1
|
Morin C, Simard É, See W, Sage M, Imane R, Nadeau C, Samson N, Lavoie PM, Chabot B, Marouan S, Tremblay S, Praud JP, Micheau P, Fortin-Pellerin É. Total liquid ventilation in an ovine model of extreme prematurity: a randomized study. Pediatr Res 2024; 95:974-980. [PMID: 37833531 DOI: 10.1038/s41390-023-02841-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/16/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023]
Abstract
BACKGROUND This study aimed at comparing cardiorespiratory stability during total liquid ventilation (TLV)-prior to lung aeration-with conventional mechanical ventilation (CMV) in extremely preterm lambs during the first 6 h of life. METHODS 23 lambs (11 females) were born by c-section at 118-120 days of gestational age (term = 147 days) to receive 6 h of TLV or CMV from birth. Lung samples were collected for RNA and histology analyses. RESULTS The lambs under TLV had higher and more stable arterial oxygen saturation (p = 0.001) and cerebral tissue oxygenation (p = 0.02) than the lambs in the CMV group in the first 10 min of transition to extrauterine life. Although histological assessment of the lungs was similar between the groups, a significant upregulation of IL-1a, IL-6 and IL-8 RNA in the lungs was observed after TLV. CONCLUSIONS Total liquid ventilation allowed for remarkably stable transition to extrauterine life in an extremely preterm lamb model. Refinement of our TLV prototype and ventilation algorithms is underway to address specific challenges in this population, such as minimizing tracheal deformation during the active expiration. IMPACT Total liquid ventilation allows for remarkably stable transition to extrauterine life in an extremely preterm lamb model. Total liquid ventilation is systematically achievable over the first 6 h of life in the extremely premature lamb model. This study provides additional incentive to pursue further investigation of total liquid ventilation as a transition tool for the most extreme preterm neonates.
Collapse
Affiliation(s)
- Christophe Morin
- Department of Pharmacology-Physiology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Émile Simard
- Department of Pharmacology-Physiology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Wendy See
- Department of Pharmacology-Physiology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Michaël Sage
- Department of Pharmacology-Physiology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Roqaya Imane
- Department of Pediatrics, Université de Montréal, Montreal, QC, Canada
| | - Charlène Nadeau
- Department of Pharmacology-Physiology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Nathalie Samson
- Department of Pharmacology-Physiology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Pascal M Lavoie
- Division of Neonatology, Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Benoît Chabot
- Department of Microbiology and Infectiology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Sofia Marouan
- Department of Pathology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Sophie Tremblay
- Department of Pediatrics, Université de Montréal, Montreal, QC, Canada
| | - Jean-Paul Praud
- Department of Pharmacology-Physiology, Université de Sherbrooke, Sherbrooke, QC, Canada
- Department of Pediatrics, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Philippe Micheau
- Department of Mechanical Engineering, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Étienne Fortin-Pellerin
- Department of Pharmacology-Physiology, Université de Sherbrooke, Sherbrooke, QC, Canada.
- Department of Pediatrics, Université de Sherbrooke, Sherbrooke, QC, Canada.
