1
|
Emmert AS, Ruan T, Sherenian MG, Assa'ad AH, Leitsinger N, Schultz L, Jain VV, Sturm PF, Jones AC. Prevalence of metal hypersensitivity in pediatric spine surgery. Spine Deform 2025; 13:667-671. [PMID: 39808266 PMCID: PMC12021689 DOI: 10.1007/s43390-024-01030-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/19/2024] [Indexed: 01/16/2025]
Abstract
PURPOSE Delayed metal hypersensitivity reactions can cause complications in spine surgery. Currently, there is no information on the prevalence of metal hypersensitivity in pediatric patients undergoing spine surgery. The objective of this study is to determine the prevalence of metal hypersensitivity in pediatric patients undergoing spinal instrumentation. METHODS Retrospective chart review of patients who underwent spinal instrumentation with or without fusion at a single institution, from January 1, 2014, to December 31, 2020, was performed. Patients were pre-screened for history of allergic diseases, including previous reaction to metals, prior to surgery. Patch metal allergy testing (PMAT) for metal hypersensitivity was also performed. RESULTS Of the 796 pediatric patients who underwent spinal instrumentation procedures from 2014 to 2020, 118 (15%) screened positive for metal hypersensitivity. However, the number of patients with documented evidence of metal hypersensitivity diminished to 26 (3%) after PMAT verification. Nickel hypersensitivity was most prevalent, with 20 patients (16.9% of positive screening; 2.5% of all instrumented patients) demonstrating positive skin patch tests. The other most prevalent metal hypersensitivities included cobalt in 9 patients (7.6%; 1.1%), manganese in 3 patients (2.5%; 0.4%), and copper in 1 patient (0.8%; 0.1%). with a number needed to treat (NNT) of 5. CONCLUSIONS This study suggests that routine pre-operative PMAT is not necessary in all pediatric spine patients yet should be considered if patients report a history of prior metal hypersensitivity reactions.
Collapse
Affiliation(s)
- A Scott Emmert
- Division of Orthopaedic Surgery, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45242, USA
| | - Tiffany Ruan
- Division of Orthopaedic Surgery, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45242, USA
| | - Michael G Sherenian
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Amal H Assa'ad
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Nichole Leitsinger
- Division of Orthopaedic Surgery, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45242, USA
| | - Lindsay Schultz
- Division of Orthopaedic Surgery, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45242, USA
| | - Viral V Jain
- Division of Orthopaedic Surgery, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45242, USA
| | - Peter F Sturm
- Division of Orthopaedic Surgery, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45242, USA
| | - Alvin C Jones
- Division of Orthopaedic Surgery, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45242, USA.
| |
Collapse
|
2
|
Ganko R, Madhavan A, Hamouda W, Muthu S, Jain A, Yoon ST, El-Rozz H, Cyril D, Pabbruwe M, Tipper JL, Tavakoli J. Spinal implant wear particles: Generation, characterization, biological impacts, and future considerations. iScience 2025; 28:112193. [PMID: 40212584 PMCID: PMC11982499 DOI: 10.1016/j.isci.2025.112193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025] Open
Abstract
The generation of wear debris from orthopedic implants is a known cause of implant failure, particularly in joint replacements. While much research has focused on wear particles from knee and hip implants, spinal implants, such as total disc replacements (TDRs), have received less attention despite their increasing clinical use. Spinal implants face unique biomechanical challenges, including a wider range of motion and higher loads, leading to complex tissue interactions. Studies reveal that TDR wear particles, though similar in size to those from knee implants, cause a stronger immune response, with more macrophages and giant cells found in the surrounding tissue. This may explain the high revision rates seen in spinal surgeries, with some interventions failing in over 30% of cases within 10 years. The younger population undergoing spinal surgery, combined with the productivity losses associated with implant failure, underscores the need for greater understanding. This review discusses recent research on the generation, characterization, and biological impacts of spinal implant wear debris. It draws on retrieval analysis, wear simulation, in vivo models, and a survey conducted with the AO Spine Knowledge Forum Degenerative to assess current clinical practices and highlight gaps in knowledge. Additionally, this critical review explores future strategies to reduce the biological impact of wear particles and improve the safety and longevity of spinal implants through better therapeutics and design innovations. By combining literature and clinical insights, this paper aims to guide future research in addressing the complexities of spinal implant wear and its biological consequences.
Collapse
Affiliation(s)
- Renata Ganko
- School of Biomedical Engineering, Faculty of Eng and Information Technology, University of Technology Sydney, Ultimo, NSW, Australia
| | - Aswini Madhavan
- School of Biomedical Engineering, Faculty of Eng and Information Technology, University of Technology Sydney, Ultimo, NSW, Australia
| | - Waeel Hamouda
- Department of Neurosurgery, Kasr Alainy Faculty of Medicine, Research, and Teaching Hospitals, Cairo University, Cairo, Egypt
- Department of Neurosurgery, Security Forces Hospital, Dammam, Saudi Arabia
| | - Sathish Muthu
- Department of Orthopaedics, Government Medical College, Karur, India
- Orthopaedic Research Group, Coimbatore, Tamil Nadu, India
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, India
| | - Amit Jain
- Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, MD, USA
| | - S. Tim Yoon
- Department of Orthopaedic Surgery, Emory University, Atlanta, GA, USA
| | - Hiba El-Rozz
- School of Biomedical Engineering, Faculty of Eng and Information Technology, University of Technology Sydney, Ultimo, NSW, Australia
| | - Divya Cyril
- School of Biomedical Engineering, Faculty of Eng and Information Technology, University of Technology Sydney, Ultimo, NSW, Australia
| | - Moreica Pabbruwe
- Centre for Implant Retrieval and Analysis, Royal Perth Hospital, Perth, WA, Australia
| | - Joanne L. Tipper
- School of Biomedical Engineering, Faculty of Eng and Information Technology, University of Technology Sydney, Ultimo, NSW, Australia
- School of Engineering, RMIT University, Melbourne, VIC 3001, Australia
- School of Mechanical Engineering, University of Leeds, Leads, UK
| | - Javad Tavakoli
- School of Biomedical Engineering, Faculty of Eng and Information Technology, University of Technology Sydney, Ultimo, NSW, Australia
- School of Engineering, RMIT University, Melbourne, VIC 3001, Australia
| |
Collapse
|
3
|
Zaborovskii N, Masevnin S, Smekalenkov O, Murakhovsky V, Ptashnikov D. Patient-specific 3D-Printed PEEK implants for spinal tumor surgery. J Orthop 2025; 62:99-105. [PMID: 39512487 PMCID: PMC11539085 DOI: 10.1016/j.jor.2024.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 10/17/2024] [Indexed: 11/15/2024] Open
Abstract
Aims & objectives This study evaluates the feasibility and clinical outcomes of using 3D-printed polyetheretherketone (PEEK) patient-specific implants (PSI) for vertebral body replacement (VBR) in patients with spinal tumors. The research question focuses on postoperative results, implant integration, and complications over a 12-month period. Methods A single-center, retrospective case series analyzed five patients who underwent spinal reconstruction after tumor resection using PEEK 3D VBR between April 2022 and June 2023. Inclusion criteria were thoracic/lumbar spinal tumors, tumor resection with PEEK 3D VBR reconstruction, and follow-up exceeding 12 months. PEEK implants were created using fused filament fabrication from medical-grade PEEK. Patient data included demographics, medical history, tumor characteristics, and surgical outcomes. Radiological evaluations assessed bony fusion, local angle changes, and segment height stability. Descriptive statistical analyses were performed using R software. Results The mean follow-up duration was 19.2 months. All patients remained alive, with one experiencing local recurrence. Postoperative imaging showed a decrease in local angle with no significant changes during follow-up. Segment heights remained stable, and no PEEK 3D VBR subsidence or hardware failure was observed. Bony fusion was observed in all patients. Conclusions The use of PEEK 3D printed PSI for VBR in spinal tumor patients demonstrates promising feasibility and clinical outcomes, with stable implant integration and minimal complications over a 12-month period. Further studies with larger cohorts are recommended to validate these findings.
Collapse
Affiliation(s)
- Nikita Zaborovskii
- Vreden National Medical Research Center of Traumatology and Orthopedics, Saint-Petersburg, Russia
- Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Sergei Masevnin
- Vreden National Medical Research Center of Traumatology and Orthopedics, Saint-Petersburg, Russia
| | - Oleg Smekalenkov
- Vreden National Medical Research Center of Traumatology and Orthopedics, Saint-Petersburg, Russia
| | - Vladislav Murakhovsky
- Vreden National Medical Research Center of Traumatology and Orthopedics, Saint-Petersburg, Russia
| | - Dmitrii Ptashnikov
- Vreden National Medical Research Center of Traumatology and Orthopedics, Saint-Petersburg, Russia
- North-Western State Medical University Named After I.I.Mechnikov, Saint-Petersburg, Russia
| |
Collapse
|
4
|
Grunert R, Winkler D, Knoop N, Weidling M, Matzke C, Scholz S, Meixensberger J, Arlt F. A New Concept for Cervical Expansion Screws Using Shape Memory Alloy: A Feasibility Study. J Neurol Surg A Cent Eur Neurosurg 2025; 86:128-134. [PMID: 37940113 DOI: 10.1055/a-2206-2578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
BACKGROUND In general, sufficient anchoring of screws in the bone material ensures the intended primary stability. METHODS Shape memory materials offer the option of using temperature-associated deformation energy in a targeted manner to compensate the special situation of osteoporotic bones or the potential lack of anchoring. An expansion screw was developed for these purposes. Using finite element analysis (FEA), the variability of screw configuration and actuator was assessed from shape memory. In particular, the dimensioning of the screw slot, the actuator length, and the actuator diameter as well as the angle of attack in relation to the intended force development were considered. RESULTS As a result of the FEA, a special configuration of expansion screw and shape memory element could be found. Accordingly, with an optimal screw diameter of 4 mm, an actuator diameter of 0.8 mm, a screw slot of 7.8 mm in length, and an angle of attack of 25 degrees, the best compromise between individual components and high efficiency in favor of maximum strength can be predicted. CONCLUSION Shape memory material offers the possibility of using completely new forms of power development. By skillfully modifying the mechanical and shape memory elements, their interaction results in a calculated development of force in favor of a high primary stability of the screw material used. Activation by means of body temperature is a very elegant way of initializing the intended locking and screw strength.
Collapse
Affiliation(s)
- Ronny Grunert
- Department of Neurosurgery, University Leipzig, Leipzig, Germany
- Fraunhofer Institute for Machine Tools and Forming Technology, Zittau, Germany
| | - Dirk Winkler
- Department of Neurosurgery, University Leipzig, Leipzig, Germany
| | - Nikolas Knoop
- Department of Neurosurgery, University Leipzig, Leipzig, Germany
| | - Martin Weidling
- Department Orthopedics, Trauma Surgery and Plastic Surgery, University Leipzig, Leipzig, Germany
| | - Cornelia Matzke
- Department of Neurosurgery, University Leipzig, Leipzig, Germany
| | - Sebastian Scholz
- Fraunhofer Institute for Machine Tools and Forming Technology, Zittau, Germany
| | | | - Felix Arlt
- Department of Neurosurgery, University Leipzig, Leipzig, Germany
| |
Collapse
|
5
|
Lam FC, Guru S, AbuReesh D, Hori YS, Chuang C, Liu L, Wang L, Gu X, Szalkowski GA, Wang Z, Wohlers C, Tayag A, Emrich SC, Ustrzynski L, Zygourakis CC, Desai A, Hayden Gephart M, Byun J, Pollom EL, Rahimy E, Soltys S, Park DJ, Chang SD. Use of Carbon Fiber Implants to Improve the Safety and Efficacy of Radiation Therapy for Spine Tumor Patients. Brain Sci 2025; 15:199. [PMID: 40002531 PMCID: PMC11852773 DOI: 10.3390/brainsci15020199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/22/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Current standard of care treatment for patients with spine tumors includes multidisciplinary approaches, including the following: (1) surgical tumor debulking, epidural spinal cord decompression, and spine stabilization techniques; (2) systemic chemo/targeted therapies; (3) radiation therapy; and (4) surveillance imaging for local disease control and recurrence. Titanium pedicle screw and rod fixation have become commonplace in the spine surgeon's armamentarium for the stabilization of the spine following tumor resection and separation surgery. However, the high degree of imaging artifacts seen with titanium implants on postoperative CT and MRI scans can significantly hinder the accurate delineation of vertebral anatomy and adjacent neurovascular structures to allow for the safe and effective planning of downstream radiation therapies and detection of disease recurrence. Carbon fiber-reinforced polyetheretherketone (CFR-PEEK) spine implants have emerged as a promising alternative to titanium due to the lack of artifact signals on CT and MRI, allowing for more accurate and safe postoperative radiation planning. In this article, we review the tenants of the surgical and radiation management of spine tumors and discuss the safety, efficacy, and current limitations of CFR-PEEK spine implants in the multidisciplinary management of spine oncology patients.
