production, altering some sensorial qualities of papayas, such as pulp softening and the specific papaya linalool volatile compound increment. Thus, GABA levels could also be a strong biological marker for papaya development and ripening stages. This study applied two "omic" techniques that provided insight into how the plant hormone ethylene could influence papaya postharvest quality.
Collapse
|
21
|
Dos Santos CP, Batista MC, da Cruz Saraiva KD, Roque ALM, de Souza Miranda R, Alexandre E Silva LM, Moura CFH, Alves Filho EG, Canuto KM, Costa JH. Transcriptome analysis of acerola fruit ripening: insights into ascorbate, ethylene, respiration, and softening metabolisms. PLANT MOLECULAR BIOLOGY 2019; 101:269-296. [PMID: 31338671 DOI: 10.1007/s11103-019-00903-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 07/15/2019] [Indexed: 06/10/2023]
Abstract
The first transcriptome coupled to metabolite analyses reveals major trends during acerola fruit ripening and shed lights on ascorbate, ethylene signalling, cellular respiration, sugar accumulation, and softening key regulatory genes. Acerola is a fast growing and ripening fruit that exhibits high amounts of ascorbate. During ripening, the fruit experience high respiratory rates leading to ascorbate depletion and a quickly fragile and perishable state. Despite its growing economic importance, understanding of its developmental metabolism remains obscure due to the absence of genomic and transcriptomic data. We performed an acerola transcriptome sequencing that generated over 600 million reads, 40,830 contigs, and provided the annotation of 25,298 unique transcripts. Overall, this study revealed the main metabolic changes that occur in the acerola ripening. This transcriptional profile linked to metabolite measurements, allowed us to focus on ascorbate, ethylene, respiration, sugar, and firmness, the major metabolism indicators for acerola quality. Our results suggest a cooperative role of several genes involved in AsA biosynthesis (PMM, GMP1 and 3, GME1 and 2, GGP1 and 2), translocation (NAT3, 4, 6 and 6-like) and recycling (MDHAR2 and DHAR1) pathways for AsA accumulation in unripe fruits. Moreover, the association of metabolites with transcript profiles provided a comprehensive understanding of ethylene signalling, respiration, sugar accumulation and softening of acerola, shedding light on promising key regulatory genes. Overall, this study provides a foundation for further examination of the functional significance of these genes to improve fruit quality traits.
Collapse
Affiliation(s)
- Clesivan Pereira Dos Santos
- Functional Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, 60451-970, Brazil
| | - Mathias Coelho Batista
- Functional Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, 60451-970, Brazil
| | - Kátia Daniella da Cruz Saraiva
- Federal Institute of Education, Science and Technology of Paraíba, Campus Princesa Isabel, Princesa Isabel, Paraíba, Brazil
| | - André Luiz Maia Roque
- Functional Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, 60451-970, Brazil
| | | | | | | | | | | | - José Hélio Costa
- Functional Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, 60451-970, Brazil.
| |
Collapse
|
22
|
Dautt-Castro M, López-Virgen AG, Ochoa-Leyva A, Contreras-Vergara CA, Sortillón-Sortillón AP, Martínez-Téllez MA, González-Aguilar GA, Casas-Flores JS, Sañudo-Barajas A, Kuhn DN, Islas-Osuna MA. Genome-Wide Identification of Mango ( Mangifera indica L.) Polygalacturonases: Expression Analysis of Family Members and Total Enzyme Activity During Fruit Ripening. FRONTIERS IN PLANT SCIENCE 2019; 10:969. [PMID: 31417586 PMCID: PMC6682704 DOI: 10.3389/fpls.2019.00969] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/10/2019] [Indexed: 05/22/2023]
Abstract
Mango (Mangifera indica L.) is an important commercial fruit that shows a noticeable loss of firmness during ripening. Polygalacturonase (PG, E.C. 3.2.1.15) is a crucial enzyme for cell wall loosening during fruit ripening since it solubilizes pectin and its activity correlates with fruit softening. Mango PGs were mapped to a genome draft using seventeen PGs found in mango transcriptomes and 48 bonafide PGs were identified. The phylogenetic analysis suggests that they are related to Citrus sinensis, which may indicate a recent evolutive divergence and related functions with orthologs in the tree. Gene expression analysis for nine PGs showed differential expression for them during post-harvest fruit ripening, MiPG21-1, MiPG14, MiPG69-1, MiPG17, MiPG49, MiPG23-3, MiPG22-7, and MiPG16 were highly up-regulated. PG enzymatic activity also increased during maturation and these results correlate with the loss of firmness observed in mango during post-harvest ripening, between the ethylene production burst and the climacteric peak. The analysis of PGs promoter regions identified regulatory sequences associated to ripening such as MADS-box, ethylene regulation like ethylene insensitive 3 (EIN3) factors, APETALA2-like and ethylene response element factors. During mango fruit ripening the action of at least these nine PGs contribute to softening, and their expression is regulated at the transcriptional level. The prediction of the tridimensional structure of some PGs showed a conserved parallel beta-helical fold related to polysaccharide hydrolysis and a modular architecture, where exons correspond to structural elements. Further biotechnological approaches could target specific softening-related PGs to extend mango post-harvest shelf life.
Collapse
Affiliation(s)
- Mitzuko Dautt-Castro
- Laboratorio de Genética y Biología Molecular de Plantas, Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Hermosillo, Mexico
- Laboratorio de Genómica Funcional y Comparativa, División de Biología Molecular, IPICYT, San Luis Potosí, Mexico
| | - Andrés G. López-Virgen
- Laboratorio de Genética y Biología Molecular de Plantas, Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Hermosillo, Mexico
| | - Adrian Ochoa-Leyva
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico
| | - Carmen A. Contreras-Vergara
- Laboratorio de Genética y Biología Molecular de Plantas, Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Hermosillo, Mexico
| | - Ana P. Sortillón-Sortillón
- Laboratorio de Genética y Biología Molecular de Plantas, Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Hermosillo, Mexico
| | - Miguel A. Martínez-Téllez
- Laboratorio de Genética y Biología Molecular de Plantas, Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Hermosillo, Mexico
| | - Gustavo A. González-Aguilar
- Laboratorio de Genética y Biología Molecular de Plantas, Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Hermosillo, Mexico
| | - J. Sergio Casas-Flores
- Laboratorio de Genómica Funcional y Comparativa, División de Biología Molecular, IPICYT, San Luis Potosí, Mexico
| | - Adriana Sañudo-Barajas
- Laboratorio de Bioquímica, Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Unidad Culiacán, Culiacán, Mexico
| | - David N. Kuhn
- Agricultural Research Service, Subtropical Horticulture Research Station, United States Department of Agriculture, Miami, FL, United States
| | - Maria A. Islas-Osuna
- Laboratorio de Genética y Biología Molecular de Plantas, Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Hermosillo, Mexico
| |
Collapse
|
23
|
Jiang B, Ou S, Xu L, Mai W, Ye M, Gu H, Zhang T, Yuan C, Shen C, Wang J, Liu K. Comparative proteomic analysis provides novel insights into the regulation mechanism underlying papaya (Carica papaya L.) exocarp during fruit ripening process. BMC PLANT BIOLOGY 2019; 19:238. [PMID: 31170911 PMCID: PMC6554998 DOI: 10.1186/s12870-019-1845-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 05/22/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Papaya (Carica papaya L.) is a popular climacteric fruit, undergoing various physico-chemical changes during ripening. Although papaya is widely cultivated and consumed, few studies on the changes in metabolism during its ripening process at the proteasome level have been performed. Using a newly developed TMT-LCMS analysis, proteomes of papaya fruit at different ripening stages were investigated. RESULTS In total, 3220 proteins were identified, of which 2818 proteins were quantified. The differential accumulated proteins (DAPs) exhibited various biological functions and diverse subcellular localizations. The KEGG enrichment analysis showed that various metabolic pathways were significantly altered, particularly in flavonoid and fatty acid metabolisms. The up-regulation of several flavonoid biosynthesis-related proteins may provide more raw materials for pigment biosynthesis, accelerating the color variation of papaya fruit. Variations in the fatty acid metabolism- and cell wall degradation-related proteins were investigated during the ripening process. Furthermore, the contents of several important fatty acids were determined, and increased unsaturated fatty acids may be associated with papaya fruit volatile formation. CONCLUSIONS Our data may give an intrinsic explanation of the variations in metabolism during the ripening process of papaya fruit.
