1
|
Tkadlec J, Kaveh K, Chatterjee K, Nowak MA. Evolutionary dynamics of mutants that modify population structure. J R Soc Interface 2023; 20:20230355. [PMID: 38016637 PMCID: PMC10684346 DOI: 10.1098/rsif.2023.0355] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 11/01/2023] [Indexed: 11/30/2023] Open
Abstract
Natural selection is usually studied between mutants that differ in reproductive rate, but are subject to the same population structure. Here we explore how natural selection acts on mutants that have the same reproductive rate, but different population structures. In our framework, population structure is given by a graph that specifies where offspring can disperse. The invading mutant disperses offspring on a different graph than the resident wild-type. We find that more densely connected dispersal graphs tend to increase the invader's fixation probability, but the exact relationship between structure and fixation probability is subtle. We present three main results. First, we prove that if both invader and resident are on complete dispersal graphs, then removing a single edge in the invader's dispersal graph reduces its fixation probability. Second, we show that for certain island models higher invader's connectivity increases its fixation probability, but the magnitude of the effect depends on the exact layout of the connections. Third, we show that for lattices the effect of different connectivity is comparable to that of different fitness: for large population size, the invader's fixation probability is either constant or exponentially small, depending on whether it is more or less connected than the resident.
Collapse
Affiliation(s)
- Josef Tkadlec
- Department of Mathematics, Harvard University, Cambridge, MA 02138, USA
- Computer Science Institute, Charles University, Prague, Czech Republic
| | - Kamran Kaveh
- Department of Applied Mathematics, University of Washington, Seattle, WA 98195, USA
| | - Krishnendu Chatterjee
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Martin A. Nowak
- Department of Mathematics, Harvard University, Cambridge, MA 02138, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
2
|
Germano DPJ, Zanca A, Johnston ST, Flegg JA, Osborne JM. Free and Interfacial Boundaries in Individual-Based Models of Multicellular Biological systems. Bull Math Biol 2023; 85:111. [PMID: 37805982 PMCID: PMC10560655 DOI: 10.1007/s11538-023-01214-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/11/2023] [Indexed: 10/10/2023]
Abstract
Coordination of cell behaviour is key to a myriad of biological processes including tissue morphogenesis, wound healing, and tumour growth. As such, individual-based computational models, which explicitly describe inter-cellular interactions, are commonly used to model collective cell dynamics. However, when using individual-based models, it is unclear how descriptions of cell boundaries affect overall population dynamics. In order to investigate this we define three cell boundary descriptions of varying complexities for each of three widely used off-lattice individual-based models: overlapping spheres, Voronoi tessellation, and vertex models. We apply our models to multiple biological scenarios to investigate how cell boundary description can influence tissue-scale behaviour. We find that the Voronoi tessellation model is most sensitive to changes in the cell boundary description with basic models being inappropriate in many cases. The timescale of tissue evolution when using an overlapping spheres model is coupled to the boundary description. The vertex model is demonstrated to be the most stable to changes in boundary description, though still exhibits timescale sensitivity. When using individual-based computational models one should carefully consider how cell boundaries are defined. To inform future work, we provide an exploration of common individual-based models and cell boundary descriptions in frequently studied biological scenarios and discuss their benefits and disadvantages.