Collapse
Affiliation(s)
- Fred C. Lam
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA; (F.C.L.); (S.G.); (D.A.); (Y.S.H.); (A.T.); (S.C.E.); (L.U.); (A.D.); (M.H.G.); (D.J.P.)
| | - Santosh Guru
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA; (F.C.L.); (S.G.); (D.A.); (Y.S.H.); (A.T.); (S.C.E.); (L.U.); (A.D.); (M.H.G.); (D.J.P.)
| | - Deyaldeen AbuReesh
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA; (F.C.L.); (S.G.); (D.A.); (Y.S.H.); (A.T.); (S.C.E.); (L.U.); (A.D.); (M.H.G.); (D.J.P.)
| | - Yusuke S. Hori
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA; (F.C.L.); (S.G.); (D.A.); (Y.S.H.); (A.T.); (S.C.E.); (L.U.); (A.D.); (M.H.G.); (D.J.P.)
| | - Cynthia Chuang
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA; (C.C.); (L.L.); (L.W.); (X.G.); (G.A.S.); (Z.W.); (C.W.); (J.B.); (E.L.P.); (E.R.); (S.S.)
| | - Lianli Liu
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA; (C.C.); (L.L.); (L.W.); (X.G.); (G.A.S.); (Z.W.); (C.W.); (J.B.); (E.L.P.); (E.R.); (S.S.)
| | - Lei Wang
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA; (C.C.); (L.L.); (L.W.); (X.G.); (G.A.S.); (Z.W.); (C.W.); (J.B.); (E.L.P.); (E.R.); (S.S.)
| | - Xuejun Gu
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA; (C.C.); (L.L.); (L.W.); (X.G.); (G.A.S.); (Z.W.); (C.W.); (J.B.); (E.L.P.); (E.R.); (S.S.)
| | - Gregory A. Szalkowski
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA; (C.C.); (L.L.); (L.W.); (X.G.); (G.A.S.); (Z.W.); (C.W.); (J.B.); (E.L.P.); (E.R.); (S.S.)
| | - Ziyi Wang
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA; (C.C.); (L.L.); (L.W.); (X.G.); (G.A.S.); (Z.W.); (C.W.); (J.B.); (E.L.P.); (E.R.); (S.S.)
| | - Christopher Wohlers
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA; (C.C.); (L.L.); (L.W.); (X.G.); (G.A.S.); (Z.W.); (C.W.); (J.B.); (E.L.P.); (E.R.); (S.S.)
| | - Armine Tayag
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA; (F.C.L.); (S.G.); (D.A.); (Y.S.H.); (A.T.); (S.C.E.); (L.U.); (A.D.); (M.H.G.); (D.J.P.)
| | - Sara C. Emrich
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA; (F.C.L.); (S.G.); (D.A.); (Y.S.H.); (A.T.); (S.C.E.); (L.U.); (A.D.); (M.H.G.); (D.J.P.)
| | - Louisa Ustrzynski
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA; (F.C.L.); (S.G.); (D.A.); (Y.S.H.); (A.T.); (S.C.E.); (L.U.); (A.D.); (M.H.G.); (D.J.P.)
| | - Corinna C. Zygourakis
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA; (F.C.L.); (S.G.); (D.A.); (Y.S.H.); (A.T.); (S.C.E.); (L.U.); (A.D.); (M.H.G.); (D.J.P.)
| | - Atman Desai
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA; (F.C.L.); (S.G.); (D.A.); (Y.S.H.); (A.T.); (S.C.E.); (L.U.); (A.D.); (M.H.G.); (D.J.P.)
| | - Melanie Hayden Gephart
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA; (F.C.L.); (S.G.); (D.A.); (Y.S.H.); (A.T.); (S.C.E.); (L.U.); (A.D.); (M.H.G.); (D.J.P.)
| | - John Byun
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA; (C.C.); (L.L.); (L.W.); (X.G.); (G.A.S.); (Z.W.); (C.W.); (J.B.); (E.L.P.); (E.R.); (S.S.)
| | - Erqi Liu Pollom
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA; (C.C.); (L.L.); (L.W.); (X.G.); (G.A.S.); (Z.W.); (C.W.); (J.B.); (E.L.P.); (E.R.); (S.S.)
| | - Elham Rahimy
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA; (C.C.); (L.L.); (L.W.); (X.G.); (G.A.S.); (Z.W.); (C.W.); (J.B.); (E.L.P.); (E.R.); (S.S.)
| | - Scott Soltys
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA; (C.C.); (L.L.); (L.W.); (X.G.); (G.A.S.); (Z.W.); (C.W.); (J.B.); (E.L.P.); (E.R.); (S.S.)
| | - David J. Park
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA; (F.C.L.); (S.G.); (D.A.); (Y.S.H.); (A.T.); (S.C.E.); (L.U.); (A.D.); (M.H.G.); (D.J.P.)
| | - Steven D. Chang
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA; (F.C.L.); (S.G.); (D.A.); (Y.S.H.); (A.T.); (S.C.E.); (L.U.); (A.D.); (M.H.G.); (D.J.P.)
| |
Collapse
|
6
|
Kienle A, Wilke H, Schröder C, Pietsch A. How to improve the mechanical safety of a novel spinal implant while saving costs and time. JOR Spine 2024; 7:e70026. [PMID: 39726899 PMCID: PMC11669745 DOI: 10.1002/jsp2.70026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/29/2024] [Accepted: 12/03/2024] [Indexed: 12/28/2024] Open
Abstract
Background Spinal implant failure is associated with prolonged patient suffering, high costs for the medical device industry, and a high economic burden for the health care system. Pre-clinical mechanical testing has great potential to reduce the risk of such failure. However, there are no binding regulations for planning and interpretation of mechanical testing. Therefore, different strategies exist. Mainly for novel implants an option is to start with a structured scientific literature search that forms an objective background for the definition of an implant-specific test plan, the derivation of acceptance criteria and interpretation of the test results. Methods This paper describes, how a literature-based approach can look like from the initial literature search through the derivation of the test plan and the acceptance criteria, to the final test result evaluation and how this approach can support the proof that the device meets all necessary safety and performance standards. Results The main advantage of this literature-based approach is that testing and test result interpretation are linked with the loads acting on the individual implant in vivo. In an ideal case, testing is focused on the individual implant in a way that ensures maximum efficiency during the development and approval process combined with maximum insight in safety and effectiveness of the implant. Even comparative implant testing may become obsolete, which is a big advantage if comparative implant and related data are not available. Conclusion This approach to pre-clinical mechanical testing offers the potential to create a chain of arguments, from literature review through testing to the interpretation of test results. This methodology can significantly enhance testing efficiency, reduce risk of failure, and ultimately prevent unnecessary patient suffering and healthcare costs. By synthesizing scientific insights with regulatory requirements, this review aims to guide clinicians and researchers in improving patient care and advancing device technologies.
Collapse
Affiliation(s)
| | - Hans‐Joachim Wilke
- Institute of Orthopaedic Research and BiomechanicsUniversity Hospital UlmUlmGermany
| | | | | |
Collapse
|
7
|
Patel A, Dada A, Saggi S, Yamada H, Ambati VS, Goldstein E, Hsiao EC, Mummaneni PV. Personalized Approaches to Spine Surgery. Int J Spine Surg 2024; 18:8644. [PMID: 39191475 PMCID: PMC11687043 DOI: 10.14444/8644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024] Open
Abstract
Patient-centric decision-making has imbued all aspects of health care, including spine surgery. This review describes how spine surgeons can use evolving technologies and knowledge of disease and pain states to tailor their surgical approach to the individual patient. This includes preoperative screening for and optimization of low bone mineral density, intraoperative selection of implant material and customization of interbody cages and screws, and postoperative personalization of pain regimens and rehabilitation courses. By working in a multidisciplinary fashion, spine surgeons can avail themselves of these advances to provide individualized care.
Collapse
Affiliation(s)
- Arati Patel
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Abraham Dada
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Satvir Saggi
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Hunter Yamada
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Vardhaan S Ambati
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Elianna Goldstein
- Department of Radiology and Biomedical Imaging, Neuroradiology Division, University of California San Francisco, San Francisco, CA, USA
| | - Edward C Hsiao
- Division of Endocrinology and Metabolism, The UCSF Metabolic Bone Clinic, University of California San Francisco, San Francisco, CA, USA
| | - Praveen V Mummaneni
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
8
|
Tabrizian P, Davis S, Su B. From bone to nacre - development of biomimetic materials for bone implants: a review. Biomater Sci 2024; 12:5680-5703. [PMID: 39397519 DOI: 10.1039/d4bm00903g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
The field of bone repair and regeneration has undergone significant advancements, yet challenges persist in achieving optimal bone implants or scaffolds, particularly load-bearing bone implants. This review explores the current landscape of bone implants, emphasizing the complexity of bone anatomy and the emerging paradigm of biomimicry inspired by natural structures. Nature, as a master architect, offers insights into the design of biomaterials that can closely emulate the mechanical properties and hierarchical organization of bone. By drawing parallels with nacre, the mollusk shells renowned for their exceptional strength and toughness, researchers have endeavored to develop bone implants with enhanced biocompatibility and mechanical robustness. This paper surveys the literature on various nacre-inspired composites, particularly ceramic/polymer composites like calcium phosphate (CaP), which exhibit promising similarities to native bone tissue. By harnessing the principles of hierarchical organization and organic-inorganic interfaces observed in natural structures, researchers aim to overcome existing limitations in bone implant technology, paving the way for more durable, biocompatible, and functionally integrated solutions in orthopedic and dental applications.
Collapse
Affiliation(s)
- Parinaz Tabrizian
- Biomaterials Engineering Group (bioMEG), Bristol Dental School, University of Bristol, UK.
| | - Sean Davis
- School of Chemistry, University of Bristol, UK
| | - Bo Su
- Biomaterials Engineering Group (bioMEG), Bristol Dental School, University of Bristol, UK.
| |
Collapse
|
9
|
Regmi M, Liu W, Liu S, Dai Y, Xiong Y, Yang J, Yang C. The evolution and integration of technology in spinal neurosurgery: A scoping review. J Clin Neurosci 2024; 129:110853. [PMID: 39348790 DOI: 10.1016/j.jocn.2024.110853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 10/02/2024]
Abstract
Spinal disorders pose a significant global health challenge, affecting nearly 5% of the population and incurring substantial socioeconomic costs. Over time, spinal neurosurgery has evolved from basic 19th-century techniques to today's minimally invasive procedures. The recent integration of technologies such as robotic assistance and advanced imaging has not only improved precision but also reshaped treatment paradigms. This review explores key innovations in imaging, biomaterials, and emerging fields such as AI, examining how they address long-standing challenges in spinal care, including enhancing surgical accuracy and promoting tissue regeneration. Are we at the threshold of a new era in healthcare technology, or are these innovations merely enhancements that may not fundamentally advance clinical care? We aim to answer this question by offering a concise introduction to each technology and discussing in depth its status and challenges, providing readers with a clearer understanding of its actual potential to revolutionize surgical practices.
Collapse
Affiliation(s)
- Moksada Regmi
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing 100191, China; Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Peking University, Beijing 100191, China; Peking University Health Science Center, Beijing 100191, China; Henan Academy of Innovations in Medical Science (AIMS), Zhengzhou 450003, China
| | - Weihai Liu
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing 100191, China; Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Peking University, Beijing 100191, China
| | - Shikun Liu
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing 100191, China; Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Peking University, Beijing 100191, China
| | - Yuwei Dai
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing 100191, China; Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Peking University, Beijing 100191, China
| | - Ying Xiong
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing 100191, China; Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Peking University, Beijing 100191, China
| | - Jun Yang
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing 100191, China; Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Peking University, Beijing 100191, China
| | - Chenlong Yang
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing 100191, China; Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Peking University, Beijing 100191, China; Henan Academy of Innovations in Medical Science (AIMS), Zhengzhou 450003, China.
| |
Collapse
|
10
|
Liang Y, Xu H, Tang W, Du X. The impact of metal implants on the dose and clinical outcome of radiotherapy (Review). Mol Clin Oncol 2024; 21:66. [PMID: 39091418 PMCID: PMC11289751 DOI: 10.3892/mco.2024.2764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/27/2024] [Indexed: 08/04/2024] Open
Abstract
Radiotherapy (RT) is one of the most widely used and effective cancer treatments. With the increasing need for organ reconstruction and advancements in material technology, an increasing number of patients with cancer have metallic implants. These implants can affect RT dosage and clinical outcomes, warranting careful consideration by oncologists. The present review discussed the mechanisms by which different types of metallic implants impact various stages of the RT process, examined methods to mitigate these effects during treatment, and discussed the clinical implications of metallic implants on RT outcomes. In summary, when metallic implants are present within the RT field, oncologists should carefully assess their impact on the treatment.
