1
|
Saikia B, S R, Debbarma J, Maharana J, Sastry GN, Chikkaputtaiah C. CRISPR/Cas9-based genome editing and functional analysis of SlHyPRP1 and SlDEA1 genes of Solanum lycopersicum L. in imparting genetic tolerance to multiple stress factors. FRONTIERS IN PLANT SCIENCE 2024; 15:1304381. [PMID: 38371406 PMCID: PMC10869523 DOI: 10.3389/fpls.2024.1304381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/15/2024] [Indexed: 02/20/2024]
Abstract
CRISPR/Cas is a breakthrough genome editing system because of its precision, target specificity, and efficiency. As a speed breeding system, it is more robust than the conventional breeding and biotechnological approaches for qualitative and quantitative trait improvement. Tomato (Solanum lycopersicum L.) is an economically important crop, but its yield and productivity have been severely impacted due to different abiotic and biotic stresses. The recently identified SlHyPRP1 and SlDEA1 are two potential negative regulatory genes in response to different abiotic (drought and salinity) and biotic stress (bacterial leaf spot and bacterial wilt) conditions in S. lycopersicum L. The present study aimed to evaluate the drought, salinity, bacterial leaf spot, and bacterial wilt tolerance response in S. lycopersicum L. crop through CRISPR/Cas9 genome editing of SlHyPRP1 and SlDEA1 and their functional analysis. The transient single- and dual-gene SlHyPRP1 and SlDEA1 CRISPR-edited plants were phenotypically better responsive to multiple stress factors taken under the study. The CRISPR-edited SlHyPRP1 and SlDEA1 plants showed a higher level of chlorophyll and proline content compared to wild-type (WT) plants under abiotic stress conditions. Reactive oxygen species accumulation and the cell death count per total area of leaves and roots under biotic stress were less in CRISPR-edited SlHyPRP1 and SlDEA1 plants compared to WT plants. The study reveals that the combined loss-of-function of SlHyPRP1 along with SlDEA1 is essential for imparting significant multi-stress tolerance (drought, salinity, bacterial leaf spot, and bacterial wilt) in S. lycopersicum L. The main feature of the study is the detailed genetic characterization of SlDEA1, a poorly studied 8CM family gene in multi-stress tolerance, through the CRISPR/Cas9 gene editing system. The study revealed the key negative regulatory role of SlDEA1 that function together as an anchor gene with SlHyPRP1 in imparting multi-stress tolerance in S. lycopersicum L. It was interesting that the present study also showed that transient CRISPR/Cas9 editing events of SlHyPRP1 and SlDEA1 genes were successfully replicated in stably generated parent-genome-edited line (GEd0) and genome-edited first-generation lines (GEd1) of S. lycopersicum L. With these upshots, the study's key findings demonstrate outstanding value in developing sustainable multi-stress tolerance in S. lycopersicum L. and other crops to cope with climate change.
Collapse
Affiliation(s)
- Banashree Saikia
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Remya S
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, India
| | - Johni Debbarma
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Jitendra Maharana
- Distributed Information Centre (DIC), Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - G. Narahari Sastry
- Advanced Computational and Data Science Division, CSIR-NEIST, Jorhat, Assam, India
| | - Channakeshavaiah Chikkaputtaiah
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
2
|
Debbarma J, Saikia B, Singha DL, Das D, Keot AK, Maharana J, Velmurugan N, Arunkumar KP, Reddy PS, Chikkaputtaiah C. CRISPR/Cas9-Mediated Mutation in XSP10 and SlSAMT Genes Impart Genetic Tolerance to Fusarium Wilt Disease of Tomato ( Solanum lycopersicum L.). Genes (Basel) 2023; 14:488. [PMID: 36833415 PMCID: PMC9956927 DOI: 10.3390/genes14020488] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/29/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023] Open
Abstract
Fusarium wilt is a major devastating fungal disease of tomato (Solanum lycopersicum L.) caused by Fusarium oxysporum f. sp. lycopersici (Fol) which reduces the yield and production. Xylem sap protein 10 (XSP10) and Salicylic acid methyl transferase (SlSAMT) are two putative negative regulatory genes associated with Fusarium wilt of tomato. Fusarium wilt tolerance in tomato can be developed by targeting these susceptible (S) genes. Due to its efficiency, high target specificity, and versatility, CRISPR/Cas9 has emerged as one of the most promising techniques for knocking out disease susceptibility genes in a variety of model and agricultural plants to increase tolerance/resistance to various plant diseases in recent years. Though alternative methods, like RNAi, have been attempted to knock down these two S genes in order to confer resistance in tomato against Fusarium wilt, there has been no report of employing the CRISPR/Cas9 system for this specific intent. In this study, we provide a comprehensive downstream analysis of the two S genes via CRISPR/Cas9-mediated editing of single (XSP10 and SlSAMT individually) and dual-gene (XSP10 and SlSAMT simultaneously). Prior to directly advancing on to the generation of stable lines, the editing efficacy of the sgRNA-Cas9 complex was first validated using single cell (protoplast) transformation. In the transient leaf disc assay, the dual-gene editing showed strong phenotypic tolerance to Fusarium wilt disease with INDEL mutations than single-gene editing. In stable genetic transformation of tomato at the GE1 generation, dual-gene CRISPR transformants of XSP10 and SlSAMT primarily exhibited INDEL mutations than single-gene-edited lines. The dual-gene CRISPR-edited lines (CRELs) of XSP10 and SlSAMT at GE1 generation conferred a strong phenotypic tolerance to Fusarium wilt disease compared to single-gene-edited lines. Taken together, the reverse genetic studies in transient and stable lines of tomato revealed that, XSP10 and SlSAMT function together as negative regulators in conferring genetic tolerance to Fusarium wilt disease.