| |
Collapse
|
2
|
Simard É, Morin C, Coquerel D, Chagnon F, Nadeau C, Samson N, Praud JP, Lesur O, Fortin-Pellerin É. Hemodynamic impacts of apelin-13 in a neonatal lamb model of septic peritonitis. Pediatr Res 2023; 94:129-134. [PMID: 36460738 DOI: 10.1038/s41390-022-02407-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 10/17/2022] [Accepted: 11/17/2022] [Indexed: 12/05/2022]
Abstract
BACKGROUND Apelins are potential candidate therapeutic molecules for hemodynamic support. The objective of this study was to assess the hemodynamic impacts of apelin-13 in a neonatal lamb model of septic shock. METHODS Lambs were randomized to receive apelin-13 or normal saline. Septic shock was induced by injecting a fecal slurry into the peritoneal cavity. Lambs underwent volume repletion (30 mL/kg over 1 h) followed by intravenous administration of 5 incremental doses (D) of apelin-13 (D1 = 0.039 to D5 = 19.5 µg/kg/h) or normal saline. RESULTS Following fecal injection, mean arterial pressure (MAP) and cardiac index (CI) dropped in both groups (p < 0.05). The MAP decreased non-significantly from D1 to D5 (p = 0.12) in the saline group, while increasing significantly (p = 0.02) in the apelin group (-12 (-17; 12) vs. +15 (6; 23) % (p = 0.012)). Systemic vascular resistances were higher in the apelin-13 group at D5 compared to the saline group (4337 (3239, 5144) vs. 2532 (2286, 3966) mmHg/min/mL, respectively, p = 0.046). The CI increased non-significantly in the apelin-13 group. CONCLUSION Apelin-13 increased MAP in a neonatal lamb septic shock model. IMPACT Administration of apelin-13 stabilized hemodynamics during the progression of the sepsis induced in this neonatal lamb model. Systemic vascular resistances were higher in the apelin-13 group than in the placebo group. This suggests ontogenic differences in vascular response to apelin-13 and warrants further investigation. This study suggests that apelin-13 could eventually become a candidate for the treatment of neonatal septic shock.
Collapse
Affiliation(s)
- Émile Simard
- Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Christophe Morin
- Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - David Coquerel
- Department of Medicine and Intensive Care Unit, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Frédéric Chagnon
- Department of Medicine and Intensive Care Unit, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Charlène Nadeau
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Nathalie Samson
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Jean-Paul Praud
- Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Olivier Lesur
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
- Department of Medicine and Intensive Care Unit, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Étienne Fortin-Pellerin
- Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada.
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada.
| |
Collapse
|
3
|
Conventional vs High-Frequency Ventilation for Weaning from Total Liquid Ventilation in Lambs. Respir Physiol Neurobiol 2022; 299:103867. [PMID: 35149225 DOI: 10.1016/j.resp.2022.103867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 02/03/2022] [Accepted: 02/06/2022] [Indexed: 11/22/2022]
Abstract
OBJECTIVE To compare conventional gas ventilation (GV) and high-frequency oscillatory ventilation (HFOV) for weaning from total liquid ventilation (TLV). METHODS Sixteen lambs were anesthetized. After 1 h of TLV with perflubron (PFOB), they were assigned to either GV or HFOV for 2 h. Oxygen requirements, electrical impedance tomography and videofluoroscopic sequences, and respiratory system compliance were recorded. RESULTS The lambs under GV needed less oxygen at 20 min following TLV (40 [25, 45] and 83 [63, 98]%, p = 0.001 under GV and HFOV, respectively). During weaning, tidal volume distribution was increased in the nondependent regions in the GV group compared to baseline (p = 0.046). Furthermore, residual PFOB was observed in the most dependent region. No air was detected by fluoroscopy in that region at the end of expiration in the GV group. CONCLUSION GV offers a transient advantage over HFOV with regards to oxygenation for TLV weaning.