Collapse
Affiliation(s)
- Yuwen Liang
- Department of Oncology, Mianyang Central Hospital, Mianyang, Sichuan 621000, P.R. China
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637100, P.R. China
- Sichuan Clinical Research Center for Radiation and Therapy, Mianyang, Sichuan 621000, P.R. China
| | - Haonan Xu
- Department of Oncology, Mianyang Central Hospital, Mianyang, Sichuan 621000, P.R. China
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637100, P.R. China
- Sichuan Clinical Research Center for Radiation and Therapy, Mianyang, Sichuan 621000, P.R. China
| | - Wenqiang Tang
- Department of Oncology, Mianyang Central Hospital, Mianyang, Sichuan 621000, P.R. China
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637100, P.R. China
- Sichuan Clinical Research Center for Radiation and Therapy, Mianyang, Sichuan 621000, P.R. China
| | - Xiaobo Du
- Department of Oncology, Mianyang Central Hospital, Mianyang, Sichuan 621000, P.R. China
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637100, P.R. China
- Sichuan Clinical Research Center for Radiation and Therapy, Mianyang, Sichuan 621000, P.R. China
| |
Collapse
|
11
|
Wang J, Jiang Y, Zhu C, Liu Z, Qi L, Ding H, Wang J, Huang Y, Li Y, Song Y, Feng G, Zhang L, Liu L. Mitochondria-engine with self-regulation to restore degenerated intervertebral disc cells via bioenergetic robust hydrogel design. Bioact Mater 2024; 40:1-18. [PMID: 38873262 PMCID: PMC11167444 DOI: 10.1016/j.bioactmat.2024.05.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/15/2024] Open
Abstract
Previous studies have confirmed that intervertebral disc degeneration (IDD) is closely associated with inflammation-induced reactive oxygen species (ROS) and resultant cell mitochondrial membrane potential (MMP) decline. Clearance of ROS in an inflammatory environment is essential for breaking the vicious cycle of MMP decline. Additionally, re-energizing the mitochondria damaged in the inflammatory milieu to restore their function, is equally important. Herein, we proposed an interesting concept of mitochondrion-engine equipped with coolant, which enables first to "cool-down" the inflammatory environment, next to restore the MMP, finally to allow cells to regain normal energy metabolism through materials design. As such, we developed a multi-functional composite composed of a reactive oxygen species (ROS)-responsive sodium alginate/gelatin hydrogel infused into a rigid 3D-printed thermoplastic polyurethane (TPU) scaffold. The TPU scaffold was coated with conductive polypyrrole (PPy) to electrophoretically deposit l-arginine, which could upregulate the Mammalian target of rapamycin (mTOR) pathway, thus increasing MMP and energy metabolism to stimulate extracellular matrix synthesis for IVD repair. While the ROS-responsive hydrogel acting as the "mito-engine coolant" could scavenge the excessive ROS to create a favorable environment for IVD cells recovery. Demonstrated by in vitro and in vivo evaluations, the mito-engine system markedly promoted the proliferation and collagen synthesis of nucleus pulposus cells while enhancing the mitochondrial respiration and MMP under oxidative stress. Radiological and histological assessments in vivo revealed the efficacy of this system in IVD repair. This unique bioinspired design integrated biomaterial science with mitochondrial biology, presents a promising paradigm for IDD treatment.
Collapse
Affiliation(s)
| | | | - Ce Zhu
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Zheng Liu
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Lin Qi
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Hong Ding
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Jing Wang
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Yong Huang
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Yubao Li
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Yueming Song
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Ganjun Feng
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Li Zhang
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Limin Liu
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
12
|
Cheers GM, Weimer LP, Neuerburg C, Arnholdt J, Gilbert F, Thorwächter C, Holzapfel BM, Mayer-Wagner S, Laubach M. Advances in implants and bone graft types for lumbar spinal fusion surgery. Biomater Sci 2024; 12:4875-4902. [PMID: 39190323 DOI: 10.1039/d4bm00848k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
The increasing prevalence of spinal disorders worldwide necessitates advanced treatments, particularly interbody fusion for severe cases that are unresponsive to non-surgical interventions. This procedure, especially 360° lumbar interbody fusion, employs an interbody cage, pedicle screw-and-rod instrumentation, and autologous bone graft (ABG) to enhance spinal stability and promote fusion. Despite significant advancements, a persistent 10% incidence of non-union continues to result in compromised patient outcomes and escalated healthcare costs. Innovations in lumbar stabilisation seek to mimic the properties of natural bone, with evolving implant materials like titanium (Ti) and polyetheretherketone (PEEK) and their composites offering new prospects. Additionally, biomimetic cages featuring precisely engineered porosities and interconnectivity have gained traction, as they enhance osteogenic differentiation, support osteogenesis, and alleviate stress-shielding. However, the limitations of ABG, such as harvesting morbidities and limited fusion capacity, have spurred the exploration of sophisticated solutions involving advanced bone graft substitutes. Currently, demineralised bone matrix and ceramics are in clinical use, forming the basis for future investigations into novel bone graft substitutes. Bioglass, a promising newcomer, is under investigation despite its observed rapid absorption and the potential for foreign body reactions in preclinical studies. Its clinical applicability remains under scrutiny, with ongoing research addressing challenges related to burst release and appropriate dosing. Conversely, the well-documented favourable osteogenic potential of growth factors remains encouraging, with current efforts focused on modulating their release dynamics to minimise complications. In this evidence-based narrative review, we provide a comprehensive overview of the evolving landscape of non-degradable spinal implants and bone graft substitutes, emphasising their applications in lumbar spinal fusion surgery. We highlight the necessity for continued research to improve clinical outcomes and enhance patient well-being.
Collapse
Affiliation(s)
- Giles Michael Cheers
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Lucas Philipp Weimer
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Carl Neuerburg
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Jörg Arnholdt
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Fabian Gilbert
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Christoph Thorwächter
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Boris Michael Holzapfel
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Susanne Mayer-Wagner
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Markus Laubach
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
- Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD 4000, Australia
| |
Collapse
|
13
|
Li J, Jia S, Li D, Chow L, Zhang Q, Yang Y, Bai X, Qu Q, Gao Y, Li Z, Li Z, Shi R, Zhang B, Huang Y, Pan X, Hu Y, Gao Z, Zhou J, Park W, Huang X, Chu H, Chen Z, Li H, Wu P, Zhao G, Yao K, Hadzipasic M, Bernstock JD, Shankar GM, Nan K, Yu X, Traverso G. Wearable bio-adhesive metal detector array (BioMDA) for spinal implants. Nat Commun 2024; 15:7800. [PMID: 39242511 PMCID: PMC11379874 DOI: 10.1038/s41467-024-51987-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 08/22/2024] [Indexed: 09/09/2024] Open
Abstract
Dynamic tracking of spinal instrumentation could facilitate real-time evaluation of hardware integrity and in so doing alert patients/clinicians of potential failure(s). Critically, no method yet exists to continually monitor the integrity of spinal hardware and by proxy the process of spinal arthrodesis; as such hardware failures are often not appreciated until clinical symptoms manifest. Accordingly, herein, we report on the development and engineering of a bio-adhesive metal detector array (BioMDA), a potential wearable solution for real-time, non-invasive positional analyses of osseous implants within the spine. The electromagnetic coupling mechanism and intimate interfacial adhesion enable the precise sensing of the metallic implants position without the use of radiation. The customized decoupling models developed facilitate the precise determination of the horizontal and vertical positions of the implants with incredible levels of accuracy (e.g., <0.5 mm). These data support the potential use of BioMDA in real-time/dynamic postoperative monitoring of spinal implants.
Collapse
Affiliation(s)
- Jian Li
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, China
| | - Shengxin Jia
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, China
| | - Dengfeng Li
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China.
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, China.
| | - Lung Chow
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Qiang Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Yiyuan Yang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Xiao Bai
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Qingao Qu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Yuyu Gao
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Zhiyuan Li
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Zongze Li
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Rui Shi
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Binbin Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, China
| | - Ya Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, China
| | - Xinyu Pan
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Yue Hu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Zhan Gao
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Jingkun Zhou
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, China
| | - WooYoung Park
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Xingcan Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Hongwei Chu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Zhenlin Chen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, China
| | - Hu Li
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Pengcheng Wu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Guangyao Zhao
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Kuanming Yao
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Muhamed Hadzipasic
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School Boston, Massachusetts, USA
| | - Joshua D Bernstock
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ganesh M Shankar
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School Boston, Massachusetts, USA.
| | - Kewang Nan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
- Department of Gastroenterology Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310000, China.
| | - Xinge Yu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China.
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, China.
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China.
| | - Giovanni Traverso
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
14
|
You KH, Cho SK, Hwang JY, Cha SH, Kang MS, Park SM, Park HJ. Effect of Cage Material and Size on Fusion Rate and Subsidence Following Biportal Endoscopic Transforaminal Lumbar Interbody Fusion. Neurospine 2024; 21:973-983. [PMID: 39363473 PMCID: PMC11456953 DOI: 10.14245/ns.2448244.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/12/2024] [Accepted: 06/17/2024] [Indexed: 10/05/2024] Open
Abstract
OBJECTIVE Biportal endoscopic transforaminal lumbar interbody fusion (BE-TLIF) is an emerging, minimally invasive technique performed under biportal endoscopic guidance. However, concerns regarding cage subsidence and sufficient fusion during BE-TLIF necessitate careful selection of an appropriate interbody cage to improve surgical outcomes. This study compared the fusion rate, subsidence, and other radiographic parameters according to the material and size of the cages used in BE-TLIF. METHODS In this retrospective cohort study, patients who underwent single-segment BE-TLIF between April 2019 and February 2023 were divided into 3 groups: group A, regular-sized three-dimensionally (3D)-printed titanium cages; group B, regular-sized polyetheretherketone cages; and group C, large-sized 3D-printed titanium cages. Radiographic parameters, including lumbar lordosis, segmental lordosis, anterior and posterior disc heights, disc angle, and foraminal height, were measured before and after surgery. The fusion rate and severity of cage subsidence were compared between the groups. RESULTS No significant differences were noted in the demographic data or radiographic parameters between the groups. The fusion rate on 1-year postoperative computed tomography was comparable between the groups. The cage subsidence rate was significantly lower in group C than in group A (41.9% vs. 16.7%, p=0.044). The severity of cage subsidence was significantly lower in group C (0.93±0.83) than in groups A (2.20±1.84, p=0.004) and B (1.79±1.47, p=0.048). CONCLUSION Cage materials did not affect the 1-year postoperative outcomes of BE-TLIF; however, subsidence was markedly reduced in large cages. Larger cages may provide more stable postoperative segments.
Collapse
Affiliation(s)
- Ki-Han You
- Department of Orthopedic Surgery, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Samuel K. Cho
- Department of Orthopaedic Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jae-Yeun Hwang
- Department of Orthopedic Surgery, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Sun-Ho Cha
- Department of Orthopedic Surgery, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Min-Seok Kang
- Department of Orthopedic Surgery, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea
| | - Sang-Min Park
- Department of Orthopedic Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Hyun-Jin Park
- Department of Orthopedic Surgery, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| |
Collapse
|
15
|
Xu H, Yan S, Gerhard E, Xie D, Liu X, Zhang B, Shi D, Ameer GA, Yang J. Citric Acid: A Nexus Between Cellular Mechanisms and Biomaterial Innovations. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402871. [PMID: 38801111 PMCID: PMC11309907 DOI: 10.1002/adma.202402871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/07/2024] [Indexed: 05/29/2024]
Abstract
Citrate-based biodegradable polymers have emerged as a distinctive biomaterial platform with tremendous potential for diverse medical applications. By harnessing their versatile chemistry, these polymers exhibit a wide range of material and bioactive properties, enabling them to regulate cell metabolism and stem cell differentiation through energy metabolism, metabonegenesis, angiogenesis, and immunomodulation. Moreover, the recent US Food and Drug Administration (FDA) clearance of the biodegradable poly(octamethylene citrate) (POC)/hydroxyapatite-based orthopedic fixation devices represents a translational research milestone for biomaterial science. POC joins a short list of biodegradable synthetic polymers that have ever been authorized by the FDA for use in humans. The clinical success of POC has sparked enthusiasm and accelerated the development of next-generation citrate-based biomaterials. This review presents a comprehensive, forward-thinking discussion on the pivotal role of citrate chemistry and metabolism in various tissue regeneration and on the development of functional citrate-based metabotissugenic biomaterials for regenerative engineering applications.