Collapse
Affiliation(s)
- Johni Debbarma
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Banashree Saikia
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Dhanawantari L. Singha
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat 785006, Assam, India
| | - Debajit Das
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat 785006, Assam, India
| | - Ajay Kumar Keot
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Jitendra Maharana
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat 785013, Assam, India
| | - Natarajan Velmurugan
- Branch Laboratory-Itanagar, Biological Sciences Division, CSIR-NEIST, Naharlagun 791110, Arunachal Pradesh, India
| | - Kallare P. Arunkumar
- Central Muga Eri Research and Training Institute (CMER&TI), Lahdoigarh, Jorhat 785700, Assam, India
| | - Palakolanu Sudhakar Reddy
- International Crop Research Institute for the Semi Arid Tropics (ICRISAT), Hyderabad 502324, Telangana, India
| | - Channakeshavaiah Chikkaputtaiah
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
3
|
The Identification and Characterization of Endopolygalacturonases in a South African Isolate of Phytophthora cinnamomi. Microorganisms 2022; 10:microorganisms10051061. [PMID: 35630501 PMCID: PMC9146145 DOI: 10.3390/microorganisms10051061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 02/01/2023] Open
Abstract
Phytophthora cinnamomi is an economically important plant pathogen that has caused devastating losses to the avocado industry worldwide. To facilitate penetration and successful colonization of the host plant, pathogens have been reported to secrete polygalacturonases (PGs). Although a large PG gene family has been reported in P. cinnamomi, in-depth bioinformatics analyses and characterization of these genes is still lacking. In this study we used bioinformatics tools and molecular biology techniques to identify and characterize endopolygalacturonases in the genome of a South African P. cinnamomi isolate, GKB4. We identified 37 PGs, with 19 characteristics of full-length PGs. Although eight PcPGs were induced in planta during infection, only three showed significant up- and down-regulation when compared with in vitro mycelial growth, suggesting their possible roles in infection. The phylogenetic analysis of PcPGs showed both gain and loss of introns in the evolution of PGs in P. cinnamomi. Furthermore, 17 PGs were related to characterized PGs from oomycete species, providing insight on possible function. This study provides new data on endoPGs in P. cinnamomi and the evolution of introns in PcPG genes. We also provide a baseline for future functional characterization of PGs suspected to contribute to P. cinnamomi pathogenicity/virulence in avocado.
Collapse
|
4
|
Chiu T, Behari A, Chartron JW, Putman A, Li Y. Exploring the potential of engineering polygalacturonase-inhibiting protein as an ecological, friendly, and nontoxic pest control agent. Biotechnol Bioeng 2021; 118:3200-3214. [PMID: 34050940 PMCID: PMC8486366 DOI: 10.1002/bit.27845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/03/2021] [Accepted: 05/22/2021] [Indexed: 11/11/2022]
Abstract
In plants, polygalacturonase-inhibiting proteins (PGIPs) play critical roles for resistance to fungal disease by inhibiting the pectin-depolymerizing activity of endopolygalacturonases (PGs), one type of enzyme secreted by pathogens that compromises plant cell walls and leaves the plant susceptible to disease. Here, the interactions between PGIPs from Phaseolus vulgaris (PvPGIP1 and PvPGIP2) and PGs from Aspergillus niger (AnPG2), Botrytis cinerea (BcPG1 and BcPG2), and Fusarium moniliforme (FmPG3) were reconstituted through a yeast two hybrid (Y2H) system to investigate the inhibition efficiency of various PvPGIP1 and 2 truncations and mutants. We found that tPvPGIP2_5-8, which contains LRR5 to LRR8 and is only one-third the size of the full length peptide, exhibits the same level of interactions with AnPG and BcPGs as the full length PvPGIP2 via Y2H. The inhibitory activities of tPvPGIP2_5-8 on the growth of A. niger and B. cinerea were then examined and confirmed on pectin agar. On pectin assays, application of both full length PvPGIP2 and tPvPGIP2_5-8 clearly slows down the growth of A. niger and B. cinerea. Investigation on the sequence-function relationships of PGIP utilizing a combination of site directed mutagenesis and a variety of peptide truncations suggests that LRR5 could have the most essential structural feature for the inhibitory activities, and may be a possible target for the future engineering of PGIP with enhanced activity. This study highlights the potential of plant-derived PGIPs as a candidate for future in planta evaluation as a pest control agent.
