1
|
Xu D, Guo M, Xu X, Luo G, Liu Y, Bush SJ, Wang C, Xu T, Zeng W, Liao C, Wang Q, Zhao W, Zhao W, Liu Y, Li S, Zhao S, Jiu Y, Sauvonnet N, Lu W, Sansonetti PJ, Ye K. Shigella infection is facilitated by interaction of human enteric α-defensin 5 with colonic epithelial receptor P2Y11. Nat Microbiol 2025; 10:509-526. [PMID: 39901059 DOI: 10.1038/s41564-024-01901-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 12/02/2024] [Indexed: 02/05/2025]
Abstract
Human enteric α-defensin 5 (HD5) is an immune system peptide that acts as an important antimicrobial factor but is also known to promote pathogen infections by enhancing adhesion of the pathogens. The mechanistic basis of these conflicting functions is unknown. Here we show that HD5 induces abundant filopodial extensions in epithelial cells that capture Shigella, a major human enteroinvasive pathogen that is able to exploit these filopodia for invasion, revealing a mechanism for HD5-augmented bacterial invasion. Using multi-omics screening and in vitro, organoid, dynamic gut-on-chip and in vivo models, we identify the HD5 receptor as P2Y11, a purinergic receptor distributed apically on the luminal surface of the human colonic epithelium. Inhibitor screening identified cAMP-PKA signalling as the main pathway mediating the cytoskeleton-regulating activity of HD5. In illuminating this mechanism of Shigella invasion, our findings raise the possibility of alternative intervention strategies against HD5-augmented infections.
Collapse
Affiliation(s)
- Dan Xu
- Key Laboratory of Biomedical Information Engineering (MOE), School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Mengyao Guo
- Key Laboratory of Biomedical Information Engineering (MOE), School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Xin Xu
- Key Laboratory of Biomedical Information Engineering (MOE), School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Gan Luo
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Science, Fudan University, Shanghai, China
| | - Yaxin Liu
- Key Laboratory of Biomedical Information Engineering (MOE), School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Stephen J Bush
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Chengyao Wang
- The First Affiliated Hospital, Xi'an Jiaotong University School of Medicine, Xi'an, China
| | - Tun Xu
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Wenxin Zeng
- Key Laboratory of Biomedical Information Engineering (MOE), School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Chongbing Liao
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Science, Fudan University, Shanghai, China
| | - Qingxia Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Science, Fudan University, Shanghai, China
| | - Wei Zhao
- The First Affiliated Hospital, Xi'an Jiaotong University School of Medicine, Xi'an, China
| | - Wenying Zhao
- Key Laboratory of Biomedical Information Engineering (MOE), School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Yuezhuangnan Liu
- Key Laboratory of Biomedical Information Engineering (MOE), School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Shanshan Li
- Key Laboratory of Biomedical Information Engineering (MOE), School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Shuangshuang Zhao
- CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Yaming Jiu
- CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Nathalie Sauvonnet
- Tissue Homeostasis group, Biomaterials and Microfluidics Core Facility, Institut Pasteur, Université Paris Cité, Paris, France
| | - Wuyuan Lu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Science, Fudan University, Shanghai, China.
| | - Philippe J Sansonetti
- CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China.
- Institut Pasteur, Paris, France.
| | - Kai Ye
- Key Laboratory of Biomedical Information Engineering (MOE), School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China.
- The First Affiliated Hospital, Xi'an Jiaotong University School of Medicine, Xi'an, China.
| |
Collapse
|
2
|
Thangaiyan R, Sakwe AM, Hawkins AT, Washington MK, Ballard BR, Izban MG, Chirwa SS, Hildreth JEK, Shanker A, Blum DL, M'Koma AE. Functional characterization of novel anti-DEFA5 monoclonal antibody clones 1A8 and 4F5 in inflammatory bowel disease colitis tissues. Inflamm Res 2025; 74:30. [PMID: 39883179 PMCID: PMC11782311 DOI: 10.1007/s00011-024-01970-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/28/2024] [Accepted: 11/30/2024] [Indexed: 01/31/2025] Open
Abstract
BACKGROUND The aberrant expression of α defensin 5 (DEFA5) protein in colonic inflammatory bowel diseases (IBDs) underlies the distinct pathogenesis of Crohn's colitis (CC). It can serve as a biomarker for differentiating CC from Ulcerative colitis (UC), particularly in Indeterminate colitis (IC) cases into UC and CC. We evaluated the specificity of commercially available anti-DEFA5 antibodies, emphasizing the need to further validate their appropriateness for a given application and highlighting the necessity for novel antibodies. METHODS We established two mice monoclonal DEFA5 antibody clones, 1A8 and 4F5, by immunizing mice with purified recombinant protein. We validated the specificity, sensitivity, and cross-reactivity of these antibodies in recognizing both endogenous and recombinant DEFA5 protein, especially for use in Immunohistochemistry (IHC), Western blot (WB), Immunoprecipitation (IP), and enzyme-linked immunosorbent assay (ELISA). RESULTS Clones 1A8 and 4F5 effectively recognized the endogenous DEFA5 in active human colon tissue from patients with diverticulitis (DV), UC, CC, and IC disease samples, as well as in transiently transfected HEK293T cells expressing DEFA5 with minimal non-confounding cross reactivity. CONCLUSIONS The 1A8 and 4F5 clones are useful for a wide variety of immunoassays, including WB, IHC, IP/WB, and ELISA. Their specificity enhances their potential as valuable tools for research applications in IBD colitis.
Collapse
Affiliation(s)
- Rabi Thangaiyan
- Department of Biochemistry, Cancer Biology, Neuroscience, and Pharmacology, School of Medicine, Meharry Medical College, 1005 D.B. Todd Jr. Blvd, Nashville, TN, USA
| | - Amos M Sakwe
- Department of Biochemistry, Cancer Biology, Neuroscience, and Pharmacology, School of Medicine, Meharry Medical College, 1005 D.B. Todd Jr. Blvd, Nashville, TN, USA
| | - Alexander T Hawkins
- Section of Colon and Rectal Surgery, Division of General Surgery, School of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mary K Washington
- Department of Pathology, Microbiology, and Immunology, School of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Billy R Ballard
- Department of Pathology, Anatomy and Cell Biology, School of Medicine, Meharry Medical College, Nashville, TN, USA
| | - Michael G Izban
- Department of Pathology, Anatomy and Cell Biology, School of Medicine, Meharry Medical College, Nashville, TN, USA
| | - Sanika S Chirwa
- Department of Biochemistry, Cancer Biology, Neuroscience, and Pharmacology, School of Medicine, Meharry Medical College, 1005 D.B. Todd Jr. Blvd, Nashville, TN, USA
| | - James E K Hildreth
- Department of Microbiology, Immunology, and Physiology, School of Medicine, Meharry Medical College, Nashville, TN, USA
| | - Anil Shanker
- Department of Biochemistry, Cancer Biology, Neuroscience, and Pharmacology, School of Medicine, Meharry Medical College, 1005 D.B. Todd Jr. Blvd, Nashville, TN, USA
| | - David L Blum
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Amosy E M'Koma
- Department of Biochemistry, Cancer Biology, Neuroscience, and Pharmacology, School of Medicine, Meharry Medical College, 1005 D.B. Todd Jr. Blvd, Nashville, TN, USA.
