1
|
Saravanan L, Mahale A, Gota V, Khandelia P, Kulkarni OP. Necrostatin-1 attenuates oral squamous cell carcinoma by modulating tumour immune response in mice. Fundam Clin Pharmacol 2025; 39:e70008. [PMID: 40222051 DOI: 10.1111/fcp.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 04/15/2025]
Abstract
BACKGROUND Necroptosis has been shown to play an important role in various pathologies, including pancreatic cancer (PDAC). However, its role in the progression of oral cancer (OSCC) remains unclear. OBJECTIVES To determine the expression of key necroptosis pathway markers in an OSCC mouse model and evaluate the therapeutic effect of a necroptosis inhibitor on the progression of OSCC. METHODS AND RESULTS 4-NQO-induced OSCC in mice resembles very closely to human OSCC. The expression of RIPK-1, RIPK-3, MLKL and their respective phosphorylation was increased in OSCC tissues of cancer-bearing mice. In the analysis of the necroptosis pathway in human OSCC with the TCGA database, we found similar overexpression of RIPK-1 in human cancer, which correlated with the severity of cancer in terms of different cancer grades and stages. Pharmacological blockade of necroptosis with necrostatin-1 (NEC-1) reduced the progression and development of OSCC, characterized by reduced number and severity of tumour lesions, improved histology with reduced hyperplasia, dysplasia and invasive carcinoma. Immune profiling of blood, spleen and tumour tissues demonstrated suppressed expression of MDSCs (CD11b+Gr-1+) and M2-macrophages (CD11b+F4/80+CD206+), while M1-macrophages (CD11b+F4/80+MHCII+) were elevated in the treatment group. The ratio of M2/M1 was reduced in the treated group, suggesting the promotion of anti-tumour immune response. Expression of Arg-1, YM1/2, IL-10 and TGF-β was reduced in tumour tissues in the treated group. CONCLUSION In summary, blocking the necroptosis pathway alters the tumour microenvironment (TME) and inhibits the progression of OSCC. Targeting necroptosis could be an effective therapy for treating OSCC in a clinical setup.
Collapse
Affiliation(s)
- Lavanya Saravanan
- Metabolic and Neuroscience Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad, India
| | - Ashutosh Mahale
- Metabolic and Neuroscience Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad, India
| | - Vikram Gota
- Advance Centre for Treatment Research & Education in Cancer, Tata Memorial Centre (ACTREC), Navi Mumbai, Maharashtra, India
| | - Piyush Khandelia
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani, Hyderabad, India
| | - Onkar Prakash Kulkarni
- Metabolic and Neuroscience Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad, India
| |
Collapse
|
2
|
Guo Z, Liu Y, Chen D, Sun Y, Li D, Meng Y, Zhou Q, Zeng F, Deng G, Chen X. Targeting regulated cell death: Apoptosis, necroptosis, pyroptosis, ferroptosis, and cuproptosis in anticancer immunity. J Transl Int Med 2025; 13:10-32. [PMID: 40115032 PMCID: PMC11921819 DOI: 10.1515/jtim-2025-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025] Open
Abstract
In the evolving landscape of cancer treatment, the strategic manipulation of regulated cell death (RCD) pathways has emerged as a crucial component of effective anti-tumor immunity. Evidence suggests that tumor cells undergoing RCD can modify the immunogenicity of the tumor microenvironment (TME), potentially enhancing its ability to suppress cancer progression and metastasis. In this review, we first explore the mechanisms of apoptosis, necroptosis, pyroptosis, ferroptosis, and cuproptosis, along with the crosstalk between these cell death modalities. We then discuss how these processes activate antigen-presenting cells, facilitate the cross-priming of CD8+ T cells, and trigger anti-tumor immune responses, highlighting the complex effects of novel forms of tumor cell death on TME and tumor biology. Furthermore, we summarize potential drugs and nanoparticles that can induce or inhibit these emerging RCD pathways and their therapeutic roles in cancer treatment. Finally, we put forward existing challenges and future prospects for targeting RCD in anti-cancer immunity. Overall, this review enhances our understanding of the molecular mechanisms and biological impacts of RCD-based therapies, providing new perspectives and strategies for cancer treatment.
Collapse
Affiliation(s)
- Ziyu Guo
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, Hunan Province, China
- Furong Laboratory, Changsha 410008, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Yihuang Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, Hunan Province, China
- Furong Laboratory, Changsha 410008, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Danyao Chen
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Yuming Sun
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Daishi Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, Hunan Province, China
- Furong Laboratory, Changsha 410008, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Yu Meng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, Hunan Province, China
- Furong Laboratory, Changsha 410008, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Qian Zhou
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, Hunan Province, China
- Furong Laboratory, Changsha 410008, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Furong Zeng
- Department of Plastic and Cosmetic Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Guangtong Deng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, Hunan Province, China
- Furong Laboratory, Changsha 410008, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, Hunan Province, China
- Furong Laboratory, Changsha 410008, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| |
Collapse
|
3
|
Tsutsumi C, Ohuchida K, Tsutsumi H, Shimada Y, Yamada Y, Son K, Hayashida S, Katayama N, Mochida Y, Iwamoto C, Torata N, Horioka K, Shindo K, Mizuuchi Y, Ikenaga N, Nakata K, Ota K, Iwama E, Yamamoto M, Tsukamoto T, Nomura S, Morisaki T, Oda Y, Okamoto I, Nakamura M. TIM3 on natural killer cells regulates antibody-dependent cellular cytotoxicity in HER2-positive gastric cancer. Cancer Lett 2024; 611:217412. [PMID: 39722406 DOI: 10.1016/j.canlet.2024.217412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 12/09/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
Therapies targeting HER2 are the standard treatment for HER2-positive gastric cancer (GC). Trastuzumab, a monoclonal antibody against HER2, exerts anti-tumor activity through cell growth regulation and antibody-dependent cellular cytotoxicity (ADCC). ADCC is induced by the binding of trastuzumab to Fcγ receptor III (CD16) in natural killer (NK) cells. However, the relationship between immune checkpoint (IC) molecules of NK cells and trastuzumab-induced ADCC is poorly understood. We performed single-cell RNA sequencing (scRNA-seq) and immunohistochemistry to identify IC molecules associated with CD16 expression in NK cells of GC patients. Additionally, we conducted in vitro assays with HER2-transfected GC cells and in vivo experiments using a mouse HER2-positive GC model to assess expression changes in IC molecules in NK cells and their ligands during trastuzumab treatment. In GC patients, the expression of TIM3, an IC molecule, was strongly correlated with that of CD16 in NK cells. In vitro assays showed that ADCC with trastuzumab increased TIM3 expression in NK cells. scRNA-seq analysis revealed that TIM3 expression of cytotoxic NK cells was elevated in HER2-positive GC patients treated with trastuzumab. HMGB1, a TIM3 ligand, was expressed at higher levels in HER2-transfected GC cells than in controls. Furthermore, HMGB1 expression was higher in HER2-positive GC patients treated with trastuzumab compared to untreated HER2-positive GC patients. In the mouse HER2-positive GC model, anti-TIM3 antibodies and trastuzumab demonstrated synergistic anti-tumor effects without toxicity. This study suggests the combined anti-TIM3 antibody and trastuzumab therapy may have potential as a new treatment strategy for HER2-positive GC.
Collapse
Affiliation(s)
- Chikanori Tsutsumi
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kenoki Ohuchida
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Advanced Medical Initiatives, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Hirono Tsutsumi
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuki Shimada
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yutaka Yamada
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kiwa Son
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Sayuri Hayashida
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Naoki Katayama
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuki Mochida
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Chika Iwamoto
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Nobuhiro Torata
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kohei Horioka
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koji Shindo
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yusuke Mizuuchi
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Naoki Ikenaga
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kohei Nakata
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Keiichi Ota
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Eiji Iwama
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masami Yamamoto
- Laboratory of Physiological Pathology, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Tetsuya Tsukamoto
- Department of Pathology, Graduate School of Medicine, Fujita Health University, Toyoake, Japan
| | - Sachiyo Nomura
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takashi Morisaki
- Department of Cancer Immunotherapy, Fukuoka General Cancer Clinic, Fukuoka, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Isamu Okamoto
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masafumi Nakamura
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
4
|
Sukegawa M, Miyagawa Y, Kuroda S, Yamazaki Y, Yamamoto M, Adachi K, Sato H, Sato Y, Taniai N, Yoshida H, Umezawa A, Sakai M, Okada T. Mesenchymal stem cell origin contributes to the antitumor effect of oncolytic virus carriers. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200896. [PMID: 39554905 PMCID: PMC11568361 DOI: 10.1016/j.omton.2024.200896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/18/2024] [Accepted: 10/16/2024] [Indexed: 11/19/2024]
Abstract
Oncolytic virotherapy shows promise as a cancer treatment approach; however, its systemic application is hindered by antibody neutralization. This issue can be overcome by using mesenchymal stem cells (MSCs) as carrier cells for oncolytic viruses (OVs). However, it remains elusive whether MSC source influences the antitumor effect. Here, we demonstrate that their source affects the migration ability and oncolytic activity of OV-loaded MSCs. Among human MSCs derived from different tissues, bone marrow-derived MSCs (BMMSCs) showed a high migration ability toward cancer cells in two- and three-dimensional MSC-cancer cell co-culture models. Comprehensive gene expression and Gene Ontology-based functional analyses suggested that genes involved in cell migration and cytokine response influence the cancer-specific tropism of BMMSCs. Furthermore, MSC origin affected the susceptibility to OVs, including cytotoxicity resistance and OV release from MSCs. MSC-mediated OV delivery significantly increased the viral spread and antitumor activity compared with delivery by OVs alone, and OV-loaded BMMSCs demonstrated the most potent antitumor effect among OV-loaded MSCs. Our results offer promising insights into cancer gene therapy with carrier cells and can help with the selection of an appropriate MSC source for MSC-based OV therapy.
Collapse
Affiliation(s)
- Makoto Sukegawa
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
- Department of Gastrointestinal Surgery, Graduate School of Medicine, Nippon Medical School Musashikosugi Hospital, Kawasaki, Japan
- Department of Surgery, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Yoshitaka Miyagawa
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Seiji Kuroda
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Yoshiyuki Yamazaki
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Motoko Yamamoto
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Kumi Adachi
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Hirofumi Sato
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Yuriko Sato
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Nobuhiko Taniai
- Department of Gastrointestinal Surgery, Graduate School of Medicine, Nippon Medical School Musashikosugi Hospital, Kawasaki, Japan
| | - Hiroshi Yoshida
- Department of Surgery, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Akihiro Umezawa
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, Tokyo, Japan
| | - Mashito Sakai
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Takashi Okada
- Division of Molecular and Medical Genetics, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
5
|
Khan M, Huang X, Ye X, Zhang D, Wang B, Xu A, Li R, Ren A, Chen C, Song J, Zheng R, Yuan Y, Lin J. Necroptosis-based glioblastoma prognostic subtypes: implications for TME remodeling and therapy response. Ann Med 2024; 56:2405079. [PMID: 39387496 PMCID: PMC11469424 DOI: 10.1080/07853890.2024.2405079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/14/2024] [Accepted: 08/28/2024] [Indexed: 10/15/2024] Open
Abstract
BACKGROUND Glioblastoma (GBM) is an aggressive primary brain tumor with a high recurrence rate and poor prognosis. Necroptosis, a pathological hallmark of GBM, is poorly understood in terms of its role in prognosis, tumor microenvironment (TME) alteration, and immunotherapy. METHODS & RESULTS We assessed the expression of 55 necroptosis-related genes in GBM and normal brain tissues. We identified necroptosis-stratified clusters using Uni-Cox and Least Absolute Shrinkage and Selection Operator (LASSO) regression to establish the 10-gene Glioblastoma Necroptosis Index (GNI). GNI demonstrated significant prognostic efficacy in the TCGA dataset (n = 160) and internal validation dataset (n = 345) and in external validation cohorts (n = 591). The GNI-high subgroup displayed a mesenchymal phenotype, lacking the IDH1 mutation, and MGMT methylation. This subgroup was characterized by significant enrichment in inflammatory and humoral immune pathways with prominent cell adhesion molecules (CD44 and ICAM1), inflammatory cytokines (TGFB1, IL1B, and IL10), and chemokines (CX3CL1, CXCL9, and CCL5). The TME in this subgroup showed elevated infiltration of M0 macrophages, neutrophils, mast cells, and regulatory T cells. GNI-related genes appeared to limit macrophage polarization, as confirmed by immunohistochemistry and flow cytometry. The top 30% high-risk score subset exhibited increased CD8 T cell infiltration and enhanced cytolytic activity. GNI showed promise in predicting responses to immunotherapy and targeted treatment. CONCLUSIONS Our study highlights the role of necroptosis-related genes in glioblastoma (GBM) and their effects on the tumor microenvironment and patient prognosis. TheGNI demonstrates potential as a prognostic marker and provides insights into immune characteristics and treatment responsiveness.
Collapse
Affiliation(s)
- Muhammad Khan
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Xiuting Huang
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Xiaoxin Ye
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Donghui Zhang
- Department of Pathology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Baiyao Wang
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Anan Xu
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Rong Li
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Anbang Ren
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Chengcong Chen
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Jingjing Song
- Department of Pathology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Rong Zheng
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, People’s Republic of China
- Fujian Key Laboratory of Intelligent Imaging and Precision Radiotherapy for Tumors, Fujian Medical University, Fuzhou, People’s Republic of China
- Clinical Research Center for Radiology and Radiotherapy of Fujian Province (Digestive, Hematological and Breast Malignancies), Fuzhou, People’s Republic of China
| | - Yawei Yuan
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Jie Lin
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| |
Collapse
|
6
|
Ge Y, Jiang L, Yang C, Dong Q, Tang C, Xu Y, Zhong X. Interactions between tumor-associated macrophages and regulated cell death: therapeutic implications in immuno-oncology. Front Oncol 2024; 14:1449696. [PMID: 39575419 PMCID: PMC11578871 DOI: 10.3389/fonc.2024.1449696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 10/21/2024] [Indexed: 11/24/2024] Open
Abstract
Tumor-associated macrophages (TAMs) play a pivotal role in sculpting the tumor microenvironment and influencing cancer progression, particularly through their interactions with various forms of regulated cell death (RCD), including apoptosis, pyroptosis, ferroptosis, and necroptosis. This review examines the interplay between TAMs and these RCD pathways, exploring the mechanisms through which they interact to promote tumor growth and advancement. We examine the underlying mechanisms of these intricate interactions, emphasizing their importance in cancer progression and treatment. Moreover, we present potential therapeutic strategies for targeting TAMs and manipulating RCD to enhance anti-tumor responses. These strategies encompass reprogramming TAMs, inhibiting their recruitment, and selectively eliminating them to enhance anti-tumor functions, alongside modulating RCD pathways to amplify immune responses. These insights offer a novel perspective on tumor biology and provide a foundation for the development of more efficacious cancer therapies.
