1
|
Chen L, Wang P, Tan L, Li H, Wang D. Genetic Transformation of Torenia fournieri L. with the Bacillus thuringiensis Cry1Ab Gene Confers Resistance to Mythimna separata (Walker). PLANTS (BASEL, SWITZERLAND) 2024; 13:3568. [PMID: 39771266 PMCID: PMC11678925 DOI: 10.3390/plants13243568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/16/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025]
Abstract
Torenia fournieri L. is a popular ornamental plant in the genus Torenia, widely used in commercial landscaping, especially during the summer. Additionally, Torenia has served as a model ornamental plant in many studies exploring ornamental characteristics and pest control through genetic engineering. To date, no research has been reported on developing insect-resistant Torenia expressing genes from Bacillus thuringiensis (Bt). In this study, a recombinant vector carrying the Cry1Ab gene from Bt, pBI121-Cry1Ab, was constructed and transferred into T. fournieri via Agrobacterium tumefaciens-mediated transformation. A total of 13 shoots survived on the kanamycin selection medium, among which four putative transgenic lines, designated L1, L2, L7, and L11, were molecularly confirmed by PCR and Southern blot analysis, indicating successful integration of the Cry1Ab gene into the genomes of these lines. Quantitative real-time PCR and ELISA results further verified the successful expression of the Cry1Ab gene in the leaves of all four transgenic lines. Insect bioassay results demonstrated that all four transgenic lines showed strong resistance to the insect pest, Mythimna separata, with mortality rates ranging from 59.9% to 100.0%, in contrast to a larval mortality rate of 16.2% in the wild-type Torenia. Additionally, these transgenic lines significantly decreased in larval survival rates compared to those fed on wild-type plants. Furthermore, these transgenic lines activated superoxide dismutase (SOD) activity at 12 and 24 h, and catalase (CAT) activity at 72 h, while suppressing SOD activity at 72 h, and peroxidase (POD) activity over time. Our findings indicate that these transgenic lines exhibit high resistance to the insect pest and provide new insights into controlling insect pests in ornamental plants through genetic approaches.
Collapse
Affiliation(s)
- Lin Chen
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China;
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, China; (P.W.); (L.T.)
| | - Pei Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, China; (P.W.); (L.T.)
- Qingdao Smart Village Development Service Center, Qingdao 266000, China
| | - Lixia Tan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, China; (P.W.); (L.T.)
| | - Houhua Li
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, Xianyang 712100, China;
| | - Dun Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, China; (P.W.); (L.T.)
| |
Collapse
|
2
|
North HL, Fu Z, Metz R, Stull MA, Johnson CD, Shirley X, Crumley K, Reisig D, Kerns DL, Gilligan T, Walsh T, Jiggins CD, Sword GA. Rapid Adaptation and Interspecific Introgression in the North American Crop Pest Helicoverpa zea. Mol Biol Evol 2024; 41:msae129. [PMID: 38941083 PMCID: PMC11259193 DOI: 10.1093/molbev/msae129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/29/2024] Open
Abstract
Insect crop pests threaten global food security. This threat is amplified through the spread of nonnative species and through adaptation of native pests to control measures. Adaptations such as pesticide resistance can result from selection on variation within a population, or through gene flow from another population. We investigate these processes in an economically important noctuid crop pest, Helicoverpa zea, which has evolved resistance to a wide range of pesticides. Its sister species Helicoverpa armigera, first detected as an invasive species in Brazil in 2013, introduced the pyrethroid-resistance gene CYP337B3 to South American H. zea via adaptive introgression. To understand whether this could contribute to pesticide resistance in North America, we sequenced 237 H. zea genomes across 10 sample sites. We report H. armigera introgression into the North American H. zea population. Two individuals sampled in Texas in 2019 carry H. armigera haplotypes in a 4 Mbp region containing CYP337B3. Next, we identify signatures of selection in the panmictic population of nonadmixed H. zea, identifying a selective sweep at a second cytochrome P450 gene: CYP333B3. We estimate that its derived allele conferred a ∼5% fitness advantage and show that this estimate explains independently observed rare nonsynonymous CYP333B3 mutations approaching fixation over a ∼20-year period. We also detect putative signatures of selection at a kinesin gene associated with Bt resistance. Overall, we document two mechanisms of rapid adaptation: the introduction of fitness-enhancing alleles through interspecific introgression, and selection on intraspecific variation.