Collapse
Affiliation(s)
- Hui Xu
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Su Yan
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Ethan Gerhard
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Denghui Xie
- Department of Histology and Embryology, School of Basic Medical Sciences, Department of Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510515, P. R. China
- Academy of Orthopedics of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, P. R. China
| | - Xiaodong Liu
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, 310030, P. R. China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310030, P. R. China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310030, P. R. China
- Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310030, P. R. China
| | - Bing Zhang
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, 310030, P. R. China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310030, P. R. China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310030, P. R. China
- Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310030, P. R. China
| | - Dongquan Shi
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, P. R. China
| | - Guillermo A Ameer
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Jian Yang
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, 310030, P. R. China
- Biomedical Engineering Program, School of Engineering, Westlake University, Hangzhou, Zhejiang, 310030, P. R. China
| |
Collapse
|
16
|
Gross V, Zankovic S, Rolauffs B, Velten D, Schmal H, Seidenstuecker M. On the suitability of additively manufactured gyroid structures and their potential use as intervertebral disk replacement - a feasibility study. Front Bioeng Biotechnol 2024; 12:1432587. [PMID: 39104631 PMCID: PMC11298359 DOI: 10.3389/fbioe.2024.1432587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/28/2024] [Indexed: 08/07/2024] Open
Abstract
Introduction Intervertebral disk degeneration is a growing problem in our society. The degeneration of the intervertebral disk leads to back pain and in some cases to a herniated disk. Advanced disk degeneration can be treated surgically with either a vertebral body fusion or a disk prosthesis. Vertebral body fusion is currently considered the gold standard of surgical therapy and is clearly superior to disk prosthesis based on the number of cases. The aim of this work was the 3D printing of Gyroid structures and the determination of their mechanical properties in a biomechanical feasibility study for possible use as an intervertebral disc prosthesis. Material and methods Creo Parametric 6.0.6.0 was used to create models with various Gyroid properties. These were printed with the Original Prusa i3 MK3s+. Different flexible filaments (TPU FlexHard and TPU FlexMed, extrudr, Lauterach, Austria) were used to investigate the effects of the filament on the printing results and mechanical properties of the models. Characterization was carried out by means of microscopy and tension/compression testing on the universal testing machine. Results The 3D prints with the FlexHard and FlexMid filament went without any problems. No printing errors were detected in the microscopy. The mechanical confined compression test resulted in force-deformation curves of the individual printed models. This showed that changing the Gyroid properties (increasing the wall thickness or density of the Gyroid) leads to changes in the force-deformation curves and thus to the mechanical properties. Conlcusion The flexible filaments used in this work showed good print quality after the printing parameters were adjusted. The mechanical properties of the discs were also promising. The parameters Gyroid volume, wall thickness of the Gyroid and the outer wall played a decisive role for both FlexMed and FlexHard. All in all, the Gyroid structured discs (Ø 50 mm) made of TPU represent a promising approach with regard to intervertebral disc replacement. We would like to continue to pursue this approach in the future.
Collapse
Affiliation(s)
- Valentin Gross
- G.E.R.N. Tissue Replacement, Regeneration and Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center-Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
- Institute for Applied Biomechanics, Offenburg University, Offenburg, Germany
| | - Sergej Zankovic
- G.E.R.N. Tissue Replacement, Regeneration and Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center-Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Bernd Rolauffs
- G.E.R.N. Tissue Replacement, Regeneration and Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center-Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Dirk Velten
- Institute for Applied Biomechanics, Offenburg University, Offenburg, Germany
| | - Hagen Schmal
- Department of Orthopedics and Trauma Surgery, Medical Center-Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Michael Seidenstuecker
- G.E.R.N. Tissue Replacement, Regeneration and Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center-Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
- Department of Orthopedics and Trauma Surgery, Medical Center-Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| |
Collapse
|
17
|
Xu X, Wang L, Wang J, Yu X, Huang W. Retrieval analysis of PEEK rods pedicle screw system: three cases analysis. BMC Musculoskelet Disord 2024; 25:488. [PMID: 38909212 PMCID: PMC11193296 DOI: 10.1186/s12891-024-07600-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 06/13/2024] [Indexed: 06/24/2024] Open
Abstract
PURPOSE To analyze the characteristics of PEEK rods retrieved in vivo, specifically their wear and deformation, biodegradability, histocompatibility, and mechanical properties. METHOD Six PEEK rods were retrieved from revision surgeries along with periprosthetic tissue. The retrieved PEEK rods were evaluated for surface damage and internal changes using Micro-CT, while light and electron microscopy were utilized to determine any histological changes in periprosthetic tissues. Patient history was gathered from medical records. Two intact and retrieved PEEK rods were used for fatigue testing analysis by sinusoidal load to the spinal construct. RESULTS All implants showed evidence of plastic deformation around the screw-rod interface, while the inner structure of PEEK rods appeared unchanged with no visible voids or cracks. Examining images captured through light and electron microscopy indicated that phagocytosis of macrophages around PEEK rods was less severe in comparison to the screw-rod interface. The results of an energy spectrum analysis suggested that the distribution of tissue elements around PEEK rods did not differ significantly from normal tissue. During fatigue testing, it was found that the retrieved PEEK rods cracked after 1.36 million tests, whereas the intact PEEK rods completed 5 million fatigue tests without any failure. CONCLUSION PEEK rods demonstrate satisfactory biocompatibility, corrosion resistance, chemical stability, and mechanical properties. Nevertheless, it is observed that the indentation at the junction between the nut and the rod exhibits relatively weak strength, making it susceptible to breakage. As a precautionary measure, it is recommended to secure the nut with a counter wrench, applying the preset torque to prevent overtightening.
Collapse
Affiliation(s)
- Xiaoduo Xu
- Orthopedic Department, 960 Hospital of People's Liberation Army, NO.25 Shifan Road, Jinan, Shandong, 250031, China
| | - Lei Wang
- Orthopedic Department, 960 Hospital of People's Liberation Army, NO.25 Shifan Road, Jinan, Shandong, 250031, China
| | - Jingming Wang
- Orthopedic Department, 960 Hospital of People's Liberation Army, NO.25 Shifan Road, Jinan, Shandong, 250031, China
| | - Xiuchun Yu
- Orthopedic Department, 960 Hospital of People's Liberation Army, NO.25 Shifan Road, Jinan, Shandong, 250031, China.
| | - Weimin Huang
- Orthopedic Department, 960 Hospital of People's Liberation Army, NO.25 Shifan Road, Jinan, Shandong, 250031, China.
| |
Collapse
|
18
|
Park S, Jung TG. Surface Modification of Polyetheretherketone (PEEK) Intervertebral Fusion Implant Using Polydopamine Coating for Improved Bioactivity. Bioengineering (Basel) 2024; 11:343. [PMID: 38671765 PMCID: PMC11047911 DOI: 10.3390/bioengineering11040343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
The occurrence of bone diseases has been increasing rapidly, in line with the aging population. A representative spinal fusion material, polyetheretherketone (PEEK), is advantageous in this regard as it can work in close proximity to the elastic modulus of cancellous bone. However, if it is used without surface modification, the initial osseointegration will be low due to lack of bioactivity, resulting in limitations in surgical treatment. In this study, we aimed to modify the surface of PEEK cages to a hydrophilic surface by coating with polyethylene glycol (PEG), hyaluronic acid (HA), and polydopamine (PDA), and to analyze whether the coated surface exhibits improved bioactivity and changes in mechanical properties for orthopedic applications. Material properties of coated samples were characterized and compared with various PEEK groups, including PEEK, PEEK-PEG, PEEK-HA, and PEEK-PDA. In an in vitro study, cell proliferation was found to be enhanced on PDA-coated PEEK; it was approximately twice as high compared to the control group. In addition, mechanical properties, including static and torsion, were not affected by the presence of the coating. Thus, the results suggest that PEEK-PDA may have the potential for clinical application in fusion surgery for spinal diseases, as it may improve the rate of osseointegration.
Collapse
Affiliation(s)
| | - Tae-Gon Jung
- Medical Device Development Center, Osong Medical Innovation Foundation, 123 Osongsaengmyung-ro, Osong-eub, Heungdeok-gu, Cheongju-si 28160, Chungbuk, Republic of Korea;
| |
Collapse
|
19
|
Alassaf A, AlMohimeed I, Alghannam M, Alotaibi S, Alhussaini K, Aleid A, Alolayan S, Sikkandar MY, Alhashim MM, Sheik SB, Sudharsan NM. Time-dependent biomechanical evaluation for corrective planning of scoliosis using finite element analysis - A comprehensive approach. Heliyon 2024; 10:e26946. [PMID: 38449653 PMCID: PMC10915377 DOI: 10.1016/j.heliyon.2024.e26946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/21/2024] [Accepted: 02/21/2024] [Indexed: 03/08/2024] Open
Abstract
Scoliosis is a medical condition marked by an abnormal lateral curvature of the spine, typically forming a sideways "S" or "C" shape. Mechanically, it manifests as a three-dimensional deformation of the spine, potentially leading to diverse clinical issues such as pain, diminished lung capacity, and postural abnormalities. This research specifically concentrates on the Adolescent Idiopathic Scoliosis (AIS) population, as existing literature indicates a tendency for this type of scoliosis to deteriorate over time. The principal aim of this investigation is to pinpoint the biomechanical factors contributing to the progression of scoliosis by employing Finite Element Analysis (FEA) on computed tomography (CT) data collected from adolescent patients. By accurately modeling the spinal curvature and related deformities, the stresses and strains experienced by vertebral and intervertebral structures under diverse loading conditions can be simulated and quantified. The transient simulation incorporated damping and inertial terms, along with the static stiffness matrix, to enhance comprehension of the response. The findings of this study indicate a significant reduction in the Cobb angle, halving from its initial value, decreasing from 35° to 17°. In degenerative scoliosis, failure was predicted at 109 cycles, with the Polypropylene brace deforming by 10.34 mm, while the Nitinol brace exhibited significantly less deformation at 7.734 mm. This analysis contributes to a better understanding of the biomechanical mechanisms involved in scoliosis development and can assist in the formulation of more effective treatment strategies. The FEA simulation emerges as a valuable supplementary tool for exploring various hypothetical scenarios by applying diverse loads at different locations to enhance comprehension of the effectiveness of proposed interventions.
Collapse
Affiliation(s)
- Ahmad Alassaf
- Department of Medical Equipment Technology, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Ibrahim AlMohimeed
- Department of Medical Equipment Technology, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Mohammed Alghannam
- Department of Medical Equipment Technology, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Saddam Alotaibi
- Department of Medical Equipment Technology, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Khalid Alhussaini
- Department of Biomedical Technology, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia
| | - Adham Aleid
- Department of Biomedical Technology, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia
| | - Salem Alolayan
- Department of Medical Equipment Technology, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Mohamed Yacin Sikkandar
- Department of Medical Equipment Technology, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Maryam M. Alhashim
- Department of Radiology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, 34212, Saudi Arabia
| | | | - Natteri M. Sudharsan
- Department of Mechanical Engineering, Rajalakshmi Engineering College, Chennai 602105, India
| |
Collapse
|
20
|
Emonde CK, Eggers ME, Wichmann M, Hurschler C, Ettinger M, Denkena B. Radiopacity Enhancements in Polymeric Implant Biomaterials: A Comprehensive Literature Review. ACS Biomater Sci Eng 2024; 10:1323-1334. [PMID: 38330191 PMCID: PMC10934286 DOI: 10.1021/acsbiomaterials.3c01667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 02/10/2024]
Abstract
Polymers as biomaterials possess favorable properties, which include corrosion resistance, light weight, biocompatibility, ease of processing, low cost, and an ability to be easily tailored to meet specific applications. However, their inherent low X-ray attenuation, resulting from the low atomic numbers of their constituent elements, i.e., hydrogen (1), carbon (6), nitrogen (7), and oxygen (8), makes them difficult to visualize radiographically. Imparting radiopacity to radiolucent polymeric implants is necessary to enable noninvasive evaluation of implantable medical devices using conventional imaging methods. Numerous studies have undertaken this by blending various polymers with contrast agents consisting of heavy elements. The selection of an appropriate contrast agent is important, primarily to ensure that it does not cause detrimental effects to the relevant mechanical and physical properties of the polymer depending upon the intended application. Furthermore, its biocompatibility with adjacent tissues and its excretion from the body require thorough evaluation. We aimed to summarize the current knowledge on contrast agents incorporated into synthetic polymers in the context of implantable medical devices. While a single review was found that discussed radiopacity in polymeric biomaterials, the publication is outdated and does not address contemporary polymers employed in implant applications. Our review provides an up-to-date overview of contrast agents incorporated into synthetic medical polymers, encompassing both temporary and permanent implants. We expect that our results will significantly inform and guide the strategic selection of contrast agents, considering the specific requirements of implantable polymeric medical devices.
Collapse
Affiliation(s)
- Crystal Kayaro Emonde
- Laboratory
for Biomechanics and Biomaterials (LBB), Hannover Medical School, Anna-von-Borries-Strasse 1-7, 30625 Hannover, Germany
| | - Max-Enno Eggers
- Institute
of Production Engineering and Machine Tools, Leibniz University Hannover, An der Universität 2, 30823 Garbsen, Hannover, Germany
| | - Marcel Wichmann
- Institute
of Production Engineering and Machine Tools, Leibniz University Hannover, An der Universität 2, 30823 Garbsen, Hannover, Germany
| | - Christof Hurschler
- Laboratory
for Biomechanics and Biomaterials (LBB), Hannover Medical School, Anna-von-Borries-Strasse 1-7, 30625 Hannover, Germany
| | - Max Ettinger
- Department
of Orthopedic Surgery − DIAKOVERE Annastift, Hannover Medical School, Anna-von-Borries-Strasse 1-7, 30625 Hannover, Germany
| | - Berend Denkena
- Institute
of Production Engineering and Machine Tools, Leibniz University Hannover, An der Universität 2, 30823 Garbsen, Hannover, Germany
| |
Collapse
|
21
|
Gazo Hanna E, Younes K, Roufayel R, Khazaal M, Fajloun Z. Engineering innovations in medicine and biology: Revolutionizing patient care through mechanical solutions. Heliyon 2024; 10:e26154. [PMID: 38390063 PMCID: PMC10882044 DOI: 10.1016/j.heliyon.2024.e26154] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 01/24/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
The overlap between mechanical engineering and medicine is expanding more and more over the years. Engineers are now using their expertise to design and create functional biomaterials and are continually collaborating with physicians to improve patient health. In this review, we explore the state of scientific knowledge in the areas of biomaterials, biomechanics, nanomechanics, and computational fluid dynamics (CFD) in relation to the pharmaceutical and medical industry. Focusing on current research and breakthroughs, we provide an overview of how these fields are being used to create new technologies for medical treatments of human patients. Barriers and constraints in these fields, as well as ways to overcome them, are also described in this review. Finally, the potential for future advances in biomaterials to fundamentally change the current approach to medicine and biology is also discussed.