Collapse
Affiliation(s)
- Yifei Ge
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Lixue Jiang
- Department of Breast Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Chengru Yang
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Qingfu Dong
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Chengwu Tang
- Department of Hepatopancreatobiliary Surgery, Huzhou Key Laboratory of Translational Medicine, First Affiliated Hospital of Huzhou University, Huzhou, Zhejiang, China
| | - Yi Xu
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- Department of Hepatopancreatobiliary Surgery, Huzhou Key Laboratory of Translational Medicine, First Affiliated Hospital of Huzhou University, Huzhou, Zhejiang, China
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, China
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian, China
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Xiangyu Zhong
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
7
|
Zhang X, Feng Y, Gao F, Li T, Guo Y, Ge S, Wang N. Expression and clinical significance of U2AF homology motif kinase 1 in oral squamous cell carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol 2024; 138:626-634. [PMID: 39129074 DOI: 10.1016/j.oooo.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/03/2024] [Accepted: 07/14/2024] [Indexed: 08/13/2024]
Abstract
OBJECTIVE U2AF homology motif kinase 1 (UHMK1) is a newly discovered molecule that may have multiple functions. Recent studies have revealed that UHMK1 had aberrant expression in many tumors and was associated with tumor progression. However, UHMK1 was rarely reported in oral squamous cell carcinoma (OSCC). STUDY DESIGN In this study, Western blot, quantitative real-time polymerase chain reaction (PCR), and immunohistochemistry were used to detect the expression of UHMK1 in OSCC and peritumoral non-neoplastic tissues. Then, its relationship with clinicopathologic parameters was analyzed. The Kaplan-Meier method and Cox regression model were used to analyze the effects of UHMK1 expression on the prognosis and survival of OSCC patients. RESULTS Our results showed that UHMK1 had higher expression in OSCC tissues compared with in peritumoral non-neoplastic tissues, and its high expression was associated with high TNM stage and lymph node metastasis. High UHMK1 expression was related to short overall and disease-free survival times. Moreover, UHMK1 expression was identified as an independent prognostic factor that influences overall and disease-free survival of OSCC patients. CONCLUSIONS High expression of UHMK1 is associated with the poor prognosis of patients, and it can be used as a potential prognostic molecule for OSCC.
Collapse
Affiliation(s)
- Xuan Zhang
- Department of Pathology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Yuanyong Feng
- Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Fei Gao
- Deparment of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Tongtong Li
- Department of Pathology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Yan Guo
- Department of Pathology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Shengyou Ge
- Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Ning Wang
- Department of Pathology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China.
| |
Collapse
|
8
|
Guo M, Sheng W, Yuan X, Wang X. Neutrophils as promising therapeutic targets in pancreatic cancer liver metastasis. Int Immunopharmacol 2024; 140:112888. [PMID: 39133956 DOI: 10.1016/j.intimp.2024.112888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/01/2024] [Accepted: 08/04/2024] [Indexed: 09/01/2024]
Abstract
Pancreatic cancer is characterized by an extremely poor prognosis and presents significant treatment challenges. Liver metastasis is the leading cause of death in patients with pancreatic cancer. Recent studies have highlighted the significant impact of neutrophils on tumor occurrence and progression, as well as their crucial role in the pancreatic cancer tumor microenvironment. Neutrophil infiltration plays a critical role in the progression and prognosis of pancreatic cancer. Neutrophils contribute to pancreatic cancer liver metastasis through various mechanisms, including angiogenesis, immune suppression, immune evasion, and epithelial-mesenchymal transition (EMT). Therefore, targeting neutrophils holds promise as an important therapeutic strategy for inhibiting pancreatic cancer liver metastasis. This article provides a summary of research findings on the involvement of neutrophils in pancreatic cancer liver metastasis and analyzes their potential as therapeutic targets. This research may provide new insights for the treatment of pancreatic cancer and improve the prognosis of patients with this disease.
Collapse
Affiliation(s)
- Minjie Guo
- Department of Thoracic Oncology, Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Wanying Sheng
- Department of Thoracic Oncology, Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xiao Yuan
- Cancer Institute of Jiangsu University, Zhenjiang, China.
| | - Xu Wang
- Department of Thoracic Oncology, Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
| |
Collapse
|
9
|
Kang W, Wang C, Wang M, Liu M, Hu W, Liang X, Zhang Y. The CXCR2 chemokine receptor: A new target for gastric cancer therapy. Cytokine 2024; 181:156675. [PMID: 38896956 DOI: 10.1016/j.cyto.2024.156675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/21/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024]
Abstract
Gastric cancer (GC) is one of the most common malignant tumors in the world, and current treatments are still based on surgery and drug therapy. However, due to the complexity of immunosuppression and drug resistance, the treatment of gastric cancer still faces great challenges. Chemokine receptor 2 (CXCR2) is one of the most common therapeutic targets in targeted therapy. As a G protein-coupled receptor, CXCR2 and its ligands play important roles in tumorigenesis and progression. The abnormal expression of these genes in cancer plays a decisive role in the recruitment and activation of white blood cells, angiogenesis, and cancer cell proliferation, and CXCR2 is involved in various stages of tumor development. Therefore, interfering with the interaction between CXCR2 and its ligands is considered a possible target for the treatment of various tumors, including gastric cancer.
Collapse
Affiliation(s)
- Wenyan Kang
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang Hunan, China
| | - Chengkun Wang
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang Hunan, China
| | - Minhui Wang
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang Hunan, China
| | - Meiqi Liu
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang Hunan, China
| | - Wei Hu
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang Hunan, China
| | - Xiaoqiu Liang
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang Hunan, China.
| | - Yang Zhang
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang Hunan, China.
| |
Collapse
|
10
|
Wang T, Sheng J, Wang X, Zhu M, Li S, Shen Y, Wu B. CXCL5 Promotes the Malignant Phenotype of Pancreatic Cancer and Is Associated With Immune Infiltration. Clin Med Insights Oncol 2024; 18:11795549241271691. [PMID: 39211563 PMCID: PMC11359438 DOI: 10.1177/11795549241271691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 06/27/2024] [Indexed: 09/04/2024] Open
Abstract
Background The significance of CXCL5 in pancreatic cancer is unclear, although it has been implicated in the malignant process of many different types of cancer. Research on the impact of CXCL5 on immune cell infiltration and the malignant phenotype of pancreatic cancer is needed. This study aimed to examine the connection between CXCL5 expression and immune cell infiltration and the malignant phenotype of pancreatic cancer. Methods Tissue samples and clinical information were collected from 90 patients with pancreatic cancer. Tumour tissues and adjacent tissues were made into a tissue microarray and stained for immunohistochemistry analysis. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and Western blot analysis were performed to measure the expression level of CXCL5. CXCL5-overexpressing/CXCL5-knockdown cell lines were constructed via transfection for cytological experiments. CCK-8, cell apoptosis, cell cycle, cell invasion, and cell colony formation assays were used to detect the effect of CXCL5 on the malignant phenotype of pancreatic cancer cells. Finally, a mouse model of pancreatic cancer was constructed for in vivo verification. Results Compared with control cells, pancreatic cancer cells overexpressing CXCL5 exhibited increased proliferation, migration, and invasion but decreased apoptosis. Conversely, knockdown of CXCL5 did not enhance the malignant phenotype of pancreatic cancer cells. Spearman correlation analysis indicated that there was a significant negative correlation between CXCL5 levels and the CD8 IRS. However, there was a significant positive correlation between FOXP3 IRS and CXCL5 levels. Conclusions CXCL5 is highly expressed in pancreatic cancer and promotes the malignant phenotype of pancreatic cancer cells. CXCL5 is associated with immunosuppressive FOXP3 + T-cell infiltration, which facilitates the formation of an immunosuppressive microenvironment (with low CD8 + T-cell infiltration).
Collapse
Affiliation(s)
- Tao Wang
- Graduate School, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Jian Sheng
- Department of Science and Education, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Xiaoguang Wang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Minyuan Zhu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Shijun Li
- Graduate School, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yiyu Shen
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Bin Wu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| |
Collapse
|
11
|
Wang S, He H, Qu L, Shen Q, Dai Y. Dual roles of inflammatory programmed cell death in cancer: insights into pyroptosis and necroptosis. Front Pharmacol 2024; 15:1446486. [PMID: 39257400 PMCID: PMC11384570 DOI: 10.3389/fphar.2024.1446486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 08/16/2024] [Indexed: 09/12/2024] Open
Abstract
Programmed cell death (PCD) is essential for cellular homeostasis and defense against infections, with inflammatory forms like pyroptosis and necroptosis playing significant roles in cancer. Pyroptosis, mediated by caspases and gasdermin proteins, leads to cell lysis and inflammatory cytokine release. It has been implicated in various diseases, including cancer, where it can either suppress tumor growth or promote tumor progression through chronic inflammation. Necroptosis, involving RIPK1, RIPK3, and MLKL, serves as a backup mechanism when apoptosis is inhibited. In cancer, necroptosis can enhance immune responses or contribute to tumor progression. Both pathways have dual roles in cancer, acting as tumor suppressors or promoting a pro-tumorigenic environment depending on the context. This review explores the molecular mechanisms of pyroptosis and necroptosis, their roles in different cancers, and their potential as therapeutic targets. Understanding the context-dependent effects of these pathways is crucial for developing effective cancer therapies.
Collapse
Affiliation(s)
- Shuai Wang
- Collage of Medicine, Xinyang Normal University, Xinyang, China
| | - Huanhuan He
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Lailiang Qu
- Collage of Medicine, Xinyang Normal University, Xinyang, China
| | - Qianhe Shen
- Collage of Medicine, Xinyang Normal University, Xinyang, China
| | - Yihang Dai
- Collage of Medicine, Xinyang Normal University, Xinyang, China
| |
Collapse
|
12
|
Li J, Tan J, Wang T, Yu S, Guo G, Li K, Yang L, Zeng B, Mei X, Gao S, Lao X, Zhang S, Liao G, Liang Y. cGAS-ISG15-RAGE axis reprogram necroptotic microenvironment and promote lymphatic metastasis in head and neck cancer. Exp Hematol Oncol 2024; 13:63. [PMID: 38926796 PMCID: PMC11200990 DOI: 10.1186/s40164-024-00531-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 06/20/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Cancer cells frequently evolve necroptotic resistance to overcome various survival stress during tumorigenesis. However, we have previously showed that necroptosis is widespread in head and neck squamous cell carcinoma (HNSCC) and contributes to tumor progression and poor survival via DAMPs-induced migration and invasiveness in peri-necroptotic tumor cells. This implicated an alternative strategy that cancers cope with necroptotic stress by reprogramming a pro-invasive necroptotic microenvironment (NME). Here, we aim to decipher how necroptotic cells shape the NME and affect HNSCC progression. METHODS Both our pre-established cellular necroptotic model and newly established Dox-induce intratumoral necroptosis model were used to investigate how necroptosis affect HNSCC progression. Transcriptomic alterations in peri-necroptotic tumor cells were analyzed by RNA-seq and validated in the NME in mice and patients' samples. The differential DAMPs compositon among apopotosis. Necrosis, and necroptosis were analyzed by label-free proteomic technique, and the necroptosis-specific DAMPs were then identified and validated. The potential receptor for ISG15 were simulated using molecular docking and further validated by in vitro assays. Then the ISG15-RAGE axis was blocked by either knockdown of necroptotic-ISG15 release and RAGE inhibitor FPS-ZM1, and the impact on tumor progression were tested. Last, we further tested our findings in a HNSCC-patients cohort. RESULTS Necroptosis played a crucial role in driving tumor-cell invasiveness and lymphatic metastasis via tumor-type dependent DAMPs-releasing. Mechanistically, necroptotic DAMPs induced peri-necroptotic EMT via NF-κB and STAT3 signaling. Furthermore, intrinsic orchestration between necroptotic and cGAS-STING signaling resulted in producing a group of interferon stimulated genes (ISGs) as HNSCC-dependent necroptotic DAMPs. Among them, ISG15 played an essential role in reprogramming the NME. We then identified RAGE as a novel receptor for extracellular ISG15. Either blockage of ISG15 release or ISG15-RAGE interaction dramatically impeded necroptosis-driven EMT and lymphatic metastasis in HNSCC. Lastly, clinicopathological analysis showed high ISG15 expression in NME. Extensive necroptosis and high tumor-cell RAGE expression correlated with tumor progression and poor survival of HNSCC patients. CONCLUSIONS Our data revealed a previously unknown cGAS-ISG15-RAGE dependent reprogramming of the necroptotic microenvironment which converts the necroptotic stress into invasive force to foster HNSCC-cell dissemination. By demonstrating the programmatic production of ISG15 via necroptosis-cGAS orchestration and its downstream signaling through RAGE, we shed light on the unique role of ISG15 in HNSCC progression. Targeting such machineries may hold therapeutic potential for restoring intratumoral survival stress and preventing lymphatic metastasis in HNSCC.
Collapse
Affiliation(s)
- Jingyuan Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Jun Tan
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Tao Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Shan Yu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Guangliang Guo
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Kan Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Le Yang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Bin Zeng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Xueying Mei
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Siyong Gao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Xiaomei Lao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Sien Zhang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Guiqing Liao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China.
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China.
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Sun Yat-Sen University, 56th Lingyuanxi Road, Guangzhou, 510055, Guangdong, China.
| | - Yujie Liang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China.
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China.
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Sun Yat-Sen University, 56th Lingyuanxi Road, Guangzhou, 510055, Guangdong, China.
| |
Collapse
|
13
|
Gu M, Liu Y, Xin P, Guo W, Zhao Z, Yang X, Ma R, Jiao T, Zheng W. Fundamental insights and molecular interactions in pancreatic cancer: Pathways to therapeutic approaches. Cancer Lett 2024; 588:216738. [PMID: 38401887 DOI: 10.1016/j.canlet.2024.216738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/08/2024] [Accepted: 02/18/2024] [Indexed: 02/26/2024]
Abstract
The gastrointestinal tract can be affected by a number of diseases that pancreatic cancer (PC) is a malignant manifestation of them. The prognosis of PC patients is unfavorable and because of their diagnosis at advanced stage, the treatment of this tumor is problematic. Owing to low survival rate, there is much interest towards understanding the molecular profile of PC in an attempt in developing more effective therapeutics. The conventional therapeutics for PC include surgery, chemotherapy and radiotherapy as well as emerging immunotherapy. However, PC is still incurable and more effort should be performed. The molecular landscape of PC is an underlying factor involved in increase in progression of tumor cells. In the presence review, the newest advances in understanding the molecular and biological events in PC are discussed. The dysregulation of molecular pathways including AMPK, MAPK, STAT3, Wnt/β-catenin and non-coding RNA transcripts has been suggested as a factor in development of tumorigenesis in PC. Moreover, cell death mechanisms such as apoptosis, autophagy, ferroptosis and necroptosis demonstrate abnormal levels. The EMT and glycolysis in PC cells enhance to ensure their metastasis and proliferation. Furthermore, such abnormal changes have been used to develop corresponding pharmacological and nanotechnological therapeutics for PC.
Collapse
Affiliation(s)
- Ming Gu
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Yang Liu
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Peng Xin
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Wei Guo
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Zimo Zhao
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Xu Yang
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Ruiyang Ma
- Department of Otorhinolaryngology, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China.
| | - Taiwei Jiao
- Department of Gastroenterology and Endoscopy, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China.
| | - Wenhui Zheng
- Department of Anesthesiology, The Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110001, China.
| |
Collapse
|
14
|
Sun C, Zhan J, Li Y, Zhou C, Huang S, Zhu X, Huang K. Non-apoptotic regulated cell death mediates reprogramming of the tumour immune microenvironment by macrophages. J Cell Mol Med 2024; 28:e18348. [PMID: 38652105 PMCID: PMC11037416 DOI: 10.1111/jcmm.18348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/23/2024] [Accepted: 04/08/2024] [Indexed: 04/25/2024] Open
Abstract
Tumour immune microenvironment (TIME) plays an indispensable role in tumour progression, and tumour-associated macrophages (TAMs) are the most abundant immune cells in TIME. Non-apoptotic regulated cell death (RCD) can avoid the influence of tumour apoptosis resistance on anti-tumour immune response. Specifically, autophagy, ferroptosis, pyroptosis and necroptosis mediate the crosstalk between TAMs and tumour cells in TIME, thus reprogram TIME and affect the progress of tumour. In addition, although some achievements have been made in immune checkpoint inhibitors (ICIs), there is still defect that ICIs are only effective for some people because non-apoptotic RCD can bypass the apoptosis resistance of tumour. As a result, ICIs combined with targeting non-apoptotic RCD may be a promising solution. In this paper, the basic molecular mechanism of non-apoptotic RCD, the way in which non-apoptotic RCD mediates crosstalk between TAMs and tumour cells to reprogram TIME, and the latest research progress in targeting non-apoptotic RCD and ICIs are reviewed.