- Section of Colon and Rectal Surgery, Division of General Surgery, School of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Pathology, Anatomy and Cell Biology, School of Medicine, Meharry Medical College, Nashville, TN, USA.
| |
Collapse
|
3
|
Thangaiyan R, Sakwe AM, Hawkins AT, Washington MK, Ballard BR, Izban MG, Chirwa SS, Hildreth JEK, Shanker A, Blum DL, M'Koma AE. Anti-DEFA5 Monoclonal Antibody Clones 1A8 and 4F5 Immunoreactive Bioassay for Diagnosing Inflammatory Bowel Disease. RESEARCH SQUARE 2024:rs.3.rs-4843765. [PMID: 39257990 PMCID: PMC11384025 DOI: 10.21203/rs.3.rs-4843765/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Background Robust evidence suggests that the aberrant expression of α defensin 5 protein (DEFA5) in colon inflammatory bowel diseases (IBDs) underlies the distinct pathogenesis of Crohn's colitis, can be exploited as a reliable diagnostic biomarker to differential diagnosis of Crohn's colitis (CC) from Ulcerative colitis (UC) in otherwise indeterminate colitis (IC). We evaluated the specificity of the commercially available anti-DEFA5 antibodies and showed further validation of their appropriateness for a given application is required. Methods We established two mouse monoclonal DEFA5 antibody clones 1A8 and 4F5 by immunizing the mice with purified recombinant protein and validated the specificity, selectivity and cross reactivity in recognizing the endogenous and recombinant DEFA5 protein, especially for Immunohistochemistry, Western blot, Immunoprecipitation, or enzyme-linked immunosorbent assay. Results Clones 1A8 and 4F5 recognized effectively the endogenous DEFA5 in active human diverticulitis (DV), UC, CC or IC disease samples, including transiently transfected HEK293T cells expressing DEFA5 with high degree of specificity and minimal non-confounding cross reactivity. Conclusions 1A8 and 4F5 clones are worth studying in larger IBD cohorts to fully address whether DEFA5 expression may be used as a diagnostic biomarker to discrimination of the diagnosis of UC from CC or IC into authentic CC or UC or a colitis with different pathological characteristics.
Collapse
|
4
|
Fu J, Zong X, Jin M, Min J, Wang F, Wang Y. Mechanisms and regulation of defensins in host defense. Signal Transduct Target Ther 2023; 8:300. [PMID: 37574471 PMCID: PMC10423725 DOI: 10.1038/s41392-023-01553-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/11/2023] [Accepted: 06/26/2023] [Indexed: 08/15/2023] Open
Abstract
As a family of cationic host defense peptides, defensins are mainly synthesized by Paneth cells, neutrophils, and epithelial cells, contributing to host defense. Their biological functions in innate immunity, as well as their structure and activity relationships, along with their mechanisms of action and therapeutic potential, have been of great interest in recent years. To highlight the key research into the role of defensins in human and animal health, we first describe their research history, structural features, evolution, and antimicrobial mechanisms. Next, we cover the role of defensins in immune homeostasis, chemotaxis, mucosal barrier function, gut microbiota regulation, intestinal development and regulation of cell death. Further, we discuss their clinical relevance and therapeutic potential in various diseases, including infectious disease, inflammatory bowel disease, diabetes and obesity, chronic inflammatory lung disease, periodontitis and cancer. Finally, we summarize the current knowledge regarding the nutrient-dependent regulation of defensins, including fatty acids, amino acids, microelements, plant extracts, and probiotics, while considering the clinical application of such regulation. Together, the review summarizes the various biological functions, mechanism of actions and potential clinical significance of defensins, along with the challenges in developing defensins-based therapy, thus providing crucial insights into their biology and potential clinical utility.
Collapse
Affiliation(s)
- Jie Fu
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Hangzhou, Zhejiang Province, China
| | - Xin Zong
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Hangzhou, Zhejiang Province, China
| | - Mingliang Jin
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Hangzhou, Zhejiang Province, China
| | - Junxia Min
- The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Fudi Wang
- The Second Affiliated Hospital, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China.
- The First Affiliated Hospital, Basic Medical Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China.
| | - Yizhen Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China.
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
5
|
Breaux WA, Bragg MA, M'Koma AE. Ubiquitous Colonic Ileal Metaplasia Consistent with the Diagnosis of Crohn's Colitis among Indeterminate Colitis Cohorts. MEDICAL RESEARCH ARCHIVES 2023; 11:4188. [PMID: 37854669 PMCID: PMC10584353 DOI: 10.18103/mra.v11i8.4188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Background Inadequate differentiated diagnostic features of predominantly colonic inflammatory bowel diseases i.e., ulcerative colitis and Crohn's colitis, may lead to inexact diagnosis of "indeterminate colitis". About 15% of indeterminate colitis patients are diagnosed at colonoscopy, in colonic biopsies, and/or at colectomy. Managing outcomes of indeterminate colitis, given its unpredictable clinical presentation, depends on future diagnosis of colitis, Crohn's colitis or ulcerative colitis. Objective Overview the diagnostic efficacy of ectopic colonic ileal metaplasia and human α-defens 5 (DEFA5 alias HD5) for accurate delineation of indeterminate colitis into authentic Crohn's colitis and/ or ulcerative colitis. Design We describe a targeted protein for potentially differentiating indeterminate colitis into an accurate clinical subtype diagnosis of inflammatory bowel diseases i.e., ulcerative colitis and Crohn's colitis. Patients Twenty-one patients with the clinically inexact diagnosis of indeterminate colitis were followed, reassessed and data analyzed. Main outcome measures We observed that (i) some patients had their original diagnosis changed from indeterminate colitis to either ulcerative colitis or Crohn's colitis; and (ii) human α-defensin 5 is aberrantly overexpressed in Crohn's colitis. Results Fifteen of the twenty-one (71.4%) patients with indeterminate colitis had their inconclusive diagnosis changed; nine patients changed to ulcerative colitis and six to Crohn's colitis. In human colon surgical samples, Human α-defensin-5 was significantly upregulated in Crohn's colitis. In addition, Human α-defensin 5 processing enzyme, matrix metalloptotease-7 was inversely expressed compared to Human α- Defensin 5. Limitation Due to the sequence homology of the α-defensin class of proteins, preceding efforts to raise antibodies (Abs) against DEFA5 have limitations to produce adequate specificity. The Abs used in previous assays recognizes the α-defensins, active α-defensins 5 and inactive pro- α-defensins 5. Monoclonal antibodies (mAbs) to determine specificity and sensitivity of α-defensins 5, which is diagnostic of CC disease, and NOT other α-defensins is the limitation to overcome. Conclusion It is feasible to differentiate ulcerative colitis from Crohn's colitis among patients with inexact diagnosis of indeterminate colitis using Human α-defensin 5 as a molecular biosignature delineator.