Collapse
Affiliation(s)
- Eddie Gazo Hanna
- College of Engineering and Technology, American University of the Middle East, Egaila, 54200, Kuwait
| | - Khaled Younes
- College of Engineering and Technology, American University of the Middle East, Egaila, 54200, Kuwait
| | - Rabih Roufayel
- College of Engineering and Technology, American University of the Middle East, Egaila, 54200, Kuwait
| | - Mickael Khazaal
- École Supérieure des Techniques Aéronautiques et de Construction Automobile, ISAE-ESTACA, France
| | - Ziad Fajloun
- Faculty of Sciences 3, Department of Biology, Lebanese University, Campus Michel Slayman Ras Maska, 1352, Tripoli, Lebanon
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, EDST, Lebanese University, 1300, Tripoli, Lebanon
| |
Collapse
|
22
|
Joshua RJN, Raj SA, Hameed Sultan MT, Łukaszewicz A, Józwik J, Oksiuta Z, Dziedzic K, Tofil A, Shahar FS. Powder Bed Fusion 3D Printing in Precision Manufacturing for Biomedical Applications: A Comprehensive Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:769. [PMID: 38591985 PMCID: PMC10856375 DOI: 10.3390/ma17030769] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 04/10/2024]
Abstract
Precision manufacturing requirements are the key to ensuring the quality and reliability of biomedical implants. The powder bed fusion (PBF) technique offers a promising solution, enabling the creation of complex, patient-specific implants with a high degree of precision. This technology is revolutionizing the biomedical industry, paving the way for a new era of personalized medicine. This review explores and details powder bed fusion 3D printing and its application in the biomedical field. It begins with an introduction to the powder bed fusion 3D-printing technology and its various classifications. Later, it analyzes the numerous fields in which powder bed fusion 3D printing has been successfully deployed where precision components are required, including the fabrication of personalized implants and scaffolds for tissue engineering. This review also discusses the potential advantages and limitations for using the powder bed fusion 3D-printing technology in terms of precision, customization, and cost effectiveness. In addition, it highlights the current challenges and prospects of the powder bed fusion 3D-printing technology. This work offers valuable insights for researchers engaged in the field, aiming to contribute to the advancement of the powder bed fusion 3D-printing technology in the context of precision manufacturing for biomedical applications.
Collapse
Affiliation(s)
- Rajan John Nekin Joshua
- Department of Manufacturing Engineering, School of Mechanical Engineering, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India;
| | - Sakthivel Aravind Raj
- Department of Manufacturing Engineering, School of Mechanical Engineering, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India;
| | - Mohamed Thariq Hameed Sultan
- Department of Aerospace Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Laboratory of Biocomposite Technology, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Aerospace Malaysia Innovation Centre (944751-A), Prime Minister’s Department, MIGHT Partnership Hub, Jalan Impact, Cyberjaya 63000, Selangor, Malaysia
| | - Andrzej Łukaszewicz
- Institute of Mechanical Engineering, Faculty of Mechanical Engineering, Bialystok University of Technology, Wiejska 45C, 15-351 Bialystok, Poland;
| | - Jerzy Józwik
- Department of Production Engineering, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland;
- Institute of Technical Sciences and Aviation, University College of Applied Sciences in Chełm, Pocztowa 54, 22-100 Chełm, Poland;
| | - Zbigniew Oksiuta
- Institute of Biomedical Engineering, Faculty of Mechanical Engineering, Bialystok University of Technology, Wiejska 45C, 15-351 Bialystok, Poland;
| | - Krzysztof Dziedzic
- Institute of Computer Science, Electrical Engineering and Computer Science Faculty, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland;
| | - Arkadiusz Tofil
- Institute of Technical Sciences and Aviation, University College of Applied Sciences in Chełm, Pocztowa 54, 22-100 Chełm, Poland;
| | - Farah Syazwani Shahar
- Department of Aerospace Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| |
Collapse
|
23
|
Mamdouhi T, Wang V, Echevarria AC, Katz A, Morris M, Zavurov G, Verma R. A Comprehensive Review of the Historical Description of Spine Surgery and Its Evolution. Cureus 2024; 16:e54461. [PMID: 38510905 PMCID: PMC10953613 DOI: 10.7759/cureus.54461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/19/2024] [Indexed: 03/22/2024] Open
Abstract
Major strides in the advancement of spine surgery came about in the 21st century. However, the extensive history of spine surgery can be traced back to long before this time. A clear description of the journey from a primitive yet accurate understanding of the human musculoskeletal system to today's modern aspects of spinal techniques is lacking. A narrative literature review was conducted to elucidate where spine surgery began and the techniques used that evolved over time. This review was conducted using PubMed and Google Scholar. Search terms used included "history of spine surgery," "evolution of spine surgery," "origins of spine surgery," "history of laminectomy," "history of spinal fusion," "history of lumbar interbody fusion," "minimally invasive spine surgery," and "navigation in spine surgery." We highlight the evolution of the basic understanding of anatomy and non-surgical and surgical techniques, including bracing, laminectomy, discectomy, and spinal fusion. The current evolution and integration of minimally invasive techniques, lumbar interbody fusion techniques, robotics, navigation, and motion preservation are discussed, as these are the major areas of focus for technological advancement. This review presents an overarching synopsis of the events that chronicle the progress made in spine surgery since its conception. The review uniquely contributes to the growing body of literature on the expansion of spine surgery and highlights major events in its history.
Collapse
Affiliation(s)
- Tania Mamdouhi
- Orthopedic Surgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, USA
- Orthopedic Surgery, University of Michigan, Ann Arbor, USA
| | - Victoria Wang
- Orthopedic Surgery, University of Connecticut, Storrs, USA
| | | | - Austen Katz
- Orthopedic Surgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, USA
- Orthopedic Surgery, North Shore University Hospital, Manhasset, USA
| | - Matthew Morris
- Orthopedic Surgery, North Shore University Hospital, Manhasset, USA
- Orthopedic Surgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, USA
| | - Gabriel Zavurov
- Orthopedic Surgery, North Shore University Hospital, Manhasset, USA
- Orthopedic Surgery, Spine Surgery, North Shore University Hospital, Manhasset, USA
| | - Rohit Verma
- Orthopedic Surgery, Northwell Health, Manhassett, USA
- Orthopedic Surgery, Spine Surgery, North Shore University Hospital, Manhasset, USA
| |
Collapse
|
24
|
Croft AJ, Chanbour H, Chen JW, Young MW, Stephens BF. Implant Surface Technologies to Promote Spinal Fusion: A Narrative Review. Int J Spine Surg 2023; 17:S35-S43. [PMID: 38050045 PMCID: PMC10753326 DOI: 10.14444/8559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023] Open
Abstract
The technology surrounding spinal fusion surgery has continuously evolved in tandem with advancements made in bioengineering. Over the past several decades, developments in biomechanics, surgical techniques, and materials science have expanded innovation in the spinal implant industry. This narrative review explores the current state of implant surface technologies utilized in spinal fusion surgery. This review covers various types of implant surface materials, focusing on interbody spacers composed of modified titanium, polyetheretherketone, hydroxyapatite, and other materials, as well as pedicle screw surface modifications. Advantages and disadvantages of the different surface materials are discussed, including their biocompatibility, mechanical properties, and radiographic visibility. In addition, this review examines the role of surface modifications in enhancing osseointegration and reducing implant-related complications and, hopefully, improving patient outcomes. The findings suggest that while each material has its potential advantages, further research is needed to determine the optimal surface properties for enhancing spinal fusion outcomes.
Collapse
Affiliation(s)
- Andrew J Croft
- Department of Orthopedic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Hani Chanbour
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jeffrey W Chen
- Department of Neurological Surgery, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Mason W Young
- Department of Orthopedic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Byron F Stephens
- Department of Orthopedic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
25
|
Scott-Young M, Nielsen D, Riar S. Fundamentals of Mechanobiology and Potential Applications in Spinal Fusion. Int J Spine Surg 2023; 17:S61-S74. [PMID: 38135446 PMCID: PMC10753328 DOI: 10.14444/8562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND Mechanobiology can help optimize spinal fusion by providing insights into the mechanical environment required for bone healing and fusion. This includes understanding the optimal loading conditions, the mechanical properties of implanted materials, and the effects of mechanical stimuli on the cells involved in bone formation. The present article reviews the evidence for surface technologies and implant modification of spinal cages in enhancing spinal fusion. METHODS Databases used included Embase, MEDLINE, Springer, and Cochrane Library. Relevant articles were identified using specific keywords and search fields. Only systematic reviews, meta-analyses, review articles, and original research articles in English were included. Two researchers independently performed the search and selection process. A flowchart of the search strategy and study selection method is provided in the article. RESULTS The studies indicate that surface modification can significantly enhance osseointegration and interbody fusion by promoting cellular adhesion, proliferation, differentiation, and mineralization. Various surface modification techniques such as coating, etching, nanotopography, and functionalization achieve this. Similarly, implant material modification can improve implant stability, biocompatibility, and bioactivity, leading to better fusion outcomes. Mechanobiology plays a vital role in this process by influencing the cellular response to mechanical cues and promoting bone formation. CONCLUSIONS The studies reviewed indicate that surface technologies and implant material modification are promising approaches for improving the success of spinal cage fusion. Mechanobiology is critical in this process by influencing the cellular response to mechanical signals and promoting bone growth.
Collapse
Affiliation(s)
- Matthew Scott-Young
- Faculty of Health Science and Medicine, Bond University, Gold Coast, Queensland, Australia
- Gold Coast Spine, Bond University, Gold Coast, Queensland, Australia
| | - David Nielsen
- Gold Coast Spine, Bond University, Gold Coast, Queensland, Australia
| | - Sukhman Riar
- Faculty of Health Science and Medicine, Bond University, Gold Coast, Queensland, Australia
- Gold Coast Spine, Bond University, Gold Coast, Queensland, Australia
| |
Collapse
|
26
|
Marin E, Lanzutti A. Biomedical Applications of Titanium Alloys: A Comprehensive Review. MATERIALS (BASEL, SWITZERLAND) 2023; 17:114. [PMID: 38203968 PMCID: PMC10780041 DOI: 10.3390/ma17010114] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024]
Abstract
Titanium alloys have emerged as the most successful metallic material to ever be applied in the field of biomedical engineering. This comprehensive review covers the history of titanium in medicine, the properties of titanium and its alloys, the production technologies used to produce biomedical implants, and the most common uses for titanium and its alloys, ranging from orthopedic implants to dental prosthetics and cardiovascular devices. At the core of this success lies the combination of machinability, mechanical strength, biocompatibility, and corrosion resistance. This unique combination of useful traits has positioned titanium alloys as an indispensable material for biomedical engineering applications, enabling safer, more durable, and more efficient treatments for patients affected by various kinds of pathologies. This review takes an in-depth journey into the inherent properties that define titanium alloys and which of them are advantageous for biomedical use. It explores their production techniques and the fabrication methodologies that are utilized to machine them into their final shape. The biomedical applications of titanium alloys are then categorized and described in detail, focusing on which specific advantages titanium alloys are present when compared to other materials. This review not only captures the current state of the art, but also explores the future possibilities and limitations of titanium alloys applied in the biomedical field.
Collapse
Affiliation(s)
- Elia Marin
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
- Department Polytechnic of Engineering and Architecture, University of Udine, 33100 Udine, Italy
- Biomedical Research Center, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
| | - Alex Lanzutti
- Department Polytechnic of Engineering and Architecture, University of Udine, 33100 Udine, Italy
| |
Collapse
|
27
|
Ansaripour H, Haeussler KL, Ferguson SJ, Flohr M. Prioritizing biomaterials for spinal disc implants by a fuzzy AHP and TOPSIS decision making method. Sci Rep 2023; 13:21531. [PMID: 38057609 PMCID: PMC10700574 DOI: 10.1038/s41598-023-48735-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023] Open
Abstract
Considerable research has been focused on identifying the optimum biomaterial for spine implants. New technologies and materials have allowed surgeons to better grasp the biomechanical principles underpinning implant stability and function. An optimal biomaterial for total disc replacement (TDR) should include essential characteristics such as biocompatibility, long-term durability, the capacity to withstand mechanical stresses, and economic viability. Our research has focused on six biomaterials for TDR, including Ti-6Al-4V, CoCr alloy, stainless steel 316L, zirconia toughened alumina (ZTA), polyether ether ketone (PEEK) and ultra-high-molecular weight polyethylene (UHMWPE). Ten common properties, i.e., the Young's modulus, density, tensile strength, the expense of the manufacturing process, the cost of raw material, wear rate, corrosion resistance, thermal conductivity, fracture toughness and compressive strength were utilized to assess these six different materials. The purpose of this study was to evaluate and rank the six alternative biomaterials proposed for use in the endplates and articulating surface of a spinal TDR. To accomplish this, a multi-criteria decision-making approach, namely the fuzzy analytic hierarchy process (fuzzy AHP) and the Technique of Order Preference by Similarity to Ideal Solution (TOPSIS) was adopted to solve the model. For validation and robustness of the proposed method, sensitivity analysis was performed, and comparison was performed with fuzzy-VIKOR and fuzzy-MOORA methods. In light of the study's results, ZTA and Ti-6Al-4V were identified as the best suited materials for the articulating surface and endplates, respectively, in a spinal disc implant.