Collapse
Affiliation(s)
- Bian Jiang
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, 524048 China
| | - Siyan Ou
- Root Biology Center, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642 China
| | - Ling Xu
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, 524048 China
| | - Wanyi Mai
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, 524048 China
| | - Meijun Ye
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, 524048 China
| | - Haiping Gu
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, 524048 China
| | - Tao Zhang
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, 524048 China
| | - Changchun Yuan
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, 524048 China
| | - Chenjia Shen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036 China
| | - Jinxiang Wang
- Root Biology Center, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642 China
| | - Kaidong Liu
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, 524048 China
| |
Collapse
|
24
|
Fabi JP, do Prado SBR. Fast and Furious: Ethylene-Triggered Changes in the Metabolism of Papaya Fruit During Ripening. FRONTIERS IN PLANT SCIENCE 2019; 10:535. [PMID: 31105730 PMCID: PMC6497978 DOI: 10.3389/fpls.2019.00535] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/08/2019] [Indexed: 06/09/2023]
Abstract
Papaya is a climacteric fleshy fruit characterized by fast ripening after harvest. During the relatively short postharvest period, papaya fruit undergoes several changes in metabolism that result in pulp softening and sweetening, as well as the development of a characteristic aroma. Since papaya is one of the most cultivated and appreciated tropical fruit crops worldwide, extensive research has been conducted to not only understand the formation of the quality and nutritional attributes of ripe fruit but also to develop methods for controlling the ripening process. However, most strategies to postpone papaya ripening, and therefore to increase shelf life, have failed to maintain fruit quality. Ethylene blockage precludes carotenoid biosynthesis, while cold storage can induce chilling injury and negatively affect the volatile profile of papaya. As a climacteric fruit, the fast ripening of papaya is triggered by ethylene biosynthesis. The generation of the climacteric ethylene positive feedback loop is elicited by the expression of a specific transcription factor that leads to an up-regulation of 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (ACS) and ACC-oxidase (ACO) expression, triggering the system II ethylene biosynthesis. The ethylene burst occurs about 3 to 4 days after harvest and induces pectinase expression. The disassembling of the papaya cell wall appears to help in fruit sweetness, while glucose and fructose are also produced by acidic invertases. The increase in ethylene production also results in carotenoid accumulation due to the induction of cyclases and hydroxylases, leading to yellow and red/orange-colored pulp phenotypes. Moreover, the production of volatile terpene linalool, an important biological marker for papaya's sensorial quality, is also induced by ethylene. All these mentioned processes are related to papaya's sensorial and nutritional quality. We describe the understanding of ethylene-triggered events that influence papaya quality and nutritional traits, as these characteristics are a consequence of an accelerated metabolism during fruit ripening.
Collapse
Affiliation(s)
- João Paulo Fabi
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
- Food Research Center (FoRC), CEPID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo, Brazil
- Food and Nutrition Research Center (NAPAN), University of São Paulo, São Paulo, Brazil
| | - Samira Bernardino Ramos do Prado
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
- Food Research Center (FoRC), CEPID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo, Brazil
| |
Collapse
|
25
|
Chelate-soluble pectin fraction from papaya pulp interacts with galectin-3 and inhibits colon cancer cell proliferation. Int J Biol Macromol 2019; 126:170-178. [DOI: 10.1016/j.ijbiomac.2018.12.191] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/19/2018] [Accepted: 12/21/2018] [Indexed: 12/29/2022]
|
26
|
Jamaluddin ND, Rohani ER, Mohd Noor N, Goh HH. Transcriptome-wide effect of DE-ETIOLATED1 (DET1) suppression in embryogenic callus of Carica papaya. JOURNAL OF PLANT RESEARCH 2019; 132:181-195. [PMID: 30649676 DOI: 10.1007/s10265-019-01086-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 12/19/2018] [Indexed: 06/09/2023]
Abstract
Papaya is one of the most nutritional fruits, rich in vitamins, carotenoids, flavonoids and other antioxidants. Previous studies showed phytonutrient improvement without affecting quality in tomato fruit and rapeseed through the suppression of DE-ETIOLATED-1 (DET1), a negative regulator in photomorphogenesis. This study is conducted to study the effects of DET1 gene suppression in papaya embryogenic callus. Immature zygotic embryos were transformed with constitutive expression of a hairpin DET1 construct (hpDET1). PCR screening of transformed calli and reverse transcription quantitative PCR (RT-qPCR) verified that DET1 gene downregulation in two of the positive transformants. High-throughput cDNA 3' ends sequencing on DET1-suppressed and control calli for transcriptomic analysis of global gene expression identified a total of 452 significant (FDR < 0.05) differentially expressed genes (DEGs) upon DET1 suppression. The 123 upregulated DEGs were mainly involved in phenylpropanoid biosynthesis and stress responses, compared to 329 downregulated DEGs involved in developmental processes, lipid metabolism, and response to various stimuli. This is the first study to demonstrate transcriptome-wide relationship between light-regulated pathway and secondary metabolite biosynthetic pathways in papaya. This further supports that the manipulation of regulatory gene involved in light-regulated pathway is possible for phytonutrient improvement of tropical fruit crops.
Collapse
Affiliation(s)
- Nur Diyana Jamaluddin
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, UKM Bangi, 43600, Bangi, Selangor, Malaysia
| | - Emelda Rosseleena Rohani
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, UKM Bangi, 43600, Bangi, Selangor, Malaysia
| | - Normah Mohd Noor
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, UKM Bangi, 43600, Bangi, Selangor, Malaysia
| | - Hoe-Han Goh
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, UKM Bangi, 43600, Bangi, Selangor, Malaysia.
| |
Collapse
|
27
|
Ding X, Zhu X, Ye L, Xiao S, Wu Z, Chen W, Li X. The interaction of CpEBF1 with CpMADSs is involved in cell wall degradation during papaya fruit ripening. HORTICULTURE RESEARCH 2019; 6:13. [PMID: 30622723 PMCID: PMC6312555 DOI: 10.1038/s41438-018-0095-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/09/2018] [Accepted: 09/19/2018] [Indexed: 05/20/2023]
Abstract
Ethylene plays a pivotal role in climacteric fruit ripening; whereas 1-MCP, a non-toxic antagonist of ethylene, prevents ethylene-dependent responses and fruit ripening. In this study, a short-term treatment (1 h) with 400 nL L-1 1-MCP delayed the ripening of harvested papaya. However, long-term application of 1-MCP (400 nL L-1, 16 h) resulted in abnormal fruit ripening, with the fruits exhibiting normal yellowing without softening, significantly higher cellulose and lignin contents, and intact cell walls (CW). Furthermore, we found that long-term treatment with 1-MCP significantly inhibited the expression of CpEBF1, an EIN3-binding F-box-1 gene. A protein interaction analysis using yeast two-hybrid, BiFC and GST pull-down assays showed that CpEBF1 interacts with the CpMADS1/3 and CpEIL1 proteins. The interaction of CpEBF1 with CpMADS1/3 further activated the activities of CW-degradation gene promoters. Subcellular localization showed that these proteins were localized in the nucleus. Additionally, the expression levels of CpMADS1/3, CpEIL1, and several CW-degradation-related genes were significantly downregulated by long-term 1-MCP treatment. Therefore, we propose that the inhibited expression of CpEBF1 and CpMADS1/3 resulted in the repressed activation of CW-degradation-related genes via their interaction, thereby resulting in fruit softening disorders.