Collapse
Affiliation(s)
- William A. Breaux
- Schools of Medicine, Meharry Medical College, Division of Biomedical Sciences, Nashville, Tennessee, Unite States of America
| | - Maya A. Bragg
- Schools of Medicine, Meharry Medical College, Division of Biomedical Sciences, Nashville, Tennessee, Unite States of America
| | - Amosy E. M'Koma
- Department of Biochemistry, Cancer Biology, Neuroscience, and Pharmacology, Nashville, Tennessee, Unite States of America
- Department of Surgery, Colon and Rectal Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, Unite States of America
| |
Collapse
|
6
|
M’Koma AE, Ware JN, Nabaweesi RK, Chirwa SS. Managing Pregnancy and Nursing Affecting African American Women with Inflammatory Bowel Disease: Clinical Outcomes and Parenthood. MEDICAL RESEARCH ARCHIVES 2023; 11:3784. [PMID: 37492395 PMCID: PMC10367541 DOI: 10.18103/mra.v11i6.3784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Inflammatory bowel disease (IBD) is a term for two autoimmune diseases encompassing Crohn's disease (CD) and ulcerative colitis (UC) which are lifelong diseases affecting more than 3 million adults (1.3%) in the United States. IBD is characterized by chronic inflammation of the whole digestive system which results in damage to the gastrointestinal (GI) tract. IBD often emerges during adolescence and young adulthood. Maternal morbidity includes physical and psychological conditions that result from or are aggravated by pregnancy and have an adverse effect on a woman's health, the baby's health or both. Some women have health challenges that arise before or during pregnancy that could lead to complications. It is recommended for women to receive health care counseling before and during pregnancy. Compared to other developed countries, the United States has the highest rate of women dying of pregnancy related complications. During the past 25 years maternal mortality has been getting worse. African American women (AAW) with and/or without IBD are dying at significantly higher rates than other groups. This is linked to several factors, i.e., systemic, institutionalized, and structural racism in health-care delivery and subsequent toxic stress from people's lived experiences of racism, limited knowledge about healthcare system function, lack of access to healthcare, (inclusiveness and insurance policies) all of which negatively impact these patients. African Americans (AAs) are also up to three times as likely to experience severe maternal morbidity: unexpected outcomes of labor and delivery, deficient or lacking prenatal care and social determinants of health like lack of transportation, adequate employment, limited literacy, and limited healthcare access contribute to poor health outcomes. Studies on IBD patients indicate Medicaid expansion is associated with reduced rates of maternal morbidity, particularly for African American Women (AAW) and increased access to preconception and prenatal services that make pregnancy and childbirth safer for parent and baby. Herein we examine the physiological changes of pregnancy in patients diagnosed with inflammatory bowel disease and their relationship perinatal outcomes and parenthood.
Collapse
Affiliation(s)
- Amosy E. M’Koma
- Departments of Biochemistry, Cancer Biology, Neuroscience and Pharmacology
| | | | | | - Sanika S. Chirwa
- Departments of Biochemistry, Cancer Biology, Neuroscience and Pharmacology
| |
Collapse
|
7
|
Cui C, Wang X, Li L, Wei H, Peng J. Multifaceted involvements of Paneth cells in various diseases within intestine and systemically. Front Immunol 2023; 14:1115552. [PMID: 36993974 PMCID: PMC10040535 DOI: 10.3389/fimmu.2023.1115552] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 03/02/2023] [Indexed: 03/14/2023] Open
Abstract
Serving as the guardians of small intestine, Paneth cells (PCs) play an important role in intestinal homeostasis maintenance. Although PCs uniquely exist in intestine under homeostasis, the dysfunction of PCs is involved in various diseases not only in intestine but also in extraintestinal organs, suggesting the systemic importance of PCs. The mechanisms under the participation of PCs in these diseases are multiple as well. The involvements of PCs are mostly characterized by limiting intestinal bacterial translocation in necrotizing enterocolitis, liver disease, acute pancreatitis and graft-vs-host disease. Risk genes in PCs render intestine susceptible to Crohn’s disease. In intestinal infection, different pathogens induce varied responses in PCs, and toll-like receptor ligands on bacterial surface trigger the degranulation of PCs. The increased level of bile acid dramatically impairs PCs in obesity. PCs can inhibit virus entry and promote intestinal regeneration to alleviate COVID-19. On the contrary, abundant IL-17A in PCs aggravates multi-organ injury in ischemia/reperfusion. The pro-angiogenic effect of PCs aggravates the severity of portal hypertension. Therapeutic strategies targeting PCs mainly include PC protection, PC-derived inflammatory cytokine elimination, and substituting AMP treatment. In this review, we discuss the influence and importance of Paneth cells in both intestinal and extraintestinal diseases as reported so far, as well as the potential therapeutic strategies targeting PCs.
Collapse
Affiliation(s)
- Chenbin Cui
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xinru Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Lindeng Li
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hongkui Wei
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jian Peng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- *Correspondence: Jian Peng,
| |
Collapse
|
8
|
Ali MZ, Tariq MU, Abid MH, Abdulaziz H, AlAdwani M, Khurshid A, Rashid M, Al Thobaiti F, Althagafi A. A Case Report and Literature Review of Rectosigmoid Crohn's Disease: A Diagnostic Pitfall Ultimately Leading to Spontaneous Colonic Perforation. Cureus 2023; 15:e36941. [PMID: 37131553 PMCID: PMC10148968 DOI: 10.7759/cureus.36941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2023] [Indexed: 05/04/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic condition that affects the gastrointestinal tract, with ulcerative colitis (UC) and Crohn's disease (CD) as the two major entities. While these conditions share some similarities in clinical presentation, they have distinct histopathological features. UC is a mucosal disease affecting the left colon and rectum, while CD can affect any part of the gastrointestinal tract and all layers of the bowel wall. Accurate diagnosis of UC and CD is important for effective management and prevention of complications. However, distinguishing between the two conditions based on limited biopsy specimens or atypical clinical presentations can be challenging. We present a case of a patient diagnosed with UC based on a single endoscopic biopsy from the sigmoid colon, who later presented with colonic perforation and was found to have CD on the colectomy specimen. This case emphasizes the importance of clinical guidelines when dealing with any patient of suspected IBD, considering alternative diagnoses in patients with atypical presentations and the need for careful clinical, endoscopic, and histological evaluation to make an accurate diagnosis. Delayed or missed diagnosis of CD can lead to significant morbidity and mortality.