Collapse
Affiliation(s)
- Domenic P. J. Germano
- School of Mathematics and Statistics, The University of Melbourne, Parkville, Victoria 3010 Australia
| | - Adriana Zanca
- School of Mathematics and Statistics, The University of Melbourne, Parkville, Victoria 3010 Australia
| | - Stuart T. Johnston
- School of Mathematics and Statistics, The University of Melbourne, Parkville, Victoria 3010 Australia
| | - Jennifer A. Flegg
- School of Mathematics and Statistics, The University of Melbourne, Parkville, Victoria 3010 Australia
| | - James M. Osborne
- School of Mathematics and Statistics, The University of Melbourne, Parkville, Victoria 3010 Australia
| |
Collapse
|
3
|
Berent ZT, Jain I, Underhill GH, Wagoner Johnson AJ. Simulated confluence on micropatterned substrates correlates responses regulating cellular differentiation. Biotechnol Bioeng 2022; 119:1641-1659. [PMID: 35192191 DOI: 10.1002/bit.28069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/20/2022] [Accepted: 01/31/2022] [Indexed: 11/12/2022]
Abstract
While cells are known to behave differently based on the size of micropatterned islands, and this behavior is thought to be related to cell size and cell-cell contacts, the exact threshold for this difference between small and large islands is unknown. Furthermore, while cell size and cell-cell contacts can be easily manipulated on small islands, they are harder to measure and continually monitor on larger islands. To investigate this size threshold, and to explore cell size, cell-cell contacts, and differentiation, we use a previously established simulation to plan experiments and explain results that we could not explain from experiments alone. We use five seeding densities covering three orders of magnitude over 25-500 µm diameter islands to examine markers of proliferation and differentiation in bone marrow-derived mesenchymal cells (cell line). We show that osteogenic markers are most accurately described as a function of confluence for larger islands, but a function of time for smaller islands. We further show, using results of the simulation, that cell size and cell-cell contacts are also related to confluence on larger islands, but only cell-cell contacts are related to confluence on small islands. This study uses simulations to explain experimental results that could not be explained from experiments alone. Together, the simulations and experiments in this study show different differentiation patterns on large and small islands, and this simulation may be useful in planning future studies related to this study.
Collapse
Affiliation(s)
- Zachary T Berent
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Ishita Jain
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Gregory H Underhill
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Amy J Wagoner Johnson
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
| |
Collapse
|
4
|
Saleh S, Ullah M, Naveed H. Cell fate determination is influenced by Notch heterogeneity. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:4143-4146. [PMID: 34892138 DOI: 10.1109/embc46164.2021.9629491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Notch signaling (NS) determines the fate of adjacent cells during metazoans development. This intercellular signaling mechanism regulates diverse development processes like cell differentiation, proliferation, survival and is considered responsible for maintaining cellular homeostasis. In this study, we elucidate the role of Notch heterogeneity (NH) in cell fate determination. We studied the role of NH at intercellular, intracellular and the coexistence of Notch variation simultaneously at the intracellular and intercellular level in direct cell-cell signaling on an irregular cell mosaic. In addition, the effect of intracellular Notch receptor diffusion on an irregular cell lattice is also taken into account during Delta-Notch lateral inhibition (LI) process. Through mathematical and computational models, we discovered that the classical checkerboard pattern formation can be reproduced with an accuracy of 70-81% by accounting for NH in a realistic epithelial layer of multicellular organisms.
Collapse
|
5
|
Saleh S, Ullah M, Naveed H. Role of Cell Morphology in Classical Delta-Notch Pattern Formation. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:4139-4142. [PMID: 34892137 DOI: 10.1109/embc46164.2021.9630053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Notch signaling is responsible for creating contrasting states of differentiation among neighboring cells during organism's early development. Various factors can affect this highly conserved intercellular signaling pathway, for the formation of fine-grained pattern in cell tissues. As cells undergo dramatic structural changes during development, one of the factors that can influence cell-cell communication is cell morphology. In this study, we elucidate the role of cell morphology on mosaic pattern formation in a realistic epithelial layer cell model. We discovered that cell signaling strength is inversely related to the cell area, such that smaller cells have higher probability/tendency of becoming signal producing cells as compared to larger cells during early embryonic days. In a nutshell, our work highlights the role of cell morphology on the stochastic cell fate decision process in the epithelial layer of multicellular organisms.