Collapse
Affiliation(s)
- Xiaochun Ding
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou, 510642 China
| | - Xiaoyang Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou, 510642 China
| | - Lanlan Ye
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou, 510642 China
| | - Shuangling Xiao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou, 510642 China
| | - Zhenxian Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou, 510642 China
| | - Weixin Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou, 510642 China
| | - Xueping Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou, 510642 China
| |
Collapse
|
28
|
Genome-Wide Identification and Analysis of Polygalacturonase Genes in Solanum lycopersicum. Int J Mol Sci 2018; 19:ijms19082290. [PMID: 30081560 PMCID: PMC6121401 DOI: 10.3390/ijms19082290] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 07/26/2018] [Accepted: 08/02/2018] [Indexed: 01/01/2023] Open
Abstract
Polygalacturonase (PG), a large hydrolase family in plants, is involved in pectin disassembly of the cell wall in plants. The present study aims to characterize PG genes and investigate their expression patterns in Solanum lycopersicum. We identified 54 PG genes in the tomato genome and compared their amino acid sequences with their Arabidopsis counterpart. Subsequently, we renamed these PG genes according to their Arabidopsis homologs. Phylogenetic and evolutionary analysis revealed that these tomato PG genes could be classified into seven clades, and within each clade the exon/intron structures were conserved. Expression profiles analysis through quantitive real-time polymerase chain reaction (qRT-PCR) revealed that most SlPGs had specific or high expression patterns in at least one organ, and particularly five PG genes (SlPG14, SlPG15, SlPG49, SlPG70, and SlPG71) associated with fruit development. Promoter analysis showed that more than three cis-elements associated with plant hormone response, environmental stress response or specific organ/tissue development exhibited in each SlPG promoter regions. In conclusion, our results may provide new insights for the further study of PG gene function during plant development.
Collapse
|
29
|
Liu K, Yuan C, Li H, Chen K, Lu L, Shen C, Zheng X. A qualitative proteome-wide lysine crotonylation profiling of papaya (Carica papaya L.). Sci Rep 2018; 8:8230. [PMID: 29844531 PMCID: PMC5974297 DOI: 10.1038/s41598-018-26676-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 05/17/2018] [Indexed: 02/06/2023] Open
Abstract
Lysine crotonylation of histone proteins is a recently-identified post-translational modification with multiple cellular functions. However, no information about lysine crotonylation of non-histone proteins in fruit cells is available. Using high-resolution LC-MS/MS coupled with highly sensitive immune-affinity antibody analysis, a global crotonylation proteome analysis of papaya fruit (Carica papaya L.) was performed. In total, 2,120 proteins with 5,995 lysine crotonylation sites were discovered, among which eight conserved motifs were identified. Bioinformatic analysis linked crotonylated proteins to multiple metabolic pathways, including biosynthesis of antibiotics, carbon metabolism, biosynthesis of amino acids, and glycolysis. particularly, 40 crotonylated enzymes involved in various pathways of amino acid metabolism were identified, suggesting a potential conserved function for crotonylation in the regulation of amino acid metabolism. Numerous crotonylation sites were identified in proteins involved in the hormone signaling and cell wall-related pathways. Our comprehensive crotonylation proteome indicated diverse functions for lysine crotonylation in papaya.
Collapse
Affiliation(s)
- Kaidong Liu
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, Guangdong, 524048, China. .,College of Bioscience and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, China.
| | - Changchun Yuan
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, Guangdong, 524048, China
| | - Haili Li
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, Guangdong, 524048, China
| | - Kunyan Chen
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, Guangdong, 524048, China
| | - Lishi Lu
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, Guangdong, 524048, China
| | - Chenjia Shen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Xiaolin Zheng
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310035, China.
| |
Collapse
|
30
|
Liu K, Yuan C, Li H, Chen K, Lu L, Shen C, Zheng X. A qualitative proteome-wide lysine crotonylation profiling of papaya (Carica papaya L.). Sci Rep 2018. [PMID: 29844531 DOI: 10.1038/s41598018-26676-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023] Open
Abstract
Lysine crotonylation of histone proteins is a recently-identified post-translational modification with multiple cellular functions. However, no information about lysine crotonylation of non-histone proteins in fruit cells is available. Using high-resolution LC-MS/MS coupled with highly sensitive immune-affinity antibody analysis, a global crotonylation proteome analysis of papaya fruit (Carica papaya L.) was performed. In total, 2,120 proteins with 5,995 lysine crotonylation sites were discovered, among which eight conserved motifs were identified. Bioinformatic analysis linked crotonylated proteins to multiple metabolic pathways, including biosynthesis of antibiotics, carbon metabolism, biosynthesis of amino acids, and glycolysis. particularly, 40 crotonylated enzymes involved in various pathways of amino acid metabolism were identified, suggesting a potential conserved function for crotonylation in the regulation of amino acid metabolism. Numerous crotonylation sites were identified in proteins involved in the hormone signaling and cell wall-related pathways. Our comprehensive crotonylation proteome indicated diverse functions for lysine crotonylation in papaya.
Collapse
Affiliation(s)
- Kaidong Liu
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, Guangdong, 524048, China.
- College of Bioscience and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, China.
| | - Changchun Yuan
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, Guangdong, 524048, China
| | - Haili Li
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, Guangdong, 524048, China
| | - Kunyan Chen
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, Guangdong, 524048, China
| | - Lishi Lu
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, Guangdong, 524048, China
| | - Chenjia Shen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Xiaolin Zheng
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310035, China.
| |
Collapse
|
31
|
Wang D, Yeats TH, Uluisik S, Rose JKC, Seymour GB. Fruit Softening: Revisiting the Role of Pectin. TRENDS IN PLANT SCIENCE 2018; 23:302-310. [PMID: 29429585 DOI: 10.1016/j.tplants.2018.01.006] [Citation(s) in RCA: 256] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 01/16/2018] [Accepted: 01/18/2018] [Indexed: 05/18/2023]
Abstract
Fruit softening, which is a major determinant of shelf life and commercial value, is the consequence of multiple cellular processes, including extensive remodeling of cell wall structure. Recently, it has been shown that pectate lyase (PL), an enzyme that degrades de-esterified pectin in the primary wall, is a major contributing factor to tomato fruit softening. Studies of pectin structure, distribution, and dynamics have indicated that pectins are more tightly integrated with cellulose microfibrils than previously thought and have novel structural features, including branches of the main polymer backbone. Moreover, recent studies of the significance of pectinases, such as PL and polygalacturonase, are consistent with a causal relationship between pectin degradation and a major effect on fruit softening.
Collapse
Affiliation(s)
- Duoduo Wang
- Plant and Crop Science Division, School of Biosciences, University of Nottingham, Sutton Bonington, Loughborough, LE12 5RD, UK
| | - Trevor H Yeats
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA; Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
| | - Selman Uluisik
- Colemerik Vocational School, Hakkari University, University Street, Karsiyaka Neighborhood 30000, Hakkari, Turkey
| | - Jocelyn K C Rose
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Graham B Seymour
- Plant and Crop Science Division, School of Biosciences, University of Nottingham, Sutton Bonington, Loughborough, LE12 5RD, UK.