Collapse
Affiliation(s)
- Hossein Ansaripour
- CeramTec GmbH, CeramTec-Platz 1-9, 73207, Plochingen, Germany.
- Institute for Biomechanics, D-HEST, ETH Zurich, Gloriastrasse 37 / 39, 8092, Zurich, Switzerland.
| | | | - Stephen J Ferguson
- Institute for Biomechanics, D-HEST, ETH Zurich, Gloriastrasse 37 / 39, 8092, Zurich, Switzerland
| | - Markus Flohr
- CeramTec GmbH, CeramTec-Platz 1-9, 73207, Plochingen, Germany
| |
Collapse
|
28
|
Kenawy HM, Nuñez MI, Morales X, Lisiewski LE, Burt KG, Kim MKM, Campos L, Kiridly N, Hung CT, Chahine NO. Sex differences in the biomechanical and biochemical responses of caudal rat intervertebral discs to injury. JOR Spine 2023; 6:e1299. [PMID: 38156061 PMCID: PMC10751974 DOI: 10.1002/jsp2.1299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 09/26/2023] [Accepted: 10/19/2023] [Indexed: 12/30/2023] Open
Abstract
Background Intervertebral disc degeneration (IDD) is a major cause of low back pain (LBP) worldwide. Sexual dimorphism, or sex-based differences, appear to exist in the severity of LBP. However, it is unknown if there are sex-based differences in the inflammatory, biomechanical, biochemical, and histological responses of intervertebral discs (IVDs). Methods Caudal (Coccygeal/Co) bone-disc-bone motion segments were isolated from multiple spinal levels (Co8 to Co14) of male and female Sprague-Dawley rats. Changes in motion segment biomechanics and extracellular matrix (ECM) biochemistry (glycosaminoglycan [GAG], collagen [COL], water, and DNA content) were evaluated at baseline and in response to chemical insult (lipopolysaccharide [LPS]) or puncture injury ex vivo. We also investigated the contributions of Toll-like receptor (TLR4) signaling on responses to LPS or puncture injury ex vivo, using a small molecule TLR4 inhibitor, TAK-242. Results Findings indicate that IVD motion segments from female donors had greater nitric oxide (NO) release in LPS groups compared to male donors. HMGB1 release was increased in punctured discs, but not LPS injured discs, with no sex effect. Although both male and female discs exhibited reductions in dynamic moduli in response to LPS and puncture injuries, dynamic moduli from female donors were higher than male donors across all groups. In uninjured (baseline) samples, a significant sex effect was observed in nucleus pulposus (NP) DNA and water content. Female annulus fibrosus (AF) also had higher DNA, GAG, and COL content (normalized by dry weight), but lower water content than male AF. Additional injury- and sex-dependent effects were observed in AF GAG/DNA and COL/DNA content. Finally, TAK-242 improved the dynamic modulus of female but not male punctured discs. Conclusions Our findings demonstrate that there are differences in rat IVD motion segments based on sex, and that the response to injury in inflammatory, biomechanical, biochemical, and histological outcomes also exhibit sex differences. TLR4 inhibition protected against loss of mechanical integrity of puncture-injured IVD motion segments, with differences responses based on donor sex.
Collapse
Affiliation(s)
- Hagar M. Kenawy
- Department of Biomedical EngineeringColumbia UniversityNew YorkNew YorkUSA
| | - María I. Nuñez
- Department of Biomedical EngineeringColumbia UniversityNew YorkNew YorkUSA
| | - Xóchitl Morales
- Department of Biomedical EngineeringColumbia UniversityNew YorkNew YorkUSA
| | | | - Kevin G. Burt
- Department of Biomedical EngineeringColumbia UniversityNew YorkNew YorkUSA
| | - Min Kyu M. Kim
- Department of Orthopedic SurgeryColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Leonardo Campos
- Department of Orthopedic SurgeryColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Nadia Kiridly
- Department of Orthopedic SurgeryColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Clark T. Hung
- Department of Biomedical EngineeringColumbia UniversityNew YorkNew YorkUSA
- Department of Orthopedic SurgeryColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Nadeen O. Chahine
- Department of Biomedical EngineeringColumbia UniversityNew YorkNew YorkUSA
- Department of Orthopedic SurgeryColumbia University Irving Medical CenterNew YorkNew YorkUSA
| |
Collapse
|
29
|
Al-Zyoud W, Haddadin D, Hasan SA, Jaradat H, Kanoun O. Biocompatibility Testing for Implants: A Novel Tool for Selection and Characterization. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6881. [PMID: 37959478 PMCID: PMC10647244 DOI: 10.3390/ma16216881] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/16/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023]
Abstract
This review article dives into the complex world of biocompatibility testing: chemical, mechanical, and biological characterization, including many elements of biocompatibility, such as definitions, descriptive examples, and the practical settings. The focus extends to evaluating standard documents obtained from reliable organizations; with a particular focus on open-source information, including FDA-USA, ISO 10933 series, and TÜV SÜD. We found a significant gap in this field: biomaterial scientists and those involved in the realm of medical device development in general, and implants in particular, lack access to a tool that reorganizes the process of selecting the appropriate biocompatibility test for the implant being examined. This work progressed through two key phases that aimed to provide a solution to this gap. A straightforward "yes or no" flowchart was initially developed to guide biocompatibility testing decisions based on the previously accumulated information. Subsequently, the Python code was employed, generating a framework through targeted questions. This work reshapes biocompatibility evaluation, bridging theory and practical implementation. An integrated approach via a flowchart and the Python code empowers stakeholders to navigate biocompatibility testing effortlessly. To conclude, researchers are now better equipped for a safer, more effective implant development, propelling the field towards improved patient care and innovative progress.
Collapse
Affiliation(s)
- Walid Al-Zyoud
- Department of Biomedical Engineering, School of Applied Medical Sciences, German Jordanian University, Amman 11180, Jordan; (D.H.); (S.A.H.)
| | - Dana Haddadin
- Department of Biomedical Engineering, School of Applied Medical Sciences, German Jordanian University, Amman 11180, Jordan; (D.H.); (S.A.H.)
| | - Sameer Ahmad Hasan
- Department of Biomedical Engineering, School of Applied Medical Sciences, German Jordanian University, Amman 11180, Jordan; (D.H.); (S.A.H.)
| | - Hussamaldeen Jaradat
- Measurement and Sensor Technology, Chemnitz University of Technology, 09126 Chemnitz, Germany;
| | - Olfa Kanoun
- Measurement and Sensor Technology, Chemnitz University of Technology, 09126 Chemnitz, Germany;
| |
Collapse
|
30
|
Foley D, Hardacker P, McCarthy M. Emerging Technologies within Spine Surgery. Life (Basel) 2023; 13:2028. [PMID: 37895410 PMCID: PMC10608700 DOI: 10.3390/life13102028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/02/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
New innovations within spine surgery continue to propel the field forward. These technologies improve surgeons' understanding of their patients and allow them to optimize treatment planning both in the operating room and clinic. Additionally, changes in the implants and surgeon practice habits continue to evolve secondary to emerging biomaterials and device design. With ongoing advancements, patients can expect enhanced preoperative decision-making, improved patient outcomes, and better intraoperative execution. Additionally, these changes may decrease many of the most common complications following spine surgery in order to reduce morbidity, mortality, and the need for reoperation. This article reviews some of these technological advancements and how they are projected to impact the field. As the field continues to advance, it is vital that practitioners remain knowledgeable of these changes in order to provide the most effective treatment possible.
Collapse
Affiliation(s)
- David Foley
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Pierce Hardacker
- Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | | |
Collapse
|
31
|
Cai J, Wang W, Cai P, Cao B. Immune response to foreign materials in spinal fusion surgery. Heliyon 2023; 9:e19950. [PMID: 37810067 PMCID: PMC10559558 DOI: 10.1016/j.heliyon.2023.e19950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/22/2023] [Accepted: 09/06/2023] [Indexed: 10/10/2023] Open
Abstract
Spinal fusion surgery is a common procedure used to stabilize the spine and treat back pain. The procedure involves the use of foreign materials such as screws, rods, or cages, which can trigger a foreign body reaction, an immune response that involves the activation of immune cells such as macrophages and lymphocytes. The foreign body reaction can impact the success of spinal fusion, as it can interfere with bone growth and fusion. This review article provides an overview of the cellular and molecular events in the foreign body reaction, the impact of the immune response on spinal fusion, and strategies to minimize its impact. By carefully considering the use of foreign materials and optimizing surgical techniques, the impact of the foreign body reaction can be reduced, leading to better outcomes for patients.
Collapse
Affiliation(s)
| | | | - Peng Cai
- Department of Orthopedics, Chengdu Seventh People's Hospital (Chengdu Tumor Hospital), 51 Zhimin Rd, Wuhou District, 610041, Chengdu, Sichuan, China
| | - Bo Cao
- Department of Orthopedics, Chengdu Seventh People's Hospital (Chengdu Tumor Hospital), 51 Zhimin Rd, Wuhou District, 610041, Chengdu, Sichuan, China
| |
Collapse
|
32
|
Costăchescu B, Niculescu AG, Grumezescu AM, Teleanu DM. Screw Osteointegration-Increasing Biomechanical Resistance to Pull-Out Effect. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5582. [PMID: 37629873 PMCID: PMC10456840 DOI: 10.3390/ma16165582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/03/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023]
Abstract
Spinal disorders cover a broad spectrum of pathologies and are among the most prevalent medical conditions. The management of these health issues was noted to be increasingly based on surgical interventions. Spinal fixation devices are often employed to improve surgery outcomes, increasing spinal stability, restoring structural integrity, and ensuring functionality. However, most of the currently used fixation tools are fabricated from materials with very different mechanical properties to native bone that are prone to pull-out effects or fail over time, requiring revision procedures. Solutions to these problems presently exploited in practice include the optimal selection of screw shape and size, modification of insertion trajectory, and utilization of bone cement to reinforce fixation constructs. Nevertheless, none of these methods are without risks and limitations. An alternative option to increasing biomechanical resistance to the pull-out effect is to tackle bone regenerative capacity and focus on screw osteointegration properties. Osteointegration was reportedly enhanced through various optimization strategies, including use of novel materials, surface modification techniques (e.g., application of coatings and topological optimization), and utilization of composites that allow synergistic effects between constituents. In this context, this paper takes a comprehensive path, starting with a brief presentation of spinal fixation devices, moving further to observations on how the pull-out strength can be enhanced with existing methods, and further focusing on techniques for implant osteointegration improvement.
Collapse
Affiliation(s)
- Bogdan Costăchescu
- “Gr. T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- “Prof. Dr. N. Oblu” Emergency Clinical Hospital, 700309 Iasi, Romania
| | - Adelina-Gabriela Niculescu
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania;
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania;
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania
| | | |
Collapse
|
33
|
Kumar N, Alathur Ramakrishnan S, Lopez KG, Wang N, Madhu S, Vellayappan BA, Tpd Hallinan J, Fuh JYH, Kumar AS. Design and 3D printing of novel titanium spine rods with lower flexural modulus and stiffness profile with optimised imaging compatibility. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2023; 32:1953-1965. [PMID: 37052651 DOI: 10.1007/s00586-023-07674-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 03/07/2023] [Accepted: 03/18/2023] [Indexed: 04/14/2023]
Abstract
PURPOSE To manufacture and test 3D printed novel design titanium spine rods with lower flexural modulus and stiffness compared to standard solid titanium rods for use in metastatic spine tumour surgery (MSTS) and osteoporosis. METHODS Novel design titanium spine rods were designed and 3D printed. Three-point bending test was performed to assess mechanical performance of rods, while a French bender was used to assess intraoperative rod contourability. Furthermore, 3D printed spine rods were tested for CT & MR imaging compatibility using phantom setup. RESULTS Different spine rod designs generated includes shell, voronoi, gyroid, diamond, weaire-phelan, kelvin, and star. Tests showed 3D printed rods had lower flexural modulus with reduction ranging from 2 to 25% versus standard rod. Shell rods exhibited highest reduction in flexural modulus of 25% (~ 77.4 GPa) and star rod exhibited lowest reduction in flexural modulus of 2% (100.8GPa). 3D printed rod showed reduction in stiffness ranging from 40 to 59%. Shell rod displayed highest reduction in stiffness of 59% (179.9 N/mm) and gyroid had least reduction in stiffness of 40% (~ 259.2 N/mm). Rod bending test showed that except gyroid, other rod designs demonstrated lesser bending difficulty versus standard rod. All 3D printed rods demonstrated improved CT/MR imaging compatibility with reduced artefacts versus standard rod. CONCLUSION By utilising novel design approach, we successfully generated a spine rod design portfolio with lower flexural modulus/stiffness profile and better CT/MR imaging compatibility for potential use in MSTS/other conditions such as osteoporosis. Thus, exploration of new rod designs in surgical application could enhance treatment outcome and improve quality of life for patients.