Collapse
Affiliation(s)
- Tiffany Chiu
- Department of Chemical and Environmental Engineering, 900 University Avenue, Bourns Hall, Suite A220, Riverside, California 92521, USA
| | - Anita Behari
- Department of Microbiology and Plant Pathology, 900 University Avenue, Boyce Hall, Room 1415, Riverside, California 92521, USA
| | - Justin W. Chartron
- Department of Bioengineering, 900 University Avenue, MSE 205, Riverside, California 92521, USA
| | - Alexander Putman
- Department of Microbiology and Plant Pathology, 900 University Avenue, Boyce Hall, Room 1415, Riverside, California 92521, USA
| | - Yanran Li
- Department of Chemical and Environmental Engineering, 900 University Avenue, Bourns Hall, Suite A220, Riverside, California 92521, USA
| |
Collapse
|
5
|
Hou W, Singh RK, Zhao P, Martins V, Aguilar E, Canto T, Tenllado F, Franklin G, Dias ACP. Overexpression of polygalacturonase-inhibiting protein (PGIP) gene from Hypericum perforatum alters expression of multiple defense-related genes and modulates recalcitrance to Agrobacterium tumefaciens in tobacco. JOURNAL OF PLANT PHYSIOLOGY 2020; 253:153268. [PMID: 32947246 DOI: 10.1016/j.jplph.2020.153268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 08/11/2020] [Accepted: 08/18/2020] [Indexed: 05/07/2023]
Abstract
Hypericum perforatum L is a remarkable source of high-value secondary metabolites with increasing applications in pharmaceutical industry. However, improvement in the production of secondary metabolites through genetic engineering is a demanding task, as H. perforatum is not amenable to Agrobacterium tumefaciens-mediated transformation. In this study, we identified a Polygalacturonase-inhibiting protein (PGIP) gene from a subtractive cDNA library of A. tumefaciens-treated H. perforatum suspension cells. The role of HpPGIP in defense against A. tumefaciens was analyzed in transgenic Nicotiana tabacum overexpressing HpPGIP alone or fused at the N-terminus to Phenolic oxidative coupling protein (Hyp-1), a gene that positively modulates resistance to A. tumefaciens. Furthermore, virus-induced gene silencing was employed to knock down the expression of the PGIP homologous in N. benthamiana. Results showed that Agrobacterium-mediated expression efficiency greatly decreased in both HpPGIP and Hyp-1-PGIP transgenic plants, as assessed by GUS staining assays. However, silencing of PGIP in N. benthamiana increased the resistance to A. tumefaciens rather than susceptibility, which correlated with induction of pathogenesis-related proteins (PRs). The expression of core genes involved in several defense pathways was also analyzed in transgenic tobacco plants. Overexpression of HpPGIP led to up-regulation of key genes involved in hormone signaling, microRNA-based gene silencing, homeostasis of reactive oxygen species, and the phenylpropanoid pathway. Overexpression of Hyp-1-PGIP seemed to enhance the effect of PGIP on the expression of most genes analyzed. Moreover, HpPGIP was detected in the cytoplasm, nucleus and the plasma membrane or cell wall by confocal microscopy. Overall, our findings suggest HpPGIP modulates recalcitrance to A. tumefaciens-mediated transformation in H. perforatum.
Collapse
Affiliation(s)
- Weina Hou
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057, Braga, Portugal; Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Department of Biology, University of Minho, 4710-057, Braga, Portugal
| | - Rupesh Kumar Singh
- Centre of chemistry of Vila Real (CQ-VR), UTAD, 5000-801, Vila Real, Portugal
| | - Pan Zhao
- National Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Viviana Martins
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057, Braga, Portugal
| | - Emmanuel Aguilar
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, 28040, Spain
| | - Tomás Canto
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, 28040, Spain
| | - Francisco Tenllado
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, 28040, Spain.
| | - Gregory Franklin
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Department of Biology, University of Minho, 4710-057, Braga, Portugal
| | - Alberto Carlos Pires Dias
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057, Braga, Portugal; Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Department of Biology, University of Minho, 4710-057, Braga, Portugal; Center of Biological Engineering (CEB), University of Minho, 4710-057, Braga, Portugal.
| |
Collapse
|
6
|
Molecular evidence for the involvement of cotton GhGLP2, in enhanced resistance to Verticillium and Fusarium Wilts and oxidative stress. Sci Rep 2020; 10:12510. [PMID: 32719475 PMCID: PMC7385154 DOI: 10.1038/s41598-020-68943-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/22/2020] [Indexed: 11/24/2022] Open
Abstract
Germin-like proteins (GLPs) are a diverse and ubiquitous family of plant glycoproteins belonging to the cupin super family; they play considerable roles in plant responses against various abiotic and biotic stresses. Here, we provide evidence that GLP2 protein from cotton (Gossypium hirsutum) functions in plant defense responses against Verticillium dahliae, Fusarium oxysporum and oxidative stress. Purified recombinant GhGLP2 exhibits superoxide dismutase (SOD) activity and inhibits spore germination of pathogens. Virus-induced silencing of GhGLP2 in cotton results in increased susceptibility to pathogens, plants exhibited severe wilt on leaves, enhanced vascular browning and suppressed callose deposition. Transgenic Arabidopsis (Arabidopsis thaliana) plants overexpressing GhGLP2 showed significant resistance to V. dahliae and F. oxysporum, with reduced mycelia growth, increased callose deposition and cell wall lignification at infection sites on leaves. The enhanced tolerance of GhGLP2-transgenic Arabidopsis to oxidative stress was investigated by methyl viologen and ammonium persulfate treatments, along with increased H2O2 production. Further, the expression of several defense-related genes (PDF1.2, LOX2, and VSP1) or oxidative stress-related genes (RbohD, RbohF) was triggered by GhGLP2. Thus, our results confirmed the involvement of GhGLP2 in plant defense response against Verticillium and Fusarium wilt pathogens and stress conditions.