Collapse
Affiliation(s)
- Henry L North
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Zhen Fu
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
- Bioinformatics and Biostatistics Core, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Richard Metz
- AgriLife Genomics and Bioinformatics Service, Texas A&M University, College Station, TX 77843, USA
| | - Matt A Stull
- AgriLife Genomics and Bioinformatics Service, Texas A&M University, College Station, TX 77843, USA
| | - Charles D Johnson
- AgriLife Genomics and Bioinformatics Service, Texas A&M University, College Station, TX 77843, USA
| | - Xanthe Shirley
- Animal and Plant Health Inspection Service, United States Department of Agriculture, College Station, TX, USA
| | - Kate Crumley
- Agrilife Extension, Texas A&M University, Wharton, TX, USA
| | - Dominic Reisig
- Department of Entomology and Plant Pathology, North Carolina State University, Plymouth, NC, 27962, USA
| | - David L Kerns
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | - Todd Gilligan
- Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, CO, USA
| | - Tom Walsh
- Black Mountain Laboratories, Commonwealth Scientific and Industrial Research Organization, Canberra, Australia
| | - Chris D Jiggins
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Gregory A Sword
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
3
|
Chen F, Pang C, Zheng Z, Zhou W, Guo Z, Xiao D, Du H, Bravo A, Soberón M, Sun M, Peng D. Aminopeptidase MNP-1 triggers intestine protease production by activating daf-16 nuclear location to degrade pore-forming toxins in Caenorhabditis elegans. PLoS Pathog 2023; 19:e1011507. [PMID: 37440595 PMCID: PMC10368266 DOI: 10.1371/journal.ppat.1011507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Pore-forming toxins (PFTs) are effective tools for pathogens infection. By disrupting epithelial barriers and killing immune cells, PFTs promotes the colonization and reproduction of pathogenic microorganisms in their host. In turn, the host triggers defense responses, such as endocytosis, exocytosis, or autophagy. Bacillus thuringiensis (Bt) bacteria produce PFT, known as crystal proteins (Cry) which damage the intestinal cells of insects or nematodes, eventually killing them. In insects, aminopeptidase N (APN) has been shown to act as an important receptor for Cry toxins. Here, using the nematode Caenorhabditis elegans as model, an extensive screening of APN gene family was performed to analyze the potential role of these proteins in the mode of action of Cry5Ba against the nematode. We found that one APN, MNP-1, participate in the toxin defense response, since the mnp-1(ok2434) mutant showed a Cry5Ba hypersensitive phenotype. Gene expression analysis in mnp-1(ok2434) mutant revealed the involvement of two protease genes, F19C6.4 and R03G8.6, that participate in Cry5Ba degradation. Finally, analysis of the transduction pathway involved in F19C6.4 and R03G8.6 expression revealed that upon Cry5Ba exposure, the worms up regulated both protease genes through the activation of the FOXO transcription factor DAF-16, which was translocated into the nucleus. The nuclear location of DAF-16 was found to be dependent on mnp-1 under Cry5Ba treatment. Our work provides evidence of new host responses against PFTs produced by an enteric pathogenic bacterium, resulting in activation of host intestinal proteases that degrade the PFT in the intestine.
Collapse
Affiliation(s)
- Feng Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Cuiyun Pang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Ziqiang Zheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Wei Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Zhiqing Guo
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Danyang Xiao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Hongwen Du
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Alejandra Bravo
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Mario Soberón
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Ming Sun
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Donghai Peng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
4
|
Li ET, Wu HJ, Wang ZM, Li KB, Zhang S, Cao YZ, Yin J. PI3K/Akt/CncC signaling pathway mediates the response to EPN-Bt infection in Holotrichia parallela larvae. PEST MANAGEMENT SCIENCE 2023; 79:1660-1673. [PMID: 36565065 DOI: 10.1002/ps.7337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 11/28/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Combining the entomopathogenic nematode (EPN), Heterorhabditis beicherriana LF strain, and Bacillus thuringiensis (Bt) HBF-18 strain is a practical strategy to manage the larvae of Holotrichia parallela Motschulsky (white grubs). However, the mechanisms underlying the larval defense response to this combined biocontrol strategy are unknown. RESULTS The activities of some antioxidant enzymes (SOD, POD, CAT) and some detoxifying enzymes (AChE, P-450, CarE, GST) in grubs showed an activation-inhibition trend throughout the EPN-Bt exposure time course. Eight potentially key antioxidant and detoxifying enzyme genes in response to EPN-Bt infection were identified from the midgut of grubs through RNA sequencing. After silencing CAT, CarE18, and GSTs1, the enzyme