Collapse
|
6
|
Berent ZT, Wagoner Johnson AJ. Morphological switch is associated with increase in cell-cell contacts, ALP, and confluence above a minimum island area to perimeter ratio. J Biomed Mater Res A 2021; 110:164-180. [PMID: 34331408 DOI: 10.1002/jbm.a.37274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/21/2021] [Accepted: 07/07/2021] [Indexed: 11/06/2022]
Abstract
During osteogenic differentiation in vitro, stem-like cells seeded at a low-density spread and are isolated. As the cells proliferate and mature, they become more cuboidal in shape with more cell-cell contacts. However, the coordination of this switch in cell morphology from elongated to cuboidal, cell-cell contacts, and differentiation is not known. In this work, we present results from experiments and a simulation of cell proliferation on protein-micropatterned islands that, independent of island size (25-1,000 μm) or shape (circles, squares, and hollow squares), shows a distinct morphological switch that is better described as a function of island confluence than time in culture, the standard measure in cell culture experiments. The simulation and experiments show cell morphology and island cell density versus confluence collapse to a single curve for all islands if the island area to perimeter ratio is ≥25 μm. Cell-cell contacts in the simulation and alkaline phosphatase (ALP) expression in experiments, a common marker for osteogenic differentiation, show exponential growth with confluence, rapidly increasing after the switch at ≈0.5 confluence. Furthermore, cell morphology, density, contacts, and ALP are better predicted by confluence than time in culture. The variability with time in culture leads to challenges in not only interpreting data but also in comparing data across research laboratories. This simulation can be used to predict cell behavior on different size and shape islands and to plan and optimize experiments that explore cell behavior as a function of a wide range of island geometries.
Collapse
Affiliation(s)
- Zachary T Berent
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Amy J Wagoner Johnson
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
| |
Collapse
|
7
|
Zhao J, Manuchehrfar F, Liang J. Cell-substrate mechanics guide collective cell migration through intercellular adhesion: a dynamic finite element cellular model. Biomech Model Mechanobiol 2020; 19:1781-1796. [PMID: 32108272 PMCID: PMC7990038 DOI: 10.1007/s10237-020-01308-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 02/13/2020] [Indexed: 01/23/2023]
Abstract
During the process of tissue formation and regeneration, cells migrate collectively while remaining connected through intercellular adhesions. However, the roles of cell-substrate and cell-cell mechanical interactions in regulating collective cell migration are still unclear. In this study, we employ a newly developed finite element cellular model to study collective cell migration by exploring the effects of mechanical feedback between cell and substrate and mechanical signal transmission between adjacent cells. Our viscoelastic model of cells consists many triangular elements and is of high resolution. Cadherin adhesion between cells is modeled explicitly as linear springs at subcellular level. In addition, we incorporate a mechano-chemical feedback loop between cell-substrate mechanics and Rac-mediated cell protrusion. Our model can reproduce a number of experimentally observed patterns of collective cell migration during wound healing, including cell migration persistence, separation distance between cell pairs and migration direction. Moreover, we demonstrate that cell protrusion determined by the cell-substrate mechanics plays an important role in guiding persistent and oriented collective cell migration. Furthermore, this guidance cue can be maintained and transmitted to submarginal cells of long distance through intercellular adhesions. Our study illustrates that our finite element cellular model can be employed to study broad problems of complex tissue in dynamic changes at subcellular level.
Collapse
Affiliation(s)
- Jieling Zhao
- INRIA de Paris and Sorbonne Universités UPMC, LJLL Team Mamba, Paris, France.
| | - Farid Manuchehrfar
- Department of Bioengineering, University of Illinois at Chicago, Chicago, USA
| | - Jie Liang
- Department of Bioengineering, University of Illinois at Chicago, Chicago, USA
| |
Collapse
|
8
|
Huang H, Dai C, Shen H, Gu M, Wang Y, Liu J, Chen L, Sun L. Recent Advances on the Model, Measurement Technique, and Application of Single Cell Mechanics. Int J Mol Sci 2020; 21:E6248. [PMID: 32872378 PMCID: PMC7504142 DOI: 10.3390/ijms21176248] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/19/2020] [Accepted: 08/27/2020] [Indexed: 02/06/2023] Open
Abstract
Since the cell was discovered by humans, it has been an important research subject for researchers. The mechanical response of cells to external stimuli and the biomechanical response inside cells are of great significance for maintaining the life activities of cells. These biomechanical behaviors have wide applications in the fields of disease research and micromanipulation. In order to study the mechanical behavior of single cells, various cell mechanics models have been proposed. In addition, the measurement technologies of single cells have been greatly developed. These models, combined with experimental techniques, can effectively explain the biomechanical behavior and reaction mechanism of cells. In this review, we first introduce the basic concept and biomechanical background of cells, then summarize the research progress of internal force models and experimental techniques in the field of cell mechanics and discuss the latest mechanical models and experimental methods. We summarize the application directions of cell mechanics and put forward the future perspectives of a cell mechanics model.