| |
Collapse
|
32
|
He H, Bai M, Tong P, Hu Y, Yang M, Wu H. CELLULASE6 and MANNANASE7 Affect Cell Differentiation and Silique Dehiscence. PLANT PHYSIOLOGY 2018; 176:2186-2201. [PMID: 29348141 PMCID: PMC5841693 DOI: 10.1104/pp.17.01494] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 01/09/2018] [Indexed: 05/22/2023]
Abstract
Cellulases, hemicellulases, and pectinases play important roles in fruit development and maturation. Although mutants with defects in these processes have not been reported for cellulase or hemicellulase genes, the pectinases ARABIDOPSIS DEHISCENCE ZONE POLYGALACTURONASE1 (ADPG1) and ADPG2 were previously shown to be essential for silique dehiscence in Arabidopsis (Arabidopsis thaliana). Here, we demonstrate that the cellulase gene CELLULASE6 (CEL6) and the hemicellulase gene MANNANASE7 (MAN7) function in the development and dehiscence of Arabidopsis siliques. We found that these genes were expressed in both vegetative and reproductive organs and that their expression in the silique partially depended on the INDEHISCENT and ALCATRAZ transcription factors. Cell differentiation was delayed in the dehiscence zone of cel6 and man7 mutant siliques at early flower development stage 17, and a comparison of the spatio-temporal patterns of CEL6 and MAN7 expression with the locations of delayed cell differentiation in the cel6 and man7 mutants revealed that CEL6 and MAN7 likely indirectly affect the timing of cell differentiation in the silique valve at this stage. CEL6 and MAN7 were also found to promote cell degeneration in the separation layer in nearly mature siliques, as cells in this layer remained intact in the cel6 and man7 mutants and the cel6-1 man7-3 double mutant, whereas they degenerated in the wild-type control. Phenotypic studies of single, double, triple, and quadruple mutants revealed that higher-order mutant combinations of cel6-1, man7-3, and adpg1-1 and adpg2-1 produced more severe silique indehiscent phenotypes than the corresponding lower-order mutant combinations, except for some combinations involving cel6-1, man7-3, and adpg2-1 Our results demonstrate that the ability of the silique to dehisce can be manipulated to different degrees by altering the activities of various cell wall-modifying enzymes.
Collapse
Affiliation(s)
- Hanjun He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Department of Plant Biology, Ecology, and Evolution, Oklahoma State University, Stillwater, Oklahoma 74078
| | - Mei Bai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Panpan Tong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Yanting Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Ming Yang
- Department of Plant Biology, Ecology, and Evolution, Oklahoma State University, Stillwater, Oklahoma 74078
| | - Hong Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
33
|
Chen L, Zhou Y, He Z, Liu Q, Lai S, Yang H. Effect of exogenous ATP on the postharvest properties and pectin degradation of mung bean sprouts (Vigna radiata). Food Chem 2018; 251:9-17. [PMID: 29426429 DOI: 10.1016/j.foodchem.2018.01.061] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 12/28/2017] [Accepted: 01/07/2018] [Indexed: 01/29/2023]
Abstract
The effects of exogenous ATP on the postharvest quality, browning and softening of mung bean (Vigna radiata) sprouts were evaluated. ATP treatment significantly alleviated the quality loss and browning events during the storage of 3 days. It also reduced the oxidant damage by inducing high activities of peroxidase (9.3-13.9%) and superoxide dismutase (8.8-10.3%) which scavenged the reactive oxygen species (ROS) effectively. Transcriptional results indicated that ATP treatment decreased VrPL1, VrPME and VrPG1 gene expression levels more than 2 folds at some time points. Furthermore, the atomic force microscope (AFM) images revealed that the pectin degradation was notably slowed by ATP treatment and the width and height of pectin backbone were better maintained (47.1% and 45.6% higher than control without ATP treatment). The cooperative effects of ROS scavenging and decreased expressions of pectin-related genes might contribute to the deferred pectin deterioration and firmness loss by ATP treatment.
Collapse
Affiliation(s)
- Lin Chen
- Food Science and Technology Programme, c/o Department of Chemistry, National University of Singapore, Singapore 117543, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, PR China
| | - Yige Zhou
- Food Science and Technology Programme, c/o Department of Chemistry, National University of Singapore, Singapore 117543, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, PR China
| | - Zhenyun He
- Food Science and Technology Programme, c/o Department of Chemistry, National University of Singapore, Singapore 117543, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, PR China
| | - Qin Liu
- Food Science and Technology Programme, c/o Department of Chemistry, National University of Singapore, Singapore 117543, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, PR China
| | - Shaojuan Lai
- Guangzhou Pulu Medical Technology Co., Ltd, Guangzhou, Guangdong 510800, PR China
| | - Hongshun Yang
- Food Science and Technology Programme, c/o Department of Chemistry, National University of Singapore, Singapore 117543, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, PR China.
| |
Collapse
|
34
|
Cáez-Ramírez G, Alamilla-Beltrán L, Gutiérrez-López GF. Morphometric analysis and tissue structural continuity evaluation of senescence progression in fresh cut papaya ( Carica papaya L.). J FOOD ENG 2018. [DOI: 10.1016/j.jfoodeng.2017.08.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
35
|
Prado SBRD, Ferreira GF, Harazono Y, Shiga TM, Raz A, Carpita NC, Fabi JP. Ripening-induced chemical modifications of papaya pectin inhibit cancer cell proliferation. Sci Rep 2017; 7:16564. [PMID: 29185464 PMCID: PMC5707353 DOI: 10.1038/s41598-017-16709-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/13/2017] [Indexed: 12/13/2022] Open
Abstract
Papaya (Carica papaya L.) is a fleshy fruit with a rapid pulp softening during ripening. Ripening events are accompanied by gradual depolymerization of pectic polysaccharides, including homogalacturonans, rhamnogalacturonans, arabinogalactans, and their modified forms. During intermediate phases of papaya ripening, partial depolymerization of pectin to small size with decreased branching had enhanced pectin anti-cancer properties. These properties were lost with continued decomposition at later phases of ripening. Pectin extracted from intermediate phases of papaya ripening markedly decreased cell viability, induced necroptosis, and delayed culture wound closing in three types of immortalized cancer cell lines. The possible explanation for these observations is that papaya pectins extracted from the third day after harvesting have disrupted interaction between cancer cells and the extracellular matrix proteins, enhancing cell detachment and promoting apoptosis/necroptosis. The anticancer activity of papaya pectin is dependent on the presence and the branch of arabinogalactan type II (AGII) structure. These are first reports of AGII in papaya pulp and the first reports of an in vitro biological activity of papaya pectins that were modified by natural action of ripening-induced pectinolytic enzymes. Identification of the specific pectin branching structures presents a biological route to enhancing anti-cancer properties in papaya and other climacteric fruits.
Collapse
Affiliation(s)
- Samira Bernardino Ramos do Prado
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Gabrielle Fernandez Ferreira
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Yosuke Harazono
- Departments of Oncology and Pathology, School of Medicine, Wayne State University, and Karmanos Cancer Institute, Detroit, MI, USA
- Department of Maxillofacial Surgery, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Tânia Misuzu Shiga
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Avraham Raz
- Departments of Oncology and Pathology, School of Medicine, Wayne State University, and Karmanos Cancer Institute, Detroit, MI, USA
| | - Nicholas C Carpita
- Department of Botany & Plant Pathology, Purdue University, West Lafayette, IN, USA
| | - João Paulo Fabi
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil.
- Food and Nutrition Research Center (NAPAN), University of São Paulo, São Paulo, SP, Brazil.