Collapse
|
7
|
Weiller F, Gerber L, Trygg J, Fangel JU, Willats WG, Driouich A, Vivier MA, Moore JP. Overexpression of VviPGIP1 and NtCAD14 in Tobacco Screened Using Glycan Microarrays Reveals Cell Wall Reorganisation in the Absence of Fungal Infection. Vaccines (Basel) 2020; 8:E388. [PMID: 32679889 PMCID: PMC7565493 DOI: 10.3390/vaccines8030388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 01/07/2023] Open
Abstract
The expression of Vitis vinifera polygalacturonase inhibiting protein 1 (VviPGIP1) in Nicotiana tabacum has been linked to modifications at the cell wall level. Previous investigations have shown an upregulation of the lignin biosynthesis pathway and reorganisation of arabinoxyloglucan composition. This suggests cell wall tightening occurs, which may be linked to defence priming responses. The present study used a screening approach to test four VviPGIP1 and four NtCAD14 overexpressing transgenic lines for cell wall alterations. Overexpressing the tobacco-derived cinnamyl alcohol dehydrogenase (NtCAD14) gene is known to increase lignin biosynthesis and deposition. These lines, particularly PGIP1 expressing plants, have been shown to lead to a decrease in susceptibility towards grey rot fungus Botrytis cinerea. In this study the aim was to investigate the cell wall modulations that occurred prior to infection, which should highlight potential priming phenomena and phenotypes. Leaf lignin composition and relative concentration of constituent monolignols were evaluated using pyrolysis gas chromatography. Significant concentrations of lignin were deposited in the stems but not the leaves of NtCAD14 overexpressing plants. Furthermore, no significant changes in monolignol composition were found between transgenic and wild type plants. The polysaccharide modifications were quantified using gas chromatography (GC-MS) of constituent monosaccharides. The major leaf polysaccharide and cell wall protein components were evaluated using comprehensive microarray polymer profiling (CoMPP). The most significant changes appeared at the polysaccharide and protein level. The pectin fraction of the transgenic lines had subtle variations in patterning for methylesterification epitopes for both VviPGIP1 and NtCAD14 transgenic lines versus wild type. Pectin esterification levels have been linked to pathogen defence in the past. The most marked changes occurred in glycoprotein abundance for both the VviPGIP1 and NtCAD14 lines. Epitopes for arabinogalactan proteins (AGPs) and extensins were notably altered in transgenic NtCAD14 tobacco.
Collapse
Affiliation(s)
- Florent Weiller
- South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University, Stellenbosch 7602, South Africa; (F.W.); (M.A.V.)
| | - Lorenz Gerber
- Department of Plant Sciences, Swedish Agricultural University, 75007 Uppsala, Sweden;
| | - Johan Trygg
- Computational Life Science Cluster, Department of Chemistry, University of Umeå, 901 87 Umea, Sweden;
| | - Jonatan U. Fangel
- Department of Plant and Environmental Sciences, University of Copenhagen, 1165 Copenhagen, Denmark;
| | - William G.T. Willats
- School of Agriculture, Food and Rural Development, Newcastle University, Newcastle-upon-Tyne NE1 7RU, UK;
| | - Azeddine Driouich
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale (GlycoMEV), University of Rouen, 76821 Mont Saint Aignan, France;
| | - Melané A. Vivier
- South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University, Stellenbosch 7602, South Africa; (F.W.); (M.A.V.)
| | - John P. Moore
- South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University, Stellenbosch 7602, South Africa; (F.W.); (M.A.V.)
| |
Collapse
|
8
|
Novel biotechnological strategies to combat biotic stresses: polygalacturonase inhibitor (PGIP) proteins as a promising comprehensive option. Appl Microbiol Biotechnol 2020; 104:2333-2342. [DOI: 10.1007/s00253-020-10396-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/10/2020] [Accepted: 01/19/2020] [Indexed: 01/26/2023]
|
9
|
Zhu G, Liang E, Lan X, Li Q, Qian J, Tao H, Zhang M, Xiao N, Zuo S, Chen J, Gao Y. ZmPGIP3 Gene Encodes a Polygalacturonase-Inhibiting Protein that Enhances Resistance to Sheath Blight in Rice. PHYTOPATHOLOGY 2019; 109:1732-1740. [PMID: 31479403 DOI: 10.1094/phyto-01-19-0008-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Plant polygalacturonase-inhibiting protein (PGIP) is a structural protein that can specifically recognize and bind to fungal polygalacturonase (PG). PGIP plays an important role in plant antifungal activity. In this study, a maize PGIP gene, namely ZmPGIP3, was cloned and characterized. Agarose diffusion assay suggested that ZmPGIP3 could inhibit the activity of PG. ZmPGIP3 expression was significantly induced by wounding, Rhizoctonia solani infection, jasmonate, and salicylic acid. ZmPGIP3 might be related to disease resistance. The gene encoding ZmPGIP3 was posed under the control of the ubiquitin promoter and constitutively expressed in transgenic rice. In an R. solani infection assay, ZmPGIP3 transgenic rice was more resistant to sheath blight than the wild-type rice regardless of the inoculated plant part (leaves or sheaths). Digital gene expression analysis indicated that the expression of some rice PGIP genes significantly increased in ZmPGIP3 transgenic rice, suggesting that ZmPGIP3 might activate the expression of some rice PGIP genes to resist sheath blight. Our investigation of the agronomic traits of ZmPGIP3 transgenic rice showed that ZmPGIP3 overexpression in rice did not show any detrimental phenotypic or agronomic effect. ZmPGIP3 is a promising candidate gene in the transgenic breeding for sheath blight resistance and crop improvement.
