1
|
Niland S, Eble JA. Decoding the MMP14 integrin link: Key player in the secretome landscape. Matrix Biol 2025; 136:36-51. [PMID: 39828138 DOI: 10.1016/j.matbio.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 01/16/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Rapid progress has been made in the exciting field of secretome research in health and disease. The tumor secretome, which is a significant proportion of the tumor proteome, is secreted into the extracellular space to promote intercellular communication and thus tumor progression. Among the many molecules of the secretome, integrins and matrix metalloproteinase 14 (MMP14) stand out as the interplay of adhesion and proteolysis drives invasion. Integrins serve as mechanosensors that mediate the contact of cells with the scaffold of the extracellular matrix and are significantly involved in the precise positioning and activity control of the membrane-bound collagenase MMP14. As a secretome proteinase, MMP14 influences and modifies the secretome itself. While integrins and MT-MMPs are membrane bound, but can be released and are therefore border crossers between the cell surface and the secretome, the extracellular matrix is not constitutively cell-bound, but its binding to integrins and other cell receptors is a stringently regulated process. To understand the mutual interactions in detail, we first summarize the structure and function of MMP14 and how it is regulated at the enzymatic and cellular level. In particular, the mutual interactions between integrins and MMP14 include the proteolytic cleavage of integrins themselves by MMP14. We then review the biochemical, cell biological and physiological effects of MMP14 on the composition and associated functions in the tumor secretome when either bound to the cell membrane, or located on extracellular microvesicles, or as a proteolytically shed non-membrane-bound ectodomain. Novel methods of proteomics, including the analysis of extravesicular vesicles, and new methods for the quantification of MMP14 will provide new research and diagnostic tools. The proteolytic modification of the tumor secretome, especially by MMP14, may bring an additional aspect to tumor secretome studies and will have an impact on the diagnosis and most likely also on the therapy of cancer patients.
Collapse
Affiliation(s)
- Stephan Niland
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| | - Johannes A Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany.
| |
Collapse
|
2
|
Choi KM, Kim SJ, Ji MJ, Kim E, Kim JS, Park HM, Kim JY. Activity-based protein profiling and global proteome analysis reveal MASTL as a potential therapeutic target in gastric cancer. Cell Commun Signal 2024; 22:397. [PMID: 39138495 PMCID: PMC11323684 DOI: 10.1186/s12964-024-01783-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/08/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Gastric cancer (GC) is a prevalent malignancy with limited therapeutic options for advanced stages. This study aimed to identify novel therapeutic targets for GC by profiling HSP90 client kinases. METHODS We used mass spectrometry-based activity-based protein profiling (ABPP) with a desthiobiotin-ATP probe, combined with sensitivity analysis of HSP90 inhibitors, to profile kinases in a panel of GC cell lines. We identified kinases regulated by HSP90 in inhibitor-sensitive cells and investigated the impact of MASTL knockdown on GC cell behavior. Global proteomic analysis following MASTL knockdown was performed, and bioinformatics tools were used to analyze the resulting data. RESULTS Four kinases-MASTL, STK11, CHEK1, and MET-were identified as HSP90-regulated in HSP90 inhibitor-sensitive cells. Among these, microtubule-associated serine/threonine kinase-like (MASTL) was upregulated in GC and associated with poor prognosis. MASTL knockdown decreased migration, invasion, and proliferation of GC cells. Global proteomic profiling following MASTL knockdown revealed NEDD4-1 as a potential downstream mediator of MASTL in GC progression. NEDD4-1 was also upregulated in GC and associated with poor prognosis. Similar to MASTL inhibition, NEDD4-1 knockdown suppressed migration, invasion, and proliferation of GC cells. CONCLUSIONS Our multi-proteomic analyses suggest that targeting MASTL could be a promising therapy for advanced gastric cancer, potentially through the reduction of tumor-promoting proteins including NEDD4-1. This study enhances our understanding of kinase signaling pathways in GC and provides new insights for potential treatment strategies.
Collapse
Affiliation(s)
- Kyoung-Min Choi
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Sung-Jin Kim
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Mi-Jung Ji
- Advanced Analysis and Data Center, Korea Institute of Science and Technology (KIST), Seoul, 02456, Republic of Korea
| | - Eunjung Kim
- Natural Product Informatics Center, Korea Institute of Science and Technology (KIST), Gangneung, 25451, Republic of Korea
| | - Jae-Sung Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, 01812, Republic of Korea
| | - Hyun-Mee Park
- Advanced Analysis and Data Center, Korea Institute of Science and Technology (KIST), Seoul, 02456, Republic of Korea
| | - Jae-Young Kim
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
3
|
Maoga JB, Riaz MA, Mwaura AN, Mecha E, Omwandho COA, Scheiner-Bobis G, Meinhold-Heerlein I, Konrad L. Analysis of Membrane Type-1 Matrix Metalloproteinase (MT1-MMP, MMP14) in Eutopic and Ectopic Endometrium and in Serum and Endocervical Mucus of Endometriosis. Biomedicines 2023; 11:2730. [PMID: 37893104 PMCID: PMC10604514 DOI: 10.3390/biomedicines11102730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/26/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Membrane type-matrix metalloproteinases (MT-MMPs) are a subgroup of the matrix metalloproteinases (MMPs) family and are key molecules in the degradation of the extracellular matrix. Membrane type-1 matrix metalloproteinase (MT1-MMP, MMP14) is often deregulated in different cancer tissues and body fluids of human cancer patients; however, MT1-MMP levels in endometriosis and adenomyosis patients are currently unknown. MATERIALS AND METHODS Tissue samples from patients with and without endometriosis or adenomyosis were analyzed with immunohistochemistry for the localization of MT1-MMP. Serum and endocervical mucus samples from patients with and without endometriosis or adenomyosis were investigated with MT1-MMP ELISAs. RESULTS MT1-MMP was localized preferentially in the glands of eutopic and ectopic endometrium. MT1-MMP protein levels are significantly reduced in ovarian endometriosis (HSCORE = 31) versus eutopic endometrium (HSCORE = 91) and adenomyosis (HSCORE = 149), but significantly increased in adenomyosis (HSCORE = 149) compared to eutopic endometrium (HSCORE = 91). Similarly, analysis of the levels of MT1-MMP using enzyme-linked immune assays (ELISAs) demonstrated a significant increase in the concentrations of MT1-MMP in the serum of endometriosis patients (1.3 ± 0.8) versus controls (0.7 ± 0.2), but not in the endocervical mucus. Furthermore, MT1-MMP levels in the endocervical mucus of patients with endometriosis were notably reduced in patients using contraception (3.2 ± 0.4) versus those without contraception (3.8 ± 0.2). CONCLUSIONS Taken together, our findings showed an opposite regulation of MT1-MMP in the tissue of ovarian endometriosis and adenomyosis compared to eutopic endometrium without endometriosis but increased serum levels in patients with endometriosis.