Collapse
Affiliation(s)
- Naresh Kumar
- Department of Orthopaedic Surgery, National University Health System, Level 11 Tower Block, 1E, Lower Kent Ridge Road, Singapore, 119228, Singapore.
| | - Sridharan Alathur Ramakrishnan
- Department of Orthopaedic Surgery, National University Health System, Level 11 Tower Block, 1E, Lower Kent Ridge Road, Singapore, 119228, Singapore
| | - Keith Gerard Lopez
- Department of Orthopaedic Surgery, National University Health System, Level 11 Tower Block, 1E, Lower Kent Ridge Road, Singapore, 119228, Singapore
| | - Niyou Wang
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575, Singapore
| | - Sirisha Madhu
- Department of Orthopaedic Surgery, National University Health System, Level 11 Tower Block, 1E, Lower Kent Ridge Road, Singapore, 119228, Singapore
| | - Balamurugan A Vellayappan
- Department of Radiation Oncology, National University Health System, Level 7 Tower Block, 1E, Lower Kent Ridge Road, Singapore, 119228, Singapore
| | - James Tpd Hallinan
- Department of Diagnostic Imaging, National University Hospital, Level 2 National University Hospital Main Building, 5 Lower Kent Ridge Rd, Singapore, 119074, Singapore
| | - Jerry Ying Hsi Fuh
- Department of Mechanical Engineering, National University of Singapore, #04-18 Block EA, 9 Engineering Drive 1, Singapore, 117575, Singapore
| | - A Senthil Kumar
- Department of Mechanical Engineering, National University of Singapore, #05-26 Block EA, 9 Engineering Drive 1, Singapore, 117575, Singapore
| |
Collapse
|
34
|
Lv ZT, Xu Y, Cao B, Dai J, Zhang SY, Huang JM, Liang S, Jiang FX. Titanium-coated PEEK Versus Uncoated PEEK Cages in Lumbar Interbody Fusion: A Systematic Review and Meta-analysis of Randomized Controlled Trial. Clin Spine Surg 2023; 36:198-209. [PMID: 35994033 PMCID: PMC10231928 DOI: 10.1097/bsd.0000000000001378] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 06/29/2022] [Indexed: 11/26/2022]
Abstract
STUDY DESIGN Systematic review and meta-analysis. OBJECTIVE This study was performed to compare the fusion and subsidence rate of titanium-coated polyetheretherketone (Ti-PEEK) versus polyetheretherketone (PEEK) cages after lumbar fusion and to investigate the clinical effect on patient-reported outcomes (PROMs). SUMMARY OF BACKGROUND DATA Ti-PEEK cages have been developed to combine the advantages of both titanium alloy and PEEK, but whether they are superior to uncoated PEEK cages in bone fusion is still inconclusive. METHODS PubMed, EMBASE, ISI Web of Science, CENTRAL, and CNKI were searched to identify randomized controlled trials that compared the efficacy of Ti-PEEK and PEEK cages in lumbar fusion. Difference in fusion rate and subsidence rate was indicated by risk ratio and its associated 95% confidence interval (95% confidence interval). Mean difference was calculated for Oswestry Disability Index and visual analogue scale for low back pain. Subgroup analysis was performed by time course after the surgery. The Grading of Recommendations, Assessment, Development and Evaluation approach was used to evaluate the certainty of evidence. RESULTS Four randomized controlled trials involving 325 patients (160 patients in Ti-PEEK group and 165 patients in PEEK group) that underwent lumbar fusion were included by our current study. Low to moderate evidence suggested that Ti-PEEK and PEEK cages exhibited equivalent fusion rate and subsidence rate at any follow-up time. Low to moderate evidence suggested that there was no difference in PROMs except for visual analogue scale measured at 6 months (mean difference: -0.57, 95% confidence interval -0.94, -0.21; P =0.002) but the difference was not clinically relevant according to the minimal clinically important difference. CONCLUSION Low to moderate evidence showed that Ti-PEEK and PEEK had equivalent effect in bone fusion and cages subsidence at any follow-up time after lumbar fusion surgeries. Low to moderate evidence showed no clinically important difference in PROMs.
Collapse
Affiliation(s)
- Zheng-tao Lv
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan
| | - Yong Xu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan
| | - Bin Cao
- Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University
| | - Jun Dai
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou
| | - Si-yuan Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou
| | - Jun-ming Huang
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shuang Liang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan
| | - Feng-xian Jiang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou
| |
Collapse
|
35
|
Wu LC, Hsieh YY, Tsuang FY, Kuo YJ, Chen CH, Chiang CJ. Pullout Strength of Pedicle Screws Inserted Using Three Different Techniques: A Biomechanical Study on Polyurethane Foam Block. Bioengineering (Basel) 2023; 10:660. [PMID: 37370591 DOI: 10.3390/bioengineering10060660] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/08/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Pullout strength is an important indicator of the performance and longevity of pedicle screws and can be heavily influenced by the screw design, the insertion technique and the quality of surrounding bone. The purpose of this study was to investigate the pullout strength of three different pedicle screws inserted using three different strategies and with two different loading conditions. Three pedicle screws with different thread designs (single-lead-thread (SLT) screw, dual-lead-thread (DLT) screw and mixed-single-lead-thread (MSLT) screw) were inserted into a pre-drilled rigid polyurethane foam block using three strategies: (A) screw inserted to a depth of 33.5 mm; (B) screw inserted to a depth of 33.5 mm and then reversed by 3.5 mm to simulate an adjustment of the tulip height of the pedicle screw and (C) screw inserted to a depth of 30 mm. After insertion, each screw type was set up with and without a cyclic load being applied to the screw head prior to the pullout test. To ensure that the normality assumption is met, we applied the Shapiro-Wilk test to all datasets before conducting the non-parametric statistical test (Kruskal-Wallis test combined with pairwise Mann-Whitney-U tests). All screw types inserted using strategy A had a significantly greater pullout strength than those inserted using strategies B and C, regardless of if the screw was pre-loaded with a cyclic load prior to testing. Without the use of the cyclic pre-load, the MSLT screw had a greater pullout strength than the SLT and DLT screws for all three insertion strategies. However, the fixation strength of all screws was reduced when pre-loaded before testing, with the MSLT screw inserted using strategy B producing a significantly lower pullout strength than all other groups (p < 0.05). In contrast, the MSLT screw using insertion strategies A and C had a greater pullout strength than the SLT and DLT screws both with and without pre-loading. In conclusion, the MSLT pedicle screw exhibited the greatest pullout strength of the screws tested under all insertion strategies and loading conditions, except for insertion strategy B with a cyclic pre-load. While all screw types showed a reduced pullout strength when using insertion strategy B (screw-out depth adjustment), the MSLT screw had the largest reduction in pullout strength when using a pre-load before testing. Based on these findings, during the initial screw insertion, it is recommended to not fully insert the screw thread into the bone and to leave a retention length for depth adjustment to avoid the need for screw-out adjustment, as with insertion strategy B.
Collapse
Affiliation(s)
- Lien-Chen Wu
- Department of Orthopaedics, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
- Department of Orthopaedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei City 11031, Taiwan
| | - Yueh-Ying Hsieh
- Department of Orthopaedics, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
- Department of Orthopaedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan
| | - Fon-Yih Tsuang
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, Taipei City 100225, Taiwan
- Spine Tumor Center, National Taiwan University Hospital, Taipei City 100225, Taiwan
| | - Yi-Jie Kuo
- Department of Orthopaedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan
- Department of Orthopedic Surgery, Wan Fang Hospital, Taipei Medical University, Taipei City 11696, Taiwan
| | - Chia-Hsien Chen
- Department of Orthopaedics, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
- Department of Orthopaedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei City 11031, Taiwan
| | - Chang-Jung Chiang
- Department of Orthopaedics, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
- Department of Orthopaedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan
| |
Collapse
|
36
|
Chang CC, Chang HK, Ko CC, Wu CL, Kuo YH, Tu TH, Huang WC, Wu JC. Comparison of Cortical Bone Trajectory to Pedicle-Based Dynamic Stabilization: An Analysis of 291 Patients. Neurospine 2023; 20:308-316. [PMID: 37016878 PMCID: PMC10080437 DOI: 10.14245/ns.2244888.444] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/20/2022] [Indexed: 04/03/2023] Open
Abstract
Objective: Pedicle-based dynamic stabilization (DS) has gained popularity outside of America. Although pedicle screw (PS) loosening has always been a concern, it is reportedly innocuous. Cortical bone trajectory (CBT) screw is an emerging option with less invasiveness and similar effectiveness to PS in short-segment lumbar fusion. This study aimed to verify the use of CBT for DS by comparing the outcomes between pedicle- and CBT-based DS.Methods: Consecutive patients with lumbar spondylosis or low-grade spondylolisthesis who underwent 1- or 2-level DS between L3–5 with a minimum follow-up of 24 months were reviewed. Screw loosening was determined by computed tomography and the incidences were compared.Results: A total of 291 patients who underwent Dynesys DS (235 pedicle- and 56 CBT-based, respectively) were compared. The demographics and preoperative conditions were similar. All the clinical outcomes improved at 24-month postoperation, while the CBT-based group had less operation time and blood loss than the pedicle-based group. The rates of screw loosening were lower in the CBT-based (5.4% per screw and 12.5% per patient) than the pedicle-based group (9% per screw and 26.4% per patient). Furthermore, there were no differences in the clinical outcomes and complication profiles.Conclusion: The CBT-based DS for 1- or 2-level lumbar degeneration demonstrated equivalent clinical improvement as the pedicle-based DS. The adaption of CBT-based screws for DS could be a less invasive approach (shorter operation time and less blood loss), with lower chances of screw loosening than the conventional PS-based DS.
Collapse
Affiliation(s)
- Chih-Chang Chang
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
- Department of BioMedical Engineering, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
| | - Hsuan-Kan Chang
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
| | - Chin-Chu Ko
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
| | - Ching-Lan Wu
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yi-Hsuan Kuo
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
| | - Tsung-Hsi Tu
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
- Corresponding Author Tsung-Hsi Tu Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Room 525, 17F, No. 201, Shih-Pai Road, Sec. 2, Beitou, Taipei 11217, Taiwan
| | - Wen-Cheng Huang
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
| | - Jau-Ching Wu
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
| |
Collapse
|
37
|
Yao YC, Chou PH, Lin HH, Wang ST, Chang MC. Outcome of Ti/PEEK Versus PEEK Cages in Minimally Invasive Transforaminal Lumbar Interbody Fusion. Global Spine J 2023; 13:472-478. [PMID: 33733888 PMCID: PMC9972280 DOI: 10.1177/21925682211000323] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
STUDY DESIGN Retrospective case-control study. OBJECTIVES This study aims to present the clinical and radiographical outcomes of the titanium-polyetheretherketone (Ti/PEEK) composite cage compared to those of the standard PEEK cage in patients receiving minimally invasive transforaminal lumbar interbody fusion (MI-TLIF). METHODS Patients receiving 1 level MI-TLIF between October 2015 and October 2017 were included with a minimum of 2-year follow-up. The patients were segregated into 2 groups; Ti/PEEK group and PEEK group. Each patient was propensity-matched using preoperative age, sex, and body mass index. Early fusion rate was evaluated by computed tomography at postoperative 6 months. Clinical outcomes were assessed using the visual analog scale (VAS) and Oswestry Disability Index (ODI) scores. RESULTS After matching, there were 27 patients included in each group. The demographics, diagnosis, and surgical details were not significantly different between the 2 groups. The 6-month rate was 88.9% in Ti/PEEK group. The fusion rate and cage subsidence rate had no difference between the 2 groups. The complication rate in the Ti/PEEK group was comparable to that in the PEEK group. There was no difference in VAS and ODI scores during a 2-year follow-up period. CONCLUSIONS The use of Ti/PEEK composite cage was as safe and effective as the use of PEEK cage in MI-TLIF. The 6-month fusion rate was 88.9%. Our finding revealed comparable clinical results for surgeons using Ti/PEEK composite cages in MI-TLIF compared to those using the PEEK cage.