Collapse
Affiliation(s)
- Guang Zhu
- Jiangsu Key Laboratories of Crop Genetics and Physiology and Plant Functional Genomics of the Ministry of Education, Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Enxing Liang
- Jiangsu Key Laboratories of Crop Genetics and Physiology and Plant Functional Genomics of the Ministry of Education, Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Xiang Lan
- Jiangsu Key Laboratories of Crop Genetics and Physiology and Plant Functional Genomics of the Ministry of Education, Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Qian Li
- Jiangsu Key Laboratories of Crop Genetics and Physiology and Plant Functional Genomics of the Ministry of Education, Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Jingjie Qian
- Jiangsu Key Laboratories of Crop Genetics and Physiology and Plant Functional Genomics of the Ministry of Education, Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Haixia Tao
- Jiangsu Key Laboratories of Crop Genetics and Physiology and Plant Functional Genomics of the Ministry of Education, Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Mengjiao Zhang
- Jiangsu Key Laboratories of Crop Genetics and Physiology and Plant Functional Genomics of the Ministry of Education, Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Ning Xiao
- Lixiahe Region Agricultural Scientific Research Institute of Jiangsu, Yangzhou 225009, Jiangsu, China
| | - Shimin Zuo
- Jiangsu Key Laboratories of Crop Genetics and Physiology and Plant Functional Genomics of the Ministry of Education, Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Jianmin Chen
- Jiangsu Key Laboratories of Crop Genetics and Physiology and Plant Functional Genomics of the Ministry of Education, Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Yong Gao
- Jiangsu Key Laboratories of Crop Genetics and Physiology and Plant Functional Genomics of the Ministry of Education, Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
10
|
Pei Y, Li X, Zhu Y, Ge X, Sun Y, Liu N, Jia Y, Li F, Hou Y. GhABP19, a Novel Germin-Like Protein From Gossypium hirsutum, Plays an Important Role in the Regulation of Resistance to Verticillium and Fusarium Wilt Pathogens. FRONTIERS IN PLANT SCIENCE 2019; 10:583. [PMID: 31134119 PMCID: PMC6517559 DOI: 10.3389/fpls.2019.00583] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 04/18/2019] [Indexed: 05/03/2023]
Abstract
Germin-like proteins (GLPs) are water-soluble plant glycoproteins belonging to the cupin superfamily. The important role of GLPs in plant responses against various abiotic and biotic stresses, especially pathogens, is well validated. However, little is known about cotton GLPs in relation to fungal pathogens. Here, a novel GLP gene was isolated from Gossypium hirsutum and designated as GhABP19. The expression of GhABP19 was upregulated in cotton plants inoculated with Verticillium dahliae and Fusarium oxysporum and in response to treatment with jasmonic acid (JA) but was suppressed in response to salicylic acid treatment. A relatively small transient increase in GhABP19 was seen in H2O2 treated samples. The three-dimensional structure prediction of the GhABP19 protein indicated that the protein has three histidine and one glutamate residues responsible for metal ion binding and superoxide dismutase (SOD) activity. Purified recombinant GhABP19 exhibits SOD activity and could inhibit growth of V. dahliae, F. oxysporum, Rhizoctonia solani, Botrytis cinerea, and Valsa mali in vitro. To further verify the role of GhABP19 in fungal resistance, GhABP19-overexpressing Arabidopsis plants and GhABP19-silenced cotton plants were developed. GhABP19-transgenic Arabidopsis lines showed much stronger resistance to V. dahliae and F. oxysporum infection than control (empty vector) plants did. On the contrary, silencing of GhABP19 in cotton conferred enhanced susceptibility to fungal pathogens, which resulted in necrosis and wilt on leaves and vascular discoloration in GhABP19-silenced cotton plants. The H2O2 content and endogenous SOD activity were affected by GhABP19 expression levels in Arabidopsis and cotton plants after inoculation with V. dahliae and F. oxysporum, respectively. Furthermore, GhABP19 overexpression or silencing resulted in activation or suppression of JA-mediated signaling, respectively. Thus, GhABP19 plays important roles in the regulation of resistance to verticillium and fusarium wilt in plants. These modulatory roles were exerted by its SOD activity and ability to activate the JA pathway. All results suggest that GhABP19 was involved in plant disease resistance.
Collapse
Affiliation(s)
- Yakun Pei
- College of Science, China Agricultural University, Beijing, China
| | - Xiancai Li
- College of Science, China Agricultural University, Beijing, China
| | - Yutao Zhu
- College of Science, China Agricultural University, Beijing, China
| | - Xiaoyang Ge
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yun Sun
- College of Science, China Agricultural University, Beijing, China
| | - Nana Liu
- College of Science, China Agricultural University, Beijing, China
| | - Yujiao Jia
- College of Science, China Agricultural University, Beijing, China
| | - Fuguang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yuxia Hou
- College of Science, China Agricultural University, Beijing, China
| |
Collapse
|
11
|
Liu N, Sun Y, Wang P, Duan H, Ge X, Li X, Pei Y, Li F, Hou Y. Mutation of key amino acids in the polygalacturonase-inhibiting proteins CkPGIP1 and GhPGIP1 improves resistance to Verticillium wilt in cotton. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:546-561. [PMID: 30053316 DOI: 10.1111/tpj.14048] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 06/22/2018] [Accepted: 06/26/2018] [Indexed: 06/08/2023]
Abstract
Verticillium wilt, one of the most devastating diseases of cotton (Gossypium hirsutum), causes severe yield and quality losses. Given the effectiveness of plant polygalacturonase-inhibiting proteins (PGIPs) in reducing fungal polygalacturonase (PG) activity, it is necessary to uncover the key functional amino acids to enhance cotton resistance to Verticillium dahliae. To identify novel antifungal proteins, the selectivity of key amino acids was investigated by screening against a panel of relevant PG-binding residues. Based on the obtained results, homologous models of the mutants were established. The docking models showed that hydrogen bonds and structural changes in the convex face in the conserved portion of leucine-rich repeats (LRRs) may be essential for enhanced recognition of PG. Additionally, we successfully constructed Cynanchum komarovii PGIP1 (CkPGIP1) mutants Asp176Val, Pro249Gln, and Asp176Val/Pro249Gln and G. hirsutum PGIP1 (GhPGIP1) mutants Glu169Val, Phe242Gln, and Glu169Val/Phe242Gln with site-directed mutagenesis. The proteins of interest can effectively inhibit VdPG1 activity and V. dahliae mycelial growth in a dose-dependent manner. Importantly, mutants that overproduced PGIP in Arabidopsis and cotton showed enhanced resistance to V. dahliae, with reduced Verticillium-associated chlorosis and wilting. Furthermore, the lignin content was measured in mutant-overexpressing plants, and the results showed enhanced lignification of the xylem, which blocked the spread of V. dahliae. Thus, using site-directed mutagenesis assays, we showed that mutations in CkPGIP1 and GhPGIP1 give rise to PGIP versatility, which allows evolving recognition specificities for PG and is required to promote Verticillium resistance in cotton by restricting the growth of invasive fungal pathogens.