Collapse
Affiliation(s)
- Chengpeng Sun
- Department of NeurosurgeryThe Second Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiP. R. China
- HuanKui Academy, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiChina
| | - Jianhao Zhan
- HuanKui Academy, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiChina
| | - Yao Li
- The First Clinical Medical College, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiChina
| | - Chulin Zhou
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiChina
| | - Shuo Huang
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiChina
| | - Xingen Zhu
- Department of NeurosurgeryThe Second Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiP. R. China
- Institute of Neuroscience, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiP. R. China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular DiseasesNanchangChina
- JXHC Key Laboratory of Neurological MedicineNanchangJiangxiP. R. China
| | - Kai Huang
- Department of NeurosurgeryThe Second Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiP. R. China
- Institute of Neuroscience, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiP. R. China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular DiseasesNanchangChina
- JXHC Key Laboratory of Neurological MedicineNanchangJiangxiP. R. China
| |
Collapse
|
15
|
Chu GJ, Bailey CG, Nagarajah R, Liang O, Metierre C, Sagnella SM, Castelletti L, Yeo D, Adelstein S, Rasko JEJ. Mesothelin antigen density influences anti-mesothelin chimeric antigen receptor T cell cytotoxicity. Cytotherapy 2024; 26:325-333. [PMID: 38349311 DOI: 10.1016/j.jcyt.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 01/05/2024] [Accepted: 01/27/2024] [Indexed: 04/07/2024]
Abstract
BACKGROUND AIMS Several anti-mesothelin (MSLN) chimeric antigen receptor (CAR) T cells are in phase 1/2 clinical trials to treat solid-organ malignancies. The effect of MSLN antigen density on MSLN CAR cytotoxicity against tumor cells has not been examined previously, nor are there data regarding the effect of agents that increase MSLN antigen density on anti-MSLN CAR T cell efficacy. METHODS MSLN antigen density was measured on a panel of pancreatic cancer and mesothelioma cell lines by flow cytometry. In parallel, the cytotoxicity and specificity of two anti-MSLN CAR T cells (m912 and SS1) were compared against these cell lines using a real-time impedance-based assay. The effect of two MSLN 'sheddase' inhibitors (lanabecestat and TMI-1) that increase MSLN surface expression was also tested in combination with CAR T cells. RESULTS SS1 CAR T cells were more cytotoxic compared with m912 CAR T cells against cell lines that expressed fewer than ∼170 000 MSLN molecules/cell. A comparison of the m912 and amatuximab (humanized SS1) antibodies identified that amatuximab could detect and bind to lower levels of MSLN on pancreatic cancer and mesothelioma cell lines, suggesting that superior antibody/scFv affinity was the reason for the SS1 CAR's superior cytotoxicity. The cytotoxicity of m912 CAR T cells was improved in the presence of sheddase inhibitors, which increased MSLN antigen density. CONCLUSIONS These data highlight the value of assessing CAR constructs against a panel of cells expressing varying degrees of target tumor antigen as occurs in human tumors. Furthermore, the problem of low antigen density may be overcome by concomitant administration of drugs that inhibit enzymatic shedding of MSLN.
Collapse
Affiliation(s)
- Gerard J Chu
- Gene and Stem Cell Therapy Program Centenary Institute, Camperdown, NSW, Australia; Department of Clinical Immunology and Allergy, Royal Prince Alfred Hospital, Camperdown, NSW, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
| | - Charles G Bailey
- Gene and Stem Cell Therapy Program Centenary Institute, Camperdown, NSW, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia; Cancer and Gene Regulation Laboratory Centenary Institute, Camperdown, NSW, Australia.
| | - Rajini Nagarajah
- Gene and Stem Cell Therapy Program Centenary Institute, Camperdown, NSW, Australia.
| | - Oliver Liang
- Gene and Stem Cell Therapy Program Centenary Institute, Camperdown, NSW, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia; Cell & Molecular Therapies, Royal Prince Alfred Hospital, Camperdown, NSW, Australia; Li Ka Shing Cell & Gene Therapy Program, University of Sydney, Camperdown, NSW, Australia.
| | - Cynthia Metierre
- Gene and Stem Cell Therapy Program Centenary Institute, Camperdown, NSW, Australia.
| | - Sharon M Sagnella
- Cell & Molecular Therapies, Royal Prince Alfred Hospital, Camperdown, NSW, Australia.
| | - Laura Castelletti
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia; Cell & Molecular Therapies, Royal Prince Alfred Hospital, Camperdown, NSW, Australia; Li Ka Shing Cell & Gene Therapy Program, University of Sydney, Camperdown, NSW, Australia.
| | - Dannel Yeo
- Gene and Stem Cell Therapy Program Centenary Institute, Camperdown, NSW, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia; Cell & Molecular Therapies, Royal Prince Alfred Hospital, Camperdown, NSW, Australia; Li Ka Shing Cell & Gene Therapy Program, University of Sydney, Camperdown, NSW, Australia.
| | - Stephen Adelstein
- Department of Clinical Immunology and Allergy, Royal Prince Alfred Hospital, Camperdown, NSW, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
| | - John E J Rasko
- Gene and Stem Cell Therapy Program Centenary Institute, Camperdown, NSW, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia; Cell & Molecular Therapies, Royal Prince Alfred Hospital, Camperdown, NSW, Australia; Li Ka Shing Cell & Gene Therapy Program, University of Sydney, Camperdown, NSW, Australia.
| |
Collapse
|
16
|
Laurindo LF, Sosin AF, Lamas CB, de Alvares Goulart R, Dos Santos Haber JF, Detregiachi CRP, Barbalho SM. Exploring the logic and conducting a comprehensive evaluation of AdipoRon-based adiponectin replacement therapy against hormone-related cancers-a systematic review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2067-2082. [PMID: 37864589 DOI: 10.1007/s00210-023-02792-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 10/13/2023] [Indexed: 10/23/2023]
Abstract
The potential benefits of adiponectin replacement therapy extend to numerous human diseases, with current research showing particular interest in its effectiveness against specific cancer forms, especially hormone-related. However, limitations in the pharmacological use of the intact protein have led to a focus on alternative options. AdipoRon is an extensively studied non-peptidic drug candidate for adiponectin replacement therapy. While researchers have explored the efficacy and therapeutic applications of AdipoRon in various disease conditions, their effects against cancer models advanced more, with no review regarding AdipoRon's efficacy against hormone-related cancers being published. The present systematic review aims to fill this gap. Preclinical evidence was compiled from PubMed, EMBASE, COCHRANE, and Google Scholar following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, and the manuscript's quality assessment was conducted using the Joanna Briggs Institute (JBI) Checklist Critical Appraisal Tool for Systematic Reviews' Quality. The included nine studies incorporated various cell and animal models of the pancreas, gynaecological system, and osteosarcoma cancers. AdipoRon demonstrated effectiveness against pancreatic cancer by activating p44/42 MAPK, mitochondrial dysfunction, and AMPK-mediated inhibition of ACC1. In gynaecological cancers, it exhibited promising anticancer effects through the activation of AMPK, potential inhibition of mTOR, and modulation of the SET1B/BOD1/AdipoR1 signaling cascade. Against osteosarcoma, AdipoRon worked by perturbing ERK1/2 signaling and reducing p70S6K phosphorylation. AdipoRon shows promise in preclinical studies, but human trials are crucial for clinical safety and effectiveness. Caution is needed due to potential off-target effects, especially in cancer therapy with multi-target approaches. Structural biology and computational methods can help predict these effects.
Collapse
Affiliation(s)
- Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília, São Paulo, 17519-030, Brazil.
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil.
| | - Andreline Franchi Sosin
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília, São Paulo, 17519-030, Brazil
| | - Caroline Barbalho Lamas
- Department of Gerontology, School of Gerontology, Universidade Federal de São Carlos (UFSCar), São Carlos, São Paulo, 13565-905, Brazil
| | - Ricardo de Alvares Goulart
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
| | | | - Claudia Rucco Penteado Detregiachi
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília, São Paulo, 17500-000, Brazil
| |
Collapse
|
17
|
Song N, Cui K, Zeng L, Li M, Fan Y, Shi P, Wang Z, Su W, Wang H. Advance in the role of chemokines/chemokine receptors in carcinogenesis: Focus on pancreatic cancer. Eur J Pharmacol 2024; 967:176357. [PMID: 38309677 DOI: 10.1016/j.ejphar.2024.176357] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/05/2024]
Abstract
The chemokines/chemokine receptors pathway significantly influences cell migration, particularly in recruiting immune cells to the tumor microenvironment (TME), impacting tumor progression and treatment outcomes. Emerging research emphasizes the involvement of chemokines in drug resistance across various tumor therapies, including immunotherapy, chemotherapy, and targeted therapy. This review focuses on the role of chemokines/chemokine receptors in pancreatic cancer (PC) development, highlighting their impact on TME remodeling, immunotherapy, and relevant signaling pathways. The unique immunosuppressive microenvironment formed by the interaction of tumor cells, stromal cells and immune cells plays an important role in the tumor proliferation, invasion, migration and therapeutic resistance. Chemokines/chemokine receptors, such as chemokine ligand (CCL) 2, CCL3, CCL5, CCL20, CCL21, C-X-C motif chemokine ligand (CXCL) 1, CXCL2, CXCL3, CXCL4, CXCL5, CXCL8, CXCL9, CXCL10, CXCL11, CXCL12, CXCL13, CXCL14, CXCL16, CXCL17, and C-X3-C motif chemokine ligand (CX3CL)1, derived mainly from leukocyte cells, cancer-related fibroblasts (CAFs), pancreatic stellate cells (PSCs), and tumor-associated macrophages (TAMs), contribute to PC progression and treatment resistance. Chemokines recruit myeloid-derived suppressor cells (MDSC), regulatory T cells (Tregs), and M2 macrophages, inhibiting the anti-tumor activity of immune cells. Simultaneously, they enhance pathways like epithelial-mesenchymal transition (EMT), Akt serine/threonine kinase (AKT), extracellular regulated protein kinases (ERK) 1/2, and nuclear factor kappa-B (NF-κB), etc., elevating the risk of PC metastasis and compromising the efficacy of radiotherapy, chemotherapy, and anti-PD-1/PD-L1 immunotherapy. Notably, the CCLx-CCR2 and CXCLx-CXCR2/4 axis emerge as potential therapeutic targets in PC. This review integrates recent findings on chemokines and receptors in PC treatment, offering valuable insights for innovative therapeutic approaches.
Collapse
Affiliation(s)
- Na Song
- Department of Pathology, Xinxiang Key Laboratory of Precision Medicine, The First Affiliated Hospital of Xinxiang Medical University, China; Department of Pathology, Xinxiang Medical University, Xinxiang, 453000, China
| | - Kai Cui
- Department of Pathology, Xinxiang Medical University, Xinxiang, 453000, China
| | - Liqun Zeng
- Department of Pathology, Xinxiang Medical University, Xinxiang, 453000, China
| | - Mengxiao Li
- Department of Pathology, Xinxiang Key Laboratory of Precision Medicine, The First Affiliated Hospital of Xinxiang Medical University, China
| | - Yanwu Fan
- Department of Pathology, Xinxiang Medical University, Xinxiang, 453000, China
| | - Pingyu Shi
- Department of Pathology, Xinxiang Medical University, Xinxiang, 453000, China
| | - Ziwei Wang
- Department of Pathology, Xinxiang Medical University, Xinxiang, 453000, China
| | - Wei Su
- Department of Pathology, Xinxiang Key Laboratory of Precision Medicine, The First Affiliated Hospital of Xinxiang Medical University, China.
| | - Haijun Wang
- Department of Pathology, Xinxiang Key Laboratory of Precision Medicine, The First Affiliated Hospital of Xinxiang Medical University, China; Department of Pathology, Xinxiang Medical University, Xinxiang, 453000, China.
| |
Collapse
|
18
|
Hánělová K, Raudenská M, Masařík M, Balvan J. Protein cargo in extracellular vesicles as the key mediator in the progression of cancer. Cell Commun Signal 2024; 22:25. [PMID: 38200509 PMCID: PMC10777590 DOI: 10.1186/s12964-023-01408-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/24/2023] [Indexed: 01/12/2024] Open
Abstract
Exosomes are small vesicles of endosomal origin that are released by almost all cell types, even those that are pathologically altered. Exosomes widely participate in cell-to-cell communication via transferring cargo, including nucleic acids, proteins, and other metabolites, into recipient cells. Tumour-derived exosomes (TDEs) participate in many important molecular pathways and affect various hallmarks of cancer, including fibroblasts activation, modification of the tumour microenvironment (TME), modulation of immune responses, angiogenesis promotion, setting the pre-metastatic niche, enhancing metastatic potential, and affecting therapy sensitivity and resistance. The unique exosome biogenesis, composition, nontoxicity, and ability to target specific tumour cells bring up their use as promising drug carriers and cancer biomarkers. In this review, we focus on the role of exosomes, with an emphasis on their protein cargo, in the key mechanisms promoting cancer progression. We also briefly summarise the mechanism of exosome biogenesis, its structure, protein composition, and potential as a signalling hub in both normal and pathological conditions. Video Abstract.
Collapse
Affiliation(s)
- Klára Hánělová
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
| | - Martina Raudenská
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
| | - Michal Masařík
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, Prumyslova 595, Vestec, CZ-252 50, Czech Republic
| | - Jan Balvan
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic.
| |
Collapse
|
19
|
Jiang JY, Yao FY, Liu J, Wang XL, Huang B, Zhong FM, Wang XZ. A Novel Necroptosis-Related Signature Can Predict Prognosis and Chemotherapy Sensitivity in Multiple Myeloma. Technol Cancer Res Treat 2024; 23:15330338241232554. [PMID: 38361483 PMCID: PMC10874153 DOI: 10.1177/15330338241232554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/04/2024] [Accepted: 01/10/2024] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND Necroptosis is an inflammatory cell death mode, and its association with multiple myeloma (MM) remains unclear. METHODS This prospective study first analyzed the association between necroptosis-related signature as well as prognosis and chemotherapy sensitivity in MM using the necroptosis score. Consensus clustering was used to identify necroptosis-related molecular clusters. Least absolute shrinkage and selection operator analysis and multivariate Cox regression analysis were performed to establish the prognostic model of necroptosis-related genes (NRGs). RESULTS A high necroptosis score was associated with poor prognosis and abundant immune infiltration. Two molecular clusters (clusters A and B) significantly differed in terms of prognosis and tumor microenvironment. Cluster B had a worse prognosis and higher tumor marker pathway activity than cluster A. The risk score model based on four NRGs can accurately predict the prognosis of patients with MM, which was validated in two validation cohorts. Receiver operating characteristic curve analysis showed that the area under the curves of the risk score in predicting the 1-, 3-, and 5-year survival rates were 0.710, 0.758, and 0.834, respectively. Further, the activity of pathways related to proliferation and genetic regulation in the high-risk group significantly increased. The drug prediction results showed that the low-risk score group was more sensitive to bortezomib, cytarabine, and doxorubicin than the high-risk score group. Meanwhile, the high-risk score group was more sensitive to lenalidomide and vinblastine than the low-risk score group. Finally, the upregulation of model genes CHMP1A, FAS, JAK3, and HSP90AA1 in clinical samples collected from patients with MM was validated via real-time polymerase chain reaction. CONCLUSION A systematic analysis of NRGs can help identify potential necroptosis-related mechanisms and provide novel biomarkers for MM prognosis prediction, tumor microenvironment evaluation, and personalized treatment planning.