activities were significantly decreased by 30.29%, 68.80%, and 34.63%, respectively. Meanwhile, the mortality of grubs was increased by 18.40%, 46.30%, and 42.59% after exposure to EPN-Bt for 1 day. Interestingly, the PI3K/Akt signaling pathway was significantly enriched in KEGG enrichment analysis, and the expression levels of phosphatidylinositol 3-kinase (PI3K), protein kinase B (Akt), cap 'n' collar isoform-C (CncC), kelch-like ECH-associated protein 1 (Keap1), and CarE18 were all up-regulated when exposed to EPN-Bt for 1 day. Furthermore, RNAi-mediated PI3K silencing showed a similar down-regulated trend between PI3K/Akt/CncC and CarE18. Moreover, silencing PI3K rendered grubs more susceptible to EPN-Bt and accelerated symbiotic bacteria multiplication in grubs. CONCLUSION These results suggest that the PI3K/Akt/CncC pathway mediates the expression of CarE18 and participates in the defense response of H. parallela larvae against EPN-Bt infection. Our data provide valuable insights into the design of appropriate management strategies for this well-known agricultural pest. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Er-Tao Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Han-Jia Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhi-Min Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ke-Bin Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shuai Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ya-Zhong Cao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiao Yin
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
5
|
Yang Y, Wu Z, He X, Xu H, Lu Z. Processing Properties and Potency of Bacillus thuringiensis Cry Toxins in the Rice Leaffolder Cnaphalocrocis medinalis (Guenée). Toxins (Basel) 2023; 15:toxins15040275. [PMID: 37104213 PMCID: PMC10143973 DOI: 10.3390/toxins15040275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 04/08/2023] Open
Abstract
Different Cry toxins derived from Bacillus thuringiensis (Bt) possess different insecticidal spectra, whereas insects show variations in their susceptibilities to different Cry toxins. Degradation of Cry toxins by insect midgut extracts was involved in the action of toxins. In this study, we explored the processing patterns of different Cry toxins in Cnaphalocrocis medinalis (Lepidoptera: Crambidae) midgut extracts and evaluated the impact of Cry toxins degradation on their potency against C. medinalis to better understand the function of midgut extracts in the action of different Cry toxins. The results indicated that Cry1Ac, Cry1Aa, and Cry1C toxins could be degraded by C. medinalis midgut extracts, and degradation of Cry toxins by midgut extracts differed among time or concentration effects. Bioassays demonstrated that the toxicity of Cry1Ac, Cry1Aa, and Cry1C toxins decreased after digestion by midgut extracts of C. medinalis. Our findings in this study suggested that midgut extracts play an important role in the action of Cry toxins against C. medinalis, and the degradation of Cry toxins by C. medinalis midgut extracts could reduce their toxicities to C. medinalis. They will provide insights into the action of Cry toxins and the application of Cry toxins in C. medinalis management in paddy fields.
Collapse
Affiliation(s)
- Yajun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Zhihong Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiaochan He
- Jinhua Academy of Agricultural Sciences, Jinhua 321000, China
| | - Hongxing Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Zhongxian Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
6
|
Zhao X, Guo J, Lu Y, Sun T, Tian J, Huang J, Xu H, Wang Z, Lu Z. Reference Genes for Expression Analysis Using RT-qPCR in Cnaphalocrocis medinalis (Lepidoptera: Pyralidae). INSECTS 2022; 13:insects13111046. [PMID: 36421949 PMCID: PMC9697642 DOI: 10.3390/insects13111046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 05/31/2023]
Abstract
Cnaphalocrocis medinalis is a destructive migratory rice pest. Although many studies have investigated its behavioral and physiological responses to environmental changes and migration-inducing factors, little is known about its molecular mechanisms. This study was conducted to select suitable RT-qPCR reference genes to facilitate future gene expression studies. Here, thirteen candidate housekeeping genes (EF1α, AK, EF1β, GAPDH, PGK, RPL13, RPL18, RPS3, 18S rRNA, TBP1, TBP2, ACT, and UCCR) were selected to evaluate their stabilities under different conditions using the ∆CT method; the geNorm, NormFinder, BestKeeper algorithms; and the online tool RefFinder. The results showed that the most stable reference genes were EF1β, PGK, and RPL18, related to developmental stages; RPS3 and RPL18 in larval tissues; EF1β and PGK in larvae feeding on different rice varieties; EF1α, EF1β, and PGK in larvae temperature treatments; PGK and RPL13, related to different adult ages; PGK, EF1α, and ACT, related to adult nutritional conditions; RPL18 and PGK, related to adult mating status; and, RPS3 and PGK, related to different adult take-off characteristics. Our results reveal reference genes that apply to various experimental conditions and will greatly improve the reliability of RT-qPCR analysis for the further study of gene function in this pest.