Collapse
Affiliation(s)
- Nana Liu
- College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Yun Sun
- College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Ping Wang
- College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Hongxia Duan
- College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Xiaoyang Ge
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xiancai Li
- College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Yakun Pei
- College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Fuguang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Yuxia Hou
- College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| |
Collapse
|
12
|
Li X, Pei Y, Sun Y, Liu N, Wang P, Liu D, Ge X, Li F, Hou Y. A Cotton Cyclin-Dependent Kinase E Confers Resistance to Verticillium dahliae Mediated by Jasmonate-Responsive Pathway. FRONTIERS IN PLANT SCIENCE 2018; 9:642. [PMID: 29881391 PMCID: PMC5976743 DOI: 10.3389/fpls.2018.00642] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/26/2018] [Indexed: 05/20/2023]
Abstract
Many subunits of the Mediator transcriptional co-activator complex are multifunctional proteins that regulate plant immunity in Arabidopsis. Cotton cyclin-dependent kinase E (GhCDKE), which is a subunit of the cotton (Gossypium hirsutum) Mediator complex, has been annotated, but the biological functions of this gene associated with regulating disease resistance have not been characterized. Here, we cloned GhCDKE from cotton and confirmed that GhCDKE belonged to the E-type CDK family in the phylogenetic tree, and, as in other eukaryotes, we found that GhCDKE interacted with C-type cyclin (GhCycC) by yeast two-hybrid and luciferase complementation imaging assays. Expression of GhCDKE in cotton was induced by Verticillium dahliae infection and MeJA treatment, and silencing of GhCDKE expression in cotton led to enhanced susceptibility to V. dahliae, while overexpression of GhCDKE in Arabidopsis thaliana enhanced resistance to this pathogen. Transgenic expression assay demonstrated that the transcriptional activity of GhPDF1.2pro:LUC in GhCDKE-silenced cotton was dramatically inhibited. In addition, the expression of jasmonic acid (JA)-regulated pathogen-responsive genes was dramatically upregulated in GhCDKE-overexpressed plants after inoculation with V. dahliae, and the roots of GhCDKE-overexpressed A. thaliana were more susceptible to JA treatment. These results indicated that GhCDKE regulates resistance against V. dahliae and that this resistance is mediated by JA response pathway.
Collapse
Affiliation(s)
- Xiancai Li
- College of Science, China Agricultural University, Beijing, China
| | - Yakun Pei
- College of Science, China Agricultural University, Beijing, China
| | - Yun Sun
- College of Science, China Agricultural University, Beijing, China
| | - Nana Liu
- College of Science, China Agricultural University, Beijing, China
| | - Ping Wang
- College of Science, China Agricultural University, Beijing, China
| | - Di Liu
- College of Science, China Agricultural University, Beijing, China
| | - Xiaoyang Ge
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Fuguang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- *Correspondence: Fuguang Li, Yuxia Hou,
| | - Yuxia Hou
- College of Science, China Agricultural University, Beijing, China
- *Correspondence: Fuguang Li, Yuxia Hou,
| |
Collapse
|
13
|
Wang P, Sun Y, Pei Y, Li X, Zhang X, Li F, Hou Y. GhSNAP33, a t-SNARE Protein From Gossypium hirsutum, Mediates Resistance to Verticillium dahliae Infection and Tolerance to Drought Stress. FRONTIERS IN PLANT SCIENCE 2018; 9:896. [PMID: 30018623 PMCID: PMC6038728 DOI: 10.3389/fpls.2018.00896] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 06/07/2018] [Indexed: 05/06/2023]
Abstract
Soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor (SNARE) proteins mediate membrane fusion and deliver cargo to specific cellular locations through vesicle trafficking. Synaptosome-associated protein of 25 kDa (SNAP25) is a target membrane SNARE that drives exocytosis by fusing plasma and vesicular membranes. In this study, we isolated GhSNAP33, a gene from cotton (Gossypium hirsutum), encoding a SNAP25-type protein containing glutamine (Q)b- and Qc-SNARE motifs connected by a linker. GhSNAP33 expression was induced by H2O2, salicylic acid, abscisic acid, and polyethylene glycol 6000 treatment and Verticillium dahliae inoculation. Ectopic expression of GhSNAP33 enhanced the tolerance of yeast cells to oxidative and osmotic stresses. Virus-induced gene silencing of GhSNAP33 induced spontaneous cell death and reactive oxygen species accumulation in true leaves at a later stage of cotton development. GhSNAP33-deficient cotton was susceptible to V. dahliae infection, which resulted in severe wilt on leaves, an elevated disease index, enhanced vascular browning and thylose accumulation. Conversely, Arabidopsis plants overexpressing GhSNAP33 showed significant resistance to V. dahliae, with reduced disease index and fungal biomass and elevated expression of PR1 and PR5. Leaves from GhSNAP33-transgenic plants showed increased callose deposition and reduced mycelia growth. Moreover, GhSNAP33 overexpression enhanced drought tolerance in Arabidopsis, accompanied with reduced water loss rate and enhanced expression of DERB2A and RD29A during dehydration. Thus, GhSNAP33 positively mediates plant defense against stress conditions and V. dahliae infection, rendering it a candidate for the generation of stress-resistant engineered cotton.