Collapse
Affiliation(s)
- Jane B. Maoga
- Center of Gynecology and Obstetrics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany; (J.B.M.); (M.A.R.); (A.N.M.); (I.M.-H.)
| | - Muhammad A. Riaz
- Center of Gynecology and Obstetrics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany; (J.B.M.); (M.A.R.); (A.N.M.); (I.M.-H.)
| | - Agnes N. Mwaura
- Center of Gynecology and Obstetrics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany; (J.B.M.); (M.A.R.); (A.N.M.); (I.M.-H.)
| | - Ezekiel Mecha
- Department of Biochemistry, University of Nairobi, Nairobi P.O. Box 30197-00100, Kenya;
| | - Charles O. A. Omwandho
- Department of Health Sciences, Kirinyaga University, Kerugoya P.O. Box 143-10300, Kenya;
| | - Georgios Scheiner-Bobis
- Institute for Veterinary Physiology and Biochemistry, School of Veterinary Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany;
| | - Ivo Meinhold-Heerlein
- Center of Gynecology and Obstetrics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany; (J.B.M.); (M.A.R.); (A.N.M.); (I.M.-H.)
| | - Lutz Konrad
- Center of Gynecology and Obstetrics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany; (J.B.M.); (M.A.R.); (A.N.M.); (I.M.-H.)
| |
Collapse
|
4
|
Banerjee S, Baidya SK, Adhikari N, Jha T. An updated patent review of matrix metalloproteinase (MMP) inhibitors (2021-present). Expert Opin Ther Pat 2023; 33:631-649. [PMID: 37982191 DOI: 10.1080/13543776.2023.2284935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/14/2023] [Indexed: 11/21/2023]
Abstract
INTRODUCTION Matrix metalloproteinases (MMPs) are strongly interlinked with the progression and mechanisms of several life-threatening diseases including cancer. Thus, novel MMP inhibitors (MMPIs) as promising drug candidates can be effective in combating these diseases. However, no MMPIs are marketed to date due to poor pharmacokinetics and lower selectivity. Therefore, this review was performed to study the newer MMPIs patented after the COVID-19 period for an updated perspective on MMPIs. AREAS COVERED This review highlights patents related to MMPIs, and their therapeutic implications published between January 2021 and August 2023 available in the Google Patents, Patentscope, and Espacenet databases. EXPERT OPINION Despite various MMP-related patents disclosed up to 2020, newer patent applications in the post-COVID-19 period decreased a lot. Besides major MMPs, other isoforms (i.e. MMP-3 and MMP-7) have gained attention recently for drug development. This may open up newer dimensions targeting these MMPs for therapeutic advancements. The isoform selectivity and bioavailability are major concerns for effective MMPI development. Thus, adopting theoretical approaches and experimental methodologies can unveil the development of novel MMPIs with improved pharmacokinetic profiles. Nevertheless, the involvement of MMPs in cancer, and the mechanisms of such MMPs in other diseases should be extensively studied for novel MMPI development.
Collapse
Affiliation(s)
| | | | | | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| |
Collapse
|
5
|
Patras L, Paul D, Matei IR. Weaving the nest: extracellular matrix roles in pre-metastatic niche formation. Front Oncol 2023; 13:1163786. [PMID: 37350937 PMCID: PMC10282420 DOI: 10.3389/fonc.2023.1163786] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/15/2023] [Indexed: 06/24/2023] Open
Abstract
The discovery that primary tumors condition distant organ sites of future metastasis for seeding by disseminating tumor cells through a process described as the pre-metastatic niche (PMN) formation revolutionized our understanding of cancer progression and opened new avenues for therapeutic interventions. Given the inherent inefficiency of metastasis, PMN generation is crucial to ensure the survival of rare tumor cells in the otherwise hostile environments of metastatic organs. Early on, it was recognized that preparing the "soil" of the distal organ to support the outgrowth of metastatic cells is the initiating event in PMN development, achieved through the remodeling of the organ's extracellular matrix (ECM). Remote restructuring of ECM at future sites of metastasis under the influence of primary tumor-secreted factors is an iterative process orchestrated through the crosstalk between resident stromal cells, such as fibroblasts, epithelial and endothelial cells, and recruited innate immune cells. In this review, we will explore the ECM changes, cellular effectors, and the mechanisms of ECM remodeling throughout PMN progression, as well as its impact on shaping the PMN and ultimately promoting metastasis. Moreover, we highlight the clinical and translational implications of PMN ECM changes and opportunities for therapeutically targeting the ECM to hinder PMN formation.
Collapse
Affiliation(s)
- Laura Patras
- Children’s Cancer and Blood Foundation Laboratories, Department of Pediatrics, Division of Hematology/Oncology, Drukier Institute for Children’s Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
- Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Doru Paul
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Irina R. Matei
- Children’s Cancer and Blood Foundation Laboratories, Department of Pediatrics, Division of Hematology/Oncology, Drukier Institute for Children’s Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
- Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, Babes-Bolyai University, Cluj-Napoca, Romania
| |
Collapse
|
6
|
Pawluczuk E, Łukaszewicz-Zając M, Mroczko B. The Comprehensive Analysis of Specific Proteins as Novel Biomarkers Involved in the Diagnosis and Progression of Gastric Cancer. Int J Mol Sci 2023; 24:ijms24108833. [PMID: 37240178 DOI: 10.3390/ijms24108833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 05/28/2023] Open
Abstract
Gastric cancer (GC) cases are predicted to rise by 2040 to approximately 1.8 million cases, while GC-caused deaths to 1.3 million yearly worldwide. To change this prognosis, there is a need to improve the diagnosis of GC patients because this deadly malignancy is usually detected at an advanced stage. Therefore, new biomarkers of early GC are sorely needed. In the present paper, we summarized and referred to a number of original pieces of research concerning the clinical significance of specific proteins as potential biomarkers for GC in comparison to well-established tumor markers for this malignancy. It has been proved that selected chemokines and their specific receptors, vascular endothelial growth factor (VEGF) and epidermal growth factor receptor (EGFR), specific proteins such as interleukin 6 (IL-6) and C-reactive protein (CRP), matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs), a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS), as well as DNA- and RNA-based biomarkers, and c-MET (tyrosine-protein kinase Met) play a role in the pathogenesis of GC. Based on the recent scientific literature, our review indicates that presented specific proteins are potential biomarkers in the diagnosis and progression of GC as well as might be used as prognostic factors of GC patients' survival.