Collapse
Affiliation(s)
- Muhammad Z Ali
- General Surgery, Alhada Armed Forces Hospital, Taif, SAU
| | - Muhammad Usman Tariq
- Histopathology, Prince Faisal Cancer Centre, King Fahd Specialist Hospital, Buraydah, SAU
| | - Muhammad Hasan Abid
- Continuous Quality Improvement and Patient Safety, Alhada Armed Forces Hospital, Taif, SAU
- Quality Improvement and Patient Safety Leadership, Institute for Healthcare Improvement, Boston, USA
| | | | | | - Arif Khurshid
- General Surgery, Alhada Armed Forces Hospital, Taif, SAU
| | | | | | | |
Collapse
|
9
|
M'Koma AE. Inflammatory Bowel Disease: Clinical Diagnosis and Pharmaceutical Management. MEDICAL RESEARCH ARCHIVES 2023; 11:10.18103/mra.v11i1.3135. [PMID: 37089816 PMCID: PMC10118064 DOI: 10.18103/mra.v11i1.3135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Inflammatory bowel disease has an enormous impact on public health, medical systems, economies, and social conditions. Biologic therapy has ameliorated the treatment and clinical course of patients with inflammatory bowel disease. The efficacy and safety profiles of currently available therapies are still less that optimal in numerous ways, highlighting the requirement for new therapeutic targets. A bunch of new drug studies are underway in inflammatory bowel disease with promising results. This is an outlined guideline of clinical diagnosis and pharmaceutical therapy of inflammatory bowel disease. Outline delineates the overall recommendations on the modern principles of desirable practice to bolster the adoption of best implementations and exploration as well as inflammatory bowel disease patient, gastroenterologist, and other healthcare provider education. Inflammatory bowel disease encompasses Crohn's disease and ulcerative colitis, the two unsolved medical inflammatory bowel disease-subtypes condition with no drug for cure. The signs and symptoms on first presentation relate to the anatomical localization and severity of the disease and less with the resulting diagnosis that can clinically and histologically be non-definitive to interpret and establish criteria, specifically in colonic inflammatory bowel disease when the establishment is inconclusive is classified as indeterminate colitis. Conservative pharmaceuticals and accessible avenues do not depend on the disease phenotype. The first line management is to manage symptoms and stabilize active disease; at the same time maintenance therapy is indicated. Nutrition and diet do not play a primary therapeutic role but is warranted as supportive care. There is need of special guideline that explore solution of groundwork gap in terms of access limitations to inflammatory bowel disease care, particularly in developing countries and the irregular representation of socioeconomic stratification with a strategic plan, for the unanswered questions and perspective for the future, especially during the surfaced global COVID-19 pandemic caused by coronavirus SARS-CoV2 impacting on both the patient's psychological functioning and endoscopy services. Establishment of a global registry system and accumulated experiences have led to consensus for inflammatory bowel disease management under the COVID-19 pandemic. Painstakingly, the pandemic has influenced medical care systems for these patients. I briefly herein viewpoint summarize among other updates the telemedicine roles during the pandemic and how operationally inflammatory bowel disease centers managed patients and ensured quality of care. In conclusion: inflammatory bowel disease has become a global emergent disease. Serious medical errors are public health problem observed in developing nations i.e., to distinguish inflammatory bowel disease and infectious and parasitic diseases. Refractory inflammatory bowel disease is a still significant challenge in the management of patients with Crohn's disease and ulcerative colitis. There are gaps in knowledge and future research directions on the recent newly registered pharmaceuticals. The main clinical outcomes for inflammatory bowel disease were maintained during the COVID-19 pandemic period.
Collapse
Affiliation(s)
- Amosy Ephreim M'Koma
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College School of Medicine, Nashville, Tennessee, United States
- Department of Pathology, Anatomy and Cell Biology, Meharry Medical College School of Medicine, Nashville General Hospital, Nashville, Tennessee, United States
- Division of General Surgery, Section of Colon and Rectal Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
- Affiliated Scientist Investigator, The American Society of Colon, and Rectal Surgeons (ASCRS), Arlington Heights, IL 60005, Unite States
- The American Gastroenterological Association (AGA), Bethesda, MD 20814, United States
| |
Collapse
|
10
|
Li Y, Law HKW. Deciphering the role of autophagy in the immunopathogenesis of inflammatory bowel disease. Front Pharmacol 2022; 13:1070184. [DOI: 10.3389/fphar.2022.1070184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 10/31/2022] [Indexed: 11/16/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a typical immune-mediated chronic inflammatory disorder. Following the industrialization and changes in lifestyle, the incidence of IBD in the world is rising, which makes health concerns and heavy burdens all over the world. However, the pathogenesis of IBD remains unclear, and the current understanding of the pathogenesis involves dysregulation of mucosal immunity, gut microbiome dysbiosis, and gut barrier defect based on genetic susceptibility and environmental triggers. In recent years, autophagy has emerged as a key mechanism in IBD development and progression because Genome-Wide Association Study revealed the complex interactions of autophagy in IBD, especially immunopathogenesis. Besides, autophagy markers are also suggested to be potential biomarkers and target treatment in IBD. This review summarizes the autophagy-related genes regulating immune response in IBD. Furthermore, we explore the evolving evidence that autophagy interacts with intestinal epithelial and immune cells to contribute to the inflammatory changes in IBD. Finally, we discuss how novel discovery could further advance our understanding of the role of autophagy and inform novel therapeutic strategies in IBD.
Collapse
|
11
|
MicroRNAs in Inflammatory Bowel Disease and Its Complications. Int J Mol Sci 2022; 23:ijms23158751. [PMID: 35955886 PMCID: PMC9369281 DOI: 10.3390/ijms23158751] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 11/17/2022] Open
Abstract
Inflammatory bowel disease (IBD), classified primarily between Crohn's disease and ulcerative colitis, is a collection of chronic gastrointestinal inflammatory conditions that cause multiple complications because of systemic alterations in the immune response. One major player is microRNA (miRNA), which is found to be associated with multiple pathways in mediating inflammation, especially those of a chronic nature in IBD, as well as irritable bowel syndrome. Although there have been studies linking miRNA alterations in IBD, even differentiating Crohn's disease and ulcerative colitis, this review focuses mainly on how miRNAs cause and mechanistically influence the pathologic complications of IBD. In addition to its role in the well-known progression towards colorectal cancer, we also emphasize how miRNA manifests the many extraintestinal complications in IBD such as cardiovascular diseases; neuropsychiatric conditions such as depression and anxiety disorders; and others, including various musculoskeletal, dermatologic, ocular, and hepatobiliary complications. We conclude through a description of its potential use in bettering diagnostics and the future treatment of IBD and its systemic symptoms.