Collapse
|
4
|
Liquid Ventilation in the Management of Preterm Infants. CURRENT STEM CELL REPORTS 2021. [DOI: 10.1007/s40778-021-00192-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
Sage M, See W, Nault S, Morin C, Michalski C, Chabot B, Marouan S, Lavoie PM, Micheau P, Praud JP, Fortin-Pellerin É. Effect of Low Versus High Tidal-Volume Total Liquid Ventilation on Pulmonary Inflammation. Front Physiol 2020; 11:603. [PMID: 32625110 PMCID: PMC7315809 DOI: 10.3389/fphys.2020.00603] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/14/2020] [Indexed: 01/28/2023] Open
Abstract
Animal experiments suggest that total liquid ventilation (TLV) induces less ventilator-induced lung injury (VILI) than conventional mechanical gas ventilation. However, TLV parameters that optimally minimize VILI in newborns remain unknown. Our objective was to compare lung inflammation between low (L-VT) and high (H-VT) liquid tidal volume and evaluate impacts on the weaning process. Sixteen anesthetized and paralyzed newborn lambs were randomized in an L-VT group (initial tidal volume of 10 mL/kg at 10/min) and an H-VT group (initial tidal volume of 20 mL/kg at 5/min). Five unventilated newborn lambs served as controls. After 4 h of TLV in the supine position, the lambs were weaned in the prone position for another 4 h. The levels of respiratory support needed during the 4 h post-TLV were compared. The anterior and posterior lung regions were assessed by a histological score and real-time quantitative PCR for IL1B, IL6, and TNF plus 12 other exploratory VILI-associated genes. All but one lamb were successfully extubated within 2 h post-TLV (72 ± 26 min vs. 63 ± 25 min, p = 0.5) with similar FiO2 at 4 h post-TLV (27 ± 6% vs. 33 ± 7%, p = 0.3) between the L-VT and H-VT lambs. No significant differences were measured in histological inflammation scores between L-VT and H-VT lambs, although lambs in both groups exhibited slightly higher scores than the control lambs. The L-VT group displayed higher IL1B mRNA expression than the H-VT group in both anterior (2.8 ± 1.5-fold increase vs. 1.3 ± 0.4-fold increase, p = 0.02) and posterior lung regions (3.0 ± 1.0-fold change increase vs. 1.1 ± 0.3-fold increase, p = 0.002), respectively. No significant differences were found in IL6 and TNF expression levels. Gene expression changes overall indicated that L-VT was associated with a qualitatively distinct inflammatory gene expression profiles compared to H-VT, which may indicate different clinical effects. In light of these findings, further mechanistic studies are warranted. In conclusion, we found no advantage of lower tidal volume use, which was in fact associated with a slightly unfavorable pattern of inflammatory gene expression.
Collapse
Affiliation(s)
- Michaël Sage
- Department of Pharmacology-Physiology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Wendy See
- Department of Pharmacology-Physiology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Stéphanie Nault
- Department of Pharmacology-Physiology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Christophe Morin
- Department of Pharmacology-Physiology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Christina Michalski
- BC Children’s Hospital Research Institute, The University of British Columbia, Vancouver, BC, Canada
- Department of Experimental Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Benoit Chabot
- Department of Microbiology and Infectiology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Sofia Marouan
- Department of Pathology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Pascal M. Lavoie
- BC Children’s Hospital Research Institute, The University of British Columbia, Vancouver, BC, Canada
- Department of Experimental Medicine, The University of British Columbia, Vancouver, BC, Canada
- Department of Pediatrics, The University of British Columbia, Vancouver, BC, Canada
| | - Philippe Micheau
- Department of Mechanical Engineering, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Jean-Paul Praud
- Department of Pharmacology-Physiology, Université de Sherbrooke, Sherbrooke, QC, Canada
- Department of Pediatrics, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Étienne Fortin-Pellerin
- Department of Pharmacology-Physiology, Université de Sherbrooke, Sherbrooke, QC, Canada
- Department of Pediatrics, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
6
|
Thuillier R, Delpy E, Matillon X, Kaminski J, Kasil A, Soussi D, Danion J, Sauvageon Y, Rod X, Donatini G, Barrou B, Badet L, Zal F, Hauet T. Preventing acute kidney injury during transplantation: the application of novel oxygen carriers. Expert Opin Investig Drugs 2019; 28:643-657. [PMID: 31165652 DOI: 10.1080/13543784.2019.1628217] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Delayed graft function (DGF) has a significant impact on kidney transplantation outcome. One of the underlying pivotal mechanisms is organ preservation and associated hypothermia and biochemical alteration. AREAS COVERED This paper focuses on organ preservation and its clinical consequences and describes 1. A comprehensive presentation of the pathophysiological mechanism involved in delayed graft function development; 2. The impact on endothelial cells and microvasculature integrity and the consequences on transplanted organ outcome; 3. The reassessment of dynamic organ preservation motivated by the growing use of extended criteria donors and the interest in the potential of normothermia; 4. The role of oxygenation during dynamic preservation; and 5. Novel oxygen carriers and their proof of concept in transplantation, among which M101 (HEMO2life®) is currently the most extensively investigated. EXPERT OPINION Metabolic disturbances and imbalance of oxygen supply during preservation highlight the importance of providing oxygen. Normothermia, permitted by recent advances in machine perfusion technology, appears to be the leading edge of preservation technology. Several oxygen transporters are compatible with normothermia; however, only M101 also demonstrates compatibility with standard hypothermic preservation.