- Food Research Center (FoRC), CEPID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo, SP, Brazil.
| |
Collapse
|
36
|
Shen YH, Lu BG, Feng L, Yang FY, Geng JJ, Ming R, Chen XJ. Isolation of ripening-related genes from ethylene/1-MCP treated papaya through RNA-seq. BMC Genomics 2017; 18:671. [PMID: 28859626 PMCID: PMC5580268 DOI: 10.1186/s12864-017-4072-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 08/16/2017] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Since papaya is a typical climacteric fruit, exogenous ethylene (ETH) applications can induce premature and quicker ripening, while 1-methylcyclopropene (1-MCP) slows down the ripening processes. Differential gene expression in ETH or 1-MCP-treated papaya fruits accounts for the ripening processes. To isolate the key ripening-related genes and better understand fruit ripening mechanisms, transcriptomes of ETH or 1-MCP-treated, and non-treated (Control Group, CG) papaya fruits were sequenced using Illumina Hiseq2500. RESULTS A total of 18,648 (1-MCP), 19,093 (CG), and 15,321 (ETH) genes were detected, with the genes detected in the ETH-treatment being the least. This suggests that ETH may inhibit the expression of some genes. Based on the differential gene expression (DGE) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, 53 fruit ripening-related genes were selected: 20 cell wall-related genes, 18 chlorophyll and carotenoid metabolism-related genes, four proteinases and their inhibitors, six plant hormone signal transduction pathway genes, four transcription factors, and one senescence-associated gene. Reverse transcription quantitative PCR (RT-qPCR) analyses confirmed the results of RNA-seq and verified that the expression pattern of six genes is consistent with the fruit senescence process. Based on the expression profiling of genes in carbohydrate metabolic process, chlorophyll metabolism pathway, and carotenoid metabolism pathway, the mechanism of pulp softening and coloration of papaya was deduced and discussed. We illustrate that papaya fruit softening is a complex process with significant cell wall hydrolases, such as pectinases, cellulases, and hemicellulases involved in the process. Exogenous ethylene accelerates the coloration of papaya changing from green to yellow. This is likely due to the inhibition of chlorophyll biosynthesis and the α-branch of carotenoid metabolism. Chy-b may play an important role in the yellow color of papaya fruit. CONCLUSIONS Comparing the differential gene expression in ETH/1-MCP-treated papaya using RNA-seq is a sound approach to isolate ripening-related genes. The results of this study can improve our understanding of papaya fruit ripening molecular mechanism and reveal candidate fruit ripening-related genes for further research.
Collapse
Affiliation(s)
- Yan Hong Shen
- College of Horticulture, Fijian Agriculture and Forestry University, Fuzhou, Fujian 350002 China
- Institute of Genetics and Breeding in Horticultural Plants, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002 China
| | - Bing Guo Lu
- College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350117 China
| | - Li Feng
- College of Horticulture, Fijian Agriculture and Forestry University, Fuzhou, Fujian 350002 China
- Institute of Genetics and Breeding in Horticultural Plants, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002 China
| | - Fei Ying Yang
- College of Horticulture, Fijian Agriculture and Forestry University, Fuzhou, Fujian 350002 China
- Institute of Genetics and Breeding in Horticultural Plants, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002 China
| | - Jiao Jiao Geng
- College of Horticulture, Fijian Agriculture and Forestry University, Fuzhou, Fujian 350002 China
- Institute of Genetics and Breeding in Horticultural Plants, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002 China
| | - Ray Ming
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002 China
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL61801 USA
| | - Xiao Jing Chen
- College of Horticulture, Fijian Agriculture and Forestry University, Fuzhou, Fujian 350002 China
- Institute of Genetics and Breeding in Horticultural Plants, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002 China
| |
Collapse
|
37
|
Cáez Ramírez G, Téllez-Medina DI, García-Armenta E, -López GFG. Digital image analysis and fractal metrics as potential tools to monitor colour changes in fresh-cut papaya (Carica papaya L.). INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2017. [DOI: 10.1080/10942912.2017.1293090] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Gabriela Cáez Ramírez
- Doctorado en Biociencias, Grupo Procesos Agroindustriales, Universidad de La Sabana, Cundinamarca, Colombia
| | - Darío Iker Téllez-Medina
- Departamento de Graduados e Investigación en Alimentos, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Evangelina García-Armenta
- Departamento de Graduados e Investigación en Alimentos, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa, México
| | - Gustavo Fidel Gutiérrez -López
- Departamento de Graduados e Investigación en Alimentos, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| |
Collapse
|
38
|
Jamaluddin ND, Mohd Noor N, Goh HH. Genome-wide transcriptome profiling of Carica papaya L. embryogenic callus. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2017; 23:357-368. [PMID: 28461724 PMCID: PMC5391361 DOI: 10.1007/s12298-017-0429-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/24/2017] [Accepted: 03/06/2017] [Indexed: 05/22/2023]
Abstract
Genome-wide transcriptome profiling is a powerful tool to study global gene expression patterns in plant development. We report the first transcriptome profile analysis of papaya embryogenic callus to improve our understanding on genes associated with somatic embryogenesis. By using 3' mRNA-sequencing, we generated 6,190,687 processed reads and 47.0% were aligned to papaya genome reference, in which 21,170 (75.4%) of 27,082 annotated genes were found to be expressed but only 41% was expressed at functionally high levels. The top 10% of genes with high transcript abundance were significantly enriched in biological processes related to cell proliferation, stress response, and metabolism. Genes functioning in somatic embryogenesis such as SERK and LEA, hormone-related genes, stress-related genes, and genes involved in secondary metabolite biosynthesis pathways were highly expressed. Transcription factors such as NAC, WRKY, MYB, WUSCHEL, Agamous-like MADS-box protein and bHLH important in somatic embryos of other plants species were found to be expressed in papaya embryogenic callus. Abundant expression of enolase and ADH is consistent with proteome study of papaya somatic embryo. Our study highlights that some genes related to secondary metabolite biosynthesis, especially phenylpropanoid biosynthesis, were highly expressed in papaya embryogenic callus, which might have implication for cell factory applications. The discovery of all genes expressed in papaya embryogenic callus provides an important information into early biological processes during the induction of embryogenesis and useful for future research in other plant species.
Collapse
Affiliation(s)
- Nur Diyana Jamaluddin
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, UKM, 43600 Bangi, Selangor Darul Ehsan Malaysia
| | - Normah Mohd Noor
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, UKM, 43600 Bangi, Selangor Darul Ehsan Malaysia
| | - Hoe-Han Goh
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, UKM, 43600 Bangi, Selangor Darul Ehsan Malaysia
| |
Collapse
|
39
|
Xie XL, Xia XJ, Kuang S, Zhang XL, Yin XR, Yu JQ, Chen KS. A novel ethylene responsive factor CitERF13 plays a role in photosynthesis regulation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 256:112-119. [PMID: 28167024 DOI: 10.1016/j.plantsci.2016.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 11/01/2016] [Accepted: 11/03/2016] [Indexed: 05/22/2023]
Abstract
Ethylene responsive factors (ERFs) act as critical downstream components of the ethylene signalling pathway in regulating plant development and stress responses. However little is known about its role in regulation of photosynthesis. Here, we identified an ethylene-inducible ERF gene in citrus, CitERF13. Transient over-expression of CitERF13 in N. tabacum leaves, resulted in a significant decrease in net photosynthetic rate. Closer examination of photosynthetic activity of PSII and PSI indicated that CitERF13 overexpression led to declines of Fv/Fm, Y(II) and Y(I). However, change in NPQ was less pronounced. CitERF13 overexpression also significantly reduced Vc,max, Jmax and AQY, indicating inhibition of the Calvin cycle. The expression of photosynthesis-related genes was suppressed to a variable extent in leaf blades transiently over-expressing CitERF13. CitERF13 transient overexpression in tobacco or citrus both resulted in a decline of Chlorophyll content and CitERF13 overexpressing tobacco leaf disc was more susceptible to chlorosis in response to MV-mediated oxidative stress. The results suggest that CitERF13 is potentially involved in suppressing photosynthesis through multiple pathways, for instance, inhibiting photochemical activity of photosynthesis, CO2 carboxylation capacity and chlorophyll metabolism.