Collapse
Affiliation(s)
- Elżbieta Pawluczuk
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Marta Łukaszewicz-Zając
- Department of Biochemical Diagnostics, Medical University of Bialystok, Waszyngtona 15a, 15-269 Bialystok, Poland
| | - Barbara Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
- Department of Biochemical Diagnostics, Medical University of Bialystok, Waszyngtona 15a, 15-269 Bialystok, Poland
| |
Collapse
|
7
|
Patras L, Shaashua L, Matei I, Lyden D. Immune determinants of the pre-metastatic niche. Cancer Cell 2023; 41:546-572. [PMID: 36917952 PMCID: PMC10170403 DOI: 10.1016/j.ccell.2023.02.018] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 03/16/2023]
Abstract
Primary tumors actively and specifically prime pre-metastatic niches (PMNs), the future sites of organotropic metastasis, preparing these distant microenvironments for disseminated tumor cell arrival. While initial studies of the PMN focused on extracellular matrix alterations and stromal reprogramming, it is increasingly clear that the far-reaching effects of tumors are in great part achieved through systemic and local PMN immunosuppression. Here, we discuss recent advances in our understanding of the tumor immune microenvironment and provide a comprehensive overview of the immune determinants of the PMN's spatiotemporal evolution. Moreover, we depict the PMN immune landscape, based on functional pre-clinical studies as well as mounting clinical evidence, and the dynamic, reciprocal crosstalk with systemic changes imposed by cancer progression. Finally, we outline emerging therapeutic approaches that alter the dynamics of the interactions driving PMN formation and reverse immunosuppression programs in the PMN ensuring early anti-tumor immune responses.
Collapse
Affiliation(s)
- Laura Patras
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Lee Shaashua
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Irina Matei
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
| | - David Lyden
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
8
|
The Catalytic Domain Mediates Homomultimerization of MT1-MMP and the Prodomain Interferes with MT1-MMP Oligomeric Complex Assembly. Biomolecules 2022; 12:biom12081145. [PMID: 36009039 PMCID: PMC9406036 DOI: 10.3390/biom12081145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/12/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
Homomultimerization of MT1-MMP (membrane type 1 matrix metalloproteinase) through the hemopexin, transmembrane, and cytoplasmic domains plays a very important role in the activation of proMMP-2 and the degradation of pericellular collagen. MT1-MMP is overexpressed in many types of cancers, and it is considered to be a key enzyme in facilitating cancer cell migration. Since the oligomerization of MT1-MMP is important for its proteolytic activity in promoting cancer invasion, we have further investigated the multimerization by using heterologously expressed MT1-MMP ectodomains in insect cells to gain additional mechanistic insight into this process. We show that the whole ectodomain of MT1-MMP can form dimers and higher-order oligomeric complexes. The enzyme is secreted in its active form and the multimeric complex assembly is mediated by the catalytic domain. Blocking the prodomain removal determines the enzyme to adopt the monomeric structure, suggesting that the prodomain prevents the MT1-MMP oligomerization process. The binding affinity of MT1-MMP to type I collagen is dependent on the oligomeric state. Thus, the monomers have the weakest affinity, while the binding strength increases proportionally with the complexity of the multimers. Collectively, our experimental results indicate that the catalytic domain of MT1-MMP is necessary and sufficient to mediate the formation of multimeric structures.
Collapse
|
9
|
Ozdemir K, Zengin I, Guney Eskiler G, Kocer HB, Ozkan AD, Demiray T, Sahin EO. The Predictive Role of MMP-2, MMP-9, TIMP-1 and TIMP-2 Serum Levels in the Complete Response of the Tumor to Chemotherapy in Breast Cancer Patients. J INVEST SURG 2022; 35:1544-1550. [PMID: 35636767 DOI: 10.1080/08941939.2022.2080308] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE We investigated the serum levels of MMPs and TIMPs in breast cancer (BC) patients to predict the response rate to/after treatment with or without neoadjuvant chemotherapy. BC is the most common cancer in women and MMPs are responsible for the breakdown of ECM proteins during organogenesis and TIMPs are restricted the ECM destruction by MMPs. However, the predictive role of MMPs and TIMPs in the treatment response of BC patients has not identified. METHODS This study consisted of 96 BC patients (34 neoadjuvant treatment and 62 surgically treated) and 35 healthy individuals. ELISA was used to determine the level of MMP-2, MMP-9, TIMP-1, and TIMP-2 from serum samples of BC patients. RESULTS The mean levels of MMP-9 and TIMP-2 were significantly increased in all BC patients at diagnosis and after chemotherapy, but MMP-2 was considerably lower at diagnosis. There was only a significant difference in the TIMP-1 levels after chemotherapy as well as HER2 and ER status in the neoadjuvant and surgically treated group. Additionally, MMP-2 and MMP-9 serum levels negatively correlated with tumor size and metastatic lymph nodes in BC patients after chemotherapy. CONCLUSIONS BC patients with high levels of MMP-9 and TIMP-2 can be used to predict the stage of the tumor and CR to chemotherapy and higher TIMP-1 serum level after chemotherapy could be related to better response to chemotherapy.
Collapse
Affiliation(s)
- Kayhan Ozdemir
- Department of General Surgery, Sakarya University Research and Educational Hospital, Sakarya, Turkey
| | - Ismail Zengin
- Department of General Surgery, Sakarya University Research and Educational Hospital, Sakarya, Turkey
| | - Gamze Guney Eskiler
- Department of Medical Biology, Faculty of Medicine, Sakarya University, Sakarya, Turkey
| | - Havva Belma Kocer
- Department of General Surgery, Faculty of Medicine, Sakarya University, Sakarya, Turkey
| | - Asuman Deveci Ozkan
- Department of Medical Biology, Faculty of Medicine, Sakarya University, Sakarya, Turkey
| | - Tayfur Demiray
- Department of Microbiology and Immunology, Research and Educational Hospital, Sakarya University, Sakarya, Turkey
| | - Elif Ozozen Sahin
- Department of Microbiology and Immunology, Research and Educational Hospital, Sakarya University, Sakarya, Turkey
| |
Collapse
|
10
|
Choudhary P, Roy T, Chatterjee A, Mishra VK, Pant S, Swarnakar S. Melatonin rescues swim stress induced gastric ulceration by inhibiting matrix metalloproteinase-3 via down-regulation of inflammatory signaling cascade. Life Sci 2022; 297:120426. [PMID: 35218765 DOI: 10.1016/j.lfs.2022.120426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/11/2022] [Accepted: 02/18/2022] [Indexed: 11/29/2022]
Abstract
AIM This study investigated the link between forced swim induced acute gastric ulceration, inflammation and MMP-3 along with the possible mechanism of protective efficacy of melatonin. MAIN METHODS We distributed Balb/c mice into four different groups. Group 1 and 2 were given PBS gavage. Group 3 and 4 were given melatonin (60 mg/kg b.wt.) and omeprazole (25 mg/kg b.wt.), respectively, an hour prior to forced swim. Ulcer index, tissue histology, immunohistochemistry, protein carbonylation, lipid peroxidation, Myeloperoxidase, Zymography, Western blotting, reactive oxygen species (ROS), mitochondrial dehydrogenase, mitochondrial transmembrane potential and bioinformatical analysis were performed. KEY FINDINGS Our data revealed that gastric ulceration due to forced swim stress is responsible for overproduction of ROS, which may be a prime reason for mitochondrial dysfunction and induction of apoptosis via activation of Caspase-3. ROS is also responsible for p38 phosphorylation which in turn increases the activity of MMP-3 in ulcerated milieu, along with the oxidation of proteins, peroxidation of lipids and altered expression patterns of heat shock protein (HSP)-70. Melatonin is shown to reduce the inflammatory burden in gastric milieu and offers gastroprotection by binding to the active site of MMP-3; thereby inhibiting its activity, as suggested by in silico studies. Melatonin also inhibits the downregulation of HSP-70 and activates p38 dephosphorylation and thereby, it rescues gastric mucosal cells from stress-induced ulceration. SIGNIFICANCE Our findings suggest that, melatonin imparts its gastroprotective effect by down-regulating the activation of MAPK-ERK pathway along with binding to the active site of MMP-3.