Collapse
Affiliation(s)
- Xiaoyu Zhao
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jiawen Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yanhui Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Tianyi Sun
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Junce Tian
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jianlei Huang
- College of Agriculture and Forestry, Hebei North University, Zhangjiakou 075000, China
| | - Hongxing Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Zhengliang Wang
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Zhongxian Lu
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
7
|
Ramasubramanian R, Karthi S, Senthil-Nathan S, Sivanesh H, Shyam Sundar N, Stanley-Raja V, Ramkumar G, Chanthini KMP, Vasantha-Srinivasan P, Alarjani KM, Elshikh MS, Abdel-Megeed A, Krutmuang P. Effect of bacterial toxin identified from the Bacillus subtilis against the Cnaphalocrocis medinalis Guenée (Lepidoptera: Crambidae). TOXIN REV 2022. [DOI: 10.1080/15569543.2022.2111444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Ramakrishnan Ramasubramanian
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Tirunelveli, India
| | - Sengodan Karthi
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Tirunelveli, India
- Department of Entomology, University of Kentucky, Lexington, KY, USA
| | - Sengottayan Senthil-Nathan
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Tirunelveli, India
| | - Haridoss Sivanesh
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Tirunelveli, India
| | - Narayanan Shyam Sundar
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Tirunelveli, India
| | - Vethamonickam Stanley-Raja
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Tirunelveli, India
| | - Govindaraju Ramkumar
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Tirunelveli, India
| | - Kanagaraj Muthu-Pandian Chanthini
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Tirunelveli, India
| | | | - Khaloud Mohammed Alarjani
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed S Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Abdel-Megeed
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Patcharin Krutmuang
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
- Innovative Agriculture Research Centre, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
8
|
Li Q, Li M, Zhu M, Zhong J, Wen L, Zhang J, Zhang R, Gao Q, Yu XQ, Lu Y. Genome-wide identification and comparative analysis of Cry toxin receptor families in 7 insect species with a focus on Spodoptera litura. INSECT SCIENCE 2022; 29:783-800. [PMID: 34405540 DOI: 10.1111/1744-7917.12961] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/30/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
Cadherin, aminopeptidase N (APN) and alkaline phosphatase (ALP) have been characterized as Cry receptors. In this study, comparative genomic analysis of the 3 receptor families was performed in 7 insects. ALPs and APNs are divided into three and eight clades in phylogenetic trees, respectively. ALPs in clade 3 and APNs in clade 1 contain multiple paralogs within each species and most paralogs are located closely in chromosomes. Drosophila melanogaster has expanded APNs in clade 5 and were lowly expressed in midgut. Cadherins are divided into 16 clades; they may diverge before holometabolous insect speciation except for BtR and Cad89D-like clades. Eight insects from different orders containing BtR orthologs are sensitive to Cry1A or Cry3A, while five species without BtR are insensitive to both toxins. Most APNs in clade 1, several ALPs in clade 3, BtR and Cad89D-like genes were highly or moderately expressed in larval midgut of Spodoptera litura and the other six species, and several members in these clades have been identified as Cry receptors. Expressions of putative S. litura Cry receptors in the midgut after exposing to Bt toxins were also analyzed.
Collapse
Affiliation(s)
- Qilin Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Mengge Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Mengyao Zhu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Jielai Zhong
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Liang Wen
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Jie Zhang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Ruonan Zhang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Qiang Gao
- College of Biology, Hunan University, Changsha, 410082, China
| | - Xiao-Qiang Yu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Yuzhen Lu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| |
Collapse
|
9
|
Cheah BH, Chuang WP, Lo JC, Li Y, Cheng CY, Yang ZW, Liao CT, Lin YF. Exogenous Copper Application for the Elemental Defense of Rice Plants against Rice Leaffolder (Cnaphalocrocis medinalis). PLANTS 2022; 11:plants11091104. [PMID: 35567105 PMCID: PMC9099555 DOI: 10.3390/plants11091104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 12/03/2022]
Abstract
Metals that accumulate in plants may confer protection against herbivorous insects, a phenomenon known as elemental defense. However, this strategy has not been widely explored in important crops such as rice (Oryza sativa L.), where it could help to reduce the use of chemical pesticides. Here, we investigated the potential of copper (Cu) and iron (Fe) micronutrient supplements for the protection of rice against a major insect pest, the rice leaffolder (Cnaphalocrocis medinalis). We found that intermediate levels of Cu (20 μM CuSO4) and high concentrations of Fe (742 μM Fe) did not inhibit the growth of C. medinalis larvae but did inhibit rice root growth and reduce grain yield at the reproductive stage. In contrast, high levels of Cu (80 μM CuSO4) inhibited C. medinalis larval growth and pupal development but also adversely affected rice growth at the vegetative stage. Interestingly, treatment with 10 μM CuSO4 had no adverse effects on rice growth or yield components at the reproductive stage. These data suggest that pest management based on the application of Cu may be possible, which would be achieved by a higher effective pesticide dose to prevent or minimize its phytotoxicity effects in plants.