Collapse
Affiliation(s)
| | | | | | | | | | - Jizhu Liu
- School of Mechanical and Electric Engineering, Jiangsu Provincial Key Laboratory of Advanced Robotics, Soochow University, Suzhou 215123, China; (H.H.); (C.D.); (H.S.); (M.G.); (Y.W.); (L.S.)
| | - Liguo Chen
- School of Mechanical and Electric Engineering, Jiangsu Provincial Key Laboratory of Advanced Robotics, Soochow University, Suzhou 215123, China; (H.H.); (C.D.); (H.S.); (M.G.); (Y.W.); (L.S.)
| | | |
Collapse
|
9
|
Zhao J, Cao Y, DiPietro LA, Liang J. Dynamic cellular finite-element method for modelling large-scale cell migration and proliferation under the control of mechanical and biochemical cues: a study of re-epithelialization. J R Soc Interface 2017; 14:rsif.2016.0959. [PMID: 28404867 DOI: 10.1098/rsif.2016.0959] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 03/15/2017] [Indexed: 01/07/2023] Open
Abstract
Computational modelling of cells can reveal insight into the mechanisms of the important processes of tissue development. However, current cell models have limitations and are challenged to model detailed changes in cellular shapes and physical mechanics when thousands of migrating and interacting cells need to be modelled. Here we describe a novel dynamic cellular finite-element model (DyCelFEM), which accounts for changes in cellular shapes and mechanics. It also models the full range of cell motion, from movements of individual cells to collective cell migrations. The transmission of mechanical forces regulated by intercellular adhesions and their ruptures are also accounted for. Intra-cellular protein signalling networks controlling cell behaviours are embedded in individual cells. We employ DyCelFEM to examine specific effects of biochemical and mechanical cues in regulating cell migration and proliferation, and in controlling tissue patterning using a simplified re-epithelialization model of wound tissue. Our results suggest that biochemical cues are better at guiding cell migration with improved directionality and persistence, while mechanical cues are better at coordinating collective cell migration. Overall, DyCelFEM can be used to study developmental processes when a large population of migrating cells under mechanical and biochemical controls experience complex changes in cell shapes and mechanics.
Collapse
Affiliation(s)
- Jieling Zhao
- Department of Bioengineering, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Youfang Cao
- Theoretical Biology and Biophysics (T-6), Center for Nonlinear Studies (CNLS), Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Luisa A DiPietro
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Jie Liang
- Department of Bioengineering, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
10
|
Etournay R, Merkel M, Popović M, Brandl H, Dye NA, Aigouy B, Salbreux G, Eaton S, Jülicher F. TissueMiner: A multiscale analysis toolkit to quantify how cellular processes create tissue dynamics. eLife 2016; 5. [PMID: 27228153 PMCID: PMC4946903 DOI: 10.7554/elife.14334] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 05/25/2016] [Indexed: 11/13/2022] Open
Abstract
Segmentation and tracking of cells in long-term time-lapse experiments has emerged as a powerful method to understand how tissue shape changes emerge from the complex choreography of constituent cells. However, methods to store and interrogate the large datasets produced by these experiments are not widely available. Furthermore, recently developed methods for relating tissue shape changes to cell dynamics have not yet been widely applied by biologists because of their technical complexity. We therefore developed a database format that stores cellular connectivity and geometry information of deforming epithelial tissues, and computational tools to interrogate it and perform multi-scale analysis of morphogenesis. We provide tutorials for this computational framework, called TissueMiner, and demonstrate its capabilities by comparing cell and tissue dynamics in vein and inter-vein subregions of the Drosophila pupal wing. These analyses reveal an unexpected role for convergent extension in shaping wing veins. DOI:http://dx.doi.org/10.7554/eLife.14334.001 Cells interact, divide, rearrange and change shape to build an organ during development. Modern microscopy and computer technology can follow each individual cell of an entire organ in a living organism. However, to understand how the complex choreography of cells leads to well-shaped organs, researchers need tools to help the store and analyze the large amounts of data generated. Tools are also needed to visualize and quantify the complex cell behaviors in an easy and flexible manner. During its development, a fruit fly’s wings become divided into distinct regions separated