Collapse
Affiliation(s)
- Raphael Thuillier
- a Inserm U1082 , Inserm, Poitiers , France.,b Fédération Hospitalo-Universitaire SUPORT , CHU Poitiers, Poitiers , France.,c Faculté de Médecine et de Pharmacie , Université de Poitiers , Poitiers , France.,d Service de Biochimie , CHU Poitiers , Poitiers , France
| | - Eric Delpy
- e HEMARINA S.A., Aéropole centre, Biotechnopôle , Morlaix , France
| | - Xavier Matillon
- a Inserm U1082 , Inserm, Poitiers , France.,f Modélisations Précliniques Innovation Chirurgicale et Technologique , Infrastructures en Biologie et Santé Animale, Génétique, Expérimentations et Systèmes Innovants, Département Génétique Animale , INRA Le Magneraud,Surgères , France.,g Service d'urologie et de chirurgie de la transplantation , Hospices Civiles de Lyon , Lyon , France.,h Faculté de Médecine Lyon Est , Université Claude Bernard Lyon 1 , Villeurbanne , France
| | - Jacques Kaminski
- a Inserm U1082 , Inserm, Poitiers , France.,c Faculté de Médecine et de Pharmacie , Université de Poitiers , Poitiers , France
| | - Abdelsalam Kasil
- a Inserm U1082 , Inserm, Poitiers , France.,c Faculté de Médecine et de Pharmacie , Université de Poitiers , Poitiers , France
| | - David Soussi
- a Inserm U1082 , Inserm, Poitiers , France.,c Faculté de Médecine et de Pharmacie , Université de Poitiers , Poitiers , France.,d Service de Biochimie , CHU Poitiers , Poitiers , France
| | - Jerome Danion
- a Inserm U1082 , Inserm, Poitiers , France.,c Faculté de Médecine et de Pharmacie , Université de Poitiers , Poitiers , France.,i Service de Chirurgie viscérale et endocrinienne , CHU Poitiers , Poitiers , France
| | - Yse Sauvageon
- a Inserm U1082 , Inserm, Poitiers , France.,c Faculté de Médecine et de Pharmacie , Université de Poitiers , Poitiers , France.,d Service de Biochimie , CHU Poitiers , Poitiers , France
| | - Xavier Rod
- a Inserm U1082 , Inserm, Poitiers , France
| | - Gianluca Donatini
- a Inserm U1082 , Inserm, Poitiers , France.,i Service de Chirurgie viscérale et endocrinienne , CHU Poitiers , Poitiers , France
| | - Benoit Barrou
- a Inserm U1082 , Inserm, Poitiers , France.,j Service de Transplantation Rénale, Département d'Urologie et de Transplantation , Groupe Hospitalier Pitié Salpétrière , Paris , France
| | - Lionel Badet
- a Inserm U1082 , Inserm, Poitiers , France.,f Modélisations Précliniques Innovation Chirurgicale et Technologique , Infrastructures en Biologie et Santé Animale, Génétique, Expérimentations et Systèmes Innovants, Département Génétique Animale , INRA Le Magneraud,Surgères , France.,g Service d'urologie et de chirurgie de la transplantation , Hospices Civiles de Lyon , Lyon , France.,h Faculté de Médecine Lyon Est , Université Claude Bernard Lyon 1 , Villeurbanne , France
| | - Franck Zal
- e HEMARINA S.A., Aéropole centre, Biotechnopôle , Morlaix , France
| | - Thierry Hauet
- a Inserm U1082 , Inserm, Poitiers , France.,b Fédération Hospitalo-Universitaire SUPORT , CHU Poitiers, Poitiers , France.,c Faculté de Médecine et de Pharmacie , Université de Poitiers , Poitiers , France.,d Service de Biochimie , CHU Poitiers , Poitiers , France.,f Modélisations Précliniques Innovation Chirurgicale et Technologique , Infrastructures en Biologie et Santé Animale, Génétique, Expérimentations et Systèmes Innovants, Département Génétique Animale , INRA Le Magneraud,Surgères , France.,k Consortium for Organ Preservation in Europe, Nuffield Department of Surgical Sciences , Oxford Transplant Centre, Churchill Hospital , Oxford , United Kingdom
| |
Collapse
|
7
|
Stowe S, Boyle A, Sage M, See W, Praud JP, Fortin-Pellerin É, Adler A. Comparison of bolus- and filtering-based EIT measures of lung perfusion in an animal model. Physiol Meas 2019; 40:054002. [PMID: 30965314 DOI: 10.1088/1361-6579/ab1794] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Two main functional imaging approaches have been used to measure regional lung perfusion using electrical impedance tomography (EIT): venous injection of a hypertonic saline contrast agent and imaging of its passage through the heart and lungs, and digital filtering of heart-frequency impedance changes over sequences of EIT images. This paper systematically compares filtering-based perfusion estimates and bolus injection methods to determine to which degree they are related. APPROACH EIT data