Collapse
Affiliation(s)
- Ping Wang
- College of Science, China Agricultural University, Beijing, China
| | - Yun Sun
- College of Science, China Agricultural University, Beijing, China
| | - Yakun Pei
- College of Science, China Agricultural University, Beijing, China
| | - Xiancai Li
- College of Science, China Agricultural University, Beijing, China
| | - Xueyan Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of The Chinese Academy of Agricultural Sciences, Anyang, China
| | - Fuguang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of The Chinese Academy of Agricultural Sciences, Anyang, China
- *Correspondence: Fuguang Li, Yuxia Hou,
| | - Yuxia Hou
- College of Science, China Agricultural University, Beijing, China
- *Correspondence: Fuguang Li, Yuxia Hou,
| |
Collapse
|
14
|
Liu N, Ma X, Sun Y, Hou Y, Zhang X, Li F. Necrotizing Activity of Verticillium dahliae and Fusarium oxysporum f. sp. vasinfectum Endopolygalacturonases in Cotton. PLANT DISEASE 2017; 101:1128-1138. [PMID: 30682957 DOI: 10.1094/pdis-05-16-0657-re] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Polygalacturonase (PG), which digests the pectin of plant cell walls, contributes to pathogenicity of fungi in plants. To explore the role of PG in pathogenicity of the fungal cotton pathogens Verticillium dahliae and Fusarium oxysporum f. sp. vasinfectum, VDPG1 and FOVPG1 were cloned and their expression in different cotton (Gossypium hirsutum) cultivars and media was analyzed. VDPG1 and FOVPG1 were strongly upregulated during infection. Purified VDPG1 and FOVPG1 play important roles in the symptom development of both resistant and susceptible cotton. Moreover, after inoculation with purified PGs, the hydroxyproline content of the cell walls increased in cotton seedlings, with resistant cultivar seedlings showing significantly higher hydroxyproline content than seedlings of the susceptible cultivar. PG gene expression analysis in different media showed that both PG genes were induced in pectin medium but not in glucose medium. This study highlighted the role of VDPG1 and FOVPG1 in pathogenicity and virulence, which were detected in fungus-inoculated cotton, suggesting that PGs play an important role in the pathogenicity of V. dahliae and F. oxysporum f. sp. vasinfectum.
Collapse
Affiliation(s)
- Nana Liu
- College of Science, China Agricultural University, Beijing 100193, P. R. China
| | - Xiaowen Ma
- College of Science, China Agricultural University, Beijing 100193, P. R. China
| | - Yun Sun
- College of Science, China Agricultural University, Beijing 100193, P. R. China
| | - Yuxia Hou
- College of Science, China Agricultural University, Beijing 100193, P. R. China
| | - Xueyan Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, P. R. China
| | - Fuguang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, P. R. China
| |
Collapse
|
15
|
Wang P, Zhang X, Ma X, Sun Y, Liu N, Li F, Hou Y. Identification of CkSNAP33, a gene encoding synaptosomal-associated protein from Cynanchum komarovii, that enhances Arabidopsis resistance to Verticillium dahliae. PLoS One 2017; 12:e0178101. [PMID: 28575006 PMCID: PMC5456056 DOI: 10.1371/journal.pone.0178101] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 05/07/2017] [Indexed: 02/03/2023] Open
Abstract
SNARE proteins are essential to vesicle trafficking and membrane fusion in eukaryotic cells. In addition, the SNARE-mediated secretory pathway can deliver diverse defense products to infection sites during exocytosis-associated immune responses in plants. In this study, a novel gene (CkSNAP33) encoding a synaptosomal-associated protein was isolated from Cynanchum komarovii and characterized. CkSNAP33 contains Qb- and Qc-SNARE domains in the N- and C-terminal regions, respectively, and shares high sequence identity with AtSNAP33 from Arabidopsis. CkSNAP33 expression was induced by H2O2, salicylic acid (SA), Verticillium dahliae, and wounding. Arabidopsis lines overexpressing CkSNAP33 had longer primary roots and larger seedlings than the wild type (WT). Transgenic Arabidopsis lines showed significantly enhanced resistance to V. dahliae, and displayed reductions in disease index and fungal biomass, and also showed elevated expression of PR1 and PR5. The leaves of transgenic plants infected with V. dahliae showed strong callose deposition and cell death that hindered the penetration and spread of the fungus at the infection site. Taken together, these results suggest that CkSNAP33 is involved in the defense response against V. dahliae and enhanced disease resistance in Arabidopsis.