Collapse
Affiliation(s)
- Jun-Yao Jiang
- Jiangxi Province Key Laboratory of Laboratory Medicine, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Provence, China
| | - Fang-Yi Yao
- Jiangxi Province Key Laboratory of Laboratory Medicine, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Provence, China
| | - Jing Liu
- Jiangxi Province Key Laboratory of Laboratory Medicine, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Provence, China
| | - Xin-Lu Wang
- Jiangxi Province Key Laboratory of Laboratory Medicine, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Provence, China
| | - Bo Huang
- Jiangxi Province Key Laboratory of Laboratory Medicine, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Provence, China
| | - Fang-Min Zhong
- Jiangxi Province Key Laboratory of Laboratory Medicine, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Provence, China
| | - Xiao-Zhong Wang
- Jiangxi Province Key Laboratory of Laboratory Medicine, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Provence, China
| |
Collapse
|
20
|
Dong W, Zhao H, Xiao S, Zheng L, Fan T, Wang L, Zhang H, Hu Y, Yang J, Wang T, Xiao W. Single-cell RNA-seq analyses inform necroptosis-associated myeloid lineages influence the immune landscape of pancreas cancer. Front Immunol 2023; 14:1263633. [PMID: 38149248 PMCID: PMC10749962 DOI: 10.3389/fimmu.2023.1263633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/22/2023] [Indexed: 12/28/2023] Open
Abstract
Introduction Tumor-infiltrating myeloid cells (TIMs) are key regulators in tumor progression, but the similarity and distinction of their fundamental properties in pancreatic ductal adenocarcinoma (PDAC) remain elusive. Method In this study, we conducted scRNA-seq data analysis of cells from 12 primary tumor (PT) tissues, 4 metastatic (Met) tumor tissues, 3 adjacent normal pancreas tissues (Para), and PBMC samples across 16 PDAC patients, and revealed a heterogeneous TIMs environment in PDAC. Result Systematic comparisons between tumor and non-tumor samples of myeloid lineages identified 10 necroptosis-associated genes upregulated in PDAC tumors compared to 5 upregulated in paratumor or healthy peripheral blood. A novel RTM (resident tissue macrophages), GLUL-SQSTM1- RTM, was found to act as a positive regulator of immunity. Additionally, HSP90AA1+HSP90AB1+ mast cells exhibited pro-immune characteristics, and JAK3+TLR4+ CD16 monocytes were found to be anti-immune. The findings were validated through clinical outcomes and cytokines analyses. Lastly, intercellular network reconstruction supported the associations between the identified novel clusters, cancer cells, and immune cell populations. Conclusion Our analysis comprehensively characterized major myeloid cell lineages and identified three subsets of myeloid-derived cells associated with necroptosis. These findings not only provide a valuable resource for understanding the multi-dimensional characterization of the tumor microenvironment in PDAC but also offer valuable mechanistic insights that can guide the design of effective immuno-oncology treatment strategies.
Collapse
Affiliation(s)
- Weiwei Dong
- Senior Dept of Oncology, The Fifth Medical Center of People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Huixia Zhao
- Dept of Oncology, The Forth Medical Center of People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Shanshan Xiao
- Department of Research and Development (R&D), Hangzhou Repugene Technology Co., Ltd., Hangzhou, China
| | - Liuqing Zheng
- Department of Research and Development (R&D), Hangzhou Repugene Technology Co., Ltd., Hangzhou, China
| | - Tongqiang Fan
- Department of Research and Development (R&D), Hangzhou Repugene Technology Co., Ltd., Hangzhou, China
| | - Li Wang
- Department of Research and Development (R&D), Hangzhou Repugene Technology Co., Ltd., Hangzhou, China
| | - He Zhang
- Dept of Oncology, The Forth Medical Center of People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Yanyan Hu
- Senior Dept of Oncology, The Fifth Medical Center of People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Jingwen Yang
- Senior Dept of Oncology, The Fifth Medical Center of People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Tao Wang
- Department of Research and Development (R&D), Hangzhou Repugene Technology Co., Ltd., Hangzhou, China
| | - Wenhua Xiao
- Senior Dept of Oncology, The Fifth Medical Center of People's Liberation Army (PLA) General Hospital, Beijing, China
| |
Collapse
|
21
|
Noè R, Inglese N, Romani P, Serafini T, Paoli C, Calciolari B, Fantuz M, Zamborlin A, Surdo NC, Spada V, Spacci M, Volta S, Ermini ML, Di Benedetto G, Frusca V, Santi C, Lefkimmiatis K, Dupont S, Voliani V, Sancineto L, Carrer A. Organic Selenium induces ferroptosis in pancreatic cancer cells. Redox Biol 2023; 68:102962. [PMID: 38029455 PMCID: PMC10698006 DOI: 10.1016/j.redox.2023.102962] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/10/2023] [Indexed: 12/01/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) cells reprogram both mitochondrial and lysosomal functions to support growth. At the same time, this causes significant dishomeostasis of free radicals. While this is compensated by the upregulation of detoxification mechanisms, it also represents a potential vulnerability. Here we demonstrate that PDA cells are sensitive to the inhibition of the mevalonate pathway (MVP), which supports the biosynthesis of critical antioxidant intermediates and protect from ferroptosis. We attacked the susceptibility of PDA cells to ferroptotic death with selenorganic compounds, including dibenzyl diselenide (DBDS) that exhibits potent pro-oxidant properties and inhibits tumor growth in vitro and in vivo. DBDS treatment induces the mobilization of iron from mitochondria enabling uncontrolled lipid peroxidation. Finally, we showed that DBDS and statins act synergistically to promote ferroptosis and provide evidence that combined treatment is a viable strategy to combat PDA.
Collapse
Affiliation(s)
- Roberta Noè
- Veneto Institute of Molecular Medicine (VIMM), 35129, Padova, Italy; Department of Biology, University of Padova, 35126, Padova, Italy
| | - Noemi Inglese
- Veneto Institute of Molecular Medicine (VIMM), 35129, Padova, Italy; Department of Biology, University of Padova, 35126, Padova, Italy
| | - Patrizia Romani
- Department of Molecular Medicine, University of Padova, 35126, Padova, Italy
| | - Thauan Serafini
- Veneto Institute of Molecular Medicine (VIMM), 35129, Padova, Italy
| | - Carlotta Paoli
- Veneto Institute of Molecular Medicine (VIMM), 35129, Padova, Italy; Department of Biology, University of Padova, 35126, Padova, Italy
| | - Beatrice Calciolari
- Veneto Institute of Molecular Medicine (VIMM), 35129, Padova, Italy; Department of Biology, University of Padova, 35126, Padova, Italy
| | - Marco Fantuz
- Veneto Institute of Molecular Medicine (VIMM), 35129, Padova, Italy; Department of Biology, University of Padova, 35126, Padova, Italy
| | - Agata Zamborlin
- NEST-Scuola Normale Superiore, 56127, Pisa, Italy; Center for Nanotechnology Innovation, Istituto Italiano di Tecnologia, 56127, Pisa, Italy
| | - Nicoletta C Surdo
- Veneto Institute of Molecular Medicine (VIMM), 35129, Padova, Italy; Neuroscience Institute, National Research Council (CNR), 35121, Padova, Italy
| | - Vittoria Spada
- Veneto Institute of Molecular Medicine (VIMM), 35129, Padova, Italy
| | - Martina Spacci
- Veneto Institute of Molecular Medicine (VIMM), 35129, Padova, Italy; Department of Biology, University of Padova, 35126, Padova, Italy
| | - Sara Volta
- Veneto Institute of Molecular Medicine (VIMM), 35129, Padova, Italy
| | - Maria Laura Ermini
- Center for Nanotechnology Innovation, Istituto Italiano di Tecnologia, 56127, Pisa, Italy
| | - Giulietta Di Benedetto
- Veneto Institute of Molecular Medicine (VIMM), 35129, Padova, Italy; Neuroscience Institute, National Research Council (CNR), 35121, Padova, Italy
| | - Valentina Frusca
- Center for Nanotechnology Innovation, Istituto Italiano di Tecnologia, 56127, Pisa, Italy; Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127, Pisa, Italy
| | - Claudio Santi
- Group of Catalysis and Green Organic Chemistry, Department of Pharmaceutical Sciences, University of Perugia, 06122, Perugia, PG, Italy
| | - Konstantinos Lefkimmiatis
- Veneto Institute of Molecular Medicine (VIMM), 35129, Padova, Italy; Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Sirio Dupont
- Department of Molecular Medicine, University of Padova, 35126, Padova, Italy
| | - Valerio Voliani
- Center for Nanotechnology Innovation, Istituto Italiano di Tecnologia, 56127, Pisa, Italy; Department of Pharmacy, School of Medical and Pharmaceutical Sciences, University of Genova, 16148, Genoa, Italy.
| | - Luca Sancineto
- Group of Catalysis and Green Organic Chemistry, Department of Pharmaceutical Sciences, University of Perugia, 06122, Perugia, PG, Italy.
| | - Alessandro Carrer
- Veneto Institute of Molecular Medicine (VIMM), 35129, Padova, Italy; Department of Biology, University of Padova, 35126, Padova, Italy.
| |
Collapse
|
22
|
Yang B, Xie P, Huai H, Li J. Comprehensive analysis of necroptotic patterns and associated immune landscapes in individualized treatment of skin cutaneous melanoma. Sci Rep 2023; 13:21094. [PMID: 38036577 PMCID: PMC10689831 DOI: 10.1038/s41598-023-48374-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 11/25/2023] [Indexed: 12/02/2023] Open
Abstract
Skin cutaneous melanoma (SKCM) constitutes a malignant cutaneous neoplasm characterized by an exceedingly unfavorable prognosis. Over the past years, necroptosis, a manifestation of inflammatory programmed cell demise, has gained substantial traction in its application. However, a conclusive correlation between the expression of necroptosis-related genes (NRGs) and SKCM patient's prognosis remains elusive. In this endeavor, we have undertaken an integrative analysis of genomic data, aiming to provide an exhaustive evaluation of the intricate interplay between melanoma necroptosis and immune-infiltration nuances within the tumor microenvironment. Through meticulous scrutiny, we have endeavored to discern the prognostic potency harbored by individual necroptosis-associated genes. Our efforts culminated in the establishment of a risk stratification framework, allowing for the appraisal of necroptosis irregularities within each afflicted cutaneous melanoma patient. Notably, those SKCM patients classified within the low-risk cohort exhibited a markedly elevated survival quotient, in stark contrast to their high-risk counterparts (p < 0.001). Remarkably, the low-risk cohort not only displayed a more favorable survival rate but also exhibited an enhanced responsiveness to immunotherapeutic interventions, relative to their high-risk counterparts. The outcomes of this investigation proffer insights into a conceivable mechanistic underpinning linking necroptosis-related attributes to the intricacies of the tumor microenvironment. This prompts a conjecture regarding the plausible association between necroptosis characteristics and the broader tumor microenvironmental milieu. However, it is imperative to emphasize that the pursuit of discerning whether the expression profiles of NRG genes can indeed be regarded as viable therapeutic targets necessitates further comprehensive exploration and scrutiny. In conclusion, our study sheds light on the intricate interrelationship between necroptosis-related factors and the tumor microenvironment, potentially opening avenues for therapeutic interventions. However, the prospect of translating these findings into clinical applications mandates rigorous investigation.
Collapse
Affiliation(s)
- Bo Yang
- Department of Ophthalmology, Chengdu Aier Eye Hospital, Chengdu, Sichuan, China
| | - Pan Xie
- Department of Plastic and Burns Surgery, National Key Clinical Construction Specialty, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Hongyu Huai
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Junpeng Li
- Department of Plastic and Burns Surgery, National Key Clinical Construction Specialty, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
23
|
Cao J, Wu C, Han Z, Liu Z, Yang Z, Ren M, Wang X. Revealing the potential of necroptosis-related genes in prognosis, immune characteristics, and treatment strategies for head and neck squamous cell carcinoma. Sci Rep 2023; 13:20382. [PMID: 37989855 PMCID: PMC10663615 DOI: 10.1038/s41598-023-47096-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/09/2023] [Indexed: 11/23/2023] Open
Abstract
Necroptosis is a recently discovered apoptotic mechanism that has been linked to tumor formation, prognosis, and treatment response. However, the relationship between the TME and NRGs remains unclear. In this study, we analyzed the expression patterns of NRGs in 769 HNSCC cases from two distinct data sets. Our findings revealed distinct genetic groups and a correlation between patient clinical features, prognosis, TME cell infiltration characteristics, and NRG alterations. We then developed an NRG model to predict OS and confirmed its accuracy in predicting OS in HNSCC patients. Moreover, we have devised a precise nomogram that enhances the clinical utility of the NRG model substantially. The low-risk group had a better OS, and they were associated with immune suppression, more mutated genes, and higher TIDE scores. The risk score also had a significant correlation with the CSC index and susceptibility to anti-tumor agents. Our study provides insights into how NRGs affect prognosis, clinically significant features, TME, and immunotherapy response in HNSCC. With a better knowledge of NRGs in HNSCC, we could assess the prognosis and develop immunotherapy regimens that are more successful at opening up new doors.
Collapse
Affiliation(s)
- Junhua Cao
- Plastic Surgery of the First Affiliated Hospital of Zhengzhou University, 1 East Road, JianShe, Erqi District, Zhengzhou City, 450052, Henan, China
| | - Congxiao Wu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangdong, China
| | - Zhaofeng Han
- Plastic Surgery of the First Affiliated Hospital of Zhengzhou University, 1 East Road, JianShe, Erqi District, Zhengzhou City, 450052, Henan, China
| | - Zheng Liu
- Plastic Surgery of the First Affiliated Hospital of Zhengzhou University, 1 East Road, JianShe, Erqi District, Zhengzhou City, 450052, Henan, China
| | - Zheng Yang
- Plastic Surgery of the First Affiliated Hospital of Zhengzhou University, 1 East Road, JianShe, Erqi District, Zhengzhou City, 450052, Henan, China
| | - Minge Ren
- Plastic Surgery of the First Affiliated Hospital of Zhengzhou University, 1 East Road, JianShe, Erqi District, Zhengzhou City, 450052, Henan, China
| | - Ximei Wang
- Plastic Surgery of the First Affiliated Hospital of Zhengzhou University, 1 East Road, JianShe, Erqi District, Zhengzhou City, 450052, Henan, China.
| |
Collapse
|
24
|
Chen Y, Hu D, Wang F, Huang C, Xie H, Jin L. A systematic framework for identifying prognostic necroptosis-related lncRNAs and verification of lncRNA CRNDE/miR-23b-3p/IDH1 regulatory axis in glioma. Aging (Albany NY) 2023; 15:12296-12313. [PMID: 37934582 PMCID: PMC10683586 DOI: 10.18632/aging.205180] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/26/2023] [Indexed: 11/08/2023]
Abstract
Glioma remains the most frequent malignancy of the central nervous system. Recently, necroptosis has been identified as a cell death process that mediates the proliferation and development of tumor cells. LncRNAs play a key role in the diagnosis and treatment of various diseases. However, the impact that necrosis-related lncRNAs (NRLs) have on glioma remains unclear. In our studies, we selected 9 NRLs to construct a prognostic model. Meanwhile, we assessed the survival curves of these 9 NRLs. Our findings found ADGRA1-AS1 and WAC-AS1 were protective lncRNAs, while MIR210HG, LINC01503, CRNDE, HOXC-AS1, ZIM2-AS1, MIR22HG and PLBD1-AS1 were risk lncRNAs. Specifically, 12 immune cells, 25 immune-correlated pathways, and TME score were differentially expressed in the both risk groups. Additionally, the study predicted and validated the necroptosis-related lncRNA CRNDE/miR-23b-3p/IDH1 axis. CRNDE was strongly expressed in glioma specimens and several cell lines. Inhibiting CRNDE resulted in a substantial reduction in the proliferation and migration of U-118MG and U251 cells. Furthermore, the study predicted that CRNDE may exhibit oncogenic features by adsorbing miR-23b-3p and positively regulating IDH1 expression. Overall, the study constructed a prognostic model in glioma, and predicted a lncRNA CRNDE/miR-23b-3p/IDH1 axis, which could potentially be useful for gene therapy of glioma.