Collapse
Affiliation(s)
- Boon Huat Cheah
- Department of Agronomy, National Taiwan University, Taipei 10617, Taiwan; (B.H.C.); (W.-P.C.); (Y.L.)
| | - Wen-Po Chuang
- Department of Agronomy, National Taiwan University, Taipei 10617, Taiwan; (B.H.C.); (W.-P.C.); (Y.L.)
| | - Jing-Chi Lo
- Department of Horticulture and Biotechnology, Chinese Culture University, Taipei 11114, Taiwan;
| | - Yi Li
- Department of Agronomy, National Taiwan University, Taipei 10617, Taiwan; (B.H.C.); (W.-P.C.); (Y.L.)
| | - Chih-Yun Cheng
- Crop Improvement Division, Taoyuan District Agricultural Research and Extension Station, Taoyuan City 32745, Taiwan; (C.-Y.C.); (Z.-W.Y.)
| | - Zhi-Wei Yang
- Crop Improvement Division, Taoyuan District Agricultural Research and Extension Station, Taoyuan City 32745, Taiwan; (C.-Y.C.); (Z.-W.Y.)
| | - Chung-Ta Liao
- Crop Environment Division, Taichung District Agricultural Research and Extension Station, Changhua County 51544, Taiwan;
| | - Ya-Fen Lin
- Department of Agronomy, National Taiwan University, Taipei 10617, Taiwan; (B.H.C.); (W.-P.C.); (Y.L.)
- Correspondence:
| |
Collapse
|
10
|
Zhong J, Fang S, Gao M, Lu L, Zhang X, Zhu Q, Liu Y, Jurat-Fuentes JL, Liu X. Evidence of a shared binding site for Bacillus thuringiensis Cry1Ac and Cry2Aa toxins in Cnaphalocrocis medinalis cadherin. INSECT MOLECULAR BIOLOGY 2022; 31:101-114. [PMID: 34637177 DOI: 10.1111/imb.12741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 08/26/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
Insect midgut cadherins function as receptors and play critical roles as protein receptors of insecticidal Bacillus thuringiensis (Bt) toxins used as biopesticides and in Bt transgenic crops worldwide. Here, we cloned and characterized the full-length midgut cadherin (CmCad) cDNA from the rice leaffolder (Cnaphalocrocis medinalis), a destructive pest of rice in many Asian countries. Expression of recombinant proteins corresponding to the extracellular domain of CmCad allowed testing binding of Cry proteins. Results from in vitro ligand blotting and enzyme-linked immunosorbent assays supported that the extracellular domain of CmCad contains regions recognized by both Cry1Ac and Cry2Aa. Molecular modelling and docking simulations indicated that binding to both Cry1Ac and Cry2Aa is localized primarily within a CmCad motif corresponding to residues T1417-D1435. A recombinant CmCad protein produced without residues T1417-D1435 lacked binding to Cry1Ac and Cry2Aa, confirmed our modelling predictions that CmCad has a shared Cry1Ac and Cry2Aa binding site. The potential existence of a shared binding region in CmCad suggests that caution should be taken when using combinations of Cry1Ac and Cry2Aa in pyramided transgenic rice, as their combined use could speed the evolution of resistance to both toxins.
Collapse
Affiliation(s)
- J Zhong
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - S Fang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - M Gao
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - L Lu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - X Zhang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Q Zhu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Y Liu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - J L Jurat-Fuentes
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, USA
| | - X Liu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
11
|
Boaventura D, Buer B, Hamaekers N, Maiwald F, Nauen R. Toxicological and molecular profiling of insecticide resistance in a Brazilian strain of fall armyworm resistant to Bt Cry1 proteins. PEST MANAGEMENT SCIENCE 2021; 77:3713-3726. [PMID: 32841530 PMCID: PMC8359450 DOI: 10.1002/ps.6061] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/18/2020] [Accepted: 08/25/2020] [Indexed: 05/21/2023]
Abstract