Collapse
Affiliation(s)
- Yu-Cheng Yao
- Department of Orthopedics and
Traumatology, Taipei Veterans General Hospital, Beitou District, Taipei,
Taiwan
| | - Po-Hsin Chou
- Department of Orthopedics and
Traumatology, Taipei Veterans General Hospital, Beitou District, Taipei,
Taiwan,Department of Surgery, College of
Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hsi-Hsien Lin
- Department of Orthopedics and
Traumatology, Taipei Veterans General Hospital, Beitou District, Taipei,
Taiwan
| | - Shih-Tien Wang
- Department of Orthopedics and
Traumatology, Taipei Veterans General Hospital, Beitou District, Taipei,
Taiwan,Department of Surgery, College of
Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ming-Chau Chang
- Department of Orthopedics and
Traumatology, Taipei Veterans General Hospital, Beitou District, Taipei,
Taiwan,Department of Surgery, College of
Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan,Ming-Chau Chang, Department of Orthopedics
and Traumatology, Taipei Veterans General Hospital, No. 201, Section 2, Shih-Pai
Rd, Beitou District, Taipei 112, Taiwan.
| |
Collapse
|
38
|
Biological Characteristics of Polyurethane-Based Bone-Replacement Materials. Polymers (Basel) 2023; 15:polym15040831. [PMID: 36850115 PMCID: PMC9966979 DOI: 10.3390/polym15040831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/27/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
A study is presented on four polymers of the polyurethane family, obtained using a two-stage process. The first composition is the basic polymer; the others differ from it by the presence of a variety of fillers, introduced to provide radiopacity. The fillers used were 15% bismuth oxide (Composition 2), 15% tantalum pentoxide (Composition 3), or 15% zirconium oxide (Composition 4). Using a test culture of human fibroblasts enabled the level of cytotoxicity of the compositions to be determined by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay, along with variations in the characteristics of the cells resulting from their culture directly on the specimens. The condition of cells on the surfaces of the specimens was assessed using fluorescence microscopy. It was shown that introducing 15% bismuth, tantalum, or zinc compounds as fillers produced a range of effects on the biological characteristics of the compositions. With the different fillers, the levels of toxicity differed and the cells' proliferative activity or adhesion was affected. However, in general, all the studied compositions may be considered cytocompatible in respect of their biological characteristics and are promising for further development as bases for bone-substituting materials. The results obtained also open up prospects for further investigations of polyurethane compounds.
Collapse
|
39
|
Levy HA, Karamian BA, Yalla GR, Canseco JA, Vaccaro AR, Kepler CK. Impact of surface roughness and bulk porosity on spinal interbody implants. J Biomed Mater Res B Appl Biomater 2023; 111:478-489. [PMID: 36075112 DOI: 10.1002/jbm.b.35161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 07/19/2022] [Accepted: 08/25/2022] [Indexed: 12/15/2022]
Abstract
Spinal fusion surgeries are performed to treat a multitude of cervical and lumbar diseases that lead to pain and disability. Spinal interbody fusion involves inserting a cage between the spinal vertebrae, and is often utilized for indirect neurologic decompression, correction of spinal alignment, anterior column stability, and increased fusion rate. The long-term success of interbody fusion relies on complete osseointegration between the implant surface and vertebral end plates. Titanium (Ti)-based alloys and polyetheretherketone (PEEK) interbody cages represent the most commonly utilized materials and provide sufficient mechanics and biocompatibility to assist in fusion. However, modification to the surface and bulk characteristics of these materials has been shown to maximize osseointegration and long-term stability. Specifically, the introduction of intrinsic porosity and surface roughness has been shown to affect spinal interbody mechanics, vascularization, osteoblast attachment, and ingrowth potential. This narrative review synthesizes the mechanical, in vitro, in vivo, and clinical effects on fusion efficacy associated with introduction of porosity in Ti (neat and alloy) and PEEK intervertebral implants.
Collapse
Affiliation(s)
- Hannah A Levy
- Department of Orthopaedic Surgery, Rothman Institute, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
- Department of Orthopaedic Surgery, Mayo Clinic, Rochester, Minnesota
| | - Brian A Karamian
- Department of Orthopaedic Surgery, Rothman Institute, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
- Department of Orthopaedic Surgery, University of Utah, Salt Lake City, USA
| | - Goutham R Yalla
- Department of Orthopaedic Surgery, Rothman Institute, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Jose A Canseco
- Department of Orthopaedic Surgery, Rothman Institute, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Alexander R Vaccaro
- Department of Orthopaedic Surgery, Rothman Institute, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Christopher K Kepler
- Department of Orthopaedic Surgery, Rothman Institute, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
40
|
TiO 2/HA and Titanate/HA Double-Layer Coatings on Ti6Al4V Surface and Their Influence on In Vitro Cell Growth and Osteogenic Potential. J Funct Biomater 2022; 13:jfb13040271. [PMID: 36547531 PMCID: PMC9787412 DOI: 10.3390/jfb13040271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022] Open
Abstract
Hydroxyapatite (HA) layers are appropriate biomaterials for use in the modification of the surface of implants produced inter alia from a Ti6Al4V alloy. The issue that must be solved is to provide implants with appropriate biointegration properties, enabling the permanent link between them and bone tissues, which is not so easy with the HA layer. Our proposition is the use of the intermediate layer ((IL) = TiO2, and titanate layers) to successfully link the HA coating to a metal substrate (Ti6Al4V). The morphology, structure, and chemical composition of Ti6Al4V/IL/HA systems were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy-dispersive X-ray spectrometry (EDS). We evaluated the apatite-forming ability on the surface of the layer in simulated body fluid. We investigated the effects of the obtained systems on the viability and growth of human MG-63 osteoblast-like cells, mouse L929 fibroblasts, and adipose-derived human mesenchymal stem cells (ADSCs) in vitro, as well as on their osteogenic properties. Based on the obtained results, we can conclude that both investigated systems reflect the physiological environment of bone tissue and create a biocompatible surface supporting cell growth. However, the nanoporous TiO2 intermediate layer with osteogenesis-supportive activity seems most promising for the practical application of Ti6Al4V/TiO2/HA as a system of bone tissue regeneration.
Collapse
|
41
|
Effect of Cooling and Annealing Conditions on the Microstructure, Mechanical and Superelastic Behavior of a Rotary Forged Ti-18Zr-15Nb (at. %) Bar Stock for Spinal Implants. J Funct Biomater 2022; 13:jfb13040259. [PMID: 36412899 PMCID: PMC9680316 DOI: 10.3390/jfb13040259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022] Open
Abstract
In this work, the microstructure, phase state, texture, superelastic and mechanical properties of a Ti-18Zr-15Nb (at. %) shape memory alloy subjected to a combined thermomechanical treatment, including hot rotary forging with either air cooling or water quenching and post-deformation annealing are studied. It was revealed that the main structural component of the deformed and annealed alloy is BCC β-phase. With an increase in the forging temperature from 600 to 700 °C, the average grain size increases from 5.4 to 17.8 µm for the air-cooled specimens and from 3.4 to 14.7 µm for the water-quenched specimens. Annealing at 525 °C after forging at 700 °C with water quenching leads to the formation of a mixed statically and dynamically polygonized substructure of β-phase. In this state, the alloy demonstrates the best combination of functional properties in this study: a Young's modulus of ~33 GPa, an ultimate tensile strength of ~600 MPa and a superelastic recovery strain of ~3.4%.
Collapse
|
42
|
Jain C, Surabhi P, Marathe K. Critical Review on the Developments in Polymer Composite Materials for Biomedical Implants. JOURNAL OF BIOMATERIALS SCIENCE, POLYMER EDITION 2022; 34:893-917. [PMID: 36369719 DOI: 10.1080/09205063.2022.2145870] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
There has been a lack of research for developing functional polymer composites for biomedical implants. Even though metals are widely used as implant materials, there is a need for developing polymer composites as implant materials because of the stress shielding effect that causes a lack of compatibility of metals with the human body. This review aims to bring out the latest developments in polymer composite materials for body implants and to emphasize the significance of polymer composites as a viable alternative to conventional materials used in the biomedical industry for ease of life. This review article explores the developments in functional polymer composites for biomedical applications and provides distinct divisions for their applications based on the part of the body where they are implanted. Each application has been covered in some detail. The various applications covered are bone transplants and bone regeneration, cardiovascular implants (stents), dental implants and restorative materials, neurological and spinal implants, and tendon and ligament replacement.
Collapse
Affiliation(s)
| | | | - Kumudinee Marathe
- Department of Chemical Engg, Institute of Chemical Technology, Matunga, Mumbai, Maharashtra, India 400019
| |
Collapse
|
43
|
Veronesi F, Sartori M, Griffoni C, Valacco M, Tedesco G, Davassi PF, Gasbarrini A, Fini M, Barbanti Brodano G. Complications in Spinal Fusion Surgery: A Systematic Review of Clinically Used Cages. J Clin Med 2022; 11:6279. [PMID: 36362508 PMCID: PMC9659217 DOI: 10.3390/jcm11216279] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 09/30/2023] Open
Abstract
Spinal fusion (SF) comprises surgical procedures for several pathologies that affect different spinal levels, and different cages are employed in SF surgery. Few clinical studies highlight the role of cages in complications beyond the outcomes. The aim of this systematic review is to collect the last 10 years' worth of clinical studies that include cages in SF surgery, focusing on complications. Three databases are employed, and 21 clinical studies are included. The most-performed SF procedure was anterior cervical discectomy and fusion (ACDF), followed by lumbar SF. The polyetheretherketone (PEEK) cage was the most-used, and it was usually associated with autograft or calcium phosphate ceramics (hydroxyapatite (HA) and tricalcium phosphate (βTCP)). For lumbar SF procedures, the highest percentages of subsidence and pseudoarthrosis were observed with PEEK filled with bone morphogenetic protein 2 (BMP2) and βTCP. For ACDF procedures, PEEK filled with autograft showed the highest percentages of subsidence and pseudoarthrosis. Most studies highlighted the role of surgical techniques in patient complications. There are many interacting events that contextually affect the rate of clinical success or failure. Therefore, in future clinical studies, attention should focus on cages to improve knowledge of chemical, biological and topographical characteristics to improve bone growth and to counteract complications such as cage loosening or breaking and infections.
Collapse
Affiliation(s)
- Francesca Veronesi
- Surgical Sciences and Technologies, IRCCS-Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Maria Sartori
- Surgical Sciences and Technologies, IRCCS-Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Cristiana Griffoni
- Department of Spine Surgery, IRCCS-Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
| | - Marcelo Valacco
- Department of Orthopedic and Traumatology, Hospital Churruca Visca, Buenos Aires 1437, Argentina
| | - Giuseppe Tedesco
- Department of Spine Surgery, IRCCS-Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
| | - Paolo Francesco Davassi
- Department of Spine Surgery, IRCCS-Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
| | - Alessandro Gasbarrini
- Department of Spine Surgery, IRCCS-Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
| | - Milena Fini
- Scientific Direction, IRCCS-Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Giovanni Barbanti Brodano
- Department of Spine Surgery, IRCCS-Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
| |
Collapse
|
44
|
Biomechanical Effect of Disc Height on the Components of the Lumbar Column at the Same Axial Load: A Finite-Element Study. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:7069448. [PMID: 36330359 PMCID: PMC9626214 DOI: 10.1155/2022/7069448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/13/2022] [Indexed: 11/19/2022]
Abstract
Intervertebral discs are fibrocartilage structures, which play a role in buffering the compression applied to the vertebral bodies evenly while permitting limited movements. According to several previous studies, degenerative changes in the intervertebral disc could be accelerated by factors, such as aging, the female sex, obesity, and smoking. As degenerative change progresses, the disc height could be reduced due to the dehydration of the nucleus pulposus. This study aimed to quantitatively analyze the pressure that each structure of the spine receives according to the change in the disc height and predict the physiological effect of disc height on the spine. We analyzed the biomechanical effect on spinal structures when the disc height was decreased using a finite-element method investigation of the lumbar spine. Using a 3D FE model, the degree and distribution of von-Mises stress according to the disc height change were measured by applying the load of four different motions to the lumbar spine. The height was changed by dividing the anterior and posterior parts of the disc, and analysis was performed in the following four motions: flexion, extension, lateral bending, and axial rotation. Except for a few circumstances, the stress applied to the structure generally increased as the disc height decreased. Such a phenomenon was more pronounced when the direction in which the force was concentrated coincided with the portion where the disc height decreased. This study demonstrated that the degree of stress applied to the spinal structure generally increases as the disc height decreases. The increase in stress was more prominent when the part where the disc height was decreased and the part where the moment was additionally applied coincided. Disc height reduction could accelerate degenerative changes in the spine. Therefore, eliminating the controllable risk factors that cause disc height reduction may be beneficial for spinal health.
Collapse
|
45
|
The Efficacy of Trabecular Titanium Cages to Induce Reparative Bone Activity after Lumbar Arthrodesis Studied through the 18f-Naf PET/CT Scan: Observational Clinical In-Vivo Study. Diagnostics (Basel) 2022; 12:diagnostics12102296. [PMID: 36291986 PMCID: PMC9600853 DOI: 10.3390/diagnostics12102296] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/20/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Titanium trabecular cages (TTCs) are emerging implants designed to achieve immediate and long-term spinal fixation with early osseointegration. However, a clear radiological and clinical demonstration of their efficacy has not yet been obtained. The purpose of this study was to evaluate the reactive bone activity of adjacent plates after insertion of custom-made titanium trabecular cages