Collapse
|
12
|
Gobert AP, Latour YL, Asim M, Barry DP, Allaman MM, Finley JL, Smith TM, McNamara KM, Singh K, Sierra JC, Delgado AG, Luis PB, Schneider C, Washington MK, Piazuelo MB, Zhao S, Coburn LA, Wilson KT. Protective Role of Spermidine in Colitis and Colon Carcinogenesis. Gastroenterology 2022; 162:813-827.e8. [PMID: 34767785 PMCID: PMC8881368 DOI: 10.1053/j.gastro.2021.11.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 10/27/2021] [Accepted: 11/02/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND & AIMS Because inflammatory bowel disease is increasing worldwide and can lead to colitis-associated carcinoma (CAC), new interventions are needed. We have shown that spermine oxidase (SMOX), which generates spermidine (Spd), regulates colitis. Here we determined whether Spd treatment reduces colitis and carcinogenesis. METHODS SMOX was quantified in human colitis and associated dysplasia using quantitative reverse-transcription polymerase chain reaction and immunohistochemistry. We used wild-type (WT) and Smox-/- C57BL/6 mice treated with dextran sulfate sodium (DSS) or azoxymethane (AOM)-DSS as models of colitis and CAC, respectively. Mice with epithelial-specific deletion of Apc were used as a model of sporadic colon cancer. Animals were supplemented or not with Spd in the drinking water. Colonic polyamines, inflammation, tumorigenesis, transcriptomes, and microbiomes were assessed. RESULTS SMOX messenger RNA levels were decreased in human ulcerative colitis tissues and inversely correlated with disease activity, and SMOX protein was reduced in colitis-associated dysplasia. DSS colitis and AOM-DSS-induced dysplasia and tumorigenesis were worsened in Smox-/- vs WT mice and improved in both genotypes with Spd. Tumor development caused by Apc deletion was also reduced by Spd. Smox deletion and AOM-DSS treatment were both strongly associated with increased expression of α-defensins, which was reduced by Spd. A shift in the microbiome, with reduced abundance of Prevotella and increased Proteobacteria and Deferribacteres, occurred in Smox-/- mice and was reversed with Spd. CONCLUSIONS Loss of SMOX is associated with exacerbated colitis and CAC, increased α-defensin expression, and dysbiosis of the microbiome. Spd supplementation reverses these phenotypes, indicating that it has potential as an adjunctive treatment for colitis and chemopreventive for colon carcinogenesis.
Collapse
Affiliation(s)
- Alain P Gobert
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, Tennessee; Program in Cancer Biolog Vanderbilt University Medical Center, Nashville, Tennessee
| | - Yvonne L Latour
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Mohammad Asim
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Daniel P Barry
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Margaret M Allaman
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jordan L Finley
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Thaddeus M Smith
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Kara M McNamara
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Program in Cancer Biolog Vanderbilt University Medical Center, Nashville, Tennessee
| | - Kshipra Singh
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Johanna C Sierra
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Alberto G Delgado
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Paula B Luis
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Claus Schneider
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - M Kay Washington
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - M Blanca Piazuelo
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Shilin Zhao
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Lori A Coburn
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, Tennessee; Program in Cancer Biolog Vanderbilt University Medical Center, Nashville, Tennessee; Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee
| | - Keith T Wilson
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, Tennessee; Program in Cancer Biolog Vanderbilt University Medical Center, Nashville, Tennessee; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee; Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee.
| |
Collapse
|
13
|
Rana T, Korolkova OY, Rachakonda G, Williams AD, Hawkins AT, James SD, Sakwe AM, Hui N, Wang L, Yu C, Goodwin JS, Izban MG, Offodile RS, Washington MK, Ballard BR, Smoot DT, Shi XZ, Forbes DS, Shanker A, M’Koma AE. Linking bacterial enterotoxins and alpha defensin 5 expansion in the Crohn's colitis: A new insight into the etiopathogenetic and differentiation triggers driving colonic inflammatory bowel disease. PLoS One 2021; 16:e0246393. [PMID: 33690604 PMCID: PMC7942995 DOI: 10.1371/journal.pone.0246393] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/17/2021] [Indexed: 02/05/2023] Open
Abstract
Evidence link bacterial enterotoxins to apparent crypt-cell like cells (CCLCs), and Alpha Defensin 5 (DEFA5) expansion in the colonic mucosa of Crohn's colitis disease (CC) patients. These areas of ectopic ileal metaplasia, positive for Paneth cell (PC) markers are consistent with diagnosis of CC. Retrospectively, we: 1. Identified 21 patients with indeterminate colitis (IC) between 2000-2007 and were reevaluation their final clinical diagnosis in 2014 after a followed-up for mean 8.7±3.7 (range, 4-14) years. Their initial biopsies were analyzed by DEFA5 bioassay. 2. Differentiated ulcer-associated cell lineage (UACL) analysis by immunohistochemistry (IHC) of the CC patients, stained for Mucin 6 (MUC6) and DEFA5. 3. Treated human immortalized colonic epithelial cells (NCM460) and colonoids with pure DEFA5 on the secretion of signatures after 24hr. The control colonoids were not treated. 4. Treated colonoids with/without enterotoxins for 14 days and the spent medium were collected and determined by quantitative expression of DEFA5, CCLCs and other biologic signatures. The experiments were repeated twice. Three statistical methods were used: (i) Univariate analysis; (ii) LASSO; and (iii) Elastic net. DEFA5 bioassay discriminated CC and ulcerative colitis (UC) in a cohort of IC patients with accuracy. A fit logistic model with group CC and UC as the outcome and the DEFA5 as independent variable differentiator with a positive predictive value of 96 percent. IHC staining of CC for MUC6 and DEFA5 stained in different locations indicating that DEFA5 is not co-expressed in UACL and is therefore NOT the genesis of CC, rather a secretagogue for specific signature(s) that underlie the distinct crypt pathobiology of CC. Notably, we observed expansion of signatures after DEFA5 treatment on NCM460 and colonoids cells expressed at different times, intervals, and intensity. These factors are key stem cell niche regulators leading to DEFA5 secreting CCLCs differentiation 'the colonic ectopy ileal metaplasia formation' conspicuously of pathogenic importance in CC.