Collapse
Affiliation(s)
- Preety Choudhary
- Inflammatory Diseases and Immunology division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mallick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Tapasi Roy
- Inflammatory Diseases and Immunology division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mallick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Abhishek Chatterjee
- Inflammatory Diseases and Immunology division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mallick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Vineet Kumar Mishra
- Inflammatory Diseases and Immunology division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mallick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Suyash Pant
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, India
| | - Snehasikta Swarnakar
- Inflammatory Diseases and Immunology division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mallick Road, Jadavpur, Kolkata 700032, West Bengal, India.
| |
Collapse
|
11
|
MMP14 Contributes to HDAC Inhibition-Induced Radiosensitization of Glioblastoma. Int J Mol Sci 2021; 22:ijms221910403. [PMID: 34638754 PMCID: PMC8508883 DOI: 10.3390/ijms221910403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 11/17/2022] Open
Abstract
Glioblastoma (GBM) is the most common and malignant primary brain tumor in adults. Radiotherapy has long been an important treatment method of GBM. However, the intrinsic radioresistance of GBM cells is a key reason of poor therapeutic efficiency. Recently, many studies have shown that using the histone deacetylase (HDAC) inhibitor suberoylanilide hydroxamic acid (SAHA) in radiotherapy may improve the prognosis of GBM patients, but the underlying molecular mechanisms remain unclear. In this study, Gene Expression Omnibus (GEO) datasets GSE153982 and GSE131956 were analyzed to evaluate radiation-induced changes of gene expression in GBM without or with SAHA treatment, respectively. Additionally, the survival-associated genes of GBM patients were screened using the Chinese Glioma Genome Atlas (CGGA) database. Taking the intersection of these three datasets, 11 survival-associated genes were discovered to be activated by irradiation and regulated by SAHA. The expressions of these genes were further verified in human GBM cell lines U251, T98G, and U251 homologous radioresistant cells (U251R) by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). It was found that MMP14 mRNA was considerably highly expressed in the radioresistant cell lines and was reduced by SAHA treatment. Transfection of MMP14 siRNA (siMMP14) suppressed cell survivals of these GBM cells after irradiation. Taken together, our results reveal for the first time that the MMP14 gene contributed to SAHA-induced radiosensitization of GBM.
Collapse
|
12
|
Wang X, Meng Q, Wang Y, Gao Y. Overexpression of MMP14 predicts the poor prognosis in gastric cancer: Meta-analysis and database validation. Medicine (Baltimore) 2021; 100:e26545. [PMID: 34397871 PMCID: PMC8360427 DOI: 10.1097/md.0000000000026545] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 06/14/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Plenty of studies have showed matrix metalloproteinase 14 (MMP14) expression might be associated with the prognosis of gastric cancer (GC). However, no definite conclusion has been obtained for the contradictory results. METHODS We searched PubMed, Web of science, Embase, and Cochrane library for eligible studies. The association between MMP14 expression and prognostic outcomes of GC was evaluated. Hazard ratio (HR) and 95% confidence interval (CI) were integrated to show the effect of MMP14 expression on the overall survival (OS) or recurrence-free survival (RFS). Data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) was used to validate the association of MMP14 expression with OS or RFS in GC. A brief bioinformatics analysis was also performed to determine the prognostic role of MMP14 expression in GC. RESULTS High MMP14 expression was associated with shorter OS compared to low MMP14 expression in GC (HR = 1.95, P < .01). Patients with high MMP14 expression tended to have worse differentiation (P = .03), deeper tumor invasion (P < .01), earlier lymph node metastasis (P < .01), earlier distant metastasis (P < .01) and more advanced clinical stage (P < .01) compared to those with low MMP14 expression. The data from TCGA and GEO showed MMP14 was overexpressed in tumor tissues compared to normal tissues (P < .05), and high MMP14 expression was significantly related to shorter OS (HR = 1.70, 95% CI = 1.32-2.20, P < .01) and RFS (HR = 1.45, 95% CI = 1.15-1.83, P < .01) compared to low MMP14 expression in GC. Expression of MMP14 was linked to functional networks involving the biological process, metabolic process, response to stimulus, cell communication and so on. Functional network analysis suggested that MMP14 regulated the protein digestion and absorption, extracellular matrix receptor interaction, focal adhesion, ribosome, spliceosome, and so on. CONCLUSION High MMP14 expression was associated with worse prognosis of GC compared to low MMP14 expression. MMP14 expression could serve as a prognostic factor and potential therapeutic target of GC.
Collapse
Affiliation(s)
- Xikai Wang
- School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Qinghe Meng
- School of Public Health, Peking University, Beijing, China
| | - Yuanyuan Wang
- Beijing University of Chinese Medicine, Beijing, China
| | - Yanlu Gao
- The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
13
|
He MQ, Wan JF, Zeng HF, Tang YY, He MQ. miR-133a-5p suppresses gastric cancer through TCF4 down-regulation. J Gastrointest Oncol 2021; 12:1007-1019. [PMID: 34295552 DOI: 10.21037/jgo-20-418] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 05/28/2021] [Indexed: 12/13/2022] Open
Abstract
Background The effect of microRNAs (miRNA) on cancer regulations has received a considerable amount of attention recently. MiR-133a-5p has been identified as an anti-tumor miRNA in several types of cancers. However, the effect of miR-133a-5p on gastric cancer (GC) have not been uncovered. In this study, we sought to evaluate the regulation of TCF4 expression by miR-133-5p and the role of the miR-25-3p/TCF4 axis in the progression of GC, with the aim of identifying a potential therapeutic target for GC. Methods TCGA (The Cancer Genome Atlas), GTEx (The Genotype-Tissue Expression) and GEO (Gene Expression Omnibus) database were used to analyze the expression and prognosis. We performed MTT and EdU assays to elucidate the effect on cell replication. Apoptotic cells were stained with annexin V-fluorescein isothiocyanate and propidium iodide to stain, and then analyzed by flow cytometry. The effect on cell metastasis was investigated in wound healing and transwell assays. A dual-luciferase reporter assay was used to check for the direct targeting of TCF4 by miR-133a-5p. Bioinformatic analysis of the relationship of TCF4 with tumor microenvironment and the signaling cascade of TCF4 was finally performed. Results We found that the level of miR-133a-5p was decreased in both tumor tissues and GC cell lines. MiR-133a-5p inhibited cell growth and metastasis, but promoted cell apoptosis. MiR-133a-5p directly targeted TCF4 and downregulated its expression. TCF4 was highly expressed in tumor and higher level of TCF4 indicated poorer prognosis. Moreover, TCF4 overexpression reversed the aforementioned anti-tumor activity of miR-133a-5p. The expression level of TCF4 was significantly correlated with tumor-infiltrating immune cells. Conclusions Our findings altogether reveal that miR-133a-5p can serve as a tumor suppressor in gastric cancer via the miR-133a-5p/TCF4 pathway.