Collapse
Affiliation(s)
- Yangxia Chen
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Di Hu
- Department of Neurology and Stroke Centre, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Fang Wang
- Department of Neurology and Stroke Centre, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Cheng Huang
- Department of Neurology and Stroke Centre, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Hesong Xie
- Department of Neurology and Stroke Centre, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Ling Jin
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| |
Collapse
|
25
|
Kim N, Park CJ, Kim Y, Ryu S, Cho H, Nam Y, Han M, Shin JS, Sim T. Identification of Pyrido[3,4-d]pyrimidine derivatives as RIPK3-Mediated necroptosis inhibitors. Eur J Med Chem 2023; 259:115635. [PMID: 37494773 DOI: 10.1016/j.ejmech.2023.115635] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/01/2023] [Accepted: 07/10/2023] [Indexed: 07/28/2023]
Abstract
Necroptosis executed by RIPK3-mediated phosphorylation of MLKL is a programmed necrotic cell death and implicated with various diseases such as sterile inflammation. We designed and synthesized pyrido[3,4-d]pyrimidine derivatives as novel necroptosis inhibitors capable of suppressing the phosphorylation of MLKL. Our SAR studies reveal that 20 possesses comparable inhibitory activity against RIPK3-mediated pMLKL in HT-29 cells relative to GSK872 (2), a representative selective RIPK3 inhibitor. Based on biochemical kinase assay results, 20 is comparable to GSK872 (2) with regard to activity against RIPK3 and less potent against RIPK1 than GSK872, indicating selectivity of 20 towards RIPK3 over RIPK1 is higher than that of GSK872. In HT-29 cells, 20 inhibits necroptosis via MLKL oligomerization impediment. Moreover, 20 suppresses migration and invasion of AsPC-1 cells by necroptosis induced- CXCL5 secretion downregulation. Significantly, 20 could relieve the TNFα-induced systemic inflammatory response syndrome in vivo. Taken together, this study would provide a useful insight into the design of novel necroptosis inhibitors possessing RIPK3-mediated pMLKL inhibitory activity.
Collapse
Affiliation(s)
- Namkyoung Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea; Severance Biomedical Science Institute, Graduate School of Medicinal Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Chan-Jung Park
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea; Severance Biomedical Science Institute, Graduate School of Medicinal Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Younghoon Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea; Severance Biomedical Science Institute, Graduate School of Medicinal Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - SeongShick Ryu
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea; Severance Biomedical Science Institute, Graduate School of Medicinal Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Hanna Cho
- Severance Biomedical Science Institute, Graduate School of Medicinal Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Yunju Nam
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea; Severance Biomedical Science Institute, Graduate School of Medicinal Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Myeonggil Han
- Department of Microbiology, Yonsei University College of Medicine, Seoul, South Korea
| | - Jeon-Soo Shin
- Department of Microbiology, Yonsei University College of Medicine, Seoul, South Korea
| | - Taebo Sim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea; Severance Biomedical Science Institute, Graduate School of Medicinal Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
26
|
Barar E, Shi J. Genome, Metabolism, or Immunity: Which Is the Primary Decider of Pancreatic Cancer Fate through Non-Apoptotic Cell Death? Biomedicines 2023; 11:2792. [PMID: 37893166 PMCID: PMC10603981 DOI: 10.3390/biomedicines11102792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a solid tumor characterized by poor prognosis and resistance to treatment. Resistance to apoptosis, a cell death process, and anti-apoptotic mechanisms, are some of the hallmarks of cancer. Exploring non-apoptotic cell death mechanisms provides an opportunity to overcome apoptosis resistance in PDAC. Several recent studies evaluated ferroptosis, necroptosis, and pyroptosis as the non-apoptotic cell death processes in PDAC that play a crucial role in the prognosis and treatment of this disease. Ferroptosis, necroptosis, and pyroptosis play a crucial role in PDAC development via several signaling pathways, gene expression, and immunity regulation. This review summarizes the current understanding of how ferroptosis, necroptosis, and pyroptosis interact with signaling pathways, the genome, the immune system, the metabolism, and other factors in the prognosis and treatment of PDAC.
Collapse
Affiliation(s)
- Erfaneh Barar
- Liver and Pancreatobiliary Diseases Research Center, Digestive Disease Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran 1416753955, Iran
| | - Jiaqi Shi
- Department of Pathology & Clinical Labs, Rogel Cancer Center, Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
27
|
Du S, Liang H, Zhou L, Chen C, Sun R, Zhang J, Meng X, Gao A. Effect of doramectin on programmed cell death pathway in glioma cells. Clin Transl Oncol 2023; 25:2871-2883. [PMID: 37084153 DOI: 10.1007/s12094-023-03147-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 03/04/2023] [Indexed: 04/22/2023]
Abstract
PURPOSE Doramectin (DRM) is a kind of avermectin drugs, and it has been shown that DRM has anti-cancer effects. However, the molecular mechanism of DRM in programmed cell death (PCD) aspects is still unclear. The objective of this study was to confirm whether DRM induced PCD in glioma cells. METHODS In this experiment, the MTT assay and Ki-67 assay were used to detect in vitro cell viability and in vivo tumor proliferation. Then, the effect of DRM on PCD was analyzed by transcriptome comparison. Next, Endogenous apoptosis was detected by transmission electron microscopy (TEM), the DNA gel electrophoresis, JC-1 assay, western blotting and qRT-PCR. Meanwhile, necroptosis was detected by TEM, Hoechst 33342, FITC and PI staining assay, western blotting. RESULTS We found DRM induced apoptosis through Bcl-2/Bax/Caspase-3 pathway. And, DRM induced ROS overproduction, then ROS caused necroptosis through RIPK1/RIPK3/MLKL pathway, Mitochondria acted as a bridge between the two pathways. CONCLUSION Our research provided new insight with the function of anti-cancer of DRM. These results demonstrated DRM may be used as potential therapeutic agents inducing apoptosis and necroptosis for cancer therapy.
Collapse
Affiliation(s)
- Songlin Du
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Hongsheng Liang
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Lu Zhou
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Chen Chen
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Ruimeng Sun
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Jie Zhang
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Xiangyi Meng
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Aili Gao
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
28
|
Giansante V, Stati G, Sancilio S, Guerra E, Alberti S, Di Pietro R. The Dual Role of Necroptosis in Pancreatic Ductal Adenocarcinoma. Int J Mol Sci 2023; 24:12633. [PMID: 37628814 PMCID: PMC10454309 DOI: 10.3390/ijms241612633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/05/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Pancreatic cancer (PC) is the seventh leading cause of cancer-related death. PC incidence has continued to increase by about 1% each year in both men and women. Although the 5-year relative survival rate of PC has increased from 3% to 12%, it is still the lowest among cancers. Hence, novel therapeutic strategies are urgently needed. Challenges in PC-targeted therapeutic strategies stem from the high PC heterogeneity and from the poorly understood interplay between cancer cells and the surrounding microenvironment. Signaling pathways that drive PC cell growth have been the subject of intense scrutiny and interest has been attracted by necroptosis, a distinct type of programmed cell death. In this review, we provide a historical background on necroptosis and a detailed analysis of the ongoing debate on the role of necroptosis in PC malignant progression.
Collapse
Affiliation(s)
- Valentina Giansante
- Department of Medicine and Aging Sciences, Section of Biomorphology, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Gianmarco Stati
- Department of Medicine and Aging Sciences, Section of Biomorphology, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Silvia Sancilio
- Department of Medicine and Aging Sciences, Section of Biomorphology, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Emanuela Guerra
- Laboratory of Cancer Pathology, Center for Advanced Studies and Technologies (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Saverio Alberti
- Unit of Medical Genetics, Department of Biomedical Sciences, University of Messina, 98122 Messina, Italy
| | - Roberta Di Pietro
- Department of Medicine and Aging Sciences, Section of Biomorphology, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
29
|
Liu H, Li Z, Zhang L, Zhang M, Liu S, Wang J, Yang C, Peng Q, Du C, Jiang N. Necroptosis-Related Prognostic Model for Pancreatic Carcinoma Reveals Its Invasion and Metastasis Potential through Hybrid EMT and Immune Escape. Biomedicines 2023; 11:1738. [PMID: 37371833 DOI: 10.3390/biomedicines11061738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Necroptosis, pro-inflammatory programmed necrosis, has been reported to exert momentous roles in pancreatic cancer (PC). Herein, the objective of this study is to construct a necroptosis-related prognostic model for detecting pancreatic cancer. In this study, the intersection between necroptosis-related genes and differentially expressed genes (DEGs) of pancreatic ductal adenocarcinoma (PDAC) was obtained based on GeneCards database, GEO database (GSE28735 and GSE15471), and verified using The Cancer Genome Atlas (TCGA). Next, a prognostic model with Cox and LASSO regression analysis, and divided the patients into high-risk and low-risk groups. Subsequently, the Kaplan-Meier (KM) survival curve and the receiver operating characteristic (ROC) curves were generated to assess the predictive ability of overall survival (OS) of PC patients. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to predict the potential biofunction and possible mechanical pathways. The EMTome database and an immune analysis were applied to further explore underlying mechanism. Finally, clinical samples of PDAC patients were utilized to verify the expression of model genes via immunohistochemistry (IHC), and the normal human pancreatic ductal cell line, hTERT-HPNE as well as human pancreatic ductal carcinoma cell lines, PANC-1 and PL45, were used to identify the levels of model genes by Western blot (WB) and immunofluorescence (IF) in vitro. The results showed that 13 necroptosis-related DEGs (NRDEGs) were screened based on GEO database, and finally four of five prognostic genes, including KRT7, KRT19, IGF2BP3, CXCL5, were further identified by TCGA to successfully construct a prognostic model. Univariate and multivariate Cox analysis ultimately confirmed that this prognostic model has independent prognostic significance, KM curve suggested that the OS of low-risk group was longer than high-risk group, and the area under receiver (AUC) of ROC for 1, 3, 5 years was 0.733, 0.749 and 0.667, respectively. A GO analysis illustrated that model genes may participate in cell-cell junction, cadherin binding, cell adhesion molecule binding, and neutrophil migration and chemotaxis, while KEGG showed involvement in PI3K-Akt signaling pathway, ECMreceptor interaction, IL-17 signaling pathway, TNF signaling pathway, etc. Moreover, our results showed KRT7 and KRT19 were closely related to EMT markers, and EMTome database manifested that KRT7 and KRT19 are highly expressed in both primary and metastatic pancreatic cancer, declaring that model genes promoted invasion and metastasis potential through EMT. In addition, four model genes were positively correlated with Th2, which has been reported to take part in promoting immune escape, while model genes except CXCL5 were negatively correlated with TFH cells, indicating that model genes may participate in immunity. Additionally, IHC results showed that model genes were higher expressed in PC tissues than that in adjacent tumor tissues, and WB and IF also suggested that model genes were more highly expressed in PANC-1 and PL45 than in hTERT-HPNE. Tracing of a necroptosis-related prognostic model for pancreatic carcinoma reveals its invasion and metastasis potential through EMT and immunity. The construction of this model and the possible mechanism of necroptosis in PDAC was preliminarily explored to provide reliable new biomarkers for the early diagnosis, treatment, and prognosis for pancreatic cancer patients.
Collapse
Affiliation(s)
- Haichuan Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Zhenghang Li
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - La Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Mi Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Shanshan Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jianwei Wang
- School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, China
| | - Changhong Yang
- Department of Bioinformatics, Chongqing Medical University, Chongqing 400016, China
| | - Qiling Peng
- School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, China
| | - Chengyou Du
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Ning Jiang
- Department of Pathology, Chongqing Medical University, Chongqing 400016, China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing 400016, China
- Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
30
|
Martinez-Osorio V, Abdelwahab Y, Ros U. The Many Faces of MLKL, the Executor of Necroptosis. Int J Mol Sci 2023; 24:10108. [PMID: 37373257 DOI: 10.3390/ijms241210108] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/31/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Necroptosis is a recently discovered form of regulated cell death characterized by the disruption of plasma membrane integrity and the release of intracellular content. Mixed lineage kinase domain-like (MLKL) protein is the main player of this cell death pathway as it mediates the final step of plasma membrane permeabilization. Despite the significant progress in our knowledge of the necroptotic pathway and MLKL biology, the precise mechanism of how MLKL functions remain unclear. To understand in what way MLKL executes necroptosis, it is crucial to decipher how the molecular machinery of regulated cell death is activated in response to different stimuli or stressors. It is also indispensable to unveiling the structural elements of MLKL and the cellular players that are required for its regulation. In this review, we discuss the key steps that lead to MLKL activation, possible models that explain how it becomes the death executor in necroptosis, and its emerging alternative functions. We also summarize the current knowledge about the role of MLKL in human disease and provide an overview of existing strategies aimed at developing new inhibitors that target MLKL for necroptosis intervention.
Collapse
Affiliation(s)
- Veronica Martinez-Osorio
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Yasmin Abdelwahab
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Uris Ros
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
31
|
Prajapati DR, Molczyk C, Purohit A, Saxena S, Sturgeon R, Dave BJ, Kumar S, Batra SK, Singh RK. Small molecule antagonist of CXCR2 and CXCR1 inhibits tumor growth, angiogenesis, and metastasis in pancreatic cancer. Cancer Lett 2023; 563:216185. [PMID: 37062329 PMCID: PMC10218365 DOI: 10.1016/j.canlet.2023.216185] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 04/18/2023]
Abstract
Pancreatic cancer (PC) has a poor prognosis, and current therapeutic strategies are ineffective in advanced diseases. We and others have shown the aberrant expression of CXCR2 and its ligands in PC development and progression. Our objective for this study was to evaluate the therapeutic utility of CXCR2/1 targeting using an small molecule antagonist, SCH-479833, in different PC preclinical murine models (syngeneic or xenogeneic). Our results demonstrate that CXCR2/1 antagonist had both antitumor and anti-metastatic effects in PC. CXCR2/1 antagonist treatment inhibited tumor cell proliferation, migration, angiogenesis, and recruitment of neutrophils, while it increased apoptosis. Treatment with the antagonist enhanced fibrosis, tumor necrosis, and extramedullary hematopoiesis. Together, these findings suggest that selectively targeting CXCR2/1 with small molecule inhibitors is a promising therapeutic approach for inhibiting PC growth, angiogenesis, and metastasis.