was recorded on seven mechanically ventilated newborn lambs in which ventilation distribution was varied through changes in posture between prone, supine, left- and right-lateral positions. Perfusion images were calculated using frequency filtering and ensemble averaging during both ventilation and apnoea time segments for each posture to compare against contrast agent-based methods using Jaccard distance score. MAIN RESULTS Using bolus-based EIT measures of lung perfusion as the reference frequency filtering techniques performed better than ensemble averaging and both techniques performed equally well across apnoea and ventilation data segments. SIGNIFICANCE Our results indicate the potential for use of filtering-based EIT measures of heart-frequency activity as a non-invasive proxy for contrast agent injection-based measures of lung perfusion.
Collapse
Affiliation(s)
- Symon Stowe
- Systems and Computer Engineering, Carleton University, Ottawa, Canada. Author to whom any correspondence should be addressed
| | | | | | | | | | | | | |
Collapse
|
8
|
Efficacy and Complications of Humidified High-Flow Nasal Cannula Versus Nasal Continuous Positive Airway Pressure in Neonates with Respiratory Distress Syndrome After Surfactant Therapy. IRANIAN RED CRESCENT MEDICAL JOURNAL 2019. [DOI: 10.5812/ircmj.83615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Rambaud J, Lidouren F, Sage M, Kohlhauer M, Nadeau M, Fortin-Pellerin É, Micheau P, Zilberstein L, Mongardon N, Ricard JD, Terada M, Bruneval P, Berdeaux A, Ghaleh B, Walti H, Tissier R. Hypothermic total liquid ventilation after experimental aspiration-associated acute respiratory distress syndrome. Ann Intensive Care 2018; 8:57. [PMID: 29721820 PMCID: PMC5931951 DOI: 10.1186/s13613-018-0404-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 04/23/2018] [Indexed: 12/20/2022] Open
Abstract
Background Ultrafast cooling by total liquid ventilation (TLV) provides potent cardio- and neuroprotection after experimental cardiac arrest. However, this was evaluated in animals with no initial lung injury, whereas out-of-hospital cardiac arrest is frequently associated with early-onset pneumonia, which may lead to acute respiratory distress syndrome (ARDS). Here, our objective was to determine whether hypothermic TLV could be safe or even beneficial in an aspiration-associated ARDS animal model. Methods ARDS was induced in anesthetized rabbits through a two-hits model including the intra-tracheal administration of a pH = 1 solution mimicking gastric content and subsequent gaseous non-protective ventilation during 90 min (tidal volume [Vt] = 10 ml/kg with positive end-expiration pressure [PEEP] = 0 cmH2O). After this initial period, animals either received lung protective gas ventilation (LPV; Vt = 8 ml/kg and PEEP = 5 cmH2O) under normothermic conditions, or hypothermic TLV (TLV; Vt = 8 ml/kg and end-expiratory volume = 15 ml/kg). Both strategies were applied for 120 min with a continuous monitoring of respiratory and cardiovascular parameters. Animals were then euthanized for pulmonary histological analyses. Results Eight rabbits were included in each group. Before randomization, all animals elicited ARDS with arterial oxygen partial pressure over inhaled oxygen fraction ratios (PaO2/FiO2) below 100 mmHg, as well as decreased lung compliance. After randomization, body temperature rapidly decreased in TLV versus LPV group (32.6 ± 0.6 vs. 38.2 ± 0.4 °C after 15 min). Static lung compliance and gas exchanges were not significantly different in the TLV versus LPV group (PaO2/FiO2 = 62 ± 4 vs. 52 ± 8 mmHg at the end of the procedure, respectively). Mean arterial pressure and arterial bicarbonates levels were significantly higher in TLV versus LPV. Histological analysis also showed significantly lower inflammation in TLV versus LPV group (median histological score = 3 vs. 4.5/5, respectively; p = 0.03). Conclusion Hypothermic TLV can be safely induced in rabbits during aspiration-associated ARDS. It modified neither gas exchanges nor respiratory mechanics but reduced lung inflammation and hemodynamic failure in comparison with LPV. Since hypothermic TLV was previously shown to provide neuro- and cardio protective effects after cardiac arrest, these findings suggest a possible use of TLV in the settings of cardiac arrest-associated ARDS.