BACKGROUND Spodoptera frugiperda, fall armyworm (FAW) is the major pest of maize in Brazil and has readily acquired field resistance to a broad range of synthetic insecticides and to Bacillus thuringiensis (Bt) insecticidal proteins expressed in important crops. This study aims to understand patterns of cross-resistance in FAW by investigating the toxicological profile of a Bt-resistant Brazilian strain (Sf_Des) in comparison to a Bt-susceptible strain (Sf_Bra). RESULTS Laboratory bioassays with 15 active substances of nine mode of action classes revealed that Sf_Des has a medium level of resistance to deltamethrin and chlorpyrifos. Very high cross-resistance was observed among Cry1 toxins, but high susceptibility against Vip3A. Strain Sf_Des exhibited - depending on the substrate - up to 19-fold increased cytochrome P450 activity in comparison to Sf_Bra. RNA-Seq data support a major role of P450 enzymes in the detoxification of insecticides because we detected 85 P450 transcripts upregulated in Sf_Des. Quantitative reverse transcription polymerase chain reaction (RT-qPCR) analysis confirmed that CYP9A-like and CYP6B39 are significantly upregulated (>200-fold) in Sf_Des in comparison to Sf_Bra strain. No target-site mutation linked to pyrethroid resistance was detected, but mutations in the AChE linked to organophosphate resistance were observed in Sf_Des. A Gene Ontology (GO) analysis of differentially expressed genes (DEG) categorized most of them into the biological process category, involved in oxidation-reduction and metabolic processes. CONCLUSION Our results indicate that multiple/cross-resistance mechanisms may have developed in the Sf_Des strain to conventional insecticides and Bt insecticidal proteins. The systematic toxicological analysis presented will help to guide recommendations for an efficient resistance management. © 2020 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Debora Boaventura
- Institute of Crop Science and Resource Conservation, University of BonnBonnGermany
- Bayer AG, Crop Science DivisionR&D Pest ControlMonheimGermany
| | - Benjamin Buer
- Bayer AG, Crop Science DivisionR&D Pest ControlMonheimGermany
| | | | - Frank Maiwald
- Bayer AG, Crop Science DivisionR&D Pest ControlMonheimGermany
| | - Ralf Nauen
- Bayer AG, Crop Science DivisionR&D Pest ControlMonheimGermany
| |
Collapse
|
12
|
Ren Y, Zhou X, Dong Y, Zhang J, Wang J, Yang M. Exogenous Gene Expression and Insect Resistance in Dual Bt Toxin Populus × euramericana 'Neva' Transgenic Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:660226. [PMID: 34122482 PMCID: PMC8193859 DOI: 10.3389/fpls.2021.660226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/03/2021] [Indexed: 05/07/2023]
Abstract
Bacillus thuringiensis (Bt) insecticidal protein genes are important tools in efforts to develop insect resistance in poplar. In this study, the Cry1Ac and Cry3A Bt toxin genes were simultaneously transformed into the poplar variety Populus × euramericana 'Neva' by Agrobacterium-mediated transformation to explore the exogenous gene expression and insect resistance, and to examine the effects of Bt toxin on the growth and development of Anoplophora glabripennis larvae after feeding on the transgenic plant. Integration and expression of the transgenes were determined by molecular analyses and the insect resistance of transgenic lines was evaluated in feeding experiments. Sixteen transgenic dual Bt toxin genes Populus × euramericana 'Neva' lines were obtained. The dual Bt toxin genes were expressed at both the transcriptional and translational levels; however, Cry3A protein levels were much higher than those of Cry1Ac. Some of the transgenic lines exhibited high resistance to the first instar larvae of Hyphantria cunea and Micromelalopha troglodyta, and the first and second instar larvae and adults of Plagiodera versicolora. Six transgenic lines inhibited the growth and development of A. glabripennis larvae. The differences in the transcriptomes of A. glabripennis larvae fed transgenic lines or non-transgenic control by RNA-seq analyses were determined to reveal the mechanism by which Bt toxin regulates the growth and development of longicorn beetle larvae. The expression of genes related to Bt prototoxin activation, digestive enzymes, binding receptors, and detoxification and protective enzymes showed significant changes in A. glabripennis larvae fed Bt toxin, indicating that the larvae responded by regulating the expression of genes related to their growth and development. This study lay a theoretical foundation for developing resistance to A. glabripennis in poplar, and provide a foundation for exploring the mechanism of Bt toxin action on Cerambycidae insects.