Collapse
Affiliation(s)
- Mu-Qun He
- Department of Medical Oncology, FuJian Medical University Cancer Hospital, FuJian Cancer Hospital, Fuzhou, China
| | - Jian-Feng Wan
- Department of Medical Oncology, FuJian Medical University Cancer Hospital, FuJian Cancer Hospital, Fuzhou, China
| | - Hong-Fu Zeng
- Department of Medical Oncology, FuJian Medical University Cancer Hospital, FuJian Cancer Hospital, Fuzhou, China
| | - Ying-Yan Tang
- Department of Medical Oncology, FuJian Medical University Cancer Hospital, FuJian Cancer Hospital, Fuzhou, China
| | - Mu-Qing He
- Department of Medical Hematology and Oncology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
14
|
Exosomes derived from miR-1228 overexpressing bone marrow-mesenchymal stem cells promote growth of gastric cancer cells. Aging (Albany NY) 2021; 13:11808-11821. [PMID: 33883305 PMCID: PMC8109060 DOI: 10.18632/aging.202878] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/27/2020] [Indexed: 01/23/2023]
Abstract
There has been increasing evidence that microRNAs (miRNAs) are related to glioma progression, and that genetically engineered mesenchymal stem cells (MSCs) can inhibit the growth of gliomas. However, the underlying mechanism of bone marrow-MSCs (BM--MSCs) and miRs in gastric cancer still remains unclear. Patients with gastric cancer treated in Shijiazhuang First Hospital as well as healthy individuals undergoing physical examinations were recruited to measure the expression of exosomal miR-1228. Receiver operating characteristic (ROC) curves were plotted and the patients were followed up. BM--MSCs from healthy subjects were collected and exosomes were extracted. The MSC cells were transfected with lentiviral vectors carrying miR-1228 and MMP-14 over-expression sequences and scramble sequence, followed by exosome extraction. The exosomes were co-cultured with SGC-7901 and MGC-823 cells to detect cell proliferation, invasion, apoptosis and migration. The correlation between miR-1228 and MMP-14 was determined by dual-luciferase reporter assay. miR-1228 was highly expressed in serum exosomes of patients with gastric cancer with a area under ROC curve (AUC) of 0.865. The exosomes derived from BM-MSCs are expected to be efficient nanocarriers. Up-regulation of miR-1228 can down-regulate the expression of MMP-14 and effectively hinders the development and progression of gastric cancer.
Collapse
|
15
|
Vizovisek M, Ristanovic D, Menghini S, Christiansen MG, Schuerle S. The Tumor Proteolytic Landscape: A Challenging Frontier in Cancer Diagnosis and Therapy. Int J Mol Sci 2021; 22:ijms22052514. [PMID: 33802262 PMCID: PMC7958950 DOI: 10.3390/ijms22052514] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 02/06/2023] Open
Abstract
In recent decades, dysregulation of proteases and atypical proteolysis have become increasingly recognized as important hallmarks of cancer, driving community-wide efforts to explore the proteolytic landscape of oncologic disease. With more than 100 proteases currently associated with different aspects of cancer development and progression, there is a clear impetus to harness their potential in the context of oncology. Advances in the protease field have yielded technologies enabling sensitive protease detection in various settings, paving the way towards diagnostic profiling of disease-related protease activity patterns. Methods including activity-based probes and substrates, antibodies, and various nanosystems that generate reporter signals, i.e., for PET or MRI, after interaction with the target protease have shown potential for clinical translation. Nevertheless, these technologies are costly, not easily multiplexed, and require advanced imaging technologies. While the current clinical applications of protease-responsive technologies in oncologic settings are still limited, emerging technologies and protease sensors are poised to enable comprehensive exploration of the tumor proteolytic landscape as a diagnostic and therapeutic frontier. This review aims to give an overview of the most relevant classes of proteases as indicators for tumor diagnosis, current approaches to detect and monitor their activity in vivo, and associated therapeutic applications.
Collapse
|
16
|
Ovayolu A, Ovayolu G, Karaman E, Güler S, Doğan İ, Yüce T. Analyses of soluble endoglin and matrix metalloproteinase 14 using enzyme-linked immunosorbent assay in the diagnosis and assessment of severity of early- and late-onset pre-eclampsia. J Turk Ger Gynecol Assoc 2021; 22:29-36. [PMID: 33389929 PMCID: PMC7944231 DOI: 10.4274/jtgga.galenos.2020.2019.0201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 07/01/2020] [Indexed: 01/01/2023] Open
Abstract
Objective Abnormal trophoblastic invasion and impaired placentation have a crucial role in the etiopathogenesis of preeclampsia (PrE). Trophoblastic cells are involved in invading the maternal decidua and remodelling of the spiral arteries with matrix metalloproteinase-14 (MMP-14). MMP-14 cleavage of endoglin releases its extracellular region, the soluble form of endoglin (s-ENG), into the maternal circulation. In PrE, there is a relationship between endothelial dysfunction and s-ENG concentration. The aim was to determine and compare the serum levels of s-ENG and MMP-14 in different groups of PrE patients and healthy subjects. Material and Methods The study included 30 patients with late-onset preeclampsia (L-PrE) (group 1; gestational age ≥34 weeks), 33 patients with normal pregnancy (group 2; gestational age ≥34 weeks), 31 patients early-onset preeclampsia (E-PrE) (group 3; gestational age <34 weeks), and 31 patients with normal pregnancy (group 4; gestational age <34 weeks). s-ENG and MMP-14 concentrations measured using enzyme-linked immunosorbent assays were compared. Results In all groups, MMP-14 concentrations decreased with increasing gestational age. s-ENG concentrations were highest in the E-PrE group. In groups 1 and 3, 29 had mild PrE while 32 suffered severe PrE and s-ENG concentrations did not differ between mild and severe preeclampsia (p=0.133). However, there was a significant difference in MMP-14 concentration comparing mild with severe PrE (3.11±0.61 vs 3.54±1.00; p=0.047, respectively). There was no correlation between s-ENG and MMP-14 concentrations. Conclusion MMP-14 and s-ENG concentrations can be predictive biomarkers for the diagnosis of PrE. Maternal serum MMP-14 concentration may be a biomarker for determining the severity of PrE.