Collapse
Affiliation(s)
- Jérôme Rambaud
- U955 - IMRB, Inserm, UPEC, Ecole Nationale Vétérinaire d'Alfort, 7 avenue du Général de Gaulle, 94700, Maisons-Alfort, France.,Paediatric and Neonatal Intensive Care Unit, Armand-Trousseau Hospital, UPMC, APHP, Paris, France
| | - Fanny Lidouren
- U955 - IMRB, Inserm, UPEC, Ecole Nationale Vétérinaire d'Alfort, 7 avenue du Général de Gaulle, 94700, Maisons-Alfort, France
| | - Michaël Sage
- Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Matthias Kohlhauer
- U955 - IMRB, Inserm, UPEC, Ecole Nationale Vétérinaire d'Alfort, 7 avenue du Général de Gaulle, 94700, Maisons-Alfort, France
| | | | | | | | - Luca Zilberstein
- U955 - IMRB, Inserm, UPEC, Ecole Nationale Vétérinaire d'Alfort, 7 avenue du Général de Gaulle, 94700, Maisons-Alfort, France
| | - Nicolas Mongardon
- U955 - IMRB, Inserm, UPEC, Ecole Nationale Vétérinaire d'Alfort, 7 avenue du Général de Gaulle, 94700, Maisons-Alfort, France.,Service d'Anesthésie et des Réanimations Chirurgicales, DHU A-TVB, Hôpitaux Universitaires Henri Mondor, Assistance Publique des Hôpitaux de Paris, Créteil, France
| | - Jean-Damien Ricard
- UMR 1137, Inserm, Université Paris Diderot, Hôpital Louis Mourier, Réanimation Médico-chirurgicale, APHP, Colombes, France
| | - Megumi Terada
- UMR 970, Inserm, Paris Cardiovascular Research Center, Hôpital Européen Georges Pompidou, Paris, France
| | - Patrick Bruneval
- UMR 970, Inserm, Paris Cardiovascular Research Center, Hôpital Européen Georges Pompidou, Paris, France
| | - Alain Berdeaux
- U955 - IMRB, Inserm, UPEC, Ecole Nationale Vétérinaire d'Alfort, 7 avenue du Général de Gaulle, 94700, Maisons-Alfort, France
| | - Bijan Ghaleh
- U955 - IMRB, Inserm, UPEC, Ecole Nationale Vétérinaire d'Alfort, 7 avenue du Général de Gaulle, 94700, Maisons-Alfort, France
| | - Hervé Walti
- U955 - IMRB, Inserm, UPEC, Ecole Nationale Vétérinaire d'Alfort, 7 avenue du Général de Gaulle, 94700, Maisons-Alfort, France
| | - Renaud Tissier
- U955 - IMRB, Inserm, UPEC, Ecole Nationale Vétérinaire d'Alfort, 7 avenue du Général de Gaulle, 94700, Maisons-Alfort, France.
| |
Collapse
|