Collapse
Affiliation(s)
- Yachao Ren
- Forest Department, Forestry College, Hebei Agricultural University, Baoding, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding, China
| | - Xinglu Zhou
- Forest Department, Forestry College, Hebei Agricultural University, Baoding, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding, China
| | - Yan Dong
- Forest Department, Forestry College, Hebei Agricultural University, Baoding, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding, China
| | - Jun Zhang
- Forest Department, Forestry College, Hebei Agricultural University, Baoding, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding, China
| | - Jinmao Wang
- Forest Department, Forestry College, Hebei Agricultural University, Baoding, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding, China
| | - Minsheng Yang
- Forest Department, Forestry College, Hebei Agricultural University, Baoding, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding, China
- *Correspondence: Minsheng Yang,
| |
Collapse
|
13
|
Cheah BH, Lin HH, Chien HJ, Liao CT, Liu LYD, Lai CC, Lin YF, Chuang WP. SWATH-MS-based quantitative proteomics reveals a uniquely intricate defense response in Cnaphalocrocis medinalis-resistant rice. Sci Rep 2020; 10:6597. [PMID: 32759951 PMCID: PMC7406494 DOI: 10.1038/s41598-020-63470-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/26/2020] [Indexed: 12/20/2022] Open
Abstract
Cnaphalocrocis medinalis is a major insect pest of rice in Asia. A few defensive enzymes were reported to show higher activities in a resistant rice line (Qingliu) than in a susceptible rice line (TN1) upon leaffolder infestation. However, the overall molecular regulation of the rice defense response against leaffolder herbivory is unknown. Here, differential proteomic analysis by SWATH-MS was performed to identify differentially expressed proteins between the two rice varieties, Qingliu and TN1, at four time points of leaffolder herbivory, 0, 6, 24, and 72 h. Gene Ontology (GO) enrichment of the differentially expressed proteins indicated overrepresentation of (1) photosynthesis, (2) amino acid and derivative metabolic process, and (3) secondary metabolic process. Phenylalanine ammonia lyase and chalcone synthase, which catalyze flavonoid biosynthesis, and lipoxygenase, which catalyzes jasmonic acid biosynthesis, exhibited higher expression in Qingliu than in TN1 even before insect herbivory. Momentary activation of the light reaction and Calvin cycle was detected in Qingliu at 6 h and 24 h of insect herbivory, respectively. At 72 h of insect herbivory, amino acid biosynthesis and glutathione-mediated antioxidation were activated in Qingliu. A defense response involving jasmonic acid signaling, carbon remobilization, and the production of flavonoids and glutathione could underlie the resistance of Qingliu to leaffolder.
Collapse
Affiliation(s)
- Boon Huat Cheah
- Department of Agronomy, National Taiwan University, Taipei, 10617, Taiwan
| | - Hou-Ho Lin
- Department of Agronomy, National Taiwan University, Taipei, 10617, Taiwan
| | - Han-Ju Chien
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 402, Taiwan
| | - Chung-Ta Liao
- Crop Enviroment Division, Taichung District Agricultural Research and Extension Station, Changhua County, 51544, Taiwan
| | - Li-Yu D Liu
- Department of Agronomy, National Taiwan University, Taipei, 10617, Taiwan
| | - Chien-Chen Lai
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 402, Taiwan
| | - Ya-Fen Lin
- Department of Agronomy, National Taiwan University, Taipei, 10617, Taiwan.
| | - Wen-Po Chuang
- Department of Agronomy, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
14
|
Liu J, Wang L, Zhou G, Gao S, Sun T, Liu J, Gao B. Midgut transcriptome analysis of Clostera anachoreta treated with lethal and sublethal Cry1Ac protoxin. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 103:e21638. [PMID: 31702074 DOI: 10.1002/arch.21638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/28/2019] [Accepted: 10/06/2019] [Indexed: 06/10/2023]
Abstract
Clostera anachoreta is one of the important Lepidoptera insect pests in forestry, especially in poplars woods in China, Europe, Japan, and India, and so forth, and also the target insect of Cry1Ac toxin and Bt plants. Six genes, HSC70, GNB2L/RACK1, PNLIP, BI1-like, arylphorin type 2, and PKM were found in this study, and they might be associated with the response to the Cry1Ac toxin, found by analyzing the transcriptome data. And the PI3K-Akt pathway was highly enriched in differentially expressed unigenes and linked to several crucial pathways, including the B-cell receptor signaling pathway, toll-like receptor pathway, and mitogen-activated protein kinase signaling pathway. They might be involved in the recovery stage of the damaged midgut during the response to sublethal doses of Cry1Ac toxin. This is the first study conducted to specifically investigate C. anachoreta response to Cry toxin stress using large-scale sequencing technologies, and the results highlighted some important genes and pathways that could be involved in Btcry1Ac resistance development or could serve as targets for biologically based control mechanisms of this insect pest.