Collapse
Affiliation(s)
- Xiu-Lan Xie
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China; Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China; The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China
| | - Xiao-Jian Xia
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China; Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China; The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China
| | - Sheng Kuang
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China
| | - Xi-Li Zhang
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China
| | - Xue-Ren Yin
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China; Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China; The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China
| | - Jing-Quan Yu
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China; Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China; The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China
| | - Kun-Song Chen
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China; Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China; The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China.
| |
Collapse
|
40
|
Fu CC, Han YC, Qi XY, Shan W, Chen JY, Lu WJ, Kuang JF. Papaya CpERF9 acts as a transcriptional repressor of cell-wall-modifying genes CpPME1/2 and CpPG5 involved in fruit ripening. PLANT CELL REPORTS 2016; 35:2341-2352. [PMID: 27502602 DOI: 10.1007/s00299-016-2038-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Accepted: 08/04/2016] [Indexed: 05/18/2023]
Abstract
KEY MESSAGE CpERF9 controls papaya fruit ripening through transcriptional repression of cell-wall-modifying genes CpPME1/2 and CpPG5 by directly binding to their promoters. Papaya fruit ripening is an intricate and highly coordinated developmental process which is controlled by the action of ethylene and expression of numerous ethylene-responsive genes. Ethylene response factors (ERFs) representing the last regulators of ethylene-signaling pathway determine the specificities of ethylene response. However, knowledge concerning the transcriptional controlling mechanism of ERF-mediated papaya fruit ripening is limited. In the present work, a gene-encoding AP2/ERF protein with two ERF-associated amphiphilic repression (EAR) motifs, named CpERF9, was characterized from papaya fruit. CpERF9 was found to localize in nucleus, and possess transcriptional repression ability. CpERF9 expression steadily decreased during papaya fruit ripening, while several genes encoding pectin methylesterases (PMEs) and polygalacturonases (PGs), such as CpPME1/2 and CpPG5, were gradually increased, paralleling the decline of fruit firmness. Electrophoretic mobility shift assay (EMSA) demonstrated a specific binding of CpERF9 to promoters of CpPME1/2 and CpPG5, via the GCC-box motif. Transient expression of CpERF9 in tobacco repressed CpPME1/2 and CpPG5 promoter activities, which was depended on two EAR motifs of CpERF9 protein. Taken together, these findings suggest that papaya CpERF9 may act as a transcriptional repressor of several cell-wall modifying genes, such as CpPME1/2 and CpPG5, via directly binding to their promoters.
Collapse
Affiliation(s)
- Chang-Chun Fu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Key Laboratory for Postharvest Science, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Yan-Chao Han
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Key Laboratory for Postharvest Science, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Xiu-Ye Qi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Key Laboratory for Postharvest Science, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Wei Shan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Key Laboratory for Postharvest Science, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Jian-Ye Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Key Laboratory for Postharvest Science, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Wang-Jin Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Key Laboratory for Postharvest Science, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Jian-Fei Kuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Key Laboratory for Postharvest Science, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
41
|
Villarreal NM, Marina M, Nardi CF, Civello PM, Martínez GA. Novel insights of ethylene role in strawberry cell wall metabolism. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 252:1-11. [PMID: 27717444 DOI: 10.1016/j.plantsci.2016.06.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/22/2016] [Accepted: 06/26/2016] [Indexed: 05/23/2023]
Abstract
Due to its organoleptic and nutraceutical qualities, strawberry fruit (Fragaria x ananassa, Duch) is a worldwide important commodity. The role of ethylene in the regulation of strawberry cell wall metabolism was studied in fruit from Toyonoka cultivar harvested at white stage, when most changes associated with fruit ripening have begun. Fruit were treated with ethephon, an ethylene-releasing reagent, or with 1-methylcyclopropene (1-MCP), a competitive inhibitor of ethylene action, maintaining a set of non-treated fruit as controls for each condition. Ethephon treated-fruit showed higher contents of hemicelluloses, cellulose and neutral sugars regarding controls, while 1-MCP-treated fruit showed a lower amount of those fractions. On the other hand, ethephon-treated fruit presented a lower quantity of galacturonic acid from ionically and covalently bound pectins regarding controls, while 1-MCP-treated fruit showed higher contents of those components. We also explored the ethylene effect over the mRNA accumulation of genes related to pectins and hemicelluloses metabolism, and a relationship between gene expression patterns and cell wall polysaccharides contents was shown. Moreover, we detected that strawberry necrotrophic pathogens growth more easily on plates containing cell walls from ethephon-treated fruit regarding controls, while a lower growth rate was observed when cell walls from 1-MCP treated fruit were used as the only carbon source, suggesting an effect of ethylene on cell wall structure. Around 60% of strawberry cell wall is made up of pectins, which in turns is 70% made by homogalacturonans. Our findings support the idea of a central role for pectins on strawberry fruit softening and a participation of ethylene in the regulation of this process.
Collapse
Affiliation(s)
- Natalia M Villarreal
- IIB-INTECH (CONICET-UNSAM), Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, Avenida Intendente Marino km 8,2 (B7130IWA) Chascomús, Pcia, Buenos Aires, Argentina
| | - María Marina
- IIB-INTECH (CONICET-UNSAM), Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, Avenida Intendente Marino km 8,2 (B7130IWA) Chascomús, Pcia, Buenos Aires, Argentina
| | - Cristina F Nardi
- IIB-INTECH (CONICET-UNSAM), Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, Avenida Intendente Marino km 8,2 (B7130IWA) Chascomús, Pcia, Buenos Aires, Argentina
| | - Pedro M Civello
- INFIVE (CONICET-UNLP), Instituto de Fisiología Vegetal, Diag. 113 y Calle 61, n°495-C.c 327, 1900 La Plata, Argentina; Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), 47 y 115, 1900 La Plata, Argentina
| | - Gustavo A Martínez
- IIB-INTECH (CONICET-UNSAM), Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, Avenida Intendente Marino km 8,2 (B7130IWA) Chascomús, Pcia, Buenos Aires, Argentina; Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), 47 y 115, 1900 La Plata, Argentina.
| |
Collapse
|
42
|
do Prado SBR, Melfi PR, Castro-Alves VC, Broetto SG, Araújo ES, do Nascimento JRO, Fabi JP. Physiological Degradation of Pectin in Papaya Cell Walls: Release of Long Chains Galacturonans Derived from Insoluble Fractions during Postharvest Fruit Ripening. FRONTIERS IN PLANT SCIENCE 2016; 7:1120. [PMID: 27512402 PMCID: PMC4961711 DOI: 10.3389/fpls.2016.01120] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 07/13/2016] [Indexed: 05/09/2023]
Abstract
Papaya (Carica papaya L.) is a fleshy fruit that presents a rapid pulp softening during ripening. However, the timeline on how papaya pectinases act in polysaccharide solubilization and the consequent modification of the cell wall fractions during ripening is still not clear. In this work, the gene expression correlations between, on one hand, 16 enzymes potentially acting during papaya cell wall disassembling and, on the other hand, the monosaccharide composition of cell wall fractions during papaya ripening were evaluated. In order to explain differences in the ripening of papaya samplings, the molecular mass distribution of polysaccharides from water-soluble and oxalate-soluble fractions (WSF and OSF, respectively), as well as the oligosaccharide profiling from the WSF fraction, were evaluated by high performance size exclusion chromatography coupled to a refractive index detector and high performance anion-exchange chromatography coupled to pulse amperometric detection analyses, respectively. Results showed that up-regulated polygalacturonase and β-galactosidase genes were positively correlated with some monosaccharide profiles. In addition, an overall increase in the retention time of high molecular weight (HMW) and low molecular weight (LMW) polysaccharides in WSF and OSF was shown. The apparent disappearance of one HMW peak of the OSF may result from the conversion of pectin that were crosslinked with calcium into more soluble forms through the action of PGs, which would increase the solubilization of polysaccharides by lowering their molecular weight. Thus, the results allowed us to propose a detailed process of papaya cell wall disassembling that would affect sensorial properties and post-harvesting losses of this commercially important fruit.