Collapse
Affiliation(s)
- Tanu Rana
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College School of Medicine, Nashville, Tennessee, United States of America
| | - Olga Y. Korolkova
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College School of Medicine, Nashville, Tennessee, United States of America
| | - Girish Rachakonda
- Department of Microbiology and Immunology, Meharry Medical College School of Medicine, Nashville, Tennessee, United States of America
| | - Amanda D. Williams
- Department of Biology, Lipscomb University, Nashville, Tennessee, United States of America
| | - Alexander T. Hawkins
- Division of General Surgery, Section of Colon and Rectal Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Samuel D. James
- Department of Pathology, Anatomy and Cell Biology, Meharry Medical College School of Medicine, Nashville General Hospital, Nashville, Tennessee, United States of America
- Department of Pathology, Microbiology, and Immunology, Tennessee Valley Health Systems VA Medical Center, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Amos M. Sakwe
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College School of Graduate Studies and Research, Nashville, Tennessee, United States of America
| | - Nian Hui
- Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Li Wang
- Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Chang Yu
- Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Jeffrey S. Goodwin
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College School of Medicine, Nashville, Tennessee, United States of America
| | - Michael G. Izban
- Department of Pathology, Anatomy and Cell Biology, Meharry Medical College School of Medicine, Nashville General Hospital, Nashville, Tennessee, United States of America
| | - Regina S. Offodile
- Department of Professional and Medical Education, Meharry Medical College School of Medicine, Nashville General Hospital, Nashville, Tennessee, United States of America
| | - Mary K. Washington
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Billy R. Ballard
- Department of Pathology, Anatomy and Cell Biology, Meharry Medical College School of Medicine, Nashville General Hospital, Nashville, Tennessee, United States of America
| | - Duane T. Smoot
- Department of Medicine, Meharry Medical College School of Medicine, Nashville General Hospital, Nashville, Tennessee, United States of America
| | - Xuan-Zheng Shi
- Department of Medicine, University of Texas Medical Branch (UTMB) in Galveston, Galveston, Texas, United States of America
| | - Digna S. Forbes
- Department of Pathology, Anatomy and Cell Biology, Meharry Medical College School of Medicine, Nashville General Hospital, Nashville, Tennessee, United States of America
| | - Anil Shanker
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College School of Medicine, Nashville, Tennessee, United States of America
| | - Amosy E. M’Koma
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College School of Medicine, Nashville, Tennessee, United States of America
- Division of General Surgery, Section of Colon and Rectal Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Department of Pathology, Anatomy and Cell Biology, Meharry Medical College School of Medicine, Nashville General Hospital, Nashville, Tennessee, United States of America
| |
Collapse
|
14
|
Wu Z, Ding Z, Cheng B, Cui Z. The inhibitory effect of human DEFA5 in growth of gastric cancer by targeting BMI1. Cancer Sci 2021; 112:1075-1083. [PMID: 33503272 PMCID: PMC7935777 DOI: 10.1111/cas.14827] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 01/18/2021] [Accepted: 01/25/2021] [Indexed: 12/24/2022] Open
Abstract
Defensins, a class of small cysteine‐rich cationic polypeptides across cellular life, are identified as antimicrobial compounds that display direct antimicrobial and immune signaling activities that are involved in the host defense. In addition to their roles in the innate immune system, accumulating studies have reported that some members of defensins are expressed and involved in some cancer cells, such as colon cancer, colorectal cancer, lung cancer and renal cell carcinomas. However, the roles of α‐Defensin 5 (DEFA5) in tumorigenesis and development remain unknown. In the present study, bioinformatics analysis and quantitative PCR results showed that the expression level of DEFA5 was dramatically downregulated in human gastric cancer. Overexpression of human DEFA5 in gastric cancer cell lines SGC7901 and BGC823 effectively diminished cell proliferation and reduced the colony forming ability. Moreover, DEFA5 overexpression induced cell cycle arrest by significantly increasing the number of G1‐phase cells. Consistently, in vivo tumor formation experiments in nude mice showed the suppression of the tumor growth by DEFA5 overexpression, suggesting an inhibitory effect of DEFA5 in gastric cancer. Mechanistically, DEFA5 directly binds to BMI1, which subsequently decreased its binding at the CDKN2a locus and upregulated the expression of 2 cyclin‐dependent kinase inhibitors, p16 and p19. Taken together, we concluded that DEFA5 showed an inhibitory effect in gastric cancer cell growth and may serve as a potential tumor suppressor in gastric cancer.
Collapse
Affiliation(s)
- Zhongwei Wu
- Department of Emergency Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhaohui Ding
- Department of Gastrointestinal surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bo Cheng
- Department of Emergency Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zongchao Cui
- Department of Emergency Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
15
|
Choe EK, Lee S, Kim SY, Shivakumar M, Park KJ, Chai YJ, Kim D. Prognostic Effect of Inflammatory Genes on Stage I-III Colorectal Cancer-Integrative Analysis of TCGA Data. Cancers (Basel) 2021; 13:cancers13040751. [PMID: 33670198 PMCID: PMC7916934 DOI: 10.3390/cancers13040751] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/05/2021] [Accepted: 02/07/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Research interest in the role of inflammation in the progression and prognosis of colorectal cancer (CRC) is growing. In this study, we evaluated the expression and DNA methylation levels of inflammation-related genes in CRC tissues using the TCGA-COREAD dataset by integratively combining multi-omics features using machine learning. Statistical analysis was additionally performed to allow for interpretable, understandable, and clinically practical results. An integrative model combining expression, methylation, and clinical features had the highest performance. In multivariate analysis, the methylation levels of CEP250, RAB21, and TNPO3 were significantly associated with overall survival. Our study results implicate the importance of integrating expression and methylation information along with clinical information in the prediction of survival. CEP250, RAB21, and TNPO3 in the prediction model might have a crucial role in CRC prognosis and further improve our understanding of potential mechanisms linking inflammatory reactions and CRC progression. Abstract Background inflammatory status indicators have been reported as prognostic biomarkers of colorectal cancer (CRC). However, since inflammatory interactions with the colon involve various modes of action, the biological mechanism linking inflammation and CRC prognosis has not been fully elucidated. We comprehensively evaluated the predictive roles of the expression and methylation levels of inflammation-related genes for CRC prognosis and their pathophysiological associations. Method. An integrative analysis of 247 patients with stage I-III CRC from The Cancer Genome Atlas was conducted. Lasso-penalized Cox proportional hazards regression (Lasso-Cox) and statistical Cox proportional hazard regression (CPH) were used for the analysis. Results. Models to predict overall survival were designed with respective combinations of clinical variables, including age, sex, stage, gene expression, and methylation. An integrative model combining expression, methylation, and clinical features performed better (median C-index = 0.756) than the model with clinical features alone (median C-index = 0.726). Based on multivariate CPH with features from the best model, the methylation levels of CEP250, RAB21, and TNPO3 were significantly associated with overall survival. They did not share any biological process in functional networks. The 5-year survival rate was 29.8% in the low methylation group of CEP250 and 79.1% in the high methylation group (p < 0.001). Conclusion. Our study results implicate the importance of integrating expression and methylation information along with clinical information in the prediction of survival. CEP250, RAB21, and TNPO3 in the prediction model might have a crucial role in CRC prognosis and further improve our understanding of potential mechanisms linking inflammatory reactions and CRC progression.