Collapse
Affiliation(s)
- Ping Wang
- College of Science, China Agricultural University, Beijing, China
| | - Xueyan Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xiaowen Ma
- College of Science, China Agricultural University, Beijing, China
| | - Yun Sun
- College of Science, China Agricultural University, Beijing, China
| | - Nana Liu
- College of Science, China Agricultural University, Beijing, China
| | - Fuguang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China
- * E-mail: (FL); (YH)
| | - Yuxia Hou
- College of Science, China Agricultural University, Beijing, China
- * E-mail: (FL); (YH)
| |
Collapse
|
16
|
Liu CQ, Hu KD, Li TT, Yang Y, Yang F, Li YH, Liu HP, Chen XY, Zhang H. Polygalacturonase gene pgxB in Aspergillus niger is a virulence factor in apple fruit. PLoS One 2017; 12:e0173277. [PMID: 28257463 PMCID: PMC5336277 DOI: 10.1371/journal.pone.0173277] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 02/17/2017] [Indexed: 02/03/2023] Open
Abstract
Aspergillus niger, a saprophytic fungus, is widely distributed in soil, air and cereals, and can cause postharvest diseases in fruit. Polygalacturonase (PG) is one of the main enzymes in fungal pathogens to degrade plant cell wall. To evaluate whether the deletion of an exo-polygalacturonase gene pgxB would influence fungal pathogenicity to fruit, pgxB gene was deleted in Aspergillus niger MA 70.15 (wild type) via homologous recombination. The ΔpgxB mutant showed similar growth behavior compared with the wild type. Pectin medium induced significant higher expression of all pectinase genes in both wild type and ΔpgxB in comparison to potato dextrose agar medium. However, the ΔpgxB mutant was less virulent on apple fruits as the necrosis diameter caused by ΔpgxB mutant was significantly smaller than that of wild type. Results of quantitive-PCR showed that, in the process of infection in apple fruit, gene expressions of polygalacturonase genes pgaI, pgaII, pgaA, pgaC, pgaD and pgaE were enhanced in ΔpgxB mutant in comparison to wild type. These results prove that, despite the increased gene expression of other polygalacturonase genes in ΔpgxB mutant, the lack of pgxB gene significantly reduced the virulence of A. niger on apple fruit, suggesting that pgxB plays an important role in the infection process on the apple fruit.
Collapse
Affiliation(s)
- Cheng-Qian Liu
- School of Food Science and Engineering, Hefei University of Technology, Hefei, China
| | - Kang-Di Hu
- School of Food Science and Engineering, Hefei University of Technology, Hefei, China
| | - Ting-Ting Li
- School of Food Science and Engineering, Hefei University of Technology, Hefei, China
| | - Ying Yang
- College of Environment and Energy Engineering, Anhui Jianzhu University, Hefei, China
| | - Feng Yang
- Xuzhou Institute of Agricultural Sciences of the Xuhuai District of Jiangsu Province, Xuzhou, China
| | - Yan-Hong Li
- School of Food Science and Engineering, Hefei University of Technology, Hefei, China
- Anhui Siping Food Development Co. Ltd., Tongling, China
| | - He-Ping Liu
- Anhui Siping Food Development Co. Ltd., Tongling, China
| | - Xiao-Yan Chen
- School of Food Science and Engineering, Hefei University of Technology, Hefei, China
| | - Hua Zhang
- School of Food Science and Engineering, Hefei University of Technology, Hefei, China
- * E-mail:
| |
Collapse
|
17
|
Liu N, Zhang X, Sun Y, Wang P, Li X, Pei Y, Li F, Hou Y. Molecular evidence for the involvement of a polygalacturonase-inhibiting protein, GhPGIP1, in enhanced resistance to Verticillium and Fusarium wilts in cotton. Sci Rep 2017; 7:39840. [PMID: 28079053 PMCID: PMC5228132 DOI: 10.1038/srep39840] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 11/29/2016] [Indexed: 01/29/2023] Open
Abstract
Polygalacturonase-inhibiting protein (PGIP), belonging to a group of plant defence proteins, specifically inhibits endopolygalacturonases secreted by pathogens. Herein, we showed that purified GhPGIP1 is a functional inhibitor of Verticillium dahliae and Fusarium oxysporum f. sp. vasinfectum, the two fungal pathogens causing cotton wilt. Transcription of GhPGIP1 was increased in cotton upon infection, wounding, and treatment with defence hormone and H2O2. Resistance by GhPGIP1 was examined by its virus-induced gene silencing in cotton and overexpression in Arabidopsis. GhPGIP1-silenced cotton was highly susceptible to the infections. GhPGIP1 overexpression in transgenic Arabidopsis conferred resistance to the infection, accompanied by enhanced expression of pathogenesis-related proteins (PRs), isochorismate synthase 1 (ICS1), enhanced disease susceptibility 1 (EDS1), and phytoalexin-deficient 4 (PAD4) genes. Transmission electron microscopy revealed cell wall alteration and cell disintegration in plants inoculated with polygalacturonase (PGs), implying its role in damaging the cell wall. Docking studies showed that GhPGIP1 interacted strongly with C-terminal of V. dahliae PG1 (VdPG1) beyond the active site but weakly interacted with C-terminal of F. oxysporum f. sp. vasinfectum (FovPG1). These findings will contribute towards the understanding of the roles of PGIPs and in screening potential combat proteins with novel recognition specificities against evolving pathogenic factors for countering pathogen invasion.
Collapse
Affiliation(s)
- Nana Liu
- College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, People’s Republic of China
| | - Xueyan Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, People’s Republic of China
| | - Yun Sun
- College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, People’s Republic of China
| | - Ping Wang
- College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, People’s Republic of China
| | - Xiancai Li
- College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, People’s Republic of China
| | - Yakun Pei
- College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, People’s Republic of China
| | - Fuguang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, People’s Republic of China
| | - Yuxia Hou
- College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, People’s Republic of China
| |
Collapse
|