Collapse
Affiliation(s)
- Dipakkumar R Prajapati
- Department of Pathology and Microbiology, 985950, Nebraska Medical Center, Omaha, NE, 68198-5900, United States
| | - Caitlin Molczyk
- Department of Pathology and Microbiology, 985950, Nebraska Medical Center, Omaha, NE, 68198-5900, United States
| | - Abhilasha Purohit
- Department of Pathology and Microbiology, 985950, Nebraska Medical Center, Omaha, NE, 68198-5900, United States
| | - Sugandha Saxena
- Department of Pathology and Microbiology, 985950, Nebraska Medical Center, Omaha, NE, 68198-5900, United States
| | - Reegan Sturgeon
- Department of Pathology and Microbiology, 985950, Nebraska Medical Center, Omaha, NE, 68198-5900, United States
| | - Bhavana J Dave
- Department of Pathology and Microbiology, 985950, Nebraska Medical Center, Omaha, NE, 68198-5900, United States
| | - Sushil Kumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5845, United States
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5845, United States
| | - Rakesh K Singh
- Department of Pathology and Microbiology, 985950, Nebraska Medical Center, Omaha, NE, 68198-5900, United States.
| |
Collapse
|
32
|
Lee YJ, Heo JY, Kim DS, Choi YS, Kim S, Nam HS, Lee SH, Cho MK. Curcumin Enhances the Anticancer Effects of Binimetinib on Melanoma Cells by Inducing Mitochondrial Dysfunction and Cell Apoptosis with Necroptosis. Ann Dermatol 2023; 35:217-228. [PMID: 37290955 DOI: 10.5021/ad.22.200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 06/10/2023] Open
Abstract
BACKGROUND Recent studies suggest that MEK1/2 inhibitors, including binimetinib, significantly improve malignant melanoma (MM) patient survival. Growing evidence suggests that phytochemicals, especially curcumin, can overcome drug resistance in cancer cells through a variety of mechanisms. OBJECTIVE This study aims to examine curcumin's efficacy in vitro combined with binimetinib in human MM cells. METHODS We used 2D monolayer and 3D spheroid human epidermal melanocyte culture models, HEMn-MP (human epidermal melanocytes, neonatal, moderately pigmented), and two human MM cell lines, G361 and SK-MEL-2, to evaluate cell viability, proliferation, migration, death, and reactive oxygen species (ROS) production following single therapy treatment, with either curcumin or binimetinib, or a combination of both. RESULTS Compared to MM cells treated with single therapy, those with combination therapy showed significantly decreased cell viability and increased ROS production. We observed apoptosis following both single and combination therapies. However only those who had had combination therapy had necroptosis. CONCLUSION Collectively, our data demonstrates that curcumin exerts significant synergistic anticancer effects on MM cells by inducing ROS and necroptosis when combined with binimetinib. Therefore, a strategy of adding curcumin to conventional anticancer agents holds promise for treating MM.
Collapse
Affiliation(s)
- Yoon Jin Lee
- Department of Biochemistry, Soonchunhyang University College of Medicine, Cheonan, Korea
- Division of Molecular Cancer Research, Soonchunhyang Medical Research Institute, Soonchunhyang University, Cheonan, Korea
| | - Jae Young Heo
- Department of Dermatology, Soonchunhyang University Seoul Hospital, Seoul, Korea
| | - Dong Sung Kim
- Department of Dermatology, Soonchunhyang University Seoul Hospital, Seoul, Korea
| | - Yu Sung Choi
- Department of Dermatology, Soonchunhyang University Seoul Hospital, Seoul, Korea
| | - Sooyoung Kim
- Department of Dermatology, Soonchunhyang University Seoul Hospital, Seoul, Korea
| | - Hae Seon Nam
- Division of Molecular Cancer Research, Soonchunhyang Medical Research Institute, Soonchunhyang University, Cheonan, Korea
| | - Sang Han Lee
- Department of Biochemistry, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Moon Kyun Cho
- Department of Dermatology, Soonchunhyang University Seoul Hospital, Seoul, Korea.
| |
Collapse
|
33
|
Cui Z, Liang Z, Song B, Zhu Y, Chen G, Gu Y, Liang B, Ma J, Song B. Machine learning-based signature of necrosis-associated lncRNAs for prognostic and immunotherapy response prediction in cutaneous melanoma and tumor immune landscape characterization. Front Endocrinol (Lausanne) 2023; 14:1180732. [PMID: 37229449 PMCID: PMC10203625 DOI: 10.3389/fendo.2023.1180732] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/03/2023] [Indexed: 05/27/2023] Open
Abstract
Background Cutaneous melanoma (CM) is one of the malignant tumors with a relative high lethality. Necroptosis is a novel programmed cell death that participates in anti-tumor immunity and tumor prognosis. Necroptosis has been found to play an important role in tumors like CM. However, the necroptosis-associated lncRNAs' potential prognostic value in CM has not been identified. Methods The RNA sequencing data collected from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression Project (GTEx) was utilized to identify differentially expressed genes in CM. By using the univariate Cox regression analysis and machine learning LASSO algorithm, a prognostic risk model had been built depending on 5 necroptosis-associated lncRNAs and was verified by internal validation. The performance of this prognostic model was assessed by the receiver operating characteristic curves. A nomogram was constructed and verified by calibration. Furthermore, we also performed sub-group K-M analysis to explore the 5 lncRNAs' expression in different clinical stages. Function enrichment had been analyzed by GSEA and ssGSEA. In addition, qRT-PCR was performed to verify the five lncRNAs' expression level in CM cell line (A2058 and A375) and normal keratinocyte cell line (HaCaT). Results We constructed a prognostic model based on five necroptosis-associated lncRNAs (AC245041.1, LINC00665, AC018553.1, LINC01871, and AC107464.3) and divided patients into high-risk group and low-risk group depending on risk scores. A predictive nomogram had been built to be a prognostic indicator to clinical factors. Functional enrichment analysis showed that immune functions had more relationship and immune checkpoints were more activated in low-risk group than that in high-risk group. Thus, the low-risk group would have a more sensitive response to immunotherapy. Conclusion This risk score signature could be used to divide CM patients into low- and high-risk groups, and facilitate treatment strategy decision making that immunotherapy is more suitable for those in low-risk group, providing a new sight for CM prognostic evaluation.
Collapse
Affiliation(s)
- Zhiwei Cui
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Zhen Liang
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Binyu Song
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yuhan Zhu
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Guo Chen
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yanan Gu
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Baoyan Liang
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Jungang Ma
- Department of Cancer Center, Daping Hospital, Army Medical University, Chongqing, China
| | - Baoqiang Song
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
34
|
Lu SY, Hua J, Liu J, Wei MY, Liang C, Meng QC, Zhang B, Yu XJ, Wang W, Xu J, Shi S. A new approach: Evaluation of necroptosis and immune status enables prediction of the tumor microenvironment and treatment targets in pancreatic cancer. Comput Struct Biotechnol J 2023; 21:2419-2433. [PMID: 37090434 PMCID: PMC10113923 DOI: 10.1016/j.csbj.2023.03.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/14/2023] [Accepted: 03/22/2023] [Indexed: 04/05/2023] Open
Abstract
Growing evidence indicates a potential correlation between necroptosis and pancreatic cancer, and the relationship between necroptosis, immune infiltration and the microenvironment in pancreatic cancer has drawn increasing attention. However, two-dimensional phenotype and prognostic assessment systems based on a combination of necroptosis and immunity have not been explored. In our present study, we explored the pancancer genomics signature of necroptosis-related molecules, identifying necroptosis-related molecule mutation profiles, expression profiles, and correlations between expression levels and methylation/CNV levels. We identified distinct necroptotic as well as immune statuses in pancreatic cancer, and a high necroptosis phenotype and high immunity phenotype both indicated better prognosis than a low necroptosis phenotype and low immunity phenotype. The two-dimensional phenotype we constructed has ideal discriminative effects on pancreatic cancer prognosis, inflammation, and the immune microenvironment. The "high-necroptosis and high-immunity (HNHI)" group exhibited the best prognosis and the highest proportion of infiltrating immune cells. The NI score can be used to predict patient prognosis and is correlated with the immune microenvironment score, chemotherapeutic drug IC50, and tumor mutational burden. In addition, it may be useful for predicting the effect of individualized chemotherapy and immunotherapy. Our study also revealed that SLC2A1 is associated with both necroptosis and immunity and acts as a potential oncogene in pancreatic cancer. In conclusion, the two-dimensional phenotype and NI score we developed are promising tools for clinical multiomics applications and prediction of chemotherapy and immunotherapy response and present benefits in terms of precision medicine and individualized treatment decision-making for pancreatic cancer patients.
Collapse
Affiliation(s)
- Si-Yuan Lu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Jie Hua
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Jiang Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Miao-Yan Wei
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Chen Liang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Qing-Cai Meng
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Bo Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xian-Jun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Wei Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Si Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| |
Collapse
|
35
|
He S, Huang Q, Cheng J. The unfolding story of dying tumor cells during cancer treatment. Front Immunol 2023; 14:1073561. [PMID: 36993986 PMCID: PMC10040581 DOI: 10.3389/fimmu.2023.1073561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/27/2023] [Indexed: 03/15/2023] Open
Abstract
Generally, the demise of cancer cells in different ways enables the body to clear these harmful cells. However, cancer cells obtain unlimited replication and immortality from successful circumvention of cell death via various mechanisms. Some evidence suggests that treatment-induced dying tumor cells even promote cancer progression. Notably, therapeutic interventions to harness the immune system against tumor cells have shown complicated influences in clinics. Herein, there is an urgent need to clarify the underlying mechanisms that influence the outcome and regulation of the immune system during cancer treatment. In this review, we provide an account on the cell death modes and the relationship between dying tumor cells with tumor immune microenvironment during cancer treatment, focusing on immunotherapy, from mechanistic standpoint to emerging limitations and future directions.
Collapse
Affiliation(s)
| | - Qian Huang
- *Correspondence: Jin Cheng, ; Qian Huang,
| | - Jin Cheng
- *Correspondence: Jin Cheng, ; Qian Huang,
| |
Collapse
|
36
|
Hung J, Perez SM, Dasa SSK, Hall SP, Heckert DB, Murphy BP, Crawford HC, Kelly KA, Brinton LT. A Bitter Taste Receptor as a Novel Molecular Target on Cancer-Associated Fibroblasts in Pancreatic Ductal Adenocarcinoma. Pharmaceuticals (Basel) 2023; 16:389. [PMID: 36986488 PMCID: PMC10058050 DOI: 10.3390/ph16030389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 03/08/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) execute diverse and complex functions in cancer progression. While reprogramming the crosstalk between CAFs and cancer epithelial cells is a promising avenue to evade the adverse effects of stromal depletion, drugs are limited by their suboptimal pharmacokinetics and off-target effects. Thus, there is a need to elucidate CAF-selective cell surface markers that can improve drug delivery and efficacy. Here, functional proteomic pulldown with mass spectrometry was used to identify taste receptor type 2 member 9 (TAS2R9) as a CAF target. TAS2R9 target characterization included binding assays, immunofluorescence, flow cytometry, and database mining. Liposomes conjugated to a TAS2R9-specific peptide were generated, characterized, and compared to naked liposomes in a murine pancreatic xenograft model. Proof-of-concept drug delivery experiments demonstrate that TAS2R9-targeted liposomes bind with high specificity to TAS2R9 recombinant protein and exhibit stromal colocalization in a pancreatic cancer xenograft model. Furthermore, the delivery of a CXCR2 inhibitor by TAS2R9-targeted liposomes significantly reduced cancer cell proliferation and constrained tumor growth through the inhibition of the CXCL-CXCR2 axis. Taken together, TAS2R9 is a novel cell-surface CAF-selective target that can be leveraged to facilitate small-molecule drug delivery to CAFs, paving the way for new stromal therapies.
Collapse
Affiliation(s)
- Jessica Hung
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | | | - Siva Sai Krishna Dasa
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | | - Howard C. Crawford
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
- Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
- Henry Ford Pancreatic Cancer Center, Henry Ford Health, Detroit, MI 48202, USA
| | - Kimberly A. Kelly
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
- ZielBio Inc., Charlottesville, VA 22902, USA
| | - Lindsey T. Brinton
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
- ZielBio Inc., Charlottesville, VA 22902, USA
| |
Collapse
|
37
|
Liu X, Tu H, Peng J. Progress in study on the final executor of necroptosis MLKL and its inhibitors. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2023; 48:242-251. [PMID: 36999471 PMCID: PMC10930346 DOI: 10.11817/j.issn.1672-7347.2023.220411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Indexed: 04/01/2023]
Abstract
Necroptosis is one of the regulated cell death, which involves receptor interacting protein kinase (RIPK) 1/RIPK3/mixed lineage kinase domain like protein (MLKL) signaling pathway. Among them, MLKL is the final execution of necroptosis. The formation of RIPK1/RIPK3/MLKL necrosome induces the phosphorylated MLKL, and the activated MLKL penetrates into the membrane bilayer to form membrane pores, which damages the integrity of the membrane and leads to cell death. In addition to participating in necroptosis, MLKL is also closely related to other cell death, such as NETosis, pyroptosis, and autophagy. Therefore, MLKL is involved in the pathological processes of various diseases related to abnormal cell death pathways (such as cardiovascular diseases, neurodegenerative diseases and cancer), and may be a therapeutic target of multiple diseases. Understanding the role of MLKL in different cell death can lay a foundation for seeking various MLKL-related disease targets, and also guide the development and application of MLKL inhibitors.
Collapse
Affiliation(s)
- Xuyan Liu
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078.
| | - Hua Tu
- Department of Pharmacy, Fourth Hospital of Changsha, Changsha 410006, China
| | - Jun Peng
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078.
| |
Collapse
|
38
|
Sun L, Li W, Zhao Z, Zuo Y, Han Z. Identification of a Necroptosis-Related Prognostic Signature and Associated Regulatory Axis in Lung Adenocarcinoma. Int J Genomics 2023; 2023:8766311. [PMID: 37965055 PMCID: PMC10643042 DOI: 10.1155/2023/8766311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 12/20/2022] [Accepted: 02/03/2023] [Indexed: 11/16/2023] Open
Abstract
Background Lung cancer is considered to be the second most aggressive and rapidly fatal cancer after breast cancer. Necroptosis, a novel discovered pattern of cell death, is mediated by Receptor-interacting serine/threonine-protein kinase 1 (RIPK1), Receptor-interacting serine/threonine-protein kinase 3 (RIPK3), and Mixed Lineage Kinase Domain Like Pseudokinase (MLKL). Methods For the purpose of developing a prognostic model, Least absolute shrinkage and selection operator (LASSO) Cox regression analysis was conducted. Using Pearson's correlation analysis, we evaluated the correlation between necroptosis-related markers and tumor immune infiltration. A bioinformatics analysis was conducted to construct a necroptosis-related regulatory axis. Results There was a downregulation of most of necroptosis-related genes in lung adenocarcinoma (LUAD) versus lung tissues but an increase in PGAM5, HMGB1, TRAF2, EZH2 levels. We also summarized the Single Nucleotide Variant (SNV) and copy number variation (CNV) of necroptosis-related genes in LUAD. Consensus clustering identified two clusters in LUAD with distinct immune cell infiltration and ESTIMATEScore. Genes related to necroptosis were associated with necroptosis, Tumor necrosis factor (TNF) signaling pathway, and apoptosis according to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Four prognostic genes (ALDH2, HMGB1, NDRG2, TLR2) were combined to develop a prognostic gene signature for LUAD patients, which was highly accurate in predicting prognosis. Univariate and multivariate analysis identified HMGB1, pT stage, and pN stage as independent factors impacting on LUAD patients' prognosis. A significant correlation was found between the level of TLR2 and NDRG2 and clinical stage, immunity infiltration, and drug resistance. Additionally, the progression of LUAD might be regulated by lncRNA C5orf64/miR-582-5p/NDRG2/TLR2. Conclusion The current bioinformatics analysis identified a necroptosis-related prognostic signature for LUAD and their relation to immunity infiltration. This result requires further investigation.
Collapse
Affiliation(s)
- Libo Sun
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wenwen Li
- Department of Hematology, Qingdao Women and children's Hospital, Qingdao, China
| | - Zhenhuan Zhao
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yanhua Zuo
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhiwu Han
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
39
|
Luo P, Shi Z, He C, Chen G, Feng J, Zhu L, Song X. Predicting the Clinical Outcome of Triple-Negative Breast Cancer Based on the Gene Expression Characteristics of Necroptosis and Different Molecular Subtypes. Stem Cells Int 2023; 2023:8427767. [PMID: 37274025 PMCID: PMC10234373 DOI: 10.1155/2023/8427767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/21/2022] [Accepted: 10/12/2022] [Indexed: 08/06/2023] Open
Abstract
Necroptosis, a kind of programmed necrotic cell apoptosis, is the gatekeeper for the host to defend against the invasion of pathogens. It helps to regulate different biological processes regarding human cancer. Nevertheless, studies that determine the impact of death on triple-negative breast cancer (TNBC) are scarce. Therefore, this paper has comprehensively examined the expression as well as clinical significance of necroptosis in TNBC. ConsensusClusterPlus was used to establish a stable molecular classification that used the expression regarding the necroptosis-linked genes. The clinical and immune characteristics of different subclasses were evaluated. Then, the weighted gene coexpression network analysis (WGCNA) assisted in determining key modules, and we selected the genes exhibiting obvious association with necroptosis prognosis through the relationship with prognosis. The univariate Cox regression analysis together with least absolute shrinkage and selection operator (LASSO) techniques served for the construction of the necroptosis-related prognostic risk score (NPRS) model, and the pathway characteristics of NPRS model grouping were further studied. Finally, the NPRS, taking into account the clinicopathological features, used the decision tree model for enhancing the prognostic model as well as the survival prediction. First, two stable molecular subtypes with different prognosis and immune characteristics were identified using necroptosis marker genes. Then, the key modules were identified, and 10 genes significantly related to the prognosis of necroptosis were selected. Then, the clinical prognostic model of NPRS was developed considering the prognosis-linked necroptosis genes. Finally, the NPRS model, taking into account the clinicopathological features, adopted the decision tree model for enhancing the prognostic model as well as the survival prediction. Herein, two new molecular subgroups considering necroptosis-linked genes are proposed, and an NPRS model composed of 10 genes is developed, which maybe assist in the personalized treatment and clinical treatment guidance of TNBC patients.
Collapse
Affiliation(s)
- Peng Luo
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310020, China
| | - Zhaoqi Shi
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310020, China
| | - Changshou He
- Department of Oncology, HaploX Biotechnology, Shenzhen 518000, China
| | - Guojun Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310020, China
| | - Ji Feng
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310020, China
| | - Linghua Zhu
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310020, China
| | - Xiangyang Song
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310020, China
| |
Collapse
|
40
|
Wu N, Liu F, Huang Y, Su X, Zhang Y, Yu L, Liu B. Necroptosis Related Genes Predict Prognosis and Therapeutic Potential in Gastric Cancer. Biomolecules 2023; 13:biom13010101. [PMID: 36671486 PMCID: PMC9856014 DOI: 10.3390/biom13010101] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/22/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023] Open
Abstract
The clinical significance of necroptosis in gastric cancer (GC) has yet to be fully elucidated. The purpose of our study was to identify a necroptosis-relevant gene and to establish a prediction model to estimate the prognosis and therapeutic potential in GC. Here, we explored the expression profile of 76 necroptosis-related genes in TCGA-STAD patients. A six-gene risk score prediction model was established via regression analysis of the least absolute shrinkage and selection operator (LASSO) and validated in a separate cohort. Patients were separated into low- or high-risk groups according to the median risk score. We then compared and analyzed the biological process characteristics of two risk groups. Additionally, cell-to-cell communications and metabolic activity were analyzed in a single-cell solution. The in vitro experiments were conducted to explore the biological functions and drug sensitivity of necroptosis-related genes in gastric cancer. Our results identified that compared with the low-risk group, the high-risk group was associated with a higher clinical stage or grade and a worse prognosis. In addition, the low-risk group had higher levels of immunity and immune cell infiltration. Necroptosis was triggered by the TNF pathway in myeloid cells and the glycolysis pathway was altered. Necroptosis-related genes modulated the cell function, including proliferation and migration in vitro. Furthermore, the potential drugs' sensitivity was higher in the low-risk subgroup. These findings could facilitate a better understanding and improve the treatment potential and prognosis of GC patients.
Collapse
Affiliation(s)
- Nandie Wu
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing 210009, China
| | - Fangcen Liu
- Department of Pathology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210009, China
| | - Ying Huang
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210009, China
- Department of Oncology, The Second People’s Hospital of Huai’an, Huai’an 223022, China
| | - Xinyu Su
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210009, China
| | - Yaping Zhang
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Clinical College of Xuzhou Medical University, Nanjing 210009, China
| | - Lixia Yu
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210009, China
| | - Baorui Liu
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing 210009, China
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210009, China
- Correspondence: ; Tel.: +86-25-83107081
| |
Collapse
|
41
|
Construction of a Necroptosis-Related lncRNA Signature for Predicting Prognosis and Immune Response in Kidney Renal Clear Cell Carcinoma. Cells 2022; 12:cells12010066. [PMID: 36611858 PMCID: PMC9818734 DOI: 10.3390/cells12010066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/03/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Necroptosis is a new type of programmed cell death and involves the occurrence and development of various cancers. Moreover, the aberrantly expressed lncRNA can also affect tumorigenesis, migration, and invasion. However, there are few types of research on the necroptosis-related lncRNA (NRL), especially in kidney renal clear cell carcinoma (KIRC). In this study, we analyzed the sequencing data obtained from the TGCA-KIRC dataset, then applied the LASSO and COX analysis to identify 6 NRLs (AC124854.1, AL117336.1, DLGAP1-AS2, EPB41L4A-DT, HOXA-AS2, and LINC02100) to construct a risk model. Patients suffering from KIRC were divided into high- and low-risk groups according to the risk score, and the patients in the low-risk group had a longer OS. This signature can be used as an indicator to predict the prognosis of KIRC independent of other clinicopathological features. In addition, the gene set enrichment analysis showed that some tumor and immune-associated pathways were more enriched in a high-risk group. We also found significant differences between the high and low-risk groups in the infiltrating immune cells, immune functions, and expression of immune checkpoint molecules. Finally, we use the "pRRophetic" package to complete the drug sensitivity prediction, and the risk score could reflect patients' response to 8 small molecule compounds. In general, NRLs divided KIRC into two subtypes with different risk scores. Furthermore, this signature based on the 6 NRLs could provide a promising method to predict the prognosis and immune response of KIRC patients. To some extent, our findings helped give a reference for further research between NRLs and KIRC and find more effective therapeutic drugs for KIRC.
Collapse
|
42
|
Song C, Zhu L, Gu J, Wang T, Shi L, Li C, Chen L, Xie S, Lu Y. A necroptosis-related lncRNA signature was identified to predict the prognosis and immune microenvironment of IDH-wild-type GBM. Front Oncol 2022; 12:1024208. [PMID: 36601479 PMCID: PMC9806237 DOI: 10.3389/fonc.2022.1024208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction Necroptosis-related genes are essential for the advancement of IDH-wild-type GBM. However, the putative effects of necroptosis-related lncRNAs (nrlncRNAs) in IDH-wild-type GBM remain unknown. Methods By using the TCGA and GTEx databases, a nrlncRNA prognostic signature was created using LASSO Cox regression. The median risk score was used to categorize the patients into low and high-risk groups. To confirm the validity, univariate, multivariate Cox regression and ROC curves were used. Furthermore, by enrichment analysis, immune correlation analysis, and drug sensitivity analysis, the targeted lncRNAs were selected for further verification. As the highest upregulated expression in tumor than peritumor specimens, RP11-131L12.4 was selected for phenotype and functional experiments in primary GBM cells. Results Six lncRNAs were proved to be closely related to necroptosis in IDH-1-wild-type GBM, which were used to create a new signature. For 1-, 2-, and 3-year OS, the AUCs were 0.709, 0.645 and 0.694, respectively. Patients in the low-risk group had a better prognosis, stronger immune function activity, and more immune cell infiltration. In contrast, enrichment analysis revealed that the malignant phenotype was more prevalent in the high-risk group. In vitro experiments indicated that RP11-131L12.4 increased the tumor proliferation, migration and invasion, but decreased the necroptosis. Moreover, this nrlncRNA was also proved to be negatively associated with patient prognosis. Conclusion The signature of nrlncRNAs may aid in the formulation of tailored and precise treatment for individuals with IDH-wild-type GBM. RP11-131L12.4 may play indispensable role in necroptosis suppression.
Collapse
Affiliation(s)
- Chong Song
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China,Department of Neurosurgery, The Central Hospital of Dalian University of Technology, Dalian, China
| | - Liwen Zhu
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Junwei Gu
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Tong Wang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Linyong Shi
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chiyang Li
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lei Chen
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Sidi Xie
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China,Nanfang Neurology Research Institution, Nanfang Hospital, Southern Medical University, Guangzhou, China,Nanfang Glioma Center, Nanfang Hospital, Southern Medical University, Guangzhou, China,*Correspondence: Sidi Xie, ; Yuntao Lu,
| | - Yuntao Lu
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China,Nanfang Neurology Research Institution, Nanfang Hospital, Southern Medical University, Guangzhou, China,Nanfang Glioma Center, Nanfang Hospital, Southern Medical University, Guangzhou, China,*Correspondence: Sidi Xie, ; Yuntao Lu,
| |
Collapse
|
43
|
Zhang S, Liu S, Lin Z, Zhang J, Lin Z, Fang H, Hu Z. Development and Validation of a Prognostic Model for Esophageal Adenocarcinoma Based on Necroptosis-Related Genes. Genes (Basel) 2022; 13:genes13122243. [PMID: 36553511 PMCID: PMC9778007 DOI: 10.3390/genes13122243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/16/2022] [Accepted: 11/26/2022] [Indexed: 12/04/2022] Open
Abstract
Necroptosis is a newly developed cell death pathway that differs from necrosis and apoptosis; however, the potential mechanism of necroptosis-related genes in EAC and whether they are associated with the prognosis of EAC patients remain unclear. We obtained 159 NRGs from the Kyoto Encyclopedia of Genes and Genomes (KEGG) and performed differential expression analysis of the NRGs in 9 normal samples and 78 EAC tumor samples derived from The Cancer Genome Atlas (TCGA). Finally, we screened 38 differentially expressed NRGs (DE-NRGs). The results of the GO and KEGG analyses indicated that the DE-NRGs were mainly enriched in the functions and pathways associated with necroptosis. Protein interaction network (PPI) analysis revealed that TNF, CASP1, and IL-1B were the core genes of the network. A risk score model based on four DE-NRGs was constructed by Least Absolute Shrinkage and Selection Operator (LASSO) regression, and the results showed that the higher the risk score, the worse the survival. The model achieved more efficient diagnosis compared with the clinicopathological variables, with an area under the receiver operating characteristic (ROC) curve of 0.885. The prognostic value of this model was further validated using Gene Expression Omnibus (GEO) datasets. Gene set enrichment analyses (GSEA) demonstrated that several metabolism-related pathways were activated in the high-risk population. Single-sample GSEA (ssGSEA) provided further confirmation that this prognostic model was remarkably associated with the immune status of EAC patients. Finally, the nomogram map exhibited a certain prognostic prediction efficiency, with a C-index of 0.792 and good consistency. Thus, the prognostic model based on four NRGs could better predict the prognosis of EAC and help to elucidate the mechanism of necroptosis-related genes in EAC, which can provide guidance for the target prediction and clinical treatment of EAC patients.
Collapse
Affiliation(s)
- Suhong Zhang
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350108, China
| | - Shuang Liu
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350108, China
| | - Zheng Lin
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350108, China
| | - Juwei Zhang
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350108, China
| | - Zhifeng Lin
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350108, China
| | - Haiyin Fang
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350108, China
| | - Zhijian Hu
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350108, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou 350108, China
- Correspondence: ; Tel.: +86-591-83383362; Fax: +86-591-822862510
| |
Collapse
|
44
|
Khan M, Lin J, Wang B, Chen C, Huang Z, Tian Y, Yuan Y, Bu J. A novel necroptosis-related gene index for predicting prognosis and a cold tumor immune microenvironment in stomach adenocarcinoma. Front Immunol 2022; 13:968165. [PMID: 36389725 PMCID: PMC9646549 DOI: 10.3389/fimmu.2022.968165] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/05/2022] [Indexed: 11/30/2022] Open
Abstract
Background Gastric cancer (GC) represents a major global clinical problem with very limited therapeutic options and poor prognosis. Necroptosis, a recently discovered inflammatory form of cell death, has been implicated in carcinogenesis and inducing necroptosis has also been considered as a therapeutic strategy. Objective We aim to evaluate the role of this pathway in gastric cancer development, prognosis and immune aspects of its tumor microenvironment. Methods and results In this study, we evaluated the gene expression of 55 necroptosis-related genes (NRGs) that were identified via carrying out a comprehensive review of the medical literature. Necroptosis pathway was deregulated in gastric cancer samples (n=375) as compared to adjacent normal tissues (n=32) obtained from the “The Cancer Genome Atlas (TCGA)”. Based on the expression of these NRGs, two molecular subtypes were obtained through consensus clustering that also showed significant prognostic difference. Differentially expressed genes between these two clusters were retrieved and subjected to prognostic evaluation via univariate cox regression analysis and LASSO cox regression analysis. A 13-gene risk signature, termed as necroptosis-related genes prognostic index (NRGPI), was constructed that comprehensively differentiated the gastric cancer patients into high- and low-risk subgroups. The prognostic significance of NRGPI was validated in the GEO cohort (GSE84437: n=408). The NRGPI-high subgroup was characterized by upregulation of 10 genes (CYTL1, PLCL1, CGB5, CNTN1, GRP, APOD, CST6, GPX3, FCN1, SERPINE1) and downregulation of 3 genes (EFNA3, E2F2, SOX14). Further dissection of these two risk groups by differential gene expression analysis indicated involvement of signaling pathways associated with cancer cell progression and immune suppression such as WNT and TGF-β signaling pathway. Para-inflammation and type-II interferon pathways were activated in NRGPI-high patients with an increased infiltration of Tregs and M2 macrophage indicating an exhausted immune phenotype of the tumor microenvironment. These molecular characteristics were mainly driven by the eight NRGPI oncogenes (CYTL1, PLCL1, CNTN1, GRP, APOD, GPX3, FCN1, SERPINE1) as validated in the gastric cancer cell lines and clinical samples. NRGPI-high patients showed sensitivity to a number of targeted agents, in particular, the tyrosine kinase inhibitors. Conclusions Necroptosis appears to play a critical role in the development of gastric cancer, prognosis and shaping of its tumor immune microenvironment. NRGPI can be used as a promising prognostic biomarker to identify gastric cancer patients with a cold tumor immune microenvironment and poor prognosis who may response to selected molecular targeted therapy.
Collapse
Affiliation(s)
- Muhammad Khan
- Department of Oncology, Guangdong Second Provincial General Hospital, Guangzhou, China
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Jie Lin
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Baiyao Wang
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Chengcong Chen
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Zhong Huang
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Yunhong Tian
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Yawei Yuan
- Department of Oncology, Guangdong Second Provincial General Hospital, Guangzhou, China
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
- *Correspondence: Junguo Bu, ; Yawei Yuan,
| | - Junguo Bu
- Department of Oncology, Guangdong Second Provincial General Hospital, Guangzhou, China
- *Correspondence: Junguo Bu, ; Yawei Yuan,
| |
Collapse
|
45
|
Chaouhan HS, Vinod C, Mahapatra N, Yu SH, Wang IK, Chen KB, Yu TM, Li CY. Necroptosis: A Pathogenic Negotiator in Human Diseases. Int J Mol Sci 2022; 23:12714. [PMID: 36361505 PMCID: PMC9655262 DOI: 10.3390/ijms232112714] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/25/2022] Open
Abstract
Over the past few decades, mechanisms of programmed cell death have attracted the scientific community because they are involved in diverse human diseases. Initially, apoptosis was considered as a crucial mechanistic pathway for programmed cell death; recently, an alternative regulated mode of cell death was identified, mimicking the features of both apoptosis and necrosis. Several lines of evidence have revealed that dysregulation of necroptosis leads to pathological diseases such as cancer, cardiovascular, lung, renal, hepatic, neurodegenerative, and inflammatory diseases. Regulated forms of necrosis are executed by death receptor ligands through the activation of receptor-interacting protein kinase (RIPK)-1/3 and mixed-lineage kinase domain-like (MLKL), resulting in the formation of a necrosome complex. Many papers based on genetic and pharmacological studies have shown that RIPKs and MLKL are the key regulatory effectors during the progression of multiple pathological diseases. This review focused on illuminating the mechanisms underlying necroptosis, the functions of necroptosis-associated proteins, and their influences on disease progression. We also discuss numerous natural and chemical compounds and novel targeted therapies that elicit beneficial roles of necroptotic cell death in malignant cells to bypass apoptosis and drug resistance and to provide suggestions for further research in this field.
Collapse
Affiliation(s)
- Hitesh Singh Chaouhan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
| | - Ch Vinod
- Department of Biological Sciences, School of Applied Sciences, KIIT University, Bhubaneshwar 751024, India
| | - Nikita Mahapatra
- Department of Biological Sciences, School of Applied Sciences, KIIT University, Bhubaneshwar 751024, India
| | - Shao-Hua Yu
- Department of Emergency Medicine, China Medical University Hospital, Taichung 40402, Taiwan
| | - I-Kuan Wang
- School of Medicine, China Medical University, Taichung 40402, Taiwan
- Department of Internal Medicine, China Medical University Hospital, Taichung 40402, Taiwan
| | - Kuen-Bao Chen
- Department of Anesthesiology, China Medical University Hospital, Taichung 40402, Taiwan
| | - Tung-Min Yu
- School of Medicine, China Medical University, Taichung 40402, Taiwan
- Division of Nephrology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 40402, Taiwan
| | - Chi-Yuan Li
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- School of Medicine, China Medical University, Taichung 40402, Taiwan
- Department of Anesthesiology, China Medical University Hospital, Taichung 40402, Taiwan
| |
Collapse
|
46
|
Chen L, Zhang X, Zhang Q, Zhang T, Xie J, Wei W, Wang Y, Yu H, Zhou H. A necroptosis related prognostic model of pancreatic cancer based on single cell sequencing analysis and transcriptome analysis. Front Immunol 2022; 13:1022420. [PMID: 36275722 PMCID: PMC9585241 DOI: 10.3389/fimmu.2022.1022420] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/26/2022] [Indexed: 12/05/2022] Open
Abstract
Background As a tumor type with high mortality and poor therapeutic effect, the pathogenesis of pancreatic cancer is still unclear. It is necessary to explore the significance of necroptosis in pancreatic cancer. Methods Pancreatic cancer transcriptome data were obtained from the TCGA database, ICGC database, and GSE85916 in the GEO database. The TCGA cohort was set as a training cohort, while the ICGC and GSE85916 cohort were set as the validation cohorts. Single-cell sequencing data of pancreatic cancer were obtained from GSE154778 in the GEO database. The genes most associated with necroptosis were identified by weighted co-expression network analysis and single-cell sequencing analysis. COX regression and Lasso regression were performed for these genes, and the prognostic model was established. By calculating risk scores, pancreatic cancer patients could be divided into NCPTS_high and NCPTS_low groups, and survival analysis, immune infiltration analysis, and mutation analysis between groups were performed. Cell experiments including gene knockdown, CCK-8 assay, clone formation assay, transwell assay and wound healing assay were conducted to explore the role of the key gene EPS8 in pancreatic cancer. PCR assays on clinical samples were further used to verify EPS8 expression. Results We constructed the necroptosis-related signature in pancreatic cancer using single-cell sequencing analysis and transcriptome analysis. The calculation formula of risk score was as follows: NCPTS = POLR3GL * (-0.404) + COL17A1 * (0.092) + DDIT4 * (0.007) + PDE4C * (0.057) + CLDN1 * 0.075 + HMGA2 * 0.056 + CENPF * 0.198 +EPS8 * 0.219. Through this signature, pancreatic cancer patients with different cohorts can be divided into NCPTS_high and NCPTS_low group, and the NCPTS_high group has a significantly poorer prognosis. Moreover, there were significant differences in immune infiltration level and mutation level between the two groups. Cell assays showed that in CAPAN-1 and PANC-1 cell lines, EPS8 knockdown significantly reduced the viability, clonogenesis, migration and invasion of pancreatic cancer cells. Clinical PCR assay of EPS8 expression showed that EPS8 expression was significantly up-regulated in pancreatic cancer (*P<0.05). Conclusion Our study can provide a reference for the diagnosis, treatment and prognosis assessment of pancreatic cancer.
Collapse
Affiliation(s)
- Liang Chen
- Department of Hepatobiliary and Pancreatic Surgery, Conversion Therapy Center for Hepatobiliary and Pancreatic Tumors, First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Xueming Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Conversion Therapy Center for Hepatobiliary and Pancreatic Tumors, First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Qixiang Zhang
- Department of Neurosurgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tao Zhang
- Department of General Surgery, Fuyang Hospital Affiliated to Anhui Medical University, Fuyang, China
| | - Jiaheng Xie
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Wei
- Department of Anesthesiology, Jiaxing First Hospital, Jiaxing, China
| | - Ying Wang
- Department of Neurosurgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Hongzhu Yu
- Department of General Surgery, Fuyang Hospital Affiliated to Anhui Medical University, Fuyang, China
| | - Hongkun Zhou
- Department of Hepatobiliary and Pancreatic Surgery, Conversion Therapy Center for Hepatobiliary and Pancreatic Tumors, First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| |
Collapse
|
47
|
Wang J, Shen B, Liu X, Jiang J. A novel necroptosis-related lncRNA signature predicts the prognosis and immune microenvironment of hepatocellular carcinoma. Front Genet 2022; 13:985191. [PMID: 36267408 PMCID: PMC9576851 DOI: 10.3389/fgene.2022.985191] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 08/23/2022] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the malignant tumors with high mortality and a worse prognosis globally. Necroptosis is a programmed death mediated by receptor-interacting Protein 1 (RIP1), receptor-interacting Protein 1 (RIP3), and Mixed Lineage Kinase Domain-Like (MLKL). Our study aimed to create a new Necroptosis-related lncRNAs (NRlncRNAs) risk model that can predict survival and tumor immunity in HCC patients. The RNA expression and clinical data originated from the TCGA database. Pearson correlation analysis was applied to identify the NRlncRNAs. The LASSO-Cox regression analysis was employed to build the risk model. Next, the ROC curve and the area under the Kaplan-Meier curve were utilized to evaluate the accuracy of the risk model. In addition, based on the two groups of risk model, we performed the following analysis: clinical correlation, differential expression, PCA, TMB, GSEA analysis, immune cells infiltration, and clinical drug prediction analysis. Plus, qRT-PCR was applied to test the expression of genes in the risk model. Finally, a prognosis model covering six necroptosis-related lncRNAs was constructed to predict the survival of HCC patients. The ROC curve results showed that the risk model possesses better accuracy. The 1, 3, and 5-years AUC values were 0.746, 0.712, and 0.670, respectively. Of course, we also observed that significant differences exist in the following analysis, such as functional signaling pathways, immunological state, mutation profiles, and medication sensitivity between high-risk and low-risk groups of HCC patients. The result of qRT-PCR confirmed that three NRlncRNAs were more highly expressed in HCC cell lines than in the normal cell line. In conclusion, based on the bioinformatics analysis, we constructed an NRlncRNAs associated risk model, which predicts the prognosis of HCC patients. Although our study has some limitations, it may greatly contribute to the treatment of HCC and medical progression.
Collapse
Affiliation(s)
- Jianguo Wang
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Bingbing Shen
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xinyuan Liu
- Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Jianxin Jiang
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- *Correspondence: Jianxin Jiang,
| |
Collapse
|
48
|
Lv J, Xu Q, Wu G, Hou J, Yang G, Tang C, Qu G, Xu Y. A novel marker based on necroptosis-related long non-coding RNA for forecasting prognostic in patients with clear cell renal cell carcinoma. Front Genet 2022; 13:948254. [PMID: 36212132 PMCID: PMC9532702 DOI: 10.3389/fgene.2022.948254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/25/2022] [Indexed: 11/29/2022] Open
Abstract
Background: The incidence of clear cell renal cell carcinoma (ccRCC) is high and has increased gradually in recent years. At present, due to the lack of effective prognostic indicators, the prognosis of ccRCC patients is greatly affected.Necroptosis is a type of cell death, and along with cell necrosis is considered a new cancer treatment strategy. The aim of this study was to construct a new marker for predicting the prognosis of ccRCC patients based on long non-coding RNA (nrlncRNAs) associated with necroptosis. Methods: RNA sequence data and clinical information of ccRCC patients from the Cancer Genome Atlas database (TCGA) were downloaded. NrlncRNA was identified by Pearson correlation study. The differentially expressed nrlncRNA and nrlncRNA pairs were identified by univariate Cox regression and Lasso-Cox regression. Finally, a Kaplan-Meier survival study, Cox regression, clinicopathological features correlation study, and receiver operating characteristic (ROC) spectrum were used to evaluate the prediction ability of 25-nrlncrnas for markers. In addition, correlations between the risk values and sensitivity to tumor-infiltrating immune cells, immune checkpoint inhibitors, and targeted drugs were also investigated. Results: In the current research, a novel marker of 25-nrlncRNAs pairs was developed to improve prognostic prediction in patients with ccRCC. Compared with clinicopathological features, nrlncRNAs had a higher diagnostic validity for markers, with the 1-year, 3-years, and 5-years operating characteristic regions being 0.902, 0.835, and 0.856, respectively, and compared with the stage of 0.868, an increase of 0.034. Cox regression and stratified survival studies showed that this marker could be an independent predictor of ccRCC patients. In addition, patients with different risk scores had significant differences in tumor-infiltrating immune cells, immune checkpoint, and semi-inhibitory concentration of targeted drugs. The feature could be used to evaluate the clinical efficacy of immunotherapy and targeted drug therapy. Conclusion: 25-nrlncRNAs pair markers may help to evaluate the prognosis and molecular characteristics of ccRCC patients, which improve treatment methods and can be more used in clinical practice.
Collapse
Affiliation(s)
- Jinxing Lv
- Department of Urology, Zhuzhou Central Hospital, Zhuzhou, China
- Department of Urology, Dehua Hospital Affiliated to Huaqiao University, Quanzhou, China
| | - Qinghui Xu
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Guoqing Wu
- Division of Urology, Department of Surgery, The University of Hongkong-ShenZhen Ospital, ShenZhen, China
| | - Jian Hou
- Division of Urology, Department of Surgery, The University of Hongkong-ShenZhen Ospital, ShenZhen, China
| | - Guang Yang
- Department of Urology, Zhuzhou Central Hospital, Zhuzhou, China
| | - Cheng Tang
- Department of Urology, Zhuzhou Central Hospital, Zhuzhou, China
| | - Genyi Qu
- Department of Urology, Zhuzhou Central Hospital, Zhuzhou, China
- *Correspondence: Genyi Qu, ; Yong Xu,
| | - Yong Xu
- Department of Urology, Zhuzhou Central Hospital, Zhuzhou, China
- *Correspondence: Genyi Qu, ; Yong Xu,
| |
Collapse
|
49
|
Xiang Z, Mranda GM, Zhou X, Xue Y, Wang Y, Wei T, Liu J, Ding Y. Identification and validation of the necroptosis-related gene signature related to prognosis and tumor immune in hepatocellular carcinoma. Medicine (Baltimore) 2022; 101:e30219. [PMID: 36086716 PMCID: PMC10980426 DOI: 10.1097/md.0000000000030219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/12/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the sixth most common cancer, which is characterized by complicated etiology, excessive heterogeneity, and poor prognosis. Necroptosis is a new kind of programmed cell death, which is intently associated with the occurrence and development of tumors. Although researchers have had a deep understanding of necroptosis in recent years, the expression level of necroptosis-related genes in HCC and its relationship with the survival time of HCC patients are not clear. METHODS According to the expression of necroptosis-related genes and the survival of HCC patients, HCC patients in the TCGA database were divided into 2 groups that were relatively independent of each other. The genes related to the survival time of HCC patients were screened from the 2 groups of differentially expressed genes. By using the Least Absolute Shrinkage and Selection Operator Cox regression analysis, the optimal λ value was obtained, and the 10-gene signature model was established. RESULTS According to the median risk score of the TCGA cohort, HCC patients were averagely divided into high- and low-risk groups. Compared with the low-risk group, the death toll of the high-risk group was relatively higher and the survival time was relatively shorter. Principal component analysis and t-distributed stochastic neighbor embedding analysis showed that there was a significant separation between high- and low-risk groups. Through Kaplan-Meier analysis, it was found that the survival time of HCC patients in the high-risk group was significantly shorter than that in the low-risk group. Through receiver operating characteristic analysis, it was found that the sensitivity and specificity of the model were good. We also make a comprehensive analysis of the international cancer genome consortium database as a verification queue and prove the reliability of the 10-gene signature model. Gene Ontolog, Kyoto Encyclopedia of Genes and Genomes, and single-sample gene set enrichment analysis showed that many biological processes and pathways related to immunity had been enriched, and the antitumor immune function was weakened in the high-risk population. CONCLUSION The risk score can be considered as an independent prognostic factor to predict the prognosis of patients with HCC, and necroptosis-related genes are also closely related to tumor immune function.
Collapse
Affiliation(s)
- Zhiping Xiang
- Department of Gastrointestinal Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Geofrey Mahiki Mranda
- Department of Gastrointestinal Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xingguo Zhou
- Department of Gastrointestinal Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ying Xue
- Department of Gastrointestinal Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yu Wang
- Department of Gastrointestinal Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Tian Wei
- Department of Gastrointestinal Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Junjian Liu
- Department of Gastrointestinal Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yinlu Ding
- Department of Gastrointestinal Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
50
|
Yang Y, Li X, Zhang T, Xu D. RIP kinases and necroptosis in aging and aging-related diseases. LIFE MEDICINE 2022; 1:2-20. [PMID: 39872161 PMCID: PMC11749793 DOI: 10.1093/lifemedi/lnac003] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/03/2022] [Indexed: 01/29/2025]
Abstract
Aging is a natural process that is characterized by chronic, low-grade inflammation, which represents the primary risk factor in the pathogenesis of a variety of diseases, i.e. aging-related diseases. RIP kinases, in particular RIPK1 and RIPK3, have emerged as master regulators of proinflammatory responses that act either by causing apoptosis and necroptosis or by directly regulating intracellular inflammatory signaling. While, RIPK1/3 and necroptosis are intimately linked to multiple human diseases, the relationship among RIPK1/3, necroptosis, and aging remains unclear. In this review, we discuss current evidence arguing for the involvement of RIPK1/3 and necroptosis in the progression of aging. In addition, we provide updated information and knowledge on the role of RIPK1/3 and necroptosis in aging-related diseases. Leveraging these new mechanistic insights in aging, we postulate how our improved understanding of RIPK1/3 and necroptosis in aging may support the development of therapeutics targeting RIPK1/3 and necroptosis for the modulation of aging and treatment of aging-related diseases.
Collapse
Affiliation(s)
- Yuanxin Yang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingyan Li
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Tao Zhang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States
| | - Daichao Xu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| |
Collapse
|