1
|
Stewart J, Damania B. Innate Immune Recognition of EBV. Curr Top Microbiol Immunol 2025. [PMID: 40399572 DOI: 10.1007/82_2025_297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2025]
Abstract
Epstein-Barr virus (EBV) is a very successful human pathogen, with ~95% seroprevalence worldwide (Mentzer et al, Nat Commun 13:1818, 2022). If contracted in early childhood, EBV infection is typically asymptomatic; however, infections in adolescence and adulthood can manifest as infectious mononucleosis (IM). The innate immune response is the first line of defense, and its function is critical for controlling EBV infection. During EBV infection, components of the virus, known as pathogen-associated molecular patterns (PAMPs), are recognized by germline-encoded pattern recognition receptors (PRRs). PRRs are found on both non-immune and immune cells including antigen-presenting cells, such as macrophages, monocytes, dendritic cells, natural killer (NK), and mast cells. PRRs are also found on B cells and epithelial cells, the primary targets of EBV infection. Without immune surveillance, EBV can transform cells inducing various malignancies. Conversely, a prolonged innate immune response can lead to chronic inflammation which increases the likelihood of cancer. This review discusses innate immune recognition of EBV and its associated diseases.
Collapse
Affiliation(s)
- Jessica Stewart
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Blossom Damania
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
2
|
Zhang W, Wang C, Meng Y, He L, Dong M. EBV Vaccines in the Prevention and Treatment of Nasopharyngeal Carcinoma. Vaccines (Basel) 2025; 13:478. [PMID: 40432090 PMCID: PMC12115577 DOI: 10.3390/vaccines13050478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Revised: 04/21/2025] [Accepted: 04/22/2025] [Indexed: 05/29/2025] Open
Abstract
Epstein-Barr virus (EBV), a ubiquitous human herpesvirus, has been robustly linked to the pathogenesis of nasopharyngeal carcinoma (NPC). The mechanism of EBV-induced NPC involves complex interactions between viral proteins and host cell pathways. This review aims to comprehensively outline the mechanism of EBV-induced NPC and the latest advances in targeted EBV vaccines for prophylaxis and treatment. This review explores the intricate molecular mechanisms by which EBV contributes to NPC pathogenesis, highlighting viral latency, genetic and epigenetic alterations, and immune evasion strategies. It emphasizes the pivotal role of key viral proteins, including EBNA1, LMP1, and LMP2A, in carcinogenesis. Subsequently, the discussion shifts towards the development of targeted EBV vaccines, including preventive vaccines aimed at preventing primary EBV infection and therapeutic vaccines aimed at treating diagnosed EBV-related NPC. The review underscores the challenges and future directions in the field, stressing the importance of developing innovative vaccine strategies and combination therapies to improve efficacy. This review synthesizes current insights into the molecular mechanisms of EBV-induced NPC and the development of EBV-targeted vaccines, highlighting the potential use of mRNA vaccines for NPC treatment.
Collapse
Affiliation(s)
- Weiwei Zhang
- Department of Oncology, Cancer Prevention and Treatment Institute of Chengdu, Chengdu Fifth People’s Hospital/The Second Clinical Medical College, Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China; (W.Z.)
| | - Chuang Wang
- Chengdu Yunce Medical Biotechnology Co., Ltd., Chengdu 611135, China;
| | - Yousheng Meng
- Department of Oncology, Cancer Prevention and Treatment Institute of Chengdu, Chengdu Fifth People’s Hospital/The Second Clinical Medical College, Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China; (W.Z.)
| | - Lang He
- Department of Oncology, Cancer Prevention and Treatment Institute of Chengdu, Chengdu Fifth People’s Hospital/The Second Clinical Medical College, Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China; (W.Z.)
| | - Mingqing Dong
- Division of Pulmonary Medicine, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou 325000, China
| |
Collapse
|
3
|
Tsotridou E, Hatzipantelis E. Epstein-Barr Infection, Hodgkin's Lymphoma, and the Immune System: Insights into the Molecular Mechanisms Facilitating Immune Evasion. Cancers (Basel) 2025; 17:1481. [PMID: 40361408 PMCID: PMC12071159 DOI: 10.3390/cancers17091481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 04/23/2025] [Accepted: 04/25/2025] [Indexed: 05/15/2025] Open
Abstract
Epstein-Barr virus (EBV) constitutes a very common pathogen and a well-characterized carcinogen. EBV has the ability to establish a chronic latent infection, during which only a subset of the viral genes is expressed. EBV is implicated in multiple malignancies, including Hodgkin's lymphoma (HL). HL mainly affects adolescents and young adults and has an overall favorable prognosis. However, relapsed or refractory disease still poses a therapeutic challenge. EBV does not only induce malignant transformation but also hinders the detection and clearance of the neoplastic cells by the immune system. The proteins and non-coding RNAs expressed in latency IIa, which is associated with HL, employ a variety of mechanisms to target different steps of innate and adaptive immunity, to take advantage of the immunosuppressant effect of immune checkpoints, and to shape the microenvironment to support the survival and proliferation of malignant cells. They suppress the expression or promote the degradation of pattern-recognition receptors, interfere with type I interferon and proinflammatory cytokine mediated signaling, and hinder the effector function of natural killer cells. The processing and presentation of peptides to CD4 and CD8 T cells are also hampered. EBV induces the expression of immune checkpoints, the secretion of immunosuppressive cytokines, and the efflux of regulatory T cells in the tumor microenvironment. The current review provides a comprehensive overview of the molecular mechanisms underlying this complex interplay between EBV and the immune system in HL with focus on clinical data from the pediatric population, which is the key for developing novel, effective therapeutic interventions.
Collapse
Affiliation(s)
- Eleni Tsotridou
- Children’s and Adolescents’ Hematology Oncology Unit, 2nd Department of Paediatrics, AHEPA University General Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, St. Kyriakidi 1, 54636 Thessaloniki, Greece;
| | | |
Collapse
|
4
|
Sarathkumara YD, Van Bibber NW, Liu Z, Heslop HE, Rouce RH, Coghill AE, Rooney CM, Proietti C, Doolan DL. Differential antibody response to EBV proteome following EBVST immunotherapy in EBV-associated lymphomas. Blood Adv 2025; 9:1658-1669. [PMID: 39908567 PMCID: PMC11995064 DOI: 10.1182/bloodadvances.2024014937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/03/2025] [Accepted: 01/21/2025] [Indexed: 02/07/2025] Open
Abstract
ABSTRACT Epstein-Barr virus (EBV) is associated with a diverse range of lymphomas. EBV-specific T-cell (EBVST) infusions have shown promise in safety and clinical effectiveness in treating EBV-associated lymphomas; however, not all patients respond to T-cell immunotherapies. To identify EBV antigen-specific antibody responses associated with clinical outcomes, we comprehensively characterized antibody responses to the complete EBV proteome using a custom protein microarray in 56 patients with EBV-associated lymphoma who received EBVST infusions in phase 1 clinical trials. Responders (nonprogressors) and nonresponders (progressors) had distinct antibody profiles against EBV. Twenty-five immunoglobulin G (IgG) antibodies were significantly elevated in higher levels in nonresponders than in responders at 3 months after EBVST infusion. Ten of these remained significant after adjustment for sex, age, and cancer type, including LMP2A (4 variants), BGRF1/BDRF1 (2 variants), LMP1, BKRF2, BKRF4, and BALF5. Random forest analysis identified these 10 IgG antibodies as key predictors of clinical response. Paired analyses using blood samples collected at both before infusion and 3 months after EBVST infusion indicated an increase in the mean antibody level for 6 other anti-EBV antibodies (IgG [BGLF2, LF1, and BGLF3]; IgA [BGLF3, BALF2, and BBLF2/3) in nonresponders. Overall, our findings suggest that these EBV-directed antibodies as potential serological markers for predicting clinical responses to EBVST infusions and as therapeutic targets for immunotherapy in EBV-positive lymphomas. These trials were registered at www.clinicaltrials.gov as #NCT01555892 (Cytotoxic T-Lymphocytes for EBV-positive Lymphoma [GRALE]), #NCT02973113 (Nivolumab With Epstein Barr Virus Specific T Cells [EBVSTS], Relapsed/Refractory EBV Positive Lymphoma [PREVALE]), and #NCT02287311 (Most Closely Matched 3rd Party Rapidly Generated LMP, BARF1, and EBNA1 Specific CTL, EBV-Positive Lymphoma [MABEL]).
Collapse
Affiliation(s)
- Yomani D. Sarathkumara
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Nathan W. Van Bibber
- Cancer Epidemiology Program, Division of Population Sciences, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Zhiwei Liu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD
| | - Helen E. Heslop
- Center for Cell and Gene Therapy, Baylor College of Medicine Houston Methodist Hospital and Texas Children’s Hospital, Houston, TX
| | - Rayne H. Rouce
- Center for Cell and Gene Therapy, Baylor College of Medicine Houston Methodist Hospital and Texas Children’s Hospital, Houston, TX
| | - Anna E. Coghill
- Cancer Epidemiology Program, Division of Population Sciences, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Cliona M. Rooney
- Center for Cell and Gene Therapy, Baylor College of Medicine Houston Methodist Hospital and Texas Children’s Hospital, Houston, TX
| | - Carla Proietti
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Denise L. Doolan
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
5
|
SoRelle ED, Luftig MA. Multiple sclerosis and infection: history, EBV, and the search for mechanism. Microbiol Mol Biol Rev 2025; 89:e0011923. [PMID: 39817754 PMCID: PMC11948499 DOI: 10.1128/mmbr.00119-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025] Open
Abstract
SUMMARYInfection has long been hypothesized as the cause of multiple sclerosis (MS), and recent evidence for Epstein-Barr virus (EBV) as the trigger of MS is clear and compelling. This clarity contrasts with yet uncertain viral mechanisms and their relation to MS neuroinflammation and demyelination. As long as this disparity persists, it will invigorate virologists, molecular biologists, immunologists, and clinicians to ascertain how EBV potentiates MS onset, and possibly the disease's chronic activity and progression. Such efforts should take advantage of the diverse body of basic and clinical research conducted over nearly two centuries since the first clinical descriptions of MS plaques. Defining the contribution of EBV to the complex and multifactorial pathology of MS will also require suitable experimental models and techniques. Such efforts will broaden our understanding of virus-driven neuroinflammation and specifically inform the development of EBV-targeted therapies for MS management and, ultimately, prevention.
Collapse
Affiliation(s)
- Elliott D. SoRelle
- Department of Molecular Genetics & Microbiology, Center for Virology, Duke University, Durham, North Carolina, USA
| | - Micah A. Luftig
- Department of Molecular Genetics & Microbiology, Center for Virology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
6
|
Borghol AH, Bitar ER, Hanna A, Naim G, Rahal EA. The role of Epstein-Barr virus in autoimmune and autoinflammatory diseases. Crit Rev Microbiol 2025; 51:296-316. [PMID: 38634723 DOI: 10.1080/1040841x.2024.2344114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/15/2024] [Accepted: 04/11/2024] [Indexed: 04/19/2024]
Abstract
Epstein-Barr Virus (EBV), a dsDNA herpesvirus, is believed to play a significant role in exacerbating and potentially triggering autoimmune and autoinflammatory maladies. Around 90% of the world is infected with the virus, which establishes latency within lymphocytes. EBV is also known to cause infectious mononucleosis, a self-limited flu-like illness, in adolescents. EBV is often reactivated and it employs several mechanisms of evading the host immune system. It has also been implicated in inducing host immune dysfunction potentially resulting in exacerbation or triggering of inflammatory processes. EBV has therefore been linked to a number of autoimmune diseases, including systemic lupus erythematosus, multiple sclerosis, rheumatoid arthritis, and Sjögren's syndrome. The review examines the molecular mechanisms through which the virus alters host immune system components thus possibly resulting in autoimmune processes. Understanding the mechanisms underpinning EBV-associated autoimmunity is pivotal; however, the precise causal pathways remain elusive. Research on therapeutic agents and vaccines for EBV has been stagnant for a long number of years until recent advances shed light on potential therapeutic targets. The implications of EBV in autoimmunity underscore the importance of developing targeted therapeutic strategies and, potentially, vaccines to mitigate the autoimmune burden associated with this ubiquitous virus.
Collapse
Affiliation(s)
- Abdul Hamid Borghol
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Center for Infectious Diseases Research (CIDR), American University of Beirut, Beirut, Lebanon
| | - Elio R Bitar
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Center for Infectious Diseases Research (CIDR), American University of Beirut, Beirut, Lebanon
| | - Aya Hanna
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Center for Infectious Diseases Research (CIDR), American University of Beirut, Beirut, Lebanon
| | - Georges Naim
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Center for Infectious Diseases Research (CIDR), American University of Beirut, Beirut, Lebanon
| | - Elias A Rahal
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Center for Infectious Diseases Research (CIDR), American University of Beirut, Beirut, Lebanon
| |
Collapse
|
7
|
Desimio MG, Covino DA, Cancrini C, Doria M. Entry into the lytic cycle exposes EBV-infected cells to NK cell killing via upregulation of the MICB ligand for NKG2D and activation of the CD56 bright and NKG2A +KIR +CD56 dim subsets. Front Immunol 2024; 15:1467304. [PMID: 39676862 PMCID: PMC11638013 DOI: 10.3389/fimmu.2024.1467304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 11/08/2024] [Indexed: 12/17/2024] Open
Abstract
The Epstein-Barr virus (EBV) is usually acquired during infancy as an asymptomatic infection and persists throughout life in a latent state under the control of the host immune system. However, EBV is associated with various malignant diseases that preferentially develop in immunodeficient individuals. Accumulating evidence suggests an important role for NK cells, though the mechanisms by which EBV evades or triggers NK cell responses are poorly understood. Here, we generated EBV-immortalized lymphoblastoid cell lines stably expressing an inducible form of the BZLF1 early lytic viral protein (LCL-Z) to challenge primary NK cells with EBV+ targets in either the latent or lytic phase of infection. We show that entry into the lytic phase results in drastic downregulation of HLA-E but not HLA-A, -B, and -C molecules and in increased expression of ligands for the activating NKG2D receptor, with MICB being upregulated at the cell membrane and released in a soluble form while ULBP2 and ULBP4 accumulate intracellularly. Furthermore, LCL-Z cells are killed by NK cells in an NKG2D-dependent manner and to a much higher extent during the lytic phase, but HLA-class I molecules constrain killing throughout the viral life cycle; unexpectedly, the antibody-mediated block of the inhibitory NKG2A receptor results in reduced lysis of lytic LCL-Z cells that are nearly devoid of the cognate HLA-E ligand. Accordingly, we show that NKG2A+ NK cell subsets, specifically CD56bright and NKG2A+KIR+CD56dim cells, are those that preferentially respond against cells with lytic EBV replication. Overall, these results shed light on NK/EBV+ cell interactions providing new information for improving NK cell-based immunotherapies to treat EBV-induced diseases.