Collapse
Affiliation(s)
- Eun Kyung Choe
- Department of Surgery, Seoul National University Hospital Healthcare System Gangnam Center, Seoul 06236, Korea;
- Department of Biostatistics, Epidemiology & Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6116, USA; (S.Y.K.); (M.S.)
- Department of Surgery, Seoul National University College of Medicine, Seoul 03080, Korea;
| | - Sangwoo Lee
- Department of Future Convergence, Cyber University of Korea, Seoul 03051, Korea;
| | - So Yeon Kim
- Department of Biostatistics, Epidemiology & Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6116, USA; (S.Y.K.); (M.S.)
- Department of Software and Computer Engineering, Ajou University, Suwon 16499, Korea
| | - Manu Shivakumar
- Department of Biostatistics, Epidemiology & Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6116, USA; (S.Y.K.); (M.S.)
| | - Kyu Joo Park
- Department of Surgery, Seoul National University College of Medicine, Seoul 03080, Korea;
| | - Young Jun Chai
- Department of Surgery, Seoul Metropolitan Government—Seoul National University Boramae Medical Center, Seoul 07061, Korea;
| | - Dokyoon Kim
- Department of Biostatistics, Epidemiology & Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6116, USA; (S.Y.K.); (M.S.)
- Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia, PA 19104-6116, USA
- Correspondence: ; Tel.: +1-215-573-5336
| |
Collapse
|
16
|
The RNA helicase Dhx15 mediates Wnt-induced antimicrobial protein expression in Paneth cells. Proc Natl Acad Sci U S A 2021; 118:2017432118. [PMID: 33483420 PMCID: PMC7848544 DOI: 10.1073/pnas.2017432118] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
RNA helicases play roles in various essential biological processes such as RNA splicing and editing. Recent in vitro studies show that RNA helicases are involved in immune responses toward viruses, serving as viral RNA sensors or immune signaling adaptors. However, there is still a lack of in vivo data to support the tissue- or cell-specific function of RNA helicases owing to the lethality of mice with complete knockout of RNA helicases; further, there is a lack of evidence about the antibacterial role of helicases. Here, we investigated the in vivo role of Dhx15 in intestinal antibacterial responses by generating mice that were intestinal epithelial cell (IEC)-specific deficient for Dhx15 (Dhx15 f/f Villin1-cre, Dhx15ΔIEC). These mice are susceptible to infection with enteric bacteria Citrobacter rodentium (C. rod), owing to impaired α-defensin production by Paneth cells. Moreover, mice with Paneth cell-specific depletion of Dhx15 (Dhx15 f/f Defensinα6-cre, Dhx15ΔPaneth) are more susceptible to DSS (dextran sodium sulfate)-induced colitis, which phenocopy Dhx15ΔIEC mice, due to the dysbiosis of the intestinal microbiota. In humans, reduced protein levels of Dhx15 are found in ulcerative colitis (UC) patients. Taken together, our findings identify a key regulator of Wnt-induced α-defensins in Paneth cells and offer insights into its role in the antimicrobial response as well as intestinal inflammation.
Collapse
|
17
|
Shimizu Y, Nakamura K, Yoshii A, Yokoi Y, Kikuchi M, Shinozaki R, Nakamura S, Ohira S, Sugimoto R, Ayabe T. Paneth cell α-defensin misfolding correlates with dysbiosis and ileitis in Crohn's disease model mice. Life Sci Alliance 2020; 3:3/6/e201900592. [PMID: 32345659 PMCID: PMC7190275 DOI: 10.26508/lsa.201900592] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 12/12/2022] Open
Abstract
This study provides novel insight into Crohn’s disease where α-defensin misfolding resulting from excessive ER stress in Paneth cells induces dysbiosis and disease progression. Crohn’s disease (CD) is an intractable inflammatory bowel disease, and dysbiosis, disruption of the intestinal microbiota, is associated with CD pathophysiology. ER stress, disruption of ER homeostasis in Paneth cells of the small intestine, and α-defensin misfolding have been reported in CD patients. Because α-defensins regulate the composition of the intestinal microbiota, their misfolding may cause dysbiosis. However, whether ER stress, α-defensin misfolding, and dysbiosis contribute to the pathophysiology of CD remains unknown. Here, we show that abnormal Paneth cells with markers of ER stress appear in SAMP1/YitFc, a mouse model of CD, along with disease progression. Those mice secrete reduced-form α-defensins that lack disulfide bonds into the intestinal lumen, a condition not found in normal mice, and reduced-form α-defensins correlate with dysbiosis during disease progression. Moreover, administration of reduced-form α-defensins to wild-type mice induces the dysbiosis. These data provide novel insights into CD pathogenesis induced by dysbiosis resulting from Paneth cell α-defensin misfolding and they suggest further that Paneth cells may be potential therapeutic targets.
Collapse
Affiliation(s)
- Yu Shimizu
- Innate Immunity Laboratory, Graduate School of Life Science, Hokkaido University, Hokkaido, Japan.,Department of Cell Biological Science, Faculty of Advanced Life Science, Hokkaido University, Hokkaido, Japan
| | - Kiminori Nakamura
- Innate Immunity Laboratory, Graduate School of Life Science, Hokkaido University, Hokkaido, Japan.,Department of Cell Biological Science, Faculty of Advanced Life Science, Hokkaido University, Hokkaido, Japan
| | - Aki Yoshii
- Innate Immunity Laboratory, Graduate School of Life Science, Hokkaido University, Hokkaido, Japan
| | - Yuki Yokoi
- Innate Immunity Laboratory, Graduate School of Life Science, Hokkaido University, Hokkaido, Japan.,Department of Cell Biological Science, Faculty of Advanced Life Science, Hokkaido University, Hokkaido, Japan
| | - Mani Kikuchi
- Department of Cell Biological Science, Faculty of Advanced Life Science, Hokkaido University, Hokkaido, Japan
| | - Ryuga Shinozaki
- Innate Immunity Laboratory, Graduate School of Life Science, Hokkaido University, Hokkaido, Japan
| | - Shunta Nakamura
- Innate Immunity Laboratory, Graduate School of Life Science, Hokkaido University, Hokkaido, Japan
| | - Shuya Ohira
- Innate Immunity Laboratory, Graduate School of Life Science, Hokkaido University, Hokkaido, Japan
| | - Rina Sugimoto
- Innate Immunity Laboratory, Graduate School of Life Science, Hokkaido University, Hokkaido, Japan
| | - Tokiyoshi Ayabe
- Innate Immunity Laboratory, Graduate School of Life Science, Hokkaido University, Hokkaido, Japan .,Department of Cell Biological Science, Faculty of Advanced Life Science, Hokkaido University, Hokkaido, Japan
| |
Collapse
|
18
|
Panjeta A, Preet S. Anticancer potential of human intestinal defensin 5 against 1, 2-dimethylhydrazine dihydrochloride induced colon cancer: A therapeutic approach. Peptides 2020; 126:170263. [PMID: 31981594 DOI: 10.1016/j.peptides.2020.170263] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 12/12/2022]
Abstract
The escalating predicament of multidrug resistant cancer cells and associated side effects of conventional chemotherapy necessitates the exploration of alternative anticancer therapies. The present study evaluated anticancer therapeutic potential of human defensin 5 (HD-5) against colon cancer. The in vivo anticancer efficacy of HD-5 against 1,2-dimethylhydrazine (DMH) induced colon cancer was elucidated in terms of tumor biostatistics, number of aberrant crypt foci (ACF), in situ apoptosis assay,changes in morphological as well as histological architecture of colon(s). The direct interaction of peptide was investigated by incubating peptide with normal and/or cancerous colonocytes followed by phase contrast, Hoechst 3342 and AO/PI staining as well as confocal microscopy. Changes in membrane dynamics were evaluated by MC 540 and N-NBD-PE staining. In vivo decrease(s) in tumor parameters, number of aberrant crypt foci along with marked increase in the rate of apoptosis was observed.H&E staining revealed neutrophils infiltration and restoration of normal architecture in treated colon(s) which was consistent with scanning electron microscopic observations. Furthermore, non-membranolytic mechanism was found to be acquired by peptide as it could traverse cell membrane gaining access to nucleus and cytoplasm thereby disintegrating cellular architecture. MC 540 and NBD-PE staining revealed that peptide could bind to cancerous cells by taking advantage of altered fluidity levels. Our results indicated that HD-5 exhibited strong cancer cell killing and does not affect normal host cells. The peptide can be exploited as promising option to combat developing menace of colon cancer and/or can at least be used as an adjunct to present day chemotherapies.