by tubular supports called veins. Early on in development, the vein cells are indistinguishable from their neighbors, but at late stages, vein cells become a different shape. Veins also become narrower, which is assumed to be due to the number of vein cells falling. However, the way in which cells behave to bring about these changes has not been studied in detail. Etournay, Merkel, Popović, Brandl et al. have now developed a toolkit called TissueMiner that enables users to store large amounts of data about cells and analyze how cells collectively shape an organ. TissueMiner was then used to identify vein cells at late stages of wing development and follow them backward in time to reveal their position at early stages. This showed that veins become narrower and more elongated because the cells that make up the veins shrink more than cells in other regions. TissueMiner was then used to show that vein cells specifically rearrange and elongate to produce thinner regions, while the number of cells increases slightly because the cells divide. These results suggest that the cell behaviors responsible for making veins elongate and narrow are likely to be different from what had previously been assumed. TissueMiner can be used in future studies to help understand the molecule signals that influence how cells behave in veins during wing development. The toolkit could also now be used to explore the changes involved in the development of other organs in other organisms. DOI:http://dx.doi.org/10.7554/eLife.14334.002
Collapse
Affiliation(s)
- Raphaël Etournay
- Division of Cell Polarity, Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Institut Pasteur, Paris, France
| | - Matthias Merkel
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany.,Department of Physics, Syracuse University, Syracuse, United States
| | - Marko Popović
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
| | - Holger Brandl
- Division of Cell Polarity, Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Natalie A Dye
- Division of Cell Polarity, Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Benoît Aigouy
- Institut de Biologie du Développement de Marseille, Marseille, France
| | - Guillaume Salbreux
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany.,The Francis Crick Institute, Lincoln's Inn Fields Laboratories, London, United Kingdom
| | - Suzanne Eaton
- Division of Cell Polarity, Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | |
Collapse
|
11
|
Liang J, Cao Y, Gürsoy G, Naveed H, Terebus A, Zhao J. Multiscale Modeling of Cellular Epigenetic States: Stochasticity in Molecular Networks, Chromatin Folding in Cell Nuclei, and Tissue Pattern Formation of Cells. Crit Rev Biomed Eng 2015; 43:323-46. [PMID: 27480462 PMCID: PMC4976639 DOI: 10.1615/critrevbiomedeng.2016016559] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Genome sequences provide the overall genetic blueprint of cells, but cells possessing the same genome can exhibit diverse phenotypes. There is a multitude of mechanisms controlling cellular epigenetic states and that dictate the behavior of cells. Among these, networks of interacting molecules, often under stochastic control, depending on the specific wirings of molecular components and the physiological conditions, can have a different landscape of cellular states. In addition, chromosome folding in three-dimensional space provides another important control mechanism for selective activation and repression of gene expression. Fully differentiated cells with different properties grow, divide, and interact through mechanical forces and communicate through signal transduction, resulting in the formation of complex tissue patterns. Developing quantitative models to study these multi-scale phenomena and to identify opportunities for improving human health requires development of theoretical models, algorithms, and computational tools. Here we review recent progress made in these important directions.
Collapse
Affiliation(s)
- Jie Liang
- Program in Bioinformatics, Department of Bioengineering, University of Illinois at Chicago, IL, 60612, USA
| | - Youfang Cao
- Theoretical Biology and Biophysics (T-6) and Center for Nonlinear Studies (CNLS), Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Gamze Gürsoy
- Program in Bioinformatics, Department of Bioengineering, University of Illinois at Chicago, IL, 60612, USA
| | - Hammad Naveed
- Toyota Technological Institute at Chicago, 6045 S. Kenwood Ave. Chicago, Illinois 60637, USA
| | - Anna Terebus
- Program in Bioinformatics, Department of Bioengineering, University of Illinois at Chicago, IL, 60612, USA
| | - Jieling Zhao
- Program in Bioinformatics, Department of Bioengineering, University of Illinois at Chicago, IL, 60612, USA
| |
Collapse
|