Collapse
Affiliation(s)
- Samira B. R. do Prado
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São PauloSão Paulo, Brazil
| | - Paulo R. Melfi
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São PauloSão Paulo, Brazil
| | - Victor C. Castro-Alves
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São PauloSão Paulo, Brazil
| | - Sabrina G. Broetto
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São PauloSão Paulo, Brazil
| | - Elias S. Araújo
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São PauloSão Paulo, Brazil
| | - João R. O. do Nascimento
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São PauloSão Paulo, Brazil
- University of São Paulo – NAPAN – Food and Nutrition Research CenterSão Paulo, Brazil
- Food Research Center, CEPID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation)São Paulo, Brazil
| | - João P. Fabi
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São PauloSão Paulo, Brazil
- University of São Paulo – NAPAN – Food and Nutrition Research CenterSão Paulo, Brazil
- Food Research Center, CEPID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation)São Paulo, Brazil
| |
Collapse
|
43
|
Martins GF, Fabi JP, Mercadante AZ, de Rosso VV. The ripening influence of two papaya cultivars on carotenoid biosynthesis and radical scavenging capacity. Food Res Int 2016. [DOI: 10.1016/j.foodres.2015.11.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
44
|
Liang Y, Yu Y, Shen X, Dong H, Lyu M, Xu L, Ma Z, Liu T, Cao J. Dissecting the complex molecular evolution and expression of polygalacturonase gene family in Brassica rapa ssp. chinensis. PLANT MOLECULAR BIOLOGY 2015; 89:629-46. [PMID: 26506823 DOI: 10.1007/s11103-015-0390-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 10/06/2015] [Indexed: 05/22/2023]
Abstract
Polygalacturonases (PGs) participate in pectin disassembly of cell wall and belong to one of the largest hydrolase families in plants. In this study, we identified 99 PG genes in Brassica rapa. Comprehensive analysis of phylogeny, gene structures, physico-chemical properties and coding sequence evolution demonstrated that plant PGs should be classified into seven divergent clades and each clade's members had specific sequence and structure characteristics, and/or were under specific selection pressures. Genomic distribution and retention rate analysis implied duplication events and biased retention contributed to PG family's expansion. Promoter divergence analysis using "shared motif method" revealed a significant correlation between regulatory and coding sequence evolution of PGs, and proved Clades A and E were of ancient origin. Quantitative real-time PCR analysis showed that expression patterns of PGs displayed group specificities in B. rapa. Particularly, nearly half of PG family members, especially those of Clades C, D and F, closely relates to reproductive development. Most duplicates showed similar expression profiles, suggesting dosage constraints accounted for preservation after duplication. Promoter-GUS assay further indicated PGs' extensive roles and possible redundancy during reproductive development. This work can provide a scientific classification of plant PGs, dissect the internal relationships between their evolution and expressions, and promote functional researches.
Collapse
Affiliation(s)
- Ying Liang
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China.
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, 310058, China.
| | - Youjian Yu
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China.
- Department of Horticulture, College of Agriculture and Food Science, Zhejiang A & F University, Lin'an, 311300, China.
| | - Xiuping Shen
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China.
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, 310058, China.
| | - Heng Dong
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China.
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, 310058, China.
| | - Meiling Lyu
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China.
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, 310058, China.
| | - Liai Xu
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China.
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, 310058, China.
| | - Zhiming Ma
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China.
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, 310058, China.
| | - Tingting Liu
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China.
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, 310058, China.
| | - Jiashu Cao
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China.
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
45
|
Posé S, Kirby AR, Paniagua C, Waldron KW, Morris VJ, Quesada MA, Mercado JA. The nanostructural characterization of strawberry pectins in pectate lyase or polygalacturonase silenced fruits elucidates their role in softening. Carbohydr Polym 2015; 132:134-45. [DOI: 10.1016/j.carbpol.2015.06.018] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 06/05/2015] [Accepted: 06/07/2015] [Indexed: 11/30/2022]
|
46
|
Oliveira MG, Mazorra LM, Souza AF, Silva GMC, Correa SF, Santos WC, Saraiva KDC, Teixeira AJ, Melo DF, Silva MG, Silva MAP, Arrabaça JDC, Costa JH, Oliveira JG. Involvement of AOX and UCP pathways in the post-harvest ripening of papaya fruits. JOURNAL OF PLANT PHYSIOLOGY 2015; 189:42-50. [PMID: 26513459 DOI: 10.1016/j.jplph.2015.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 09/25/2015] [Accepted: 10/01/2015] [Indexed: 06/05/2023]
Abstract
Enhanced respiration during ripening in climacteric fruits is sometimes associated with an uncoupling between the ATP synthesis and the mitochondrial electron transport chain. While the participation of two energy-dissipating systems, one of which is mediated by the alternative oxidase (AOX) and the other mediated by the uncoupling protein (UCP), has been linked to fruit ripening, the relation between the activation of both mitochondrial uncoupling systems with the transient increase of ethylene synthesis (ethylene peak) remains unclear. To elucidate this question, ethylene emission and the two uncoupling (AOX and UCP) pathways were monitored in harvested papaya fruit during the ripening, from green to fully yellow skin. The results confirmed the typical climacteric behavior for papaya fruit: an initial increase in endogenous ethylene emission which reaches a maximum (peak) in the intermediate ripening stage, before finally declining to a basal level in ripe fruit. Respiration of intact fruit also increased and achieved higher levels at the end of ripening. On the other hand, in purified mitochondria extracted from fruit pulp the total respiration and respiratory control decrease while an increase in the participation of AOX and UCP pathways was markedly evident during papaya ripening. There was an increase in the AOX capacity during the transition from green fruit to the intermediate stage that accompanied the transient ethylene peak, while the O2 consumption triggered by UCP activation increased by 80% from the beginning to end stage of fruit ripening. Expression analyses of AOX (AOX1 and 2) and UCP (UCP1-5) genes revealed that the increases in the AOX and UCP capacities were linked to a higher expression of AOX1 and UCP (mainly UCP1) genes, respectively. In silico promoter analyses of both genes showed the presence of ethylene-responsive cis-elements in UCP1 and UCP2 genes. Overall, the data suggest a differential activation of AOX and UCP pathways in regulation related to the ethylene peak and induction of specific genes such as AOX1 and UCP1.
Collapse
Affiliation(s)
- M G Oliveira
- Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, RJ 28013602, Brazil
| | - L M Mazorra
- Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, RJ 28013602, Brazil
| | - A F Souza
- Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, RJ 28013602, Brazil
| | - G M C Silva
- Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, RJ 28013602, Brazil
| | - S F Correa
- Laboratório de Ciências Físicas, Universidade Estadual no Norte Fluminense, Campos dos Goytacazes, RJ 28013602, Brazil
| | - W C Santos
- Laboratório de Ciências Físicas, Universidade Estadual no Norte Fluminense, Campos dos Goytacazes, RJ 28013602, Brazil
| | - K D C Saraiva
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, CE 60455760, Brazil
| | - A J Teixeira
- Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, RJ 28013602, Brazil
| | - D F Melo
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, CE 60455760, Brazil
| | - M G Silva
- Laboratório de Ciências Físicas, Universidade Estadual no Norte Fluminense, Campos dos Goytacazes, RJ 28013602, Brazil
| | - M A P Silva
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG 36570000, Brazil
| | - J D C Arrabaça
- Faculdade de Ciências, Universidade de Lisboa, Lisboa 1749016, Portugal
| | - J H Costa
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, CE 60455760, Brazil
| | - J G Oliveira
- Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, RJ 28013602, Brazil.
| |
Collapse
|
47
|
Zhang X, Berkowitz O, Teixeira da Silva JA, Zhang M, Ma G, Whelan J, Duan J. RNA-Seq analysis identifies key genes associated with haustorial development in the root hemiparasite Santalum album. FRONTIERS IN PLANT SCIENCE 2015; 6:661. [PMID: 26388878 PMCID: PMC4555033 DOI: 10.3389/fpls.2015.00661] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 08/11/2015] [Indexed: 05/20/2023]
Abstract
Santalum album (sandalwood) is one of the economically important plant species in the Santalaceae for its production of highly valued perfume oils. Sandalwood is also a hemiparasitic tree that obtains some of its water and simple nutrients by tapping into other plants through haustoria which are highly specialized organs in parasitic angiosperms. However, an understanding of the molecular mechanisms involved in haustorium development is limited. In this study, RNA sequencing (RNA-seq) analyses were performed to identify changes in gene expression and metabolic pathways associated with the development of the S. album haustorium. A total of 56,011 non-redundant contigs with a mean contig size of 618 bp were obtained by de novo assembly of the transcriptome of haustoria and non-haustorial seedling roots. A substantial number of the identified differentially expressed genes were involved in cell wall metabolism and protein metabolism, as well as mitochondrial electron transport functions. Phytohormone-mediated regulation might play an important role during haustorial development. Especially, auxin signaling is likely to be essential for haustorial initiation, and genes related to cytokinin and gibberellin biosynthesis and metabolism are involved in haustorial development. Our results suggest that genes encoding nodulin-like proteins may be important for haustorial morphogenesis in S. album. The obtained sequence data will become a rich resource for future research in this interesting species. This information improves our understanding of haustorium development in root hemiparasitic species and will allow further exploration of the detailed molecular mechanisms underlying plant parasitism.