Collapse
Affiliation(s)
- Ali Ovayolu
- Clinic of Obstetrics and Gynecology, Cengiz Gökçek State Hospital, Gaziantep, Turkey
| | - Gamze Ovayolu
- Umay In Vitro Fertilization Center, Gaziantep, Turkey
| | - Erbil Karaman
- Department of Obstetrics and Gynecology, Van Yüzüncü Yıl University Faculty of Medicine, Van, Turkey
| | - Selver Güler
- Department of Public Health Nursing, Hasan Kalyoncu University Faculty of Nursing, Gaziantep, Turkey
| | - İlkay Doğan
- Department of Biostatistics, Gaziantep University Faculty of Medicine, Gaziantep, Turkey
| | - Tuncay Yüce
- Clinic of Obstetrics and Gynecology, Cengiz Gökçek State Hospital, Gaziantep, Turkey
| |
Collapse
|
17
|
Cao Y, Yin Y, Wang X, Wu Z, Liu Y, Zhang F, Lin J, Huang Z, Zhou L. Sublethal irradiation promotes the metastatic potential of hepatocellular carcinoma cells. Cancer Sci 2021; 112:265-274. [PMID: 33155388 PMCID: PMC7780048 DOI: 10.1111/cas.14724] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 12/25/2022] Open
Abstract
Radiotherapy (RT) represents one of the major treatment methods for cancers. However, many studies have observed that in descendant surviving tumor cells, sublethal irradiation can promote metastatic ability, which is closely related to the tumor microenvironment. We therefore investigated the functions and mechanisms of sublethal irradiated liver nonparenchymal cells (NPCs) in hepatocellular carcinoma (HCC). In this study, primary rat NPCs and McA-RH7777 hepatoma cells were irradiated with 6 Gy X-ray. Conditioned media (CM) from nonirradiated (SnonR), irradiated (SR), or irradiated plus radiosensitizer celecoxib-treated (S[R + D]) NPCs were collected and added to sublethal irradiated McA-RH7777 cells. We showed that CM from sublethal irradiated NPCs significantly promoted the migration and invasion ability of sublethal irradiated McA-RH7777 cells, which was reversed by celecoxib. The differentially expressed genes in differently treated McA-RH7777 cells were enriched mostly in the AMP-activated protein kinase/mammalian target of rapamycin (AMPK/mTOR) signaling pathway. SR increased the migration and invasion ability of HCC cells by inhibiting AMPK/mTOR signaling, which was enhanced by the AMPK inhibitor compound C and blocked by the AMPK activator GSK-621. Analyses of HCC tissues after neoadjuvant radiotherapy confirmed the effects of radiation on the AMPK/mTOR pathway. Cytokine antibody arrays and further functional investigations showed that matrix metalloproteinase-8 (MMP-8) partly mediates the promotion effects of SR on the migration and invasion ability of HCC cells by regulating AMPK/mTOR signaling. In summary, our data indicate that MMP-8 secreted by irradiated NPCs enhanced the migration and invasion of HCC by regulating AMPK/mTOR signaling, revealing a novel mechanism mediating sublethal irradiation-induced HCC metastasis at the level of the tumor microenvironment.
Collapse
Affiliation(s)
- Yulin Cao
- Department of Radiation OncologyAffiliated Hospital of Jiangnan UniversityWuxiChina
- Wuxi Cancer InstituteAffiliated Hospital of Jiangnan UniversityWuxiChina
- Laboratory of Cancer EpigeneticsWuxi School of MedicineJiangnan UniversityWuxiChina
| | - Yuan Yin
- Wuxi Cancer InstituteAffiliated Hospital of Jiangnan UniversityWuxiChina
- Laboratory of Cancer EpigeneticsWuxi School of MedicineJiangnan UniversityWuxiChina
| | - Xue Wang
- Laboratory of Cancer EpigeneticsWuxi School of MedicineJiangnan UniversityWuxiChina
| | - Zhifeng Wu
- Experimental Research CenterZhongshan HospitalFudan UniversityShanghaiChina
| | - Yuhang Liu
- Wuxi Cancer InstituteAffiliated Hospital of Jiangnan UniversityWuxiChina
- Laboratory of Cancer EpigeneticsWuxi School of MedicineJiangnan UniversityWuxiChina
| | - Fuzheng Zhang
- Department of Radiation OncologyAffiliated Hospital of Jiangnan UniversityWuxiChina
| | - Junhua Lin
- Department of Radiation OncologyAffiliated Hospital of Jiangnan UniversityWuxiChina
| | - Zhaohui Huang
- Wuxi Cancer InstituteAffiliated Hospital of Jiangnan UniversityWuxiChina
- Laboratory of Cancer EpigeneticsWuxi School of MedicineJiangnan UniversityWuxiChina
| | - Leyuan Zhou
- Department of Radiation OncologyAffiliated Hospital of Jiangnan UniversityWuxiChina
- Wuxi Cancer InstituteAffiliated Hospital of Jiangnan UniversityWuxiChina
- Laboratory of Cancer EpigeneticsWuxi School of MedicineJiangnan UniversityWuxiChina
| |
Collapse
|
18
|
Niland S, Eble JA. Hold on or Cut? Integrin- and MMP-Mediated Cell-Matrix Interactions in the Tumor Microenvironment. Int J Mol Sci 2020; 22:ijms22010238. [PMID: 33379400 PMCID: PMC7794804 DOI: 10.3390/ijms22010238] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 02/07/2023] Open
Abstract
The tumor microenvironment (TME) has become the focus of interest in cancer research and treatment. It includes the extracellular matrix (ECM) and ECM-modifying enzymes that are secreted by cancer and neighboring cells. The ECM serves both to anchor the tumor cells embedded in it and as a means of communication between the various cellular and non-cellular components of the TME. The cells of the TME modify their surrounding cancer-characteristic ECM. This in turn provides feedback to them via cellular receptors, thereby regulating, together with cytokines and exosomes, differentiation processes as well as tumor progression and spread. Matrix remodeling is accomplished by altering the repertoire of ECM components and by biophysical changes in stiffness and tension caused by ECM-crosslinking and ECM-degrading enzymes, in particular matrix metalloproteinases (MMPs). These can degrade ECM barriers or, by partial proteolysis, release soluble ECM fragments called matrikines, which influence cells inside and outside the TME. This review examines the changes in the ECM of the TME and the interaction between cells and the ECM, with a particular focus on MMPs.
Collapse
|
19
|
Hermawan A, Putri H. Integrative Bioinformatics Analysis Reveals Potential Target Genes and TNFα Signaling Inhibition by Brazilin in Metastatic Breast Cancer Cells. Asian Pac J Cancer Prev 2020; 21:2751-2762. [PMID: 32986377 PMCID: PMC7779440 DOI: 10.31557/apjcp.2020.21.9.2751] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVE Metastasis is the most significant cause of morbidity and mortality in breast cancer patients. Previously, a combination of brazilin and doxorubicin has been shown to inhibit metastasis in HER2-positive breast cancer cells. This present study used an integrative bioinformatics approach to identify new targets and the molecular mechanism of brazilin in inhibiting metastasis in breast cancer. METHODS Cytotoxicity and mRNA arrays data were retreived from the DTP website, whereas genes that regulate metastatic breast cancer cells were retreived from PubMed with keywords "breast cancer metastasis". Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, and Drug association analysis were carried out by using WEB-based GEne SeT AnaLysis Toolkit (WebGestalt). Construction of protein-protein interaction (PPI) network analysis was performed by STRING-DB v11.0 and Cytoscape, respectively. The genetic alterations of the potential therapeutic target genes of brazilin (PB) were analyzed using cBioPortal. RESULTS Analysis of cytotoxicity with the public database of COMPARE showed that brazilin exerts almost the same cytotoxicity in the NCI-60 cells panel showing by similar GI50 value, in which the lowest GI50 value was observed in MDA-MB 231, a metastatic breast cancer cells. KEGG enrichment indicated several pathways regulated by brazilin such as TNF signaling pathway, cellular senescence, and pathways in cancer. We found ten drugs that are associated with PB, including protein kinase inhibitors, TNFα inhibitors, enzyme inhibitors, and anti-inflammatory agents. CONCLUSION In conclusion, this study identified eight PB, including MMP14, PTGS2, ADAM17, PTEN, CCL2, PIK3CB, MAP3K8, and CXCL3. In addition, brazilin possibly inhibits metastatic breast cancer through inhibition of TNFα signaling. The study results study need to be validated with in vitro and in vivo studies to strengthen scientific evidence of the use of brazilin in breast cancer metastasis inhibition.