Collapse
Affiliation(s)
- Jie Liu
- Ecological Laboratory, Forestry College, Agricultural University of Hebei, Baoding, China
| | - Liucheng Wang
- Ecological Laboratory, Forestry College, Agricultural University of Hebei, Baoding, China
| | - Guona Zhou
- Ecological Laboratory, Forestry College, Agricultural University of Hebei, Baoding, China
| | - Suhong Gao
- Ecological Laboratory, Forestry College, Agricultural University of Hebei, Baoding, China
- College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Changli, China
| | - Tianhua Sun
- Ecological Laboratory, Forestry College, Agricultural University of Hebei, Baoding, China
| | - Junxia Liu
- Ecological Laboratory, Forestry College, Agricultural University of Hebei, Baoding, China
| | - Baojia Gao
- Ecological Laboratory, Forestry College, Agricultural University of Hebei, Baoding, China
| |
Collapse
|
15
|
Ren X, Wang Y, Ma Y, Jiang W, Ma X, Hu H, Wang D, Ma Y. Midgut de novo transcriptome analysis and gene expression profiling of Spodoptera exigua larvae exposed with sublethal concentrations of Cry1Ca protein. 3 Biotech 2020; 10:138. [PMID: 32158634 DOI: 10.1007/s13205-020-2129-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 02/11/2020] [Indexed: 12/01/2022] Open
Abstract
Spodoptera exigua (Hübner) is a polyphagous pest on agricultural crops, whose control is based mainly on the application of chemical insecticides. Bacillus thuringiensis (Bt) is one of the most important biological agents that have been successfully applied as a biological control, and Cry1Ca protein is considered to be active against S. exigua. Therefore, to understand the response of S. exigua to Cry1Ca protein, high-throughput sequencing was used to analyse the S. exigua larval midgut after treatment with sublethal concentrations of Cry1Ca protein. Transcriptome data showed that a total of 98,571 unigenes with an N50 value of 1135 bp and a mean length of 653 bp were obtained. Furthermore, 2962 differentially expressed genes (DEGs) were identified after Cry1Ca challenge, including 1508 up-regulated and 1454 down-regulated unigenes. Among these DEGs, detoxification (CYP, CarE, and GST) and Bt resistance (ALP, APN, and ABC transporter)-related genes were differentially expressed in the midgut of S. exigua after Cry1Ca treatment. However, most DEGs of protective enzymes were down-regulated, while most DEGs related with serine protease and REPAT were up-regulated. Furthermore, almost all DEGs related to the immune signaling pathway, antimicrobial protein, and lysozyme were up-regulated by Cry1Ca treatment. These results indicated that the detoxification enzyme, protective enzymes, Bt resistance-related genes, serine protease, REPAT, and the immune response might have been involved in the response of S. exigua to Cry1Ca protein. In summary, analysis of the transcriptomal expression of genes involved in Cry1Ca protein against S. exigua provided potential clues for elucidating the host response processes and defensive mechanisms underlying Cry1Ca toxicity.
Collapse
Affiliation(s)
- Xiangliang Ren
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000 Henan China
| | - Yingying Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000 Henan China
- Honghu Agricultural Technology Extension Center, Jingzhou, 433200 Hubei China
| | - Yajie Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000 Henan China
| | - Weili Jiang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000 Henan China
| | - Xiaoyan Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000 Henan China
| | - Hongyan Hu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000 Henan China
| | - Dan Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000 Henan China
| | - Yan Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000 Henan China
| |
Collapse
|
16
|
Wang Y, Li D, Zhou H, Liu H, Niu L, Wang L, Ma W. Evaluation of Cry1Ac and Cry2Aa Toxin Binding to Two Important Beneficial Cotton Field Insects, Harmonia axyridis and Orius similis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:8698-8702. [PMID: 30059215 DOI: 10.1021/acs.jafc.8b02634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Transgenic crops expressing Cry toxins are effective and considered environmentally friendly alternatives to synthetic pesticides, but assessment of environmental risks of their application on nontarget organisms is ongoing. The main risk is the transfer of Cry toxins to natural enemies through the food chain. There is reported evidence supporting that Cry toxins can be detected in the body and gut of some natural enemy insects. Considering that binding of Cry toxins to insect proteins is an essential step in the intoxication process, this work was conducted to evaluate interactions between Cry1Ac and Cry2Aa toxins with proteins from larvae/nymphs and adults of two important predatory natural enemies in cotton fields, Harmonia axyridis and Orius similis. Results support the absence of Cry1Ac or Cry2Aa binding proteins in immature stages of H. axyridis and O. similis, as well as in imaginal stage of H. axyridis. One same binding band about 70 kDa was found in imaginal total protein of O. similis when probed with the two Cry proteins, with the best match to Hsc70 of O. sauteri in the Uniprot database. However, nonspecific binding was verified by following competitive binding assays between the two Cry proteins and imaginal total protein of O. similis. From these results, we may infer that Cry1Ac and Cry2Aa have no likely detrimental effects on H. axyridis and O. similis.
Collapse
Affiliation(s)
- Yong Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory , Huazhong Agricultural University , Wuhan 430070 , China
- Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables , Hubei Engineering University , Xiaogan 432000 , China
| | - Dabo Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory , Huazhong Agricultural University , Wuhan 430070 , China
- Yichang Institute of Termite Control , Yichang 443000 , China
| | - Hao Zhou
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory , Huazhong Agricultural University , Wuhan 430070 , China
| | - Hui Liu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory , Huazhong Agricultural University , Wuhan 430070 , China
| | - Lin Niu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory , Huazhong Agricultural University , Wuhan 430070 , China
| | - Lihua Wang
- Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables , Hubei Engineering University , Xiaogan 432000 , China
| | - Weihua Ma
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory , Huazhong Agricultural University , Wuhan 430070 , China
| |
Collapse
|