Collapse
Affiliation(s)
- Xinhua Zhang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of SciencesGuangzhou, China
| | - Oliver Berkowitz
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western AustraliaCrawley, WA, Australia
- Department of Botany, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Science, La Trobe UniversityBundoora, VIC, Australia
| | | | - Muhan Zhang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of SciencesGuangzhou, China
| | - Guohua Ma
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of SciencesGuangzhou, China
| | - James Whelan
- Department of Botany, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Science, La Trobe UniversityBundoora, VIC, Australia
| | - Jun Duan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of SciencesGuangzhou, China
| |
Collapse
|
48
|
Tavares EQP, De Souza AP, Buckeridge MS. How endogenous plant cell-wall degradation mechanisms can help achieve higher efficiency in saccharification of biomass. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:4133-43. [PMID: 25922489 DOI: 10.1093/jxb/erv171] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Cell-wall recalcitrance to hydrolysis still represents one of the major bottlenecks for second-generation bioethanol production. This occurs despite the development of pre-treatments, the prospect of new enzymes, and the production of transgenic plants with less-recalcitrant cell walls. Recalcitrance, which is the intrinsic resistance to breakdown imposed by polymer assembly, is the result of inherent limitations in its three domains. These consist of: (i) porosity, associated with a pectin matrix impairing trafficking through the wall; (ii) the glycomic code, which refers to the fine-structural emergent complexity of cell-wall polymers that are unique to cells, tissues, and species; and (iii) cellulose crystallinity, which refers to the organization in micro- and/or macrofibrils. One way to circumvent recalcitrance could be by following cell-wall hydrolysis strategies underlying plant endogenous mechanisms that are optimized to precisely modify cell walls in planta. Thus, the cell-wall degradation that occurs during fruit ripening, abscission, storage cell-wall mobilization, and aerenchyma formation are reviewed in order to highlight how plants deal with recalcitrance and which are the routes to couple prospective enzymes and cocktail designs with cell-wall features. The manipulation of key enzyme levels in planta can help achieving biologically pre-treated walls (i.e. less recalcitrant) before plants are harvested for bioethanol production. This may be helpful in decreasing the costs associated with producing bioethanol from biomass.
Collapse
Affiliation(s)
- Eveline Q P Tavares
- Laboratory of Plant Physiological Ecology (LAFIECO), Department of Botany, Institute of Biosciences, University of São Paulo, Rua do Matão 277, São Paulo, SP, Brazil
| | - Amanda P De Souza
- Laboratory of Plant Physiological Ecology (LAFIECO), Department of Botany, Institute of Biosciences, University of São Paulo, Rua do Matão 277, São Paulo, SP, Brazil
| | - Marcos S Buckeridge
- Laboratory of Plant Physiological Ecology (LAFIECO), Department of Botany, Institute of Biosciences, University of São Paulo, Rua do Matão 277, São Paulo, SP, Brazil
| |
Collapse
|
49
|
Dautt-Castro M, Ochoa-Leyva A, Contreras-Vergara CA, Pacheco-Sanchez MA, Casas-Flores S, Sanchez-Flores A, Kuhn DN, Islas-Osuna MA. Mango (Mangifera indica L.) cv. Kent fruit mesocarp de novo transcriptome assembly identifies gene families important for ripening. FRONTIERS IN PLANT SCIENCE 2015; 6:62. [PMID: 25741352 PMCID: PMC4332321 DOI: 10.3389/fpls.2015.00062] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 01/24/2015] [Indexed: 05/04/2023]
Abstract
Fruit ripening is a physiological and biochemical process genetically programmed to regulate fruit quality parameters like firmness, flavor, odor and color, as well as production of ethylene in climacteric fruit. In this study, a transcriptomic analysis of mango (Mangifera indica L.) mesocarp cv. "Kent" was done to identify key genes associated with fruit ripening. Using the Illumina sequencing platform, 67,682,269 clean reads were obtained and a transcriptome of 4.8 Gb. A total of 33,142 coding sequences were predicted and after functional annotation, 25,154 protein sequences were assigned with a product according to Swiss-Prot database and 32,560 according to non-redundant database. Differential expression analysis identified 2,306 genes with significant differences in expression between mature-green and ripe mango [1,178 up-regulated and 1,128 down-regulated (FDR ≤ 0.05)]. The expression of 10 genes evaluated by both qRT-PCR and RNA-seq data was highly correlated (R = 0.97), validating the differential expression data from RNA-seq alone. Gene Ontology enrichment analysis, showed significantly represented terms associated to fruit ripening like "cell wall," "carbohydrate catabolic process" and "starch and sucrose metabolic process" among others. Mango genes were assigned to 327 metabolic pathways according to Kyoto Encyclopedia of Genes and Genomes database, among them those involved in fruit ripening such as plant hormone signal transduction, starch and sucrose metabolism, galactose metabolism, terpenoid backbone, and carotenoid biosynthesis. This study provides a mango transcriptome that will be very helpful to identify genes for expression studies in early and late flowering mangos during fruit ripening.
Collapse
Affiliation(s)
- Mitzuko Dautt-Castro
- Laboratorio de Genética y Biología Molecular de Plantas, Centro de Investigación en Alimentación y DesarrolloHermosillo, Sonora, Mexico
| | - Adrian Ochoa-Leyva
- Instituto Nacional de Medicina Genómica, Unidad de Genómica de Poblaciones, Aplicada a la Salud, Facultad de Qumica UNAM, DelegaciónTlalpan, Mexico DF
| | - Carmen A. Contreras-Vergara
- Laboratorio de Genética y Biología Molecular de Plantas, Centro de Investigación en Alimentación y DesarrolloHermosillo, Sonora, Mexico
| | - Magda A. Pacheco-Sanchez
- Laboratorio de Genética y Biología Molecular de Plantas, Centro de Investigación en Alimentación y DesarrolloHermosillo, Sonora, Mexico
| | - Sergio Casas-Flores
- Laboratorio de Genómica Funcional y Comparativa, División de Biología Molecular, Instituto Potosino de Investigación Científica y TecnológicaSan Luis Potosí (SLP), Mexico
| | - Alejandro Sanchez-Flores
- Unidad Universitaria de Secuenciación Masiva de DNA, Instituto de Biotecnología/Universidad Nacional Autónoma de MéxicoCuernavaca, Morelos, Mexico
| | - David N. Kuhn
- United States Department of Agriculture – Agricultural Research Service, Subtropical Horticulture Research StationMiami, FL, USA
| | - Maria A. Islas-Osuna
- Laboratorio de Genética y Biología Molecular de Plantas, Centro de Investigación en Alimentación y DesarrolloHermosillo, Sonora, Mexico
- *Correspondence: Maria A. Islas-Osuna, Laboratorio de Genética y Biología Molecular de Plantas, Centro de Investigación en Alimentación y Desarrollo, Carretera Ejido La Victoria Km 0.6, Hermosillo, Sonora 83304, Mexico e-mail:
| |
Collapse
|