Collapse
Affiliation(s)
- Adam Hermawan
- Laboratory of Macromolecular Engineering, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281 Yogyakarta, Indonesia
| | - Herwandhani Putri
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281 Yogyakarta, Indonesia
| |
Collapse
|
20
|
Kasurinen A, Laitinen A, Kokkola A, Stenman UH, Böckelman C, Haglund C. Tumor-associated trypsin inhibitor (TATI) and tumor-associated trypsin-2 (TAT-2) predict outcomes in gastric cancer. Acta Oncol 2020; 59:681-688. [PMID: 32124669 DOI: 10.1080/0284186x.2020.1733655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Introduction: Tumor-associated trypsin inhibitor (TATI) limits serine proteases, promotes carcinogenesis in several cancers and functions as an acute-phase reactant. Tumor-associated trypsin-2 (TAT-2), a proteolytic target enzyme for TATI, can enhance invasion by promoting extracellular matrix degradation. Here, we aimed to study serum TATI and TAT-2 levels, including the TAT-2/TATI ratio, as prognostic and diagnostic biomarkers in gastric cancer. We compared the results with the plasma level of C-reactive protein (CRP).Material and Methods: We selected 240 individuals operated on for gastric adenocarcinoma at the Helsinki University Hospital, Finland, between 2000 and 2009. We determined the preoperative serum TAT-2, TATI and plasma CRP levels using time-resolved immunofluorometric assays using monoclonal antibodies.Results: The medium serum TAT-2 level was higher among gastric cancer patients [8.68 ng/ml; interquartile range (IQR) 5.93-13.2] than among benign controls (median 5.41 ng/ml; IQR 4.12-11.8; p = .005). Five-year survival among patients with a high serum TAT-2 was 22.9% [95% confidence interval (CI) 11.7-34.1], compared to 52.2% (95% CI 44.6-59.8; p < .001) among those with a low level. The five-year survival among patients with a high serum TATI was 30.6% (95% CI 20.4-40.8), compared to 52.9% (95% CI 44.7-61.1; p < .001) among those with a low level. The serum TATI level remained significant in the multivariable survival analysis (hazard ratio 2.01; 95% CI 1.32-3.07). An elevated plasma CRP level associated with a high serum TATI level (p = .037).Conclusions: This study shows for the first time that a high serum TAT-2 may function as a prognostic biomarker in gastric cancer and that TAT-2 levels may be elevated compared to controls. Additionally, we show that the prognosis is worse among gastric cancer patients with a high serum TATI. These biomarkers serve as prognostic factors particularly among patients with a metastatic or a locally advanced disease.
Collapse
Affiliation(s)
- Aaro Kasurinen
- Translational Cancer Medicine Research Program, University of Helsinki, Helsinki, Finland
| | - Alli Laitinen
- Translational Cancer Medicine Research Program, University of Helsinki, Helsinki, Finland
- Department of Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Arto Kokkola
- Department of Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Ulf-Håkan Stenman
- Department of Clinical Chemistry, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Camilla Böckelman
- Translational Cancer Medicine Research Program, University of Helsinki, Helsinki, Finland
- Department of Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Caj Haglund
- Translational Cancer Medicine Research Program, University of Helsinki, Helsinki, Finland
- Department of Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
21
|
Abbaszadegan MR, Mojarrad M, Moghbeli M. Role of extra cellular proteins in gastric cancer progression and metastasis: an update. Genes Environ 2020; 42:18. [PMID: 32467737 PMCID: PMC7227337 DOI: 10.1186/s41021-020-00157-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 05/05/2020] [Indexed: 02/06/2023] Open
Abstract
Background Gastric cancer (GC) is one of the most common cancers in the world with a high ratio of mortality. Regarding the late diagnosis, there is a high ratio of distant metastasis among GC cases. Despite the recent progresses in therapeutic modalities, there is not still an efficient therapeutic method to increase survival rate of metastatic GC cases. Main body Apart from the various intracellular signaling pathways which are involved in tumor cell migration and metastasis, the local microenvironment is also a critical regulator of tumor cell migration. Indeed, the intracellular signaling pathways also exert their final metastatic roles through regulation of extra cellular matrix (ECM). Therefore, it is required to assess the role of extra cellular components in biology of GC. Conclusion In the present review, we summarize 48 of the significant ECM components including 17 ECM modifying enzymes, seven extracellular angiogenic factors, 13 cell adhesion and cytoskeletal organizers, seven matricellular proteins and growth factors, and four proteoglycans and extra cellular glycoproteins. This review paves the way of determination of a specific extra cellular diagnostic and prognostic panel marker for the GC patients.
Collapse
Affiliation(s)
| | - Majid Mojarrad
- 2Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- 2Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
22
|
de Oliveira TM, de Lacerda JTJG, Leite GGF, Dias M, Mendes MA, Kassab P, E Silva CGS, Juliano MA, Forones NM. Label-free peptide quantification coupled with in silico mapping of proteases for identification of potential serum biomarkers in gastric adenocarcinoma patients. Clin Biochem 2020; 79:61-69. [PMID: 32097616 DOI: 10.1016/j.clinbiochem.2020.02.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/31/2020] [Accepted: 02/18/2020] [Indexed: 12/27/2022]
Abstract
OBJECTIVES We aimed to identify serum level variations in protein-derived peptides between patients diagnosed with gastric adenocarcinoma (GAC) and non-cancer persons (control) to detect the activity changes of proteases and explore the auxiliary diagnostic value in the context of GAC physiopathology. METHODS The label-free quantitative peptidome approach was applied to identify variants in serum levels of peptides that can differentiate GAC patients from the control group. Peptide sequences were submitted against Proteasix tool predicting proteases potentially involved in their generation. The activity change of proteases was subsequently estimated based on the peptides with significantly altered relative abundance. In turn, activity change prediction of proteases was correlated with relevant protease expression data from the literature. RESULTS A total of 191 peptide sequences generated by the cleavage of 36 precursor proteins were identified. Using the label-free quantification approach, 33 peptides were differentially quantified (adjusted fold change ≥ 1.5 and p-value < 0.05) in which 19 were up-regulated and 14 were down-regulated in GAC samples. Of these peptides, fibrinopeptide A was significantly decreased and its phosphorylated form ADpSGEGDFLAEGGGVR was upregulated in GAC samples. Activity change prediction yielded 10 proteases including 6 Matrix Metalloproteinases (MMPs), Thrombin, Plasmin, and kallikreins 4 and 14. Among predicted proteases in our analysis, MMP-7 was presented as a more promising biomarker associated with useful assays of clinical practice for GAC diagnosis. CONCLUSION Our experimental results demonstrate that the serum levels of peptides were significantly differentiated in GAC physiopathology. The hypotheses built on protease regulation could be used for further investigations to measure proteases and their activity levels that have been poorly studied for GAC diagnosis.