Collapse
Affiliation(s)
- Anshul Panjeta
- Department of Biophysics, Basic Medical Sciences, Block II, Panjab University, Sector 25, Chandigarh, 160014, India
| | - Simran Preet
- Department of Biophysics, Basic Medical Sciences, Block II, Panjab University, Sector 25, Chandigarh, 160014, India.
| |
Collapse
|
19
|
Zeng L, Tan J, Xue M, Liu L, Wang M, Liang L, Deng J, Chen W, Chen Y. An engineering probiotic producing defensin-5 ameliorating dextran sodium sulfate-induced mice colitis via Inhibiting NF-kB pathway. J Transl Med 2020; 18:107. [PMID: 32122364 PMCID: PMC7053090 DOI: 10.1186/s12967-020-02272-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 02/14/2020] [Indexed: 12/15/2022] Open
Abstract
Background Human defensin-5 (HD-5) is a key antimicrobial peptide which plays an important role in host immune defense, while the short half-life greatly limits its clinical application. The purpose of this study was to investigate the effects of an engineering probiotic producing HD-5 on intestinal barrier and explore its underlying mechanism Methods We constructed the pN8148-SHD-5 vector, and transfected this plasmid into Lactococcus lactis (L. lactis) to create the recombinant NZ9000SHD-5 strain, which continuously produces mature HD-5. NZ9000SHD-5 was administrated appropriately in a dextran sodium sulfate (DSS)-induced colitis model. Alterations in the wounded intestine were analyzed by hematoxylin–eosin staining. The changes of intestinal permeability were detected by FITC-dextran permeability test, the tight junction (TJ) proteins ZO-1 and occludin and cytokines were analyzed by western blotting or enzyme linked immunosorbent assay. In Caco-2 cell monolayers, the permeability were analyzed by transepithelial electrical resistance, and the TJ proteins were detected by western blotting and immunofluorescence. In addition, NF-κB signaling pathway was investigated to further analyze the molecular mechanism of NZ9000SHD-5 treatment on inducing intestinal protection in vitro. Results We found oral administration with NZ9000SHD-5 significantly reduced colonic glandular structure destruction and inflammatory cell infiltration, downregulated expression of several inflammation-related molecules and preserved epithelial barrier integrity. The same protective effects were observed in in vitro experiments, and pretreatment of macrophages with NZ9000SHD-5 culture supernatants prior to LPS application significantly reduced the expression of phosphorylated nuclear transcription factor-kappa B (NF-κB) p65 and its inhibitor IκBα. Conclusions These results indicate the NZ9000SHD-5 can alleviate DSS-induced mucosal damage by suppressing NF-κB signaling pathway, and NZ9000SHD-5 may be a novel therapeutic means for ulcerative colitis.
Collapse
Affiliation(s)
- Lishan Zeng
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Jiasheng Tan
- Department of Gastroenterology, Dongguan Third People's Hospital, Affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan, Guangdong, People's Republic of China
| | - Meng Xue
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Le Liu
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Mingming Wang
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Liping Liang
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Jun Deng
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Ye Chen
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China.
| |
Collapse
|
20
|
Differential Intestinal Mucosa Transcriptomic Biomarkers for Crohn's Disease and Ulcerative Colitis. J Immunol Res 2018; 2018:9208274. [PMID: 30417021 PMCID: PMC6207860 DOI: 10.1155/2018/9208274] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 09/04/2018] [Indexed: 02/07/2023] Open
Abstract
Genetic research has shaped the inflammatory bowel disease (IBD) landscape identifying nearly two hundred risk loci. Nonetheless, the identified variants rendered only a partial success in providing criteria for the differential diagnosis between ulcerative colitis (UC) and Crohn's disease (CD). Transcript levels from affected intestinal mucosa may serve as tentative biomarkers for improving classification and diagnosis of IBD. The aim of our study was to identify gene expression profiles specific for UC and CD, in endoscopically affected and normal intestinal colonic mucosa from IBD patients. We evaluated a panel of 84 genes related to the IBD-inflammatory pathway on 21 UC and 22 CD paired inflamed and not inflamed mucosa and on age-matched normal mucosa from 21 non-IBD controls. Two genes in UC (CCL11 and MMP10) and two in CD (C4BPB and IL1RN) showed an upregulation trend in both noninflamed and inflamed mucosa compared to controls. Our results suggest that the transcript levels of CCL11, MMP10, C4BPB, and IL1RN are candidate biomarkers that could help in clinical practice for the differential diagnosis between UC and CD and could guide new research on future therapeutic targets.
Collapse
|
21
|
Williams AD, Korolkova OY, Sakwe AM, Geiger TM, James SD, Muldoon RL, Herline AJ, Goodwin JS, Izban MG, Washington MK, Smoot DT, Ballard BR, Gazouli M, M'Koma AE. Correction: Human alpha defensin 5 is a candidate biomarker to delineate inflammatory bowel disease. PLoS One 2017; 12:e0189551. [PMID: 29211779 PMCID: PMC5718520 DOI: 10.1371/journal.pone.0189551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
[This corrects the article DOI: 10.1371/journal.pone.0179710.].
Collapse
|