Collapse
Affiliation(s)
- Maria Giovanna Desimio
- Research Unit of Primary Immunodeficiency, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Daniela Angela Covino
- Research Unit of Primary Immunodeficiency, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Caterina Cancrini
- Research Unit of Primary Immunodeficiency, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Department of Systems Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Margherita Doria
- Research Unit of Primary Immunodeficiency, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| |
Collapse
|
8
|
Zhang F, Li W, Zheng X, Ren Y, Li L, Yin H. The novel immune landscape of immune-checkpoint blockade in EBV-associated malignancies. FASEB J 2024; 38:e70139. [PMID: 39520274 DOI: 10.1096/fj.202301980rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 09/15/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
The Epstein-Barr virus (EBV) is a ubiquitous gamma-herpesvirus and a class 1 carcinogen that is closely associated with a series of malignant lymphomas and epithelial cell carcinomas. Although these EBV-related cancers may exhibit different features in clinical symptoms and anatomical sites, they all have a characteristic immune-suppressed tumor immune microenvironment (TIME) that is tightly correlated with an abundance of tumor-infiltrating lymphocytes (TILs) that primarily result from the EBV infection. Overwhelming evidence indicates that an upregulation of immune-checkpoint molecules is a powerful strategy employed by the EBV to escape immune surveillance. While previous studies have mainly focused on the therapeutic effects of PD-1 and CTLA-4 blockades in treating EBV-associated tumors, several novel inhibitory receptors (e.g., CD47, LAG-3, TIM-3, VISTA, and DDR1) have recently been identified as potential targets for treating EBV-associated malignancies (EBVaMs). This review retrospectively summarizes the biological mechanisms used for immune checkpoint evasion in EBV-associated tumors. Its purpose is to update our current knowledge concerning the underlying mechanisms by which an immune checkpoint blockade triggers host antitumor immunity against EBVaMs. Additionally, this review may help investigators to more fully understand the correlation between EBV infection and tumor development and subsequently develop novel therapeutic strategies.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Intensive Care Unit, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Wenjing Li
- The First Class Ward 2 of the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xinglong Zheng
- Department of Intensive Care Unit, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yinlong Ren
- Department of Intensive Care Unit, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Lijun Li
- Department of Intensive Care Unit, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Haiyan Yin
- Department of Intensive Care Unit, the First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
9
|
Nunes JM, Kell DB, Pretorius E. Herpesvirus Infection of Endothelial Cells as a Systemic Pathological Axis in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Viruses 2024; 16:572. [PMID: 38675914 PMCID: PMC11053605 DOI: 10.3390/v16040572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
Understanding the pathophysiology of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is critical for advancing treatment options. This review explores the novel hypothesis that a herpesvirus infection of endothelial cells (ECs) may underlie ME/CFS symptomatology. We review evidence linking herpesviruses to persistent EC infection and the implications for endothelial dysfunction, encompassing blood flow regulation, coagulation, and cognitive impairment-symptoms consistent with ME/CFS and Long COVID. This paper provides a synthesis of current research on herpesvirus latency and reactivation, detailing the impact on ECs and subsequent systemic complications, including latent modulation and long-term maladaptation. We suggest that the chronicity of ME/CFS symptoms and the multisystemic nature of the disease may be partly attributable to herpesvirus-induced endothelial maladaptation. Our conclusions underscore the necessity for further investigation into the prevalence and load of herpesvirus infection within the ECs of ME/CFS patients. This review offers conceptual advances by proposing an endothelial infection model as a systemic mechanism contributing to ME/CFS, steering future research toward potentially unexplored avenues in understanding and treating this complex syndrome.
Collapse
Affiliation(s)
- Jean M. Nunes
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1, Matieland 7602, South Africa;
| | - Douglas B. Kell
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1, Matieland 7602, South Africa;
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Chemitorvet 200, 2800 Kongens Lyngby, Denmark
| | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1, Matieland 7602, South Africa;
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| |
Collapse
|
10
|
Šimičić P, Batović M, Stojanović Marković A, Židovec-Lepej S. Deciphering the Role of Epstein-Barr Virus Latent Membrane Protein 1 in Immune Modulation: A Multifaced Signalling Perspective. Viruses 2024; 16:564. [PMID: 38675906 PMCID: PMC11054855 DOI: 10.3390/v16040564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
The disruption of antiviral sensors and the evasion of immune defences by various tactics are hallmarks of EBV infection. One of the EBV latent gene products, LMP1, was shown to induce the activation of signalling pathways, such as NF-κB, MAPK (JNK, ERK1/2, p38), JAK/STAT and PI3K/Akt, via three subdomains of its C-terminal domain, regulating the expression of several cytokines responsible for modulation of the immune response and therefore promoting viral persistence. The aim of this review is to summarise the current knowledge on the EBV-mediated induction of immunomodulatory molecules by the activation of signal transduction pathways with a particular focus on LMP1-mediated mechanisms. A more detailed understanding of the cytokine biology molecular landscape in EBV infections could contribute to the more complete understanding of diseases associated with this virus.
Collapse
Affiliation(s)
- Petra Šimičić
- Department of Oncology and Nuclear Medicine, Sestre Milosrdnice University Hospital Center, Vinogradska cesta 29, 10 000 Zagreb, Croatia;
| | - Margarita Batović
- Department of Clinical Microbiology and Hospital Infections, Dubrava University Hospital, Avenija Gojka Šuška 6, 10 000 Zagreb, Croatia;
| | - Anita Stojanović Marković
- Department of Immunological and Molecular Diagnostics, University Hospital for Infectious Diseases “Dr. Fran Mihaljević”, Mirogojska 8, 10 000 Zagreb, Croatia
| | - Snjezana Židovec-Lepej
- Department of Immunological and Molecular Diagnostics, University Hospital for Infectious Diseases “Dr. Fran Mihaljević”, Mirogojska 8, 10 000 Zagreb, Croatia
| |
Collapse
|
11
|
Silva JDM, Alves CEDC, Pontes GS. Epstein-Barr virus: the mastermind of immune chaos. Front Immunol 2024; 15:1297994. [PMID: 38384471 PMCID: PMC10879370 DOI: 10.3389/fimmu.2024.1297994] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/23/2024] [Indexed: 02/23/2024] Open
Abstract
The Epstein-Barr virus (EBV) is a ubiquitous human pathogen linked to various diseases, including infectious mononucleosis and multiple types of cancer. To control and eliminate EBV, the host's immune system deploys its most potent defenses, including pattern recognition receptors, Natural Killer cells, CD8+ and CD4+ T cells, among others. The interaction between EBV and the human immune system is complex and multifaceted. EBV employs a variety of strategies to evade detection and elimination by both the innate and adaptive immune systems. This demonstrates EBV's mastery of navigating the complexities of the immunological landscape. Further investigation into these complex mechanisms is imperative to advance the development of enhanced therapeutic approaches with heightened efficacy. This review provides a comprehensive overview of various mechanisms known to date, employed by the EBV to elude the immune response, while establishing enduring latent infections or instigate its lytic replication.
Collapse
Affiliation(s)
- Jean de Melo Silva
- Laboratory of Virology and Immunology, National Institute of Amazonian Research (INPA), Manaus, AM, Brazil
- Post-Graduate Program in Basic and Applied Immunology, Institute of Biological Science, Federal University of Amazonas, Manaus, AM, Brazil
| | | | - Gemilson Soares Pontes
- Laboratory of Virology and Immunology, National Institute of Amazonian Research (INPA), Manaus, AM, Brazil
- Post-Graduate Program in Basic and Applied Immunology, Institute of Biological Science, Federal University of Amazonas, Manaus, AM, Brazil
| |
Collapse
|
12
|
Theobald SJ, Fiestas E, Schneider A, Ostermann B, Danisch S, von Kaisenberg C, Rybniker J, Hammerschmidt W, Zeidler R, Stripecke R. Fully Human Herpesvirus-Specific Neutralizing IgG Antibodies Generated by EBV Immortalization of Splenocytes-Derived from Immunized Humanized Mice. Cells 2023; 13:20. [PMID: 38201224 PMCID: PMC10778511 DOI: 10.3390/cells13010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024] Open
Abstract
Antiviral neutralizing antibodies (nAbs) are commonly derived from B cells developed in immunized or infected animals and humans. Fully human antibodies are preferred for clinical use as they are potentially less immunogenic. However, the function of B cells varies depending on their homing pattern and an additional hurdle for antibody discovery in humans is the source of human tissues with an immunological microenvironment. Here, we show an efficient method to pharm human antibodies using immortalized B cells recovered from Nod.Rag.Gamma (NRG) mice reconstituting the human immune system (HIS). Humanized HIS mice were immunized either with autologous engineered dendritic cells expressing the human cytomegalovirus gB envelope protein (HCMV-gB) or with Epstein-Barr virus-like particles (EB-VLP). Human B cells recovered from spleen of HIS mice were efficiently immortalized with EBV in vitro. We show that these immortalized B cells secreted human IgGs with neutralization capacities against prototypic HCMV-gB and EBV-gp350. Taken together, we show that HIS mice can be successfully used for the generation and pharming fully human IgGs. This technology can be further explored to generate antibodies against emerging infections for diagnostic or therapeutic purposes.
Collapse
Affiliation(s)
- Sebastian J. Theobald
- Department I of Internal Medicine, University Hospital Cologne, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany; (J.R.); (R.S.)
- Center for Molecular Medicine Cologne (CMMC), University Hospital Cologne, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 50931 Cologne, Germany
- Clinic of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, 30625 Hannover, Germany; (A.S.); (S.D.)
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 30559 Hannover, Germany
| | - Elena Fiestas
- Research Unit Gene Vectors, Helmholtz Center Munich, German Research Center for Environmental Health, 81377 Munich, Germany (W.H.)
- German Center for Infection Research (DZIF), Partner Site Munich, 81377 Munich, Germany;
- Institute of Structural Biology, Helmholtz Center Munich, German Research Center for Environmental Health, 81377 Munich, Germany
| | - Andreas Schneider
- Clinic of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, 30625 Hannover, Germany; (A.S.); (S.D.)
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 30559 Hannover, Germany
| | - Benjamin Ostermann
- Clinic of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, 30625 Hannover, Germany; (A.S.); (S.D.)
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 30559 Hannover, Germany
| | - Simon Danisch
- Clinic of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, 30625 Hannover, Germany; (A.S.); (S.D.)
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 30559 Hannover, Germany
| | - Constantin von Kaisenberg
- Department of Obstetrics, Gynecology and Reproductive Medicine, Hannover Medical School, 30625 Hannover, Germany;
| | - Jan Rybniker
- Department I of Internal Medicine, University Hospital Cologne, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany; (J.R.); (R.S.)
- Center for Molecular Medicine Cologne (CMMC), University Hospital Cologne, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 50931 Cologne, Germany
| | - Wolfgang Hammerschmidt
- Research Unit Gene Vectors, Helmholtz Center Munich, German Research Center for Environmental Health, 81377 Munich, Germany (W.H.)
- German Center for Infection Research (DZIF), Partner Site Munich, 81377 Munich, Germany;
| | - Reinhard Zeidler
- German Center for Infection Research (DZIF), Partner Site Munich, 81377 Munich, Germany;
- Institute of Structural Biology, Helmholtz Center Munich, German Research Center for Environmental Health, 81377 Munich, Germany
- Department of Otorhinolaryngology, Munich University Hospital, 81377 Munich, Germany
| | - Renata Stripecke
- Department I of Internal Medicine, University Hospital Cologne, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany; (J.R.); (R.S.)
- Center for Molecular Medicine Cologne (CMMC), University Hospital Cologne, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 50931 Cologne, Germany
- Clinic of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, 30625 Hannover, Germany; (A.S.); (S.D.)
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 30559 Hannover, Germany
- Institute of Translational Immuno-Oncology, University Hospital Cologne, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany
- Cancer Research Center Cologne Essen, University Hospital Cologne, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany
| |
Collapse
|
13
|
Zhao G, Bu G, Liu G, Kong X, Sun C, Li Z, Dai D, Sun H, Kang Y, Feng G, Zhong Q, Zeng M. mRNA-based Vaccines Targeting the T-cell Epitope-rich Domain of Epstein Barr Virus Latent Proteins Elicit Robust Anti-Tumor Immunity in Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302116. [PMID: 37890462 PMCID: PMC10724410 DOI: 10.1002/advs.202302116] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 09/04/2023] [Indexed: 10/29/2023]
Abstract
Epstein-Barr virus (EBV) is associated with various malignancies and infects >90% of the global population. EBV latent proteins are expressed in numerous EBV-associated cancers and contribute to carcinogenesis, making them critical therapeutic targets for these cancers. Thus, this study aims to develop mRNA-based therapeutic vaccines that express the T-cell-epitope-rich domain of truncated latent proteins of EBV, including truncatedlatent membrane protein 2A (Trunc-LMP2A), truncated EBV nuclear antigen 1 (Trunc-EBNA1), and Trunc-EBNA3A. The vaccines effectively activate both cellular and humoral immunity in mice and show promising results in suppressing tumor progression and improving survival time in tumor-bearing mice. Furthermore, it is observed that the truncated forms of the antigens, Trunc-LMP2A, Trunc-EBNA1, and Trunc-EBNA3A, are more effective than full-length antigens in activating antigen-specific immune responses. In summary, the findings demonstrate the effectiveness of mRNA-based therapeutic vaccines targeting the T-cell-epitope-rich domain of EBV latent proteins and providing new treatment options for EBV-associated cancers.
Collapse
Affiliation(s)
- Ge‐Xin Zhao
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer. MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma, Diagnosis, and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Guo‐Long Bu
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer. MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma, Diagnosis, and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Gang‐Feng Liu
- Department of Head and Neck Surgery Section IIThe Third Affiliated Hospital of Kunming Medical University/Yunnan Cancer Hospital519 Kunzhou RoadKunming650118China
| | - Xiang‐Wei Kong
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer. MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma, Diagnosis, and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Cong Sun
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer. MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma, Diagnosis, and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Zi‐Qian Li
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer. MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma, Diagnosis, and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Dan‐Ling Dai
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer. MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma, Diagnosis, and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Hai‐Xia Sun
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer. MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma, Diagnosis, and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Yin‐Feng Kang
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer. MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma, Diagnosis, and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Guo‐Kai Feng
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer. MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma, Diagnosis, and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Qian Zhong
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer. MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma, Diagnosis, and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Mu‐Sheng Zeng
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer. MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma, Diagnosis, and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
- Guangdong‐Hong Kong Joint Laboratory for RNA MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
| |
Collapse
|
14
|
Thakur M, Singh M, Kumar S, Dwivedi VP, Dakal TC, Yadav V. A Reappraisal of the Antiviral Properties of and Immune Regulation through Dietary Phytochemicals. ACS Pharmacol Transl Sci 2023; 6:1600-1615. [PMID: 37974620 PMCID: PMC10644413 DOI: 10.1021/acsptsci.3c00178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Indexed: 11/19/2023]
Abstract
In the present era of the COVID-19 pandemic, viral infections remain a major cause of morbidity and mortality worldwide. In this day and age, viral infections are rampant and spreading rapidly. Among the most aggressive viral infections are ebola, AIDS (acquired immunodeficiency syndrome), influenza, and SARS (severe acute respiratory syndrome). Even though there are few treatment options for viral diseases, most of the antiviral therapies are ineffective owing to frequent mutations, the development of more aggressive strains, drug resistance, and possible side effects. Traditionally, herbal remedies have been used by healers, including for dietary and medicinal purposes. Many clinical and scientific studies have demonstrated the therapeutic potential of plant-derived natural compounds. Because of unsafe practices like blood transfusions and organ transplants from infected patients, medical supply contamination. Our antiviral therapies cannot achieve sterile immunity, and we have yet to find a cure for these pernicious infections. Herbs have been shown to improve therapeutic efficacy against a wide variety of viral diseases because of their high concentration of immunomodulatory phytochemicals (both immunoinhibitory and anti-inflammatory). Combined with biotechnology, this folk medicine system can lead to the development of novel antiviral drugs and therapies. In this Review, we will summarize some selected bioactive compounds with probable mechanisms of their antiviral actions, focusing on the immunological axis of these compounds.
Collapse
Affiliation(s)
- Mony Thakur
- Department
of Microbiology, Central University of Haryana, Mahendergarh, Haryana 123031, India
| | - Mona Singh
- Department
of Obstetrics and Gynaecology, Medical College
of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Sandeep Kumar
- Division
of Cell Biology and Immunology, Council
of Scientific and Industrial Research - Institute of Microbial Technology, Chandigarh 160036, India
| | - Ved Prakash Dwivedi
- International
Centre for Genetic Engineering and Biotechnology, ICGEB Campus, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Tikam Chand Dakal
- Genome
and Computational Biology Lab, Department of Biotechnology, Mohanlal Sukhadia University, Udaipur, Rajasthan 313001, India
| | - Vinod Yadav
- Department
of Microbiology, Central University of Haryana, Mahendergarh, Haryana 123031, India
| |
Collapse
|
15
|
Jaeger HK, Davis DA, Nair A, Shrestha P, Stream A, Yaparla A, Yarchoan R. Mechanism and therapeutic implications of pomalidomide-induced immune surface marker upregulation in EBV-positive lymphomas. Sci Rep 2023; 13:11596. [PMID: 37463943 DOI: 10.1038/s41598-023-38156-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/04/2023] [Indexed: 07/20/2023] Open
Abstract
Epstein-Barr virus (EBV) downregulates immune surface markers to avoid immune recognition. Pomalidomide (Pom) was previously shown to increase immune surface marker expression in EBV-infected tumor cells. We explored the mechanism by which Pom leads to these effects in EBV-infected cells. Pom increased B7-2/CD86 mRNA, protein, and surface expression in EBV-infected cells but this was virtually eliminated in EBV-infected cells made resistant to Pom-induced cytostatic effects. This indicates that Pom initiates the upregulation of these markers by interacting with its target, cereblon. Interestingly, Pom increased the proinflammatory cytokines IP-10 and MIP-1∝/β in EBV infected cells, supporting a possible role for the phosphoinositide 3-kinase (PI3K)/AKT pathway in Pom's effects. Idelalisib, an inhibitor of the delta subunit of PI3 Kinase, blocked AKT-Ser phosphorylation and Pom-induced B7-2 surface expression. PU.1 is a downstream target for AKT that is expressed in EBV-infected cells. Pom treatment led to an increase in PU.1 binding to the B7-2 promoter based on ChIP analysis. Thus, our data indicates Pom acts through cereblon leading to degradation of Ikaros and activation of the PI3K/AKT/PU.1 pathway resulting in upregulation of B7-2 mRNA and protein expression. The increased immune recognition in addition to the increases in proinflammatory cytokines upon Pom treatment suggests Pom may be useful in the treatment of EBV-positive lymphomas.
Collapse
Affiliation(s)
- Hannah K Jaeger
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, Building 10, Rm. 6N106, MSC 1868, 10 Center Drive, Bethesda, MD, 20892-1868, USA
| | - David A Davis
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, Building 10, Rm. 6N106, MSC 1868, 10 Center Drive, Bethesda, MD, 20892-1868, USA
| | - Ashwin Nair
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, Building 10, Rm. 6N106, MSC 1868, 10 Center Drive, Bethesda, MD, 20892-1868, USA
| | - Prabha Shrestha
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, Building 10, Rm. 6N106, MSC 1868, 10 Center Drive, Bethesda, MD, 20892-1868, USA
| | - Alexandra Stream
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, Building 10, Rm. 6N106, MSC 1868, 10 Center Drive, Bethesda, MD, 20892-1868, USA
| | - Amulya Yaparla
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, Building 10, Rm. 6N106, MSC 1868, 10 Center Drive, Bethesda, MD, 20892-1868, USA
| | - Robert Yarchoan
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, Building 10, Rm. 6N106, MSC 1868, 10 Center Drive, Bethesda, MD, 20892-1868, USA.
| |
Collapse
|
16
|
Yao Y, Kong W, Yang L, Ding Y, Cui H. Immunity and Immune Evasion Mechanisms of Epstein-Barr Virus. Viral Immunol 2023; 36:303-317. [PMID: 37285188 DOI: 10.1089/vim.2022.0200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023] Open
Abstract
Epstein-Barr virus (EBV) is the first human oncogenic virus to be identified, which evades the body's immune surveillance through multiple mechanisms that allow long-term latent infection. Under certain pathological conditions, EBVs undergo a transition from the latent phase to the lytic phase and cause targeted dysregulation of the host immune system, leading to the development of EBV-related diseases. Therefore, an in-depth understanding of the mechanism of developing an immune response to EBV and the evasion of immune recognition by EBV is important for the understanding of the pathogenesis of EBV, which is of great significance for finding strategies to prevent EBV infection, and developing a therapy to treat EBV-associated diseases. In this review, we will discuss the molecular mechanisms of host immunological responses to EBV infection and the mechanisms of EBV-mediated immune evasion during chronic active infection.
Collapse
Affiliation(s)
- Yanqing Yao
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Weijing Kong
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Lijun Yang
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yingxue Ding
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hong Cui
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
17
|
Tan H, Gong Y, Liu Y, Long J, Luo Q, Faleti OD, Lyu X. Advancing therapeutic strategies for Epstein-Barr virus-associated malignancies through lytic reactivation. Biomed Pharmacother 2023; 164:114916. [PMID: 37229802 DOI: 10.1016/j.biopha.2023.114916] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023] Open
Abstract
Epstein-Barr virus (EBV) is a widespread human herpes virus associated with lymphomas and epithelial cell cancers. It establishes two separate infection phases, latent and lytic, in the host. Upon infection of a new host cell, the virus activates several pathways, to induce the expression of lytic EBV antigens and the production of infectious virus particles. Although the carcinogenic role of latent EBV infection has been established, recent research suggests that lytic reactivation also plays a significant role in carcinogenesis. In this review, we summarize the mechanism of EBV reactivation and recent findings about the role of viral lytic antigens in tumor formation. In addition, we discuss the treatment of EBV-associated tumors with lytic activators and the targets that may be therapeutically effective in the future.
Collapse
Affiliation(s)
- Haiqi Tan
- Department of Laboratory Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou 510630, China
| | - Yibing Gong
- Department of Laboratory Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou 510630, China
| | - Yi Liu
- Department of Laboratory Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou 510630, China
| | - Jingyi Long
- Department of Laboratory Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou 510630, China
| | - Qingshuang Luo
- Department of Laboratory Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou 510630, China
| | - Oluwasijibomi Damola Faleti
- Department of Laboratory Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou 510630, China; Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, 999000, Hong Kong Special Administrative Region of China
| | - Xiaoming Lyu
- Department of Laboratory Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou 510630, China.
| |
Collapse
|
18
|
Desimio MG, Covino DA, Rivalta B, Cancrini C, Doria M. The Role of NK Cells in EBV Infection and Related Diseases: Current Understanding and Hints for Novel Therapies. Cancers (Basel) 2023; 15:cancers15061914. [PMID: 36980798 PMCID: PMC10047181 DOI: 10.3390/cancers15061914] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
The Epstein-Barr virus (EBV) is a ubiquitous herpesvirus most often transmitted during infancy and infecting the vast majority of human beings. Usually, EBV infection is nearly asymptomatic and results in life-long persistency of the virus in a latent state under the control of the host immune system. Yet EBV can cause an acute infectious mononucleosis (IM), particularly in adolescents, and is associated with several malignancies and severe diseases that pose a serious threat to individuals with specific inborn error of immunity (IEI). While there is a general consensus on the requirement for functional CD8 T cells to control EBV infection, the role of the natural killer (NK) cells of the innate arm of immunity is more enigmatic. Here we provide an overview of the interaction between EBV and NK cells in the immunocompetent host as well as in the context of primary and secondary immunodeficiencies. Moreover, we report in vitro data on the mechanisms that regulate the capacity of NK cells to recognize and kill EBV-infected cell targets and discuss the potential of recently optimized NK cell-based immunotherapies for the treatment of EBV-associated diseases.
Collapse
Affiliation(s)
- Maria G Desimio
- Primary Immunodeficiency Research Unit, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Daniela A Covino
- Primary Immunodeficiency Research Unit, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Beatrice Rivalta
- Primary Immunodeficiency Research Unit, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Caterina Cancrini
- Primary Immunodeficiency Research Unit, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Margherita Doria
- Primary Immunodeficiency Research Unit, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| |
Collapse
|
19
|
Smith C, Khanna R. Adoptive T-cell therapy targeting Epstein-Barr virus as a treatment for multiple sclerosis. Clin Transl Immunology 2023; 12:e1444. [PMID: 36960148 PMCID: PMC10028422 DOI: 10.1002/cti2.1444] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/23/2023] Open
Abstract
Emergence of a definitive link between Epstein-Barr virus (EBV) and multiple sclerosis has provided an impetus to develop immune-based therapies to target EBV-infected B cells. Initial studies with autologous EBV-specific T-cell therapy demonstrated that this therapy is safe with minimal side effects and more importantly multiple patients showed both symptomatic and objective neurological improvements including improved quality of life, reduction of fatigue and reduced intrathecal IgG production. These observations have been successfully extended to an 'off-the-shelf' allogeneic EBV-specific T-cell therapy manufactured using peripheral blood lymphocytes of healthy seropositive individuals. This adoptive immunotherapy has also been shown to be safe with encouraging clinical responses. Allogeneic EBV T-cell therapy overcomes some of the limitations of autologous therapy and can be rapidly delivered to patients with improved therapeutic potential.
Collapse
Affiliation(s)
- Corey Smith
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development, Infection and Inflammation ProgramQIMR Berghofer Medical Research InstituteHerstonQLDAustralia
| | - Rajiv Khanna
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development, Infection and Inflammation ProgramQIMR Berghofer Medical Research InstituteHerstonQLDAustralia
| |
Collapse
|
20
|
Sun Y, Liu W, Luo B. Functional diversity: update of the posttranslational modification of Epstein-Barr virus coding proteins. Cell Mol Life Sci 2022; 79:590. [PMID: 36376593 PMCID: PMC11802978 DOI: 10.1007/s00018-022-04561-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/26/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022]
Abstract
Epstein-Barr virus (EBV), a human oncogenic herpesvirus with a typical life cycle consisting of latent phase and lytic phase, is associated with many human diseases. EBV can express a variety of proteins that enable the virus to affect host cell processes and evade host immunity. Additionally, these proteins provide a basis for the maintenance of viral infection, contribute to the formation of tumors, and influence the occurrence and development of related diseases. Posttranslational modifications (PTMs) are chemical modifications of proteins after translation and are very important to guarantee the proper biological functions of these proteins. Studies in the past have intensely investigated PTMs of EBV-encoded proteins. EBV regulates the progression of the latent phase and lytic phase by affecting the PTMs of its encoded proteins, which are critical for the development of EBV-associated human diseases. In this review, we summarize the PTMs of EBV-encoded proteins that have been discovered and studied thus far with focus on their effects on the viral life cycle.
Collapse
Affiliation(s)
- Yujie Sun
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Wen Liu
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
| | - Bing Luo
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
21
|
SoRelle ED, Reinoso-Vizcaino NM, Horn GQ, Luftig MA. Epstein-Barr virus perpetuates B cell germinal center dynamics and generation of autoimmune-associated phenotypes in vitro. Front Immunol 2022; 13:1001145. [PMID: 36248899 PMCID: PMC9554744 DOI: 10.3389/fimmu.2022.1001145] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/31/2022] [Indexed: 02/03/2023] Open
Abstract
Human B cells encompass functionally diverse lineages and phenotypic states that contribute to protective as well as pathogenic responses. Epstein-Barr virus (EBV) provides a unique lens for studying heterogeneous B cell responses, given its adaptation to manipulate intrinsic cell programming. EBV promotes the activation, proliferation, and eventual outgrowth of host B cells as immortalized lymphoblastoid cell lines (LCLs) in vitro, which provide a foundational model of viral latency and lymphomagenesis. Although cellular responses and outcomes of infection can vary significantly within populations, investigations that capture genome-wide perspectives of this variation at single-cell resolution are in nascent stages. We have recently used single-cell approaches to identify EBV-mediated B cell heterogeneity in de novo infection and within LCLs, underscoring the dynamic and complex qualities of latent infection rather than a singular, static infection state. Here, we expand upon these findings with functional characterizations of EBV-induced dynamic phenotypes that mimic B cell immune responses. We found that distinct subpopulations isolated from LCLs could completely reconstitute the full phenotypic spectrum of their parental lines. In conjunction with conserved patterns of cell state diversity identified within scRNA-seq data, these data support a model in which EBV continuously drives recurrent B cell entry, progression through, and egress from the Germinal Center (GC) reaction. This "perpetual GC" also generates tangent cell fate trajectories including terminal plasmablast differentiation, which constitutes a replicative cul-de-sac for EBV from which lytic reactivation provides escape. Furthermore, we found that both established EBV latency and de novo infection support the development of cells with features of atypical memory B cells, which have been broadly associated with autoimmune disorders. Treatment of LCLs with TLR7 agonist or IL-21 was sufficient to generate an increased frequency of IgD-/CD27-/CD23-/CD38+/CD138+ plasmablasts. Separately, de novo EBV infection led to the development of CXCR3+/CD11c+/FCRL4+ B cells within days, providing evidence for possible T cell-independent origins of a recently described EBV-associated neuroinvasive CXCR3+ B cell subset in patients with multiple sclerosis. Collectively, this work reveals unexpected virus-driven complexity across infected cell populations and highlights potential roles of EBV in mediating or priming foundational aspects of virus-associated immune cell dysfunction in disease.
Collapse
Affiliation(s)
- Elliott D. SoRelle
- Department of Molecular Genetics & Microbiology, Duke University, Durham, NC, United States
- Department of Biostatistics & Bioinformatics, Duke University, Durham, NC, United States
| | | | - Gillian Q. Horn
- Department of Immunology, Duke University, Durham, NC, United States
| | - Micah A. Luftig
- Department of Molecular Genetics & Microbiology, Duke University, Durham, NC, United States
| |
Collapse
|
22
|
Albanese M, Tagawa T, Hammerschmidt W. Strategies of Epstein-Barr virus to evade innate antiviral immunity of its human host. Front Microbiol 2022; 13:955603. [PMID: 35935191 PMCID: PMC9355577 DOI: 10.3389/fmicb.2022.955603] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 06/27/2022] [Indexed: 12/18/2022] Open
Abstract
Epstein-Barr virus (EBV) is a double-stranded DNA virus of the Herpesviridae family. This virus preferentially infects human primary B cells and persists in the human B cell compartment for a lifetime. Latent EBV infection can lead to the development of different types of lymphomas as well as carcinomas such as nasopharyngeal and gastric carcinoma in immunocompetent and immunocompromised patients. The early phase of viral infection is crucial for EBV to establish latency, but different viral components are sensed by cellular sensors called pattern recognition receptors (PRRs) as the first line of host defense. The efficacy of innate immunity, in particular the interferon-mediated response, is critical to control viral infection initially and to trigger a broad spectrum of specific adaptive immune responses against EBV later. Despite these restrictions, the virus has developed various strategies to evade the immune reaction of its host and to establish its lifelong latency. In its different phases of infection, EBV expresses up to 44 different viral miRNAs. Some act as viral immunoevasins because they have been shown to counteract innate as well as adaptive immune responses. Similarly, certain virally encoded proteins also control antiviral immunity. In this review, we discuss how the virus governs innate immune responses of its host and exploits them to its advantage.
Collapse
Affiliation(s)
- Manuel Albanese
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, Ludwig Maximilian University of Munich, Munich, Germany
- Istituto Nazionale di Genetica Molecolare, “Romeo ed Enrica Invernizzi,” Milan, Italy
- Research Unit Gene Vectors, EBV Vaccine Development Unit, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Takanobu Tagawa
- Research Unit Gene Vectors, EBV Vaccine Development Unit, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
- HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Wolfgang Hammerschmidt
- Research Unit Gene Vectors, EBV Vaccine Development Unit, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| |
Collapse
|
23
|
Sooda A, Rwandamuriye F, Wanjalla CN, Jing L, Koelle DM, Peters B, Leary S, Chopra A, Calderwood MA, Mallal SA, Pavlos R, Watson M, Phillips EJ, Redwood AJ. Abacavir inhibits but does not cause self-reactivity to HLA-B*57:01-restricted EBV specific T cell receptors. Commun Biol 2022; 5:133. [PMID: 35173258 PMCID: PMC8850454 DOI: 10.1038/s42003-022-03058-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 01/14/2022] [Indexed: 01/11/2023] Open
Abstract
Pre-existing pathogen-specific memory T cell responses can contribute to multiple adverse outcomes including autoimmunity and drug hypersensitivity. How the specificity of the T cell receptor (TCR) is subverted or seconded in many of these diseases remains unclear. Here, we apply abacavir hypersensitivity (AHS) as a model to address this question because the disease is linked to memory T cell responses and the HLA risk allele, HLA-B*57:01, and the initiating insult, abacavir, are known. To investigate the role of pathogen-specific TCR specificity in mediating AHS we performed a genome-wide screen for HLA-B*57:01 restricted T cell responses to Epstein-Barr virus (EBV), one of the most prevalent human pathogens. T cell epitope mapping revealed HLA-B*57:01 restricted responses to 17 EBV open reading frames and identified an epitope encoded by EBNA3C. Using these data, we cloned the dominant TCR for EBNA3C and a previously defined epitope within EBNA3B. TCR specificity to each epitope was confirmed, however, cloned TCRs did not cross-react with abacavir plus self-peptide. Nevertheless, abacavir inhibited TCR interactions with their cognate ligands, demonstrating that TCR specificity may be subverted by a drug molecule. These results provide an experimental road map for future studies addressing the heterologous immune responses of TCRs including T cell mediated adverse drug reactions.
Collapse
Affiliation(s)
- Anuradha Sooda
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, WA, Australia
| | - Francois Rwandamuriye
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, WA, Australia
- Telethon Kids Institute, Nedlands, WA, Australia
| | - Celestine N Wanjalla
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lichen Jing
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - David M Koelle
- Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
- Benaroya Research Institute, Seattle, WA, USA
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Bjoern Peters
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Shay Leary
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, WA, Australia
| | - Abha Chopra
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, WA, Australia
| | - Michael A Calderwood
- Department of Medicine, The Channing Laboratory, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Simon A Mallal
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, WA, Australia
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rebecca Pavlos
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, WA, Australia
- Telethon Kids Institute, Nedlands, WA, Australia
| | - Mark Watson
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, WA, Australia
| | - Elizabeth J Phillips
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, WA, Australia.
- Center for Drug Safety & Immunology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Alec J Redwood
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, WA, Australia
- Institute for Respiratory Health, Level 2, 6 Verdun Street, Nedlands, WA, 6009, Australia
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
24
|
Haebe S, Keay W, Alig S, Mohr AW, Martin LK, Heide M, Secci R, Krebs S, Blum H, Moosmann A, Louissaint A, Weinstock DM, Thoene S, von Bergwelt-Baildon M, Ruland J, Bararia D, Weigert O. The molecular ontogeny of follicular lymphoma: gene mutations succeeding the BCL2 translocation define common precursor cells. Br J Haematol 2021; 196:1381-1387. [PMID: 34967008 DOI: 10.1111/bjh.17990] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/23/2021] [Indexed: 11/29/2022]
Abstract
Relapsed follicular lymphoma (FL) can arise from common progenitor cells (CPCs). Conceptually, CPC-defining mutations are somatic alterations shared by the initial and relapsed tumours, mostly B-cell leukaemia/lymphoma 2 (BCL2)/immunoglobulin heavy locus (IGH) translocations and other recurrent gene mutations. Through complementary approaches for highly sensitive mutation detection, we do not find CPC-defining mutations in highly purified BCL2/IGH-negative haematopoietic progenitor cells in clinical remission samples from three patients with relapsed FL. Instead, we find cells harbouring the same BCL2/IGH translocation but lacking CREB binding protein (CREBBP), lysine methyltransferase 2D (KMT2D) and other recurrent gene mutations. Thus, (i) the BCL2/IGH translocation can precede CPC-defining mutations in human FL, and (ii) BCL2/IGH-translocated cells can persist in clinical remission.
Collapse
Affiliation(s)
- Sarah Haebe
- Laboratory for Experimental Leukemia and Lymphoma Research (ELLF), Hospital of the Ludwig-Maximilians-University (LMU), Munich, Germany.,Department of Medicine III, Hospital of the Ludwig-Maximilians-University (LMU), Munich, Germany
| | - William Keay
- Laboratory for Experimental Leukemia and Lymphoma Research (ELLF), Hospital of the Ludwig-Maximilians-University (LMU), Munich, Germany.,Department of Medicine III, Hospital of the Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Stefan Alig
- Laboratory for Experimental Leukemia and Lymphoma Research (ELLF), Hospital of the Ludwig-Maximilians-University (LMU), Munich, Germany.,Department of Medicine III, Hospital of the Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Anne-Wiebe Mohr
- Helmholtz Center Munich, German Research Center for Environmental Health, Research Unit Gene Vectors, Munich, Germany
| | - Larissa K Martin
- Helmholtz Center Munich, German Research Center for Environmental Health, Research Unit Gene Vectors, Munich, Germany
| | - Michael Heide
- Laboratory for Experimental Leukemia and Lymphoma Research (ELLF), Hospital of the Ludwig-Maximilians-University (LMU), Munich, Germany.,Department of Medicine III, Hospital of the Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Ramona Secci
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, Munich, Germany.,Center for Translational Cancer Research (TranslaTUM), Munich, Germany
| | - Stefan Krebs
- Laboratory for Functional Genome Analysis, Gene Center, Ludwig-Maximilians-University (LMU) of Munich, Munich, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis, Gene Center, Ludwig-Maximilians-University (LMU) of Munich, Munich, Germany
| | - Andreas Moosmann
- Department of Medicine III, Hospital of the Ludwig-Maximilians-University (LMU), Munich, Germany.,DZIF Research Group Host Control of Viral Latency and Reactivation, DZIF - German Center for Infection Research, Munich, Germany
| | - Abner Louissaint
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - David M Weinstock
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Silvia Thoene
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, Munich, Germany.,Center for Translational Cancer Research (TranslaTUM), Munich, Germany.,German Cancer Consortium (DKTK), Munich, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael von Bergwelt-Baildon
- Laboratory for Experimental Leukemia and Lymphoma Research (ELLF), Hospital of the Ludwig-Maximilians-University (LMU), Munich, Germany.,Department of Medicine III, Hospital of the Ludwig-Maximilians-University (LMU), Munich, Germany.,German Cancer Consortium (DKTK), Munich, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jürgen Ruland
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, Munich, Germany.,Center for Translational Cancer Research (TranslaTUM), Munich, Germany.,German Cancer Consortium (DKTK), Munich, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Deepak Bararia
- Laboratory for Experimental Leukemia and Lymphoma Research (ELLF), Hospital of the Ludwig-Maximilians-University (LMU), Munich, Germany.,Department of Medicine III, Hospital of the Ludwig-Maximilians-University (LMU), Munich, Germany.,German Cancer Consortium (DKTK), Munich, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Oliver Weigert
- Laboratory for Experimental Leukemia and Lymphoma Research (ELLF), Hospital of the Ludwig-Maximilians-University (LMU), Munich, Germany.,Department of Medicine III, Hospital of the Ludwig-Maximilians-University (LMU), Munich, Germany.,German Cancer Consortium (DKTK), Munich, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
25
|
The Epstein-Barr Virus Oncogene EBNA1 Suppresses Natural Killer Cell Responses and Apoptosis Early after Infection of Peripheral B Cells. mBio 2021; 12:e0224321. [PMID: 34781735 PMCID: PMC8593684 DOI: 10.1128/mbio.02243-21] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The innate immune system serves as frontline defense against pathogens, such as bacteria and viruses. Natural killer (NK) cells are a part of innate immunity and can both secrete cytokines and directly target cells for lysis. NK cells express several cell surface receptors, including NKG2D, which bind multiple ligands. People with deficiencies in NK cells are often susceptible to uncontrolled infection by herpesviruses, such as Epstein-Barr virus (EBV). Infection with EBV stimulates both innate and adaptive immunity, yet the virus establishes lifelong latent infection in memory B cells. We show that the EBV oncogene EBNA1, previously known to be necessary for maintaining EBV genomes in latently infected cells, also plays an important role in suppressing NK cell responses and cell death in newly infected cells. EBNA1 does so by downregulating the NKG2D ligands ULBP1 and ULBP5 and modulating expression of c-Myc. B cells infected with a derivative of EBV that lacks EBNA1 are more susceptible to NK cell-mediated killing and show increased levels of apoptosis. Thus, EBNA1 performs a previously unappreciated role in reducing immune response and programmed cell death after EBV infection, helping infected cells avoid immune surveillance and apoptosis and thus persist for the lifetime of the host. IMPORTANCE Epstein-Barr virus (EBV) is a ubiquitous human pathogen, infecting up to 95% of the world's adult population. Initial infection with EBV can cause infectious mononucleosis. EBV is also linked to several human malignancies, including lymphomas and carcinomas. Although infection by EBV alerts the immune system and causes an immune response, the virus persists for life in memory B cells. We show that the EBV protein EBNA1 can downregulate several components of the innate immune system linked to natural killer (NK) cells. This downregulation of NK cell activity translates to lower killing of EBV-infected cells and is likely one way that EBV escapes immune surveillance after infection. Additionally, we show that EBNA1 reduces apoptosis in newly infected B cells, allowing more of these cells to survive. Taken together, our findings uncover new functions of EBNA1 and provide insights into viral strategies to survive the initial immune response postinfection.
Collapse
|
26
|
Jasinski-Bergner S, Mandelboim O, Seliger B. Molecular mechanisms of human herpes viruses inferring with host immune surveillance. J Immunother Cancer 2021; 8:jitc-2020-000841. [PMID: 32616556 PMCID: PMC7333871 DOI: 10.1136/jitc-2020-000841] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2020] [Indexed: 02/06/2023] Open
Abstract
Several human herpes viruses (HHVs) exert oncogenic potential leading to malignant transformation of infected cells and/or tissues. The molecular processes induced by viral-encoded molecules including microRNAs, peptides, and proteins contributing to immune evasion of the infected host cells are equal to the molecular processes of immune evasion mediated by tumor cells independently of viral infections. Such major immune evasion strategies include (1) the downregulation of proinflammatory cytokines/chemokines as well as the induction of anti-inflammatory cytokines/chemokines, (2) the downregulation of major histocompatibility complex (MHC) class Ia directly as well as indirectly by downregulation of the components involved in the antigen processing, and (3) the downregulation of stress-induced ligands for activating receptors on immune effector cells with NKG2D leading the way. Furthermore, (4) immune modulatory molecules like MHC class Ib molecules and programmed cell death1 ligand 1 can be upregulated on infections with certain herpes viruses. This review article focuses on the known molecular mechanisms of HHVs modulating the above-mentioned possibilities for immune surveillance and even postulates a temporal order linking regular tumor immunology with basic virology and offering putatively novel insights for targeting HHVs.
Collapse
Affiliation(s)
- Simon Jasinski-Bergner
- Institute for Medical Immunology, Martin-Luther-Universitat Halle-Wittenberg, Halle (Saale), Germany
| | - Ofer Mandelboim
- Immunology & Cancer Research Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Barbara Seliger
- Institute for Medical Immunology, Martin-Luther-Universitat Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
27
|
Liu Z, Chu A. Sjögren's Syndrome and Viral Infections. Rheumatol Ther 2021; 8:1051-1059. [PMID: 34227038 PMCID: PMC8380615 DOI: 10.1007/s40744-021-00334-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/10/2021] [Indexed: 12/11/2022] Open
Abstract
Sjögren's syndrome (SS) is a systemic autoimmune disease, characterized by lymphocytic infiltration of the secretory glands. This leads to dryness of the main mucosal surfaces such as the mouth, eyes, nose, larynx, pharynx, and vagina. Although there is little morbidity data at the initial diagnosis, SS may be a serious disease, with extra mortality caused by hematological cancer. The cause of SS is unknown, but factors postulated to play a role include genetic and environmental factors, hormonal abnormality, and viral infection. Under the influence of these factors, the immune system becomes abnormal and the tissue is damaged. In this study, we summarize recent developments in our understanding of the relationship between SS and viral infections, including Epstein-Barr virus (EBV), hepatitis C virus (HCV), human T cell lymphotropic virus type 1 (HTLV-1), cytomegalovirus (CMV), and human immunodeficiency virus (HIV).
Collapse
Affiliation(s)
- Zhiyong Liu
- Department of Rheumatism Immunity, Wuhan University, Renmin Hospital, 238 Jiefang Road, Wuchang, Wuhan, 430060, China
| | - Aichun Chu
- Department of Rheumatism Immunity, Wuhan University, Renmin Hospital, 238 Jiefang Road, Wuchang, Wuhan, 430060, China.
| |
Collapse
|
28
|
Jiang Y, Ding Y, Liu S, Luo B. The role of Epstein–Barr virus-encoded latent membrane proteins in host immune escape. Future Virol 2021. [DOI: 10.2217/fvl-2020-0320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Epstein–Barr virus (EBV) is a type IV herpesvirus that widely infects the vast majority of adults, and establishes a latent infection pattern in host cells to escape the clearance of immune system. The virus is intimately associated with the occurrence and progression of lymphomas and epithelial cell cancers. EBV latent membrane proteins (LMPs) can assist its immune escape by downregulating host immune response. Besides EBV, LMPs have important effects on the functions of exosomes and autophagy, which also help EBV to escape immune surveillance. These escape mechanisms may provide conditions for further development of EBV-associated tumors. In this article, we discussed the potential functions of EBV-encoded LMPs in promoting immune escape.
Collapse
Affiliation(s)
- Yuanyuan Jiang
- Department of Medical Affairs of The Affiliated Hospital of Qingdao University, No. 1677 Wutaishan Road, Qingdao, 266000, China
- Department of Pathogenic Biology, Qingdao University Medical College, 308 Ningxia Road, Qingdao, 266021, China
| | - Yuan Ding
- Department of Special Examination, Qingdao Women & Children Hospital, Qingdao, 266035, China
| | - Shuzhen Liu
- Department of Medical Affairs of The Affiliated Hospital of Qingdao University, No. 1677 Wutaishan Road, Qingdao, 266000, China
| | - Bing Luo
- Department of Pathogenic Biology, Qingdao University Medical College, 308 Ningxia Road, Qingdao, 266021, China
| |
Collapse
|
29
|
Granai M, Mundo L, Akarca AU, Siciliano MC, Rizvi H, Mancini V, Onyango N, Nyagol J, Abinya NO, Maha I, Margielewska S, Wi W, Bibas M, Piccaluga PP, Quintanilla-Martinez L, Fend F, Lazzi S, Leoncini L, Marafioti T. Immune landscape in Burkitt lymphoma reveals M2-macrophage polarization and correlation between PD-L1 expression and non-canonical EBV latency program. Infect Agent Cancer 2020; 15:28. [PMID: 32391073 PMCID: PMC7201729 DOI: 10.1186/s13027-020-00292-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/20/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The Tumor Microenviroment (TME) is a complex milieu that is increasingly recognized as a key factor in multiple stages of disease progression and responses to therapy as well as escape from immune surveillance. However, the precise contribution of specific immune effector and immune suppressor components of the TME in Burkitt lymphoma (BL) remains poorly understood. METHODS In this paper, we applied the computational algorithm CIBERSORT to Gene Expression Profiling (GEP) datasets of 40 BL samples to draw a map of immune and stromal components of TME. Furthermore, by multiple immunohistochemistry (IHC) and multispectral immunofluorescence (IF), we investigated the TME of additional series of 40 BL cases to evaluate the role of the Programmed Death-1 and Programmed Death Ligand-1 (PD-1/PD-L1) immune checkpoint axis. RESULTS Our results indicate that M2 polarized macrophages are the most prominent TME component in BL. In addition, we investigated the correlation between PD-L1 and latent membrane protein-2A (LMP2A) expression on tumour cells, highlighting a subgroup of BL cases characterized by a non-canonical latency program of EBV with an activated PD-L1 pathway. CONCLUSION In conclusion, our study analysed the TME in BL and identified a tolerogenic immune signature highlighting new potential therapeutic targets.
Collapse
Affiliation(s)
- Massimo Granai
- Department of Medical Biotechnology, University of Siena, Siena, Italy
- University Hospital of Tübingen, Institute of Pathology, Tübingen, Germany
| | - Lucia Mundo
- Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - Ayse U. Akarca
- Department of Pathology, University College London, London, UK
| | | | - Hasan Rizvi
- Department of Cellular Pathology, Barts Health NHS Trust, London, UK
| | - Virginia Mancini
- Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - Noel Onyango
- Department of Clinical Medicine and Therapeutics, University of Nairobi, Nairobi, Kenya
| | - Joshua Nyagol
- Department of Human Pathology, University of Nairobi, Nairobi, Kenya
| | | | - Ibrahim Maha
- South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | - Sandra Margielewska
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK and Durham University, Durham, UK
| | - Wenbin Wi
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK and Durham University, Durham, UK
| | - Michele Bibas
- Clinical Department, National Institute for Infectious Diseases “Lazzaro Spallanzani” I.R.C.C.S, Rome, Italy
| | - Pier Paolo Piccaluga
- Department of Experimental, Diagnostic, and Specialty Medicine Bologna University Medical School, S. Orsola Malpighi Hospital, Bologna and Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
| | | | - Falko Fend
- University Hospital of Tübingen, Institute of Pathology, Tübingen, Germany
| | - Stefano Lazzi
- Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - Lorenzo Leoncini
- Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - Teresa Marafioti
- Department of Pathology, University College London, London, UK
- Department of Cellular Pathology, University College Hospital, London, London UK
| |
Collapse
|
30
|
Singh S, Banerjee S. Downregulation of HLA-ABC expression through promoter hypermethylation and downmodulation of MIC-A/B surface expression in LMP2A-positive epithelial carcinoma cell lines. Sci Rep 2020; 10:5415. [PMID: 32214110 PMCID: PMC7096436 DOI: 10.1038/s41598-020-62081-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 02/28/2020] [Indexed: 11/18/2022] Open
Abstract
Epstein Barr Virus (EBV) is a human herpesvirus, and has been reported to be associated with nasopharyngeal carcinoma, gastric carcinoma, Burkitt’s lymphoma and Hodgkin’s lymphoma. In most of the associated tumors, the virus remains in a latently infected state. During latency, EBV expresses Latent Membrane Protein 2A (LMP2A) along with few other genes. We previously showed that LMP2A causes downregulation of HLA-ABC surface expression in EBV associated gastric carcinomas. However, the mechanism that leads to this downregulation remain unclear. We therefore analyzed methylation-mediated regulation of HLA-ABC expression by LMP2A. Interestingly, according to the ‘missing self’ hypothesis, when there is a decrease in HLA-ABC surface expression, expression of NKG2D ligands’ must be upregulated to facilitate killing by Natural Killer (NK) cells. Analysis of NKG2D ligands’ expression, revealed downregulation of MIC-A/B surface expression in response to LMP2A. Furthermore, the role of Unfolded Protein Response (UPR) in the regulation of MIC-A/B surface expression in cells expressing LMP2A was also investigated. Protein Disulfide Isomerase (PDI) mediated inhibition of MIC-A/B surface expression was observed in LMP2A expressing cells. Our current findings provide new insights in LMP2A arbitrated dysregulation of host immune response in epithelial cell carcinomas.
Collapse
Affiliation(s)
- Shweta Singh
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Homi Bhabha National Institute, Kolkata, India
| | - Subrata Banerjee
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Homi Bhabha National Institute, Kolkata, India.
| |
Collapse
|
31
|
A central role of IKK2 and TPL2 in JNK activation and viral B-cell transformation. Nat Commun 2020; 11:685. [PMID: 32019925 PMCID: PMC7000802 DOI: 10.1038/s41467-020-14502-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 12/10/2019] [Indexed: 12/13/2022] Open
Abstract
IκB kinase 2 (IKK2) is well known for its pivotal role as a mediator of the canonical NF-κB pathway, which has important functions in inflammation and immunity, but also in cancer. Here we identify a novel and critical function of IKK2 and its co-factor NEMO in the activation of oncogenic c-Jun N-terminal kinase (JNK) signaling, induced by the latent membrane protein 1 (LMP1) of Epstein-Barr virus (EBV). Independent of its kinase activity, the TGFβ-activated kinase 1 (TAK1) mediates LMP1 signaling complex formation, NEMO ubiquitination and subsequent IKK2 activation. The tumor progression locus 2 (TPL2) kinase is induced by LMP1 via IKK2 and transmits JNK activation signals downstream of IKK2. The IKK2-TPL2-JNK axis is specific for LMP1 and differs from TNFα, Interleukin-1 and CD40 signaling. This pathway mediates essential LMP1 survival signals in EBV-transformed human B cells and post-transplant lymphoma, and thus qualifies as a target for treatment of EBV-induced cancer.
Collapse
|
32
|
Ayee R, Ofori MEO, Wright E, Quaye O. Epstein Barr Virus Associated Lymphomas and Epithelia Cancers in Humans. J Cancer 2020; 11:1737-1750. [PMID: 32194785 PMCID: PMC7052849 DOI: 10.7150/jca.37282] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 12/01/2019] [Indexed: 02/06/2023] Open
Abstract
Epstein Barr virus (EBV) is a cosmopolitan oncogenic virus, infecting about 90% of the world's population and it is associated to tumors originating from both epithelia and hematopoietic cells. Transmission of the virus is mainly through oral secretions; however, transmission through organ transplantation and blood transfusion has been reported. In order to evade immune recognition, EBV establishes latent infection in B lymphocytes where it expresses limited sets of proteins called EBV transcription programs (ETPs), including six nuclear antigens (EBNAs), three latent membrane proteins (LMP), and untranslated RNA called EBV encoded RNA (EBER), shown to efficiently transform B cells into lymphoblastic cells. These programs undergo different patterns of expression which determine the occurrence of distinct types of latency in the pathogenesis of a particular tumor. Hematopoietic cell derived tumors include but not limited to Burkitt's lymphoma, Hodgkin lymphoma, post-transplant lymphoproliferative disorders, and natural killer (NK)/T cell lymphoma. EBV undergoes lytic infection in epithelia cells for amplification of the viral particle for transmission where it expresses lytic stage genes. However, for reasons yet to be unveiled, EBV switches from the expression of lytic stage genes to the expression of ETPs in epithelia cells. The expression of the ETPs lead to the transformation of epithelia cells into permanently proliferating cells, resulting in epithelia cell derived malignancies such as nasopharyngeal cancer, gastric cancer, and breast cancer. In this review, we have summarized the current updates on EBV associated epithelial and B cell-derived malignancies, and the role of EBV latency gene products in the pathogenesis of the cancers, and have suggested areas for future studies when considering therapeutic measures.
Collapse
Affiliation(s)
- Richmond Ayee
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana
- West African Center for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Legon, Accra, Ghana
| | | | - Edward Wright
- Department of Biochemistry, University of Sussex, Brighton, U.K
| | - Osbourne Quaye
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana
- West African Center for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Legon, Accra, Ghana
| |
Collapse
|
33
|
Davis DA, Shrestha P, Aisabor AI, Stream A, Galli V, Pise-Masison CA, Tagawa T, Ziegelbauer JM, Franchini G, Yarchoan R. Pomalidomide increases immune surface marker expression and immune recognition of oncovirus-infected cells. Oncoimmunology 2018; 8:e1546544. [PMID: 30713808 PMCID: PMC6343774 DOI: 10.1080/2162402x.2018.1546544] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 10/17/2018] [Accepted: 11/04/2018] [Indexed: 01/03/2023] Open
Abstract
Most chronic viruses evade T-cell and natural killer (NK) immunity through downregulation of immune surface markers. Previously we showed that Pomalidomide (Pom) increases surface expression of major histocompatibility complex class I (MHC-I) in Kaposi sarcoma-associated herpesvirus-infected latent and lytic cells and restores ICAM-1 and B7-2 in latent cells. We explored the ability of Pom to increase immune surface marker expression in cells infected by other chronic viruses, including human T-cell leukemia virus type-1 (HTLV-1), Epstein-Barr virus (EBV), human papilloma virus (HPV), Merkel cell polyoma virus (MCV), and human immunodeficiency virus type-1 (HIV-1). Pom increased MHC-1, ICAM-1, and B7-2/CD86 in immortalized T-cell lines productively infected with HTLV-1 and also significantly increased their susceptibility to NK cell-mediated cytotoxicity. Pom enhancement of MHC-I and ICAM-1 in primary cells infected with HTLV-1 was abrogated by knockout of HTLV-1 orf-1. Pom increased expression of ICAM-1, B7-2 and MHC class I polypeptide related sequence A (MICA) surface expression in the EBV-infected Daudi cells and increased their T-cell activation and susceptibility to NK cells. Moreover, Pom increased expression of certain of these surface markers on Akata, Raji, and EBV lymphoblastic cell lines. The increased expression of immune surface markers in these virus-infected lines was generally associated with a decrease in IRF4 expression. By contrast, Pom treatment of HPV, MCV and HIV-1 infected cells did not increase these immune surface markers. Pom and related drugs may be clinically beneficial for the treatment of HTLV-1 and EBV-induced tumors by rendering infected cells more susceptible to both innate and adaptive host immune responses.
Collapse
Affiliation(s)
- David A Davis
- HIV & AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Prabha Shrestha
- HIV & AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Ashley I Aisabor
- HIV & AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Alexandra Stream
- HIV & AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Veronica Galli
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Cynthia A Pise-Masison
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Takanobu Tagawa
- HIV & AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Joseph M Ziegelbauer
- HIV & AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Genoveffa Franchini
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Robert Yarchoan
- HIV & AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
34
|
Abstract
Natural killer (NK) cells play an important role in the host response against viral infections and cancer development. They are able to kill virus-infected and tumor cells, and they produce different important cytokines that stimulate the antiviral and antitumor adaptive immune response, particularly interferon gamma. NK cells are of particular importance in herpesvirus infections, which is illustrated by systemic and life-threatening herpesvirus disease symptoms in patients with deficiencies in NK cell activity and by the myriad of reports describing herpesvirus NK cell evasion strategies. The latter is particularly obvious for cytomegaloviruses, but increasing evidence indicates that most, if not all, members of the herpesvirus family suppress NK cell activity to some extent. This review discusses the different NK cell evasion strategies described for herpesviruses and how this knowledge may translate to clinical applications.
Collapse
|
35
|
Martin LK, Hollaus A, Stahuber A, Hübener C, Fraccaroli A, Tischer J, Schub A, Moosmann A. Cross-sectional analysis of CD8 T cell immunity to human herpesvirus 6B. PLoS Pathog 2018; 14:e1006991. [PMID: 29698478 PMCID: PMC5919459 DOI: 10.1371/journal.ppat.1006991] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 03/26/2018] [Indexed: 12/15/2022] Open
Abstract
Human herpesvirus 6 (HHV-6) is prevalent in healthy persons, causes disease in immunosuppressed carriers, and may be involved in autoimmune disease. Cytotoxic CD8 T cells are probably important for effective control of infection. However, the HHV-6-specific CD8 T cell repertoire is largely uncharacterized. Therefore, we undertook a virus-wide analysis of CD8 T cell responses to HHV-6. We used a simple anchor motif-based algorithm (SAMBA) to identify 299 epitope candidates potentially presented by the HLA class I molecule B*08:01. Candidates were found in 77 of 98 unique HHV-6B proteins. From peptide-expanded T cell lines, we obtained CD8 T cell clones against 20 candidates. We tested whether T cell clones recognized HHV-6-infected cells. This was the case for 16 epitopes derived from 12 proteins from all phases of the viral replication cycle. Epitopes were enriched in certain amino acids flanking the peptide. Ex vivo analysis of eight healthy donors with HLA-peptide multimers showed that the strongest responses were directed against an epitope from IE-2, with a median frequency of 0.09% of CD8 T cells. Reconstitution of T cells specific for this and other HHV-6 epitopes was also observed after allogeneic hematopoietic stem cell transplantation. We conclude that HHV-6 induces CD8 T cell responses against multiple antigens of diverse functional classes. Most antigens against which CD8 T cells can be raised are presented by infected cells. Ex vivo multimer staining can directly identify HHV-6-specific T cells. These results will advance development of immune monitoring, adoptive T cell therapy, and vaccines. This paper deals with the immune response to a very common virus, called human herpesvirus 6 (HHV-6). Most people catch HHV-6 in early childhood, which often leads to a disease known as three-day fever. Later in life, the virus stays in the body, and an active immune response is needed to prevent the virus from multiplying and causing damage. It is suspected that HHV-6 contributes to autoimmune diseases and chronic fatigue. Moreover, patients with severely weakened immune responses, for example after some forms of transplantation, clearly have difficulties controlling HHV-6, which puts them at risk of severe disease and shortens their survival. This can potentially be prevented by giving them HHV-6-specific "killer" CD8 T cells, which are cells of the immune system that destroy body cells harboring the virus. However, little is known so far about such T cells. Here, we describe 16 new structures that CD8 T cells can use to recognize and kill HHV-6-infected cells. We show that very different viral proteins can furnish such structures. We also observe that such T cells are regularly present in healthy people and in transplant patients who control the virus. Our results will help develop therapies of disease due to HHV-6.
Collapse
MESH Headings
- Adult
- Anemia, Aplastic/immunology
- Anemia, Aplastic/therapy
- Antigens, Viral/immunology
- CD8-Positive T-Lymphocytes/immunology
- Case-Control Studies
- Cells, Cultured
- Cross-Sectional Studies
- Epitopes, T-Lymphocyte/immunology
- HLA Antigens/immunology
- Hematopoietic Stem Cell Transplantation
- Herpesvirus 6, Human/immunology
- Humans
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/therapy
- Roseolovirus Infections/immunology
- Roseolovirus Infections/virology
- T-Lymphocytes, Cytotoxic
- Transplantation, Homologous
Collapse
Affiliation(s)
- Larissa K. Martin
- DZIF Research Group "Host Control of Viral Latency and Reactivation" (HOCOVLAR), Research Unit Gene Vectors, Helmholtz Zentrum München, Munich, Germany
| | - Alexandra Hollaus
- DZIF Research Group "Host Control of Viral Latency and Reactivation" (HOCOVLAR), Research Unit Gene Vectors, Helmholtz Zentrum München, Munich, Germany
| | - Anna Stahuber
- DZIF Research Group "Host Control of Viral Latency and Reactivation" (HOCOVLAR), Research Unit Gene Vectors, Helmholtz Zentrum München, Munich, Germany
| | - Christoph Hübener
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
| | - Alessia Fraccaroli
- Internal Medicine III, Hematopoietic Stem Cell Transplantation, Klinikum der Universität München (LMU), Grosshadern, Munich, Germany
| | - Johanna Tischer
- Internal Medicine III, Hematopoietic Stem Cell Transplantation, Klinikum der Universität München (LMU), Grosshadern, Munich, Germany
| | - Andrea Schub
- DZIF Research Group "Host Control of Viral Latency and Reactivation" (HOCOVLAR), Research Unit Gene Vectors, Helmholtz Zentrum München, Munich, Germany
| | - Andreas Moosmann
- DZIF Research Group "Host Control of Viral Latency and Reactivation" (HOCOVLAR), Research Unit Gene Vectors, Helmholtz Zentrum München, Munich, Germany
- German Center for Infection Research (DZIF–Deutsches Zentrum für Infektionsforschung), Munich, Germany
- * E-mail:
| |
Collapse
|
36
|
Cirac A, Stützle S, Dieckmeyer M, Adhikary D, Moosmann A, Körber N, Bauer T, Witter K, Delecluse HJ, Behrends U, Mautner J. Epstein-Barr virus strain heterogeneity impairs human T-cell immunity. Cancer Immunol Immunother 2018; 67:663-674. [PMID: 29374782 PMCID: PMC11028080 DOI: 10.1007/s00262-018-2118-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Accepted: 01/19/2018] [Indexed: 12/12/2022]
Abstract
The Epstein-Barr virus (EBV) establishes lifelong infections in > 90% of the human population. Although contained as asymptomatic infection by the immune system in most individuals, EBV is associated with the pathogenesis of approximately 1.5% of all cancers in humans. Some of these EBV-associated tumors have been successfully treated by the infusion of virus-specific T-cell lines. Recent sequence analyses of a large number of viral isolates suggested that distinct EBV strains have evolved in different parts of the world. Here, we assessed the impact of such sequence variations on EBV-specific T-cell immunity. With the exceptions of EBNA2 and the EBNA3 family of proteins, an overall low protein sequence disparity of about 1% was noted between Asian viral isolates, including the newly characterized M81 strain, and the prototypic EBV type 1 and type 2 strains. However, when T-cell epitopes including their flanking regions were compared, a substantial proportion was found to be polymorphic in different EBV strains. Importantly, CD4+ and CD8+ T-cell clones specific for viral epitopes from one strain often showed diminished recognition of the corresponding epitopes in other strains. In addition, T-cell recognition of a conserved epitope was affected by amino acid exchanges within the epitope flanking region. Moreover, the CD8+ T-cell response against polymorphic epitopes varied between donors and often ignored antigen variants. These results demonstrate that viral strain heterogeneity may impair antiviral T-cell immunity and suggest that immunotherapeutic approaches against EBV should preferably target broad sets of conserved epitopes including their flanking regions.
Collapse
Affiliation(s)
- Ana Cirac
- Children's Hospital, Technische Universität München, Munich, Germany
- Research Unit Gene Vectors, Helmholtz Zentrum München, Marchionini Strasse 25, 81377, Munich, Germany
- German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Simon Stützle
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Munich, Germany
| | - Michael Dieckmeyer
- Department of Diagnostic and Interventional Radiology, Technische Universität München, Munich, Germany
| | - Dinesh Adhikary
- Children's Hospital, Technische Universität München, Munich, Germany
- Research Unit Gene Vectors, Helmholtz Zentrum München, Marchionini Strasse 25, 81377, Munich, Germany
- German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Andreas Moosmann
- DZIF Research Group Host Control of Viral Latency and Reactivation, Helmholtz Zentrum München, Munich, Germany
| | - Nina Körber
- German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Munich, Germany
| | - Tanja Bauer
- German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Munich, Germany
| | - Klaus Witter
- Laboratory of Immunogenetics, Ludwig-Maximilians Universität, Munich, Germany
| | - Henri-Jacques Delecluse
- German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany
- German Cancer Research Center (DKFZ) Unit F100 and Institut National de la Santé et de la Recherche Médicale Unit U1074, Heidelberg, Germany
| | - Uta Behrends
- Children's Hospital, Technische Universität München, Munich, Germany
- Research Unit Gene Vectors, Helmholtz Zentrum München, Marchionini Strasse 25, 81377, Munich, Germany
- German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Josef Mautner
- Children's Hospital, Technische Universität München, Munich, Germany.
- Research Unit Gene Vectors, Helmholtz Zentrum München, Marchionini Strasse 25, 81377, Munich, Germany.
- German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany.
| |
Collapse
|
37
|
Zöller T, Wittenbrink M, Hoffmeister M, Steinle A. Cutting an NKG2D Ligand Short: Cellular Processing of the Peculiar Human NKG2D Ligand ULBP4. Front Immunol 2018; 9:620. [PMID: 29651291 PMCID: PMC5884875 DOI: 10.3389/fimmu.2018.00620] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 03/12/2018] [Indexed: 12/25/2022] Open
Abstract
Stress-induced cell surface expression of MHC class I-related glycoproteins of the MIC and ULBP families allows for immune recognition of dangerous "self cells" by human cytotoxic lymphocytes via the NKG2D receptor. With two MIC molecules (MICA and MICB) and six ULBP molecules (ULBP1-6), there are a total of eight human NKG2D ligands (NKG2DL). Since the discovery of the NKG2D-NKG2DL system, the cause for both redundancy and diversity of NKG2DL has been a major and ongoing matter of debate. NKG2DL diversity has been attributed, among others, to the selective pressure by viral immunoevasins, to diverse regulation of expression, to differential tissue expression as well as to variations in receptor interactions. Here, we critically review the current state of knowledge on the poorly studied human NKG2DL ULBP4. Summarizing available facts and previous studies, we picture ULBP4 as a peculiar ULBP family member distinct from other ULBP family members by various aspects. In addition, we provide novel experimental evidence suggesting that cellular processing gives rise to mature ULBP4 glycoproteins different to previous reports. Finally, we report on the proteolytic release of soluble ULBP4 and discuss these results in the light of known mechanisms for generation of soluble NKG2DL.
Collapse
Affiliation(s)
- Tobias Zöller
- Institute for Molecular Medicine, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Mareike Wittenbrink
- Institute for Molecular Medicine, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Meike Hoffmeister
- Institute of Biochemistry II, Goethe University Frankfurt am Main, Frankfurt am Main, Germany.,Brandenburg Medical School (MHB) Theodor Fontane, Institute of Biochemistry, Neuruppin, Germany
| | - Alexander Steinle
- Institute for Molecular Medicine, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| |
Collapse
|
38
|
Tu J, Wang X, Geng G, Xue X, Lin X, Zhu X, Sun L. The Possible Effect of B-Cell Epitopes of Epstein-Barr Virus Early Antigen, Membrane Antigen, Latent Membrane Protein-1, and -2A on Systemic Lupus Erythematosus. Front Immunol 2018; 9:187. [PMID: 29497417 PMCID: PMC5819577 DOI: 10.3389/fimmu.2018.00187] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 01/22/2018] [Indexed: 12/31/2022] Open
Abstract
This study was aimed to evaluate the role of B-cell epitopes of Epstein-Barr virus (EBV) Early antigen protein D (EA), envelope glycoprotein GP340/membrane antigen (MA), latent membrane protein (LMP)-1, and LMP-2A in systemic lupus erythematosus (SLE). B-cell epitopes were predicted by analyzing secondary structure, transmembrane domains, surface properties, and homological comparison. 60 female mice were randomized equally into 12 groups: 1-10 groups were immunized by epitope peptides (EPs) 1-10, respectively, while 11 and 12 groups were PBS and Keyhole limpet hemocyanin (KLH) control groups. Immunoglobulin G (IgG) and autoantibody to nuclear antigen (ANA) concentrations in mice serum were determined at week 8. Indirect levels of EP1-10 were further detected by enzyme-linked immuno sorbent assay (ELISA) in 119 SLE patients and 64 age- and gender-matched health controls (HCs). 10 probable EBV EA, MA, LMP-1, and LMP-2A B-cell epitopes related to SLE self-antigens were predicted and corresponding EP1-10 were synthesized. IgG concentrations at week 8 were increased in EP1-10 and KLH groups compared with PBS group in mice; while ANA levels were elevated in only EP1-4, EP6-7, and EP10 groups compared to KLH group by ELISA, and ANA-positive rates were increased in only EP1, EP2, EP4, EP6, and EP10 groups by indirect immunofluorescence assay. EP1-4, EP6, and EP10 indirect levels were increased in SLE patients than HCs, while EP1, EP3, EP6, and EP9 were correlated with SLE disease activity index score. In conclusion, EBV EA, MA, LMP-1, and LMP-2A B-cell EPs increased SLE-related autoantibodies in mice, and their indirect levels might be served as potential biomarkers for SLE diagnosis and disease severity.
Collapse
Affiliation(s)
- Jianxin Tu
- Department of Rheumatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaobing Wang
- Department of Rheumatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guannan Geng
- Central Laboratory, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiangyang Xue
- Department of Microbiology and Immunology, Basic Medical College of Wenzhou Medical University, Wenzhou, China
| | - Xiangyang Lin
- Medical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaochun Zhu
- Department of Rheumatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Li Sun
- Department of Rheumatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
39
|
Yi M, Cai J, Li J, Chen S, Zeng Z, Peng Q, Ban Y, Zhou Y, Li X, Xiong W, Li G, Xiang B. Rediscovery of NF-κB signaling in nasopharyngeal carcinoma: How genetic defects of NF-κB pathway interplay with EBV in driving oncogenesis? J Cell Physiol 2018; 233:5537-5549. [PMID: 29266238 DOI: 10.1002/jcp.26410] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 12/18/2017] [Indexed: 12/13/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is a unique EBV-associated subtype of head and neck cancer, which has the highest incidence in Southern China and eastern South Asia. The interaction between genetic risk factors and environmental challenge, have been considered to contribute to the development of nasopharyngeal carcinogenesis. Constitutive activation of NF-κB signaling has been seen in NPC tissues and is associated with unfavorable prognosis. Recently, several whole exome sequencing study consistently revealed that high frequency mutations of NF-κB pathway negative regulators is common in nasopharyngeal carcinoma, which reinforce the importance of NF-κB driving oncogenesis. This review focuses on the current state of research in role of NF-κB in NPC carcinogenesis. We summarized the newly identified loss of function (LOF) mutations on NF-κB negative regulators leading to it's activation bypass LMP-1 stimulation. We discussed the critical role of NF-κB activation in immortalization and transformation of nasopharygeal epithelium. We also depicted how NF-κB signaling mediated chronic inflammation contribute to persistent EBV infection, immune evasion of EBV infected cells, metabolic reprogramming, and cancer stem cells (CSCs) formation in NPC. Lastly, we discussed the clinical resonance of targeting NF-κB for NPC precise therapy.
Collapse
Affiliation(s)
- Mei Yi
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, Hunan, China.,Department of Dermatology, Xiangya Hospital of Central South University, Changsha, China
| | - Jing Cai
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, Hunan, China.,Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China
| | - Junjun Li
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, Hunan, China.,Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China
| | - Shengnan Chen
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, Hunan, China.,Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China
| | - Zhaoyang Zeng
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, Hunan, China.,Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China
| | - Qian Peng
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, Hunan, China.,Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China
| | - Yuanyuan Ban
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, Hunan, China.,Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China
| | - Ying Zhou
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, Hunan, China.,Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China
| | - Xiaoling Li
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, Hunan, China.,Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China
| | - Wei Xiong
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, Hunan, China.,Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China
| | - Guiyuan Li
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, Hunan, China.,Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China
| | - Bo Xiang
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, Hunan, China.,Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
40
|
The Immune Response to Epstein Barr Virus and Implications for Posttransplant Lymphoproliferative Disorder. Transplantation 2017; 101:2009-2016. [PMID: 28376031 DOI: 10.1097/tp.0000000000001767] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Posttransplant lymphoproliferative disorder (PTLD) is a serious complication in organ transplant recipients and is most often associated with the Epstein Barr virus (EBV). EBV is a common gammaherpes virus with tropism for B lymphocytes and infection in immunocompetent individuals is typically asymptomatic and benign. However, infection in immunocompromised or immunosuppressed individuals can result in malignant B cell lymphoproliferations, such as PTLD. EBV+ PTLD can arise after primary EBV infection, or because of reactivation of a prior infection, and represents a leading malignancy in the transplant population. The incidence of EBV+ PTLD is variable depending on the organ transplanted and whether the recipient has preexisting immunity to EBV but can be as high as 20%. It is generally accepted that impaired immune function due to immunosuppression is a primary cause of EBV+ PTLD. In this overview, we review the EBV life cycle and discuss our current understanding of the immune response to EBV in healthy, immunocompetent individuals, in transplant recipients, and in PTLD patients. We review the strategies that EBV uses to subvert and evade host immunity and discuss the implications for the development of EBV+ PTLD.
Collapse
|
41
|
Link EK, Brandmüller C, Suezer Y, Ameres S, Volz A, Moosmann A, Sutter G, Lehmann MH. A synthetic human cytomegalovirus pp65-IE1 fusion antigen efficiently induces and expands virus specific T cells. Vaccine 2017; 35:5131-5139. [PMID: 28818566 DOI: 10.1016/j.vaccine.2017.08.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 05/05/2017] [Accepted: 08/07/2017] [Indexed: 11/16/2022]
Abstract
Infection with human cytomegalovirus (HCMV) can cause severe complications in newborns and immunocompromised patients, and a prophylactic or therapeutic vaccine against HCMV is not available. Here, we generated a HCMV vaccine candidate fulfilling the regulatory requirements for GMP-compliant production and clinical testing. A novel synthetic fusion gene consisting of the coding sequences of HCMV pp65 and IE1 having a deleted nuclear localization sequence and STAT2 binding domain was introduced into the genome of the attenuated vaccinia virus strain MVA. This recombinant MVA, MVA-syn65_IE1, allowed for the production of a stable ∼120kDa syn65_IE1 fusion protein upon tissue culture infection. MVA-syn65_IE1 infected CD40-activated B cells activated and expanded pp65- and IE1-specific T cells derived from HCMV-seropositive donors to at least equal levels as control recombinant MVA expressing single genes for pp65 or IE1. Additionally, we show that MVA-syn65_IE1 induced HCMV pp65- and IE1-epitope specific T cells in HLA-A2.1-/HLA-DR1-transgenic H-2 class I-/class II-knockout mice. Thus, MVA-syn65_IE1 represents a promising vaccine candidate against HCMV and constitutes a basis for the generation of a multivalent vaccine targeting relevant pathogens in immunocompromised patients.
Collapse
Affiliation(s)
- Ellen K Link
- Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-Universität München, Veterinärstr. 13, 80539 Munich, Germany; German Center for Infection Research (DZIF), Germany
| | - Christine Brandmüller
- Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-Universität München, Veterinärstr. 13, 80539 Munich, Germany; German Center for Infection Research (DZIF), Germany
| | - Yasemin Suezer
- Paul-Ehrlich-Institut, Federal Institute for Vaccines and Biomedicines, Paul-Ehrlich-Straße 51-59, 63225 Langen, Germany; German Center for Infection Research (DZIF), Germany
| | - Stefanie Ameres
- Helmholtz Zentrum München, Research Unit Gene Vectors, Marchioninistraße 25, 81377 Munich, Germany; German Center for Infection Research (DZIF), Germany
| | - Asisa Volz
- Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-Universität München, Veterinärstr. 13, 80539 Munich, Germany; German Center for Infection Research (DZIF), Germany
| | - Andreas Moosmann
- Helmholtz Zentrum München, Research Unit Gene Vectors, Marchioninistraße 25, 81377 Munich, Germany; German Center for Infection Research (DZIF), Germany
| | - Gerd Sutter
- Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-Universität München, Veterinärstr. 13, 80539 Munich, Germany; German Center for Infection Research (DZIF), Germany.
| | - Michael H Lehmann
- Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-Universität München, Veterinärstr. 13, 80539 Munich, Germany; German Center for Infection Research (DZIF), Germany.
| |
Collapse
|
42
|
Latent Membrane Protein 1 (LMP1) and LMP2A Collaborate To Promote Epstein-Barr Virus-Induced B Cell Lymphomas in a Cord Blood-Humanized Mouse Model but Are Not Essential. J Virol 2017; 91:JVI.01928-16. [PMID: 28077657 PMCID: PMC5355617 DOI: 10.1128/jvi.01928-16] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 01/08/2017] [Indexed: 01/12/2023] Open
Abstract
Epstein-Barr virus (EBV) infection is associated with B cell lymphomas in humans. The ability of EBV to convert human B cells into long-lived lymphoblastoid cell lines (LCLs) in vitro requires the collaborative effects of EBNA2 (which hijacks Notch signaling), latent membrane protein 1 (LMP1) (which mimics CD40 signaling), and EBV-encoded nuclear antigen 3A (EBNA3A) and EBNA3C (which inhibit oncogene-induced senescence and apoptosis). However, we recently showed that an LMP1-deleted EBV mutant induces B cell lymphomas in a newly developed cord blood-humanized mouse model that allows EBV-infected B cells to interact with CD4 T cells (the major source of CD40 ligand). Here we examined whether the EBV LMP2A protein, which mimics constitutively active B cell receptor signaling, is required for EBV-induced lymphomas in this model. We find that the deletion of LMP2A delays the onset of EBV-induced lymphomas but does not affect the tumor phenotype or the number of tumors. The simultaneous deletion of both LMP1 and LMP2A results in fewer tumors and a further delay in tumor onset. Nevertheless, the LMP1/LMP2A double mutant induces lymphomas in approximately half of the infected animals. These results indicate that neither LMP1 nor LMP2A is absolutely essential for the ability of EBV to induce B cell lymphomas in the cord blood-humanized mouse model, although the simultaneous loss of both LMP1 and LMP2A decreases the proportion of animals developing tumors and increases the time to tumor onset. Thus, the expression of either LMP1 or LMP2A may be sufficient to promote early-onset EBV-induced tumors in this model.IMPORTANCE EBV causes human lymphomas, but few models are available for dissecting how EBV causes lymphomas in vivo in the context of a host immune response. We recently used a newly developed cord blood-humanized mouse model to show that EBV can cooperate with human CD4 T cells to cause B cell lymphomas even when a major viral transforming protein, LMP1, is deleted. Here we examined whether the EBV protein LMP2A, which mimics B cell receptor signaling, is required for EBV-induced lymphomas in this model. We find that the deletion of LMP2A alone has little effect on the ability of EBV to cause lymphomas but delays tumor onset. The deletion of both LMP1 and LMP2A results in a smaller number of lymphomas in infected animals, with an even more delayed time to tumor onset. These results suggest that LMP1 and LMP2A collaborate to promote early-onset lymphomas in this model, but neither protein is absolutely essential.
Collapse
|
43
|
Lin MC, Lin YC, Chen ST, Young TH, Lou PJ. Therapeutic vaccine targeting Epstein-Barr virus latent protein, LMP1, suppresses LMP1-expressing tumor growth and metastasis in vivo. BMC Cancer 2017; 17:18. [PMID: 28056887 PMCID: PMC5216543 DOI: 10.1186/s12885-016-3027-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 12/21/2016] [Indexed: 12/15/2022] Open
Abstract
Background In endemic area, nasopharyngeal carcinoma (NPC) tumor cells harbor EBV latent infection and expresses viral antigens such as EBNA1, LMP1 and LMP2. In this study, we established a NPC-mimicry animal model and assessed the therapeutic potential of LMP1 vaccine. Methods Animal models were established by injection of LMP1-expressing TC-1 cells in C57BL6/J mice subcutaneously or through tail veins. pcDNA3.1 empty vector or LMP1/pcDNA3.1 vaccine was delivered by a helium-driven gene gun. Effectiveness of vaccine was evaluated by measuring the tumor size and numbers of metastatic lung nodules. Circulating cytokines were evaluated by ELISArray. Populations of activated cytotoxic T lymphocytes (CTLs) and LMP1-specific T lymphocytes were evaluated by flow cytometry with CD8/CD107a double staining and interferon-γ ELISPOT assay, respectively. Results LMP1 vaccine significantly suppressed tumor growth (n = 3) and metastasis (n = 4) in vivo. When vaccinated before tumor challenge, all mice in vaccine group were tumor-free, whereas all mice in the control group developed tumors within 2 weeks after tumor challenge (n = 10). Cytokine ELISArray revealed elevation of a panel of proinflammatory cytokines in mice receiving LMP1 vaccine. Flow cytometry and interferon-γ ELISPOT assay revealed that LMP1 vaccine induced larger populations of activated CTLs and LMP1-specific T lymphocytes. Conclusions This pre-clinical study provides a promising result that LMP1 vaccine suppresses LMP1-expressing tumor growth and metastasis in vivo.
Collapse
Affiliation(s)
- Mei-Chun Lin
- Department of Otolaryngology, National Taiwan University Hospital, Hsin-Chu Branch, No. 25, Lane 442, Sec. 1, Jingguo Road, Hsinchu City, 300, Taiwan.,Graduate Institute of Anatomy and Cell Biology, National Taiwan University College of Medicine, No. 1, Sec. 1, Jen-Ai Road, Taipei, 100, Taiwan
| | - Yong-Chong Lin
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 1, Sec. 1, Jen-Ai Road, Taipei, 100, Taiwan
| | - Syue-Ting Chen
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University College of Medicine, No. 1, Sec. 1, Jen-Ai Road, Taipei, 100, Taiwan
| | - Tai-Horng Young
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 1, Sec. 1, Jen-Ai Road, Taipei, 100, Taiwan.
| | - Pei-Jen Lou
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University College of Medicine, No. 1, Sec. 1, Jen-Ai Road, Taipei, 100, Taiwan. .,Department of Otolaryngology, National Taiwan University Hospital and College of Medicine, No. 7, Chung-Shan South Road, Taipei, 100, Taiwan.
| |
Collapse
|
44
|
Hatton O, Strauss-Albee DM, Zhao NQ, Haggadone MD, Pelpola JS, Krams SM, Martinez OM, Blish CA. NKG2A-Expressing Natural Killer Cells Dominate the Response to Autologous Lymphoblastoid Cells Infected with Epstein-Barr Virus. Front Immunol 2016; 7:607. [PMID: 28018364 PMCID: PMC5156658 DOI: 10.3389/fimmu.2016.00607] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/01/2016] [Indexed: 01/01/2023] Open
Abstract
Epstein-Barr virus (EBV) is a human γ-herpesvirus that establishes latency and lifelong infection in host B cells while achieving a balance with the host immune response. When the immune system is perturbed through immunosuppression or immunodeficiency, however, these latently infected B cells can give rise to aggressive B cell lymphomas. Natural killer (NK) cells are regarded as critical in the early immune response to viral infection, but their role in controlling expansion of infected B cells is not understood. Here, we report that NK cells from healthy human donors display increased killing of autologous B lymphoblastoid cell lines (LCLs) harboring latent EBV compared to primary B cells. Coculture of NK cells with autologous EBV+ LCL identifies an NK cell population that produces IFNγ and mobilizes the cytotoxic granule protein CD107a. Multi-parameter flow cytometry and Boolean analysis reveal that these functional cells are enriched for expression of the NK cell receptor NKG2A. Further, NKG2A+ NK cells more efficiently lyse autologous LCL than do NKG2A- NK cells. More specifically, NKG2A+2B4+CD16-CD57-NKG2C-NKG2D+ cells constitute the predominant NK cell population that responds to latently infected autologous EBV+ B cells. Thus, a subset of NK cells is enhanced for the ability to recognize and eliminate autologous, EBV-infected transformed cells, laying the groundwork for harnessing this subset for therapeutic use in EBV+ malignancies.
Collapse
Affiliation(s)
- Olivia Hatton
- Department of Molecular Biology, Colorado College, Colorado Springs, CO, USA; Program in Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Nancy Q Zhao
- Program in Immunology, Stanford University School of Medicine , Stanford, CA , USA
| | - Mikel D Haggadone
- Program in Immunology, Stanford University School of Medicine , Stanford, CA , USA
| | | | - Sheri M Krams
- Program in Immunology, Stanford University School of Medicine, Stanford, CA, USA; Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Olivia M Martinez
- Program in Immunology, Stanford University School of Medicine, Stanford, CA, USA; Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Catherine A Blish
- Program in Immunology, Stanford University School of Medicine, Stanford, CA, USA; Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
45
|
Broad-spectrum antiviral properties of andrographolide. Arch Virol 2016; 162:611-623. [PMID: 27896563 DOI: 10.1007/s00705-016-3166-3] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 10/20/2016] [Indexed: 01/01/2023]
Abstract
Andrographolide, a diterpenoid, is known for its anti-inflammatory effects. It can be isolated from various plants of the genus Andrographis, commonly known as 'creat'. This purified compound has been tested for its anti-inflammatory effects in various stressful conditions, such as ischemia, pyrogenesis, arthritis, hepatic or neural toxicity, carcinoma, and oxidative stress, Apart from its anti-inflammatory effects, andrographolide also exhibits immunomodulatory effects by effectively enhancing cytotoxic T cells, natural killer (NK) cells, phagocytosis, and antibody-dependent cell-mediated cytotoxicity (ADCC). All these properties of andrographolide form the foundation for the use of this miraculous compound to restrain virus replication and virus-induced pathogenesis. The present article covers antiviral properties of andrographolide in variety of viral infections, with the hope of developing of a new highly potent antiviral drug with multiple effects.
Collapse
|
46
|
Incrocci R, Barse L, Stone A, Vagvala S, Montesano M, Subramaniam V, Swanson-Mungerson M. Epstein-Barr Virus Latent Membrane Protein 2A (LMP2A) enhances IL-10 production through the activation of Bruton's tyrosine kinase and STAT3. Virology 2016; 500:96-102. [PMID: 27792904 DOI: 10.1016/j.virol.2016.10.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 09/29/2016] [Accepted: 10/18/2016] [Indexed: 12/18/2022]
Abstract
Previous data demonstrate that Epstein-Barr Virus Latent Membrane Protein 2A (LMP2A) enhances IL-10 to promote the survival of LMP2A-expressing B cell lymphomas. Since STAT3 is an important regulator of IL-10 production, we hypothesized that LMP2A activates a signal transduction cascade that increases STAT3 phosphorylation to enhance IL-10. Using LMP2A-negative and -positive B cell lines, the data indicate that LMP2A requires the early signaling molecules of the Syk/RAS/PI3K pathway to increase IL-10. Additional studies indicate that the PI3K-regulated kinase, BTK, is responsible for phosphorylating STAT3, which ultimately mediates the LMP2A-dependent increase in IL-10. These data are the first to show that LMP2A signaling results in STAT3 phosphorylation in B cells through a PI3K/BTK-dependent pathway. With the use of BTK and STAT3 inhibitors to treat B cell lymphomas in clinical trials, these findings highlight the possibility of using new pharmaceutical approaches to treat EBV-associated lymphomas that express LMP2A.
Collapse
Affiliation(s)
- Ryan Incrocci
- Department of Microbiology and Immunology, Chicago College of Osteopathic Medicine, Midwestern University, 555 31st Street, Downers Grove, IL 60515, United States
| | - Levi Barse
- Department of Biomedical Sciences, College of Health Sciences, Midwestern University, 555 31st Street, Downers Grove, IL 60515, United States
| | - Amanda Stone
- Department of Microbiology and Immunology, Chicago College of Osteopathic Medicine, Midwestern University, 555 31st Street, Downers Grove, IL 60515, United States
| | - Sai Vagvala
- Department of Microbiology and Immunology, Chicago College of Osteopathic Medicine, Midwestern University, 555 31st Street, Downers Grove, IL 60515, United States
| | - Michael Montesano
- Department of Microbiology and Immunology, Chicago College of Osteopathic Medicine, Midwestern University, 555 31st Street, Downers Grove, IL 60515, United States
| | - Vijay Subramaniam
- Department of Biomedical Sciences, College of Health Sciences, Midwestern University, 555 31st Street, Downers Grove, IL 60515, United States
| | - Michelle Swanson-Mungerson
- Department of Microbiology and Immunology, Chicago College of Osteopathic Medicine, Midwestern University, 555 31st Street, Downers Grove, IL 60515, United States.
| |
Collapse
|
47
|
Epstein-Barr virus microRNAs reduce immune surveillance by virus-specific CD8+ T cells. Proc Natl Acad Sci U S A 2016; 113:E6467-E6475. [PMID: 27698133 DOI: 10.1073/pnas.1605884113] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Infection with Epstein-Barr virus (EBV) affects most humans worldwide and persists life-long in the presence of robust virus-specific T-cell responses. In both immunocompromised and some immunocompetent people, EBV causes several cancers and lymphoproliferative diseases. EBV transforms B cells in vitro and encodes at least 44 microRNAs (miRNAs), most of which are expressed in EBV-transformed B cells, but their functions are largely unknown. Recently, we showed that EBV miRNAs inhibit CD4+ T-cell responses to infected B cells by targeting IL-12, MHC class II, and lysosomal proteases. Here we investigated whether EBV miRNAs also counteract surveillance by CD8+ T cells. We have found that EBV miRNAs strongly inhibit recognition and killing of infected B cells by EBV-specific CD8+ T cells through multiple mechanisms. EBV miRNAs directly target the peptide transporter subunit TAP2 and reduce levels of the TAP1 subunit, MHC class I molecules, and EBNA1, a protein expressed in most forms of EBV latency and a target of EBV-specific CD8+ T cells. Moreover, miRNA-mediated down-regulation of the cytokine IL-12 decreases the recognition of infected cells by EBV-specific CD8+ T cells. Thus, EBV miRNAs use multiple, distinct pathways, allowing the virus to evade surveillance not only by CD4+ but also by antiviral CD8+ T cells.
Collapse
|
48
|
Tagawa T, Albanese M, Bouvet M, Moosmann A, Mautner J, Heissmeyer V, Zielinski C, Lutter D, Hoser J, Hastreiter M, Hayes M, Sugden B, Hammerschmidt W. Epstein-Barr viral miRNAs inhibit antiviral CD4+ T cell responses targeting IL-12 and peptide processing. J Exp Med 2016; 213:2065-80. [PMID: 27621419 PMCID: PMC5030804 DOI: 10.1084/jem.20160248] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 08/01/2016] [Indexed: 12/14/2022] Open
Abstract
EBV reduces the activation of cytotoxic CD4+ effector T cells by inducing a state of reduced immunogenicity in infected B cells. EBV-derived miRNAs suppress release of proinflammatory cytokines, interfere with peptide processing and presentation on HLA class II, repress differentiation of naive CD4+ T cells to Th1 cells, and ultimately avoid killing of infected B cells. Epstein-Barr virus (EBV) is a tumor virus that establishes lifelong infection in most of humanity, despite eliciting strong and stable virus-specific immune responses. EBV encodes at least 44 miRNAs, most of them with unknown function. Here, we show that multiple EBV miRNAs modulate immune recognition of recently infected primary B cells, EBV's natural target cells. EBV miRNAs collectively and specifically suppress release of proinflammatory cytokines such as IL-12, repress differentiation of naive CD4+ T cells to Th1 cells, interfere with peptide processing and presentation on HLA class II, and thus reduce activation of cytotoxic EBV-specific CD4+ effector T cells and killing of infected B cells. Our findings identify a previously unknown viral strategy of immune evasion. By rapidly expressing multiple miRNAs, which are themselves nonimmunogenic, EBV counteracts recognition by CD4+ T cells and establishes a program of reduced immunogenicity in recently infected B cells, allowing the virus to express viral proteins required for establishment of life-long infection.
Collapse
Affiliation(s)
- Takanobu Tagawa
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Partner site Munich, Germany, D-81377 Munich, Germany German Centre for Infection Research (DZIF), Partner site Munich, Germany, D-81377 Munich, Germany
| | - Manuel Albanese
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Partner site Munich, Germany, D-81377 Munich, Germany German Centre for Infection Research (DZIF), Partner site Munich, Germany, D-81377 Munich, Germany
| | - Mickaël Bouvet
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Partner site Munich, Germany, D-81377 Munich, Germany German Centre for Infection Research (DZIF), Partner site Munich, Germany, D-81377 Munich, Germany
| | - Andreas Moosmann
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Partner site Munich, Germany, D-81377 Munich, Germany German Centre for Infection Research (DZIF), Partner site Munich, Germany, D-81377 Munich, Germany
| | - Josef Mautner
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Partner site Munich, Germany, D-81377 Munich, Germany German Centre for Infection Research (DZIF), Partner site Munich, Germany, D-81377 Munich, Germany Children's Hospital, Technical University Munich, D-80337 Munich, Germany
| | - Vigo Heissmeyer
- Research Unit Molecular Immune Regulation, Institute of Molecular Immunology, Helmholtz Zentrum München, German Research Center for Environmental Health Munich, University of Munich, D-80539 Munich, Germany Institute for Immunology, University of Munich, D-80539 Munich, Germany
| | - Christina Zielinski
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University Munich, D-80337 Munich, Germany
| | - Dominik Lutter
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, German Research Center for Environmental Health, D-85764 Munich, Germany
| | - Jonathan Hoser
- Institute of Bioinformatics and System Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, D-85764 Munich, Germany
| | - Maximilian Hastreiter
- Institute of Bioinformatics and System Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, D-85764 Munich, Germany
| | - Mitch Hayes
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706
| | - Bill Sugden
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706
| | - Wolfgang Hammerschmidt
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Partner site Munich, Germany, D-81377 Munich, Germany German Centre for Infection Research (DZIF), Partner site Munich, Germany, D-81377 Munich, Germany
| |
Collapse
|
49
|
Ma Y, Li X, Kuang E. Viral Evasion of Natural Killer Cell Activation. Viruses 2016; 8:95. [PMID: 27077876 PMCID: PMC4848590 DOI: 10.3390/v8040095] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/21/2016] [Accepted: 03/31/2016] [Indexed: 12/11/2022] Open
Abstract
Natural killer (NK) cells play a key role in antiviral innate defenses because of their abilities to kill infected cells and secrete regulatory cytokines. Additionally, NK cells exhibit adaptive memory-like antigen-specific responses, which represent a novel antiviral NK cell defense mechanism. Viruses have evolved various strategies to evade the recognition and destruction by NK cells through the downregulation of the NK cell activating receptors. Here, we review the recent findings on viral evasion of NK cells via the impairment of NK cell-activating receptors and ligands, which provide new insights on the relationship between NK cells and viral actions during persistent viral infections.
Collapse
Affiliation(s)
- Yi Ma
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, No. 74, Zhongshan 2nd Road, Guangzhou 510080, China.
| | - Xiaojuan Li
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, No. 74, Zhongshan 2nd Road, Guangzhou 510080, China.
| | - Ersheng Kuang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, No. 74, Zhongshan 2nd Road, Guangzhou 510080, China.
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou 510080, China.
| |
Collapse
|
50
|
Induction of the Lytic Cycle Sensitizes Epstein-Barr Virus-Infected B Cells to NK Cell Killing That Is Counteracted by Virus-Mediated NK Cell Evasion Mechanisms in the Late Lytic Cycle. J Virol 2015; 90:947-58. [PMID: 26537677 DOI: 10.1128/jvi.01932-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 10/26/2015] [Indexed: 12/18/2022] Open
Abstract
UNLABELLED Epstein-Barr Virus (EBV) persists for the lifetime of the infected host despite eliciting strong immune responses. This persistence requires a fine balance between the host immune system and EBV immune evasion. Accumulating evidence suggests an important role for natural killer (NK) cells in this balance. NK cells can kill EBV-infected cells undergoing lytic replication in vitro, and studies in both humans and mice with reconstituted human immune systems have shown that NK cells can limit EBV replication and prevent infectious mononucleosis. We now show that NK cells, via NKG2D and DNAM-1 interactions, recognize and kill EBV-infected cells undergoing lytic replication and that expression of a single EBV lytic gene, BZLF1, is sufficient to trigger sensitization to NK cell killing. We also present evidence suggesting the possibility of the existence of an as-yet-unidentified DNAM-1 ligand which may be particularly important for killing lytically infected normal B cells. Furthermore, while cells entering the lytic cycle become sensitized to NK cell killing, we observed that cells in the late lytic cycle are highly resistant. We identified expression of the vBcl-2 protein, BHRF1, as one effective mechanism by which EBV mediates this protection. Thus, contrary to the view expressed in some reports, EBV has evolved the ability to evade NK cell responses. IMPORTANCE This report extends our understanding of the interaction between EBV and host innate responses. It provides the first evidence that the susceptibility to NK cell lysis of EBV-infected B cells undergoing lytic replication is dependent upon the phase of the lytic cycle. Induction of the lytic cycle is associated with acquired sensitization to NK cell killing, while progress through the late lytic cycle is associated with acquired resistance to killing. We provide mechanistic explanations for this novel observation, indicating important roles for the BZLF1 immediate early transactivator, the BHRF1 vBcl-2 homologue, and a novel ligand for the DNAM-1 NK cell receptor.
Collapse
|