Collapse
Affiliation(s)
- Talita Mendes de Oliveira
- Department of Medicine, Division of Gastroenterology, Oncology Group, Federal University of São Paulo, São Paulo, SP, Brazil.
| | | | | | - Meriellen Dias
- Department of Chemical Engineering, University of São Paulo, São Paulo, SP, Brazil
| | - Maria Anita Mendes
- Department of Chemical Engineering, University of São Paulo, São Paulo, SP, Brazil
| | - Paulo Kassab
- Digestive Surgical Oncology Division, Santa Casa of São Paulo Medical School, São Paulo, SP, Brazil
| | | | | | - Nora Manoukian Forones
- Department of Medicine, Division of Gastroenterology, Oncology Group, Federal University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
23
|
Dong Z, Sun X, Xu J, Han X, Xing Z, Wang D, Ge J, Meng L, Xu X. Serum Membrane Type 1-Matrix Metalloproteinase (MT1-MMP) mRNA Protected by Exosomes as a Potential Biomarker for Gastric Cancer. Med Sci Monit 2019; 25:7770-7783. [PMID: 31619663 PMCID: PMC6820360 DOI: 10.12659/msm.918486] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background Our previous research revealed that membrane type 1-matrix metalloproteinase (MT1-MMP) is overexpressed and plays a crucial role in gastric cancer (GC) progression. Exosomes are important for GC carcinogenesis, and the exosomal contents are ideal biomarkers. However, the expression of exosomal MT1-MMP mRNA in serum and its potential significance in GC remains unclear. Material/Methods The expression of exosomal MT1-MMP mRNA in serum of patients with GC, chronic gastritis, or atypical hyperplasia, and healthy controls was detected using real-time quantitative RT-PCR. Serum CEA, CA19-9, and CA72-4 were also measured by electrochemiluminescence assay. Results Exosomes were isolated and identified in serum, and serum exosomal MT1-MMP mRNA was found to be higher in patients with GC compared with healthy controls and patients with chronic gastritis or atypical hyperplasia (all P<0.05). Serum exosomal MT1-MMP mRNA was significantly correlated with tumor diameter, differentiation, Borrmann type, invasion depth, lymphatic metastasis, distal metastasis, and TNM stage. The AUC of exosomal MT1-MMP mRNA was 0.788 (95% CI: 0.714–0.850) with 63.9% sensitivity and 87.1% specificity, and was higher than that of CEA (0.655 (95% CI: 0.573–0.730)). The combination of 2 markers gave an AUC of 0.821 (95% CI: 0.750–0.878), which was better than with the individual marker. The sensitivity, specificity, and positive and negative predictive values were 75.6%, 83.9%, 94.7%, and 47.3%, respectively. Moreover, the multiple logistic regression model showed that tumor diameter, differentiation, invasion depth, and exosomal MT1-MMP mRNA were the risk factors for lymphatic metastasis in GC. Conclusions Our results characterized serum exosomal MT1-MMP mRNA in GC, providing a foundation for discovering serum exosomes-targeted biomarkers for GC diagnosis.
Collapse
Affiliation(s)
- Zhaogang Dong
- Department of Clinical Laboratory Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Xiaoyan Sun
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China (mainland)
| | - Jingjing Xu
- School of Microelectronics, Shandong University, Jinan, Shandong, China (mainland)
| | - Xia Han
- Department of Urology Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Zhaoquan Xing
- Department of Urology Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Ding Wang
- Department of Clinical Laboratory Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Jian Ge
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China (mainland)
| | - Liwei Meng
- Department of Urology Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Xiaofei Xu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, China (mainland)
| |
Collapse
|
24
|
Kasurinen A, Gramolelli S, Hagström J, Laitinen A, Kokkola A, Miki Y, Lehti K, Yashiro M, Ojala PM, Böckelman C, Haglund C. High tissue MMP14 expression predicts worse survival in gastric cancer, particularly with a low PROX1. Cancer Med 2019; 8:6995-7005. [PMID: 31560170 PMCID: PMC6853825 DOI: 10.1002/cam4.2576] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 07/17/2019] [Accepted: 09/11/2019] [Indexed: 12/21/2022] Open
Abstract
Matrix metalloproteinase 14 (MMP14), a membrane-associated matrix metalloproteinase, has been shown to influence the invasion and metastasis of several solid tumors. Prospero homeobox protein 1 (PROX1), involved in the development and cell fate determination, is also expressed in malignant diseases functioning either as a tumor-suppressing or oncogenic factor. In certain cancers PROX1 appears to transcriptionally suppress MMP14 expression. This study, therefore, aimed to explore the association between MMP14 and PROX1 and understand their potential as prognostic biomarkers in gastric cancer. The cohort consisted of 313 individuals operated for gastric adenocarcinoma between 2000 and 2009 in the Department of Surgery, Helsinki University Hospital. MMP14 and PROX1 expressions were studied using immunohistochemistry in the patient sample and using immunoblotting and immunofluorescence in gastric cancer cell lines. We generated survival curves using the Kaplan-Meier method, determining significance via the log-rank test. A high MMP14 expression associated with being ≥67 years (P = .041), while a positive nuclear PROX1 expression associated with tumors of a diffuse histological type (P = .041) and a high cytoplasmic PROX1 expression (P < .001). Five-year disease-specific survival among patients with a high MMP14 expression was 35.9% (95% confidence interval [CI] 24.9-46.9), compared to 45.3% (95% CI 38.0-52.6) for patients with a low MMP14 (P = .030). Survival was worse specifically among those with a high MMP14 and absent nuclear PROX1 expression (hazard ratio [HR] 1.65; 95% CI 1.09-2.51; P = .019). Thus, this study confirms that a high MMP14 expression predicts a worse survival in gastric cancer, revealing for the first time that survival is particularly worse when PROX1 is low.
Collapse
Affiliation(s)
- Aaro Kasurinen
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Silvia Gramolelli
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jaana Hagström
- Department of Pathology and Oral Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Alli Laitinen
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Arto Kokkola
- Department of Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Yuichiro Miki
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Kaisa Lehti
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden.,Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Masakazu Yashiro
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Päivi M Ojala
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Section of Virology, Division of Infectious Diseases, Department of Medicine, Imperial College London, London, UK
| | - Camilla Böckelman
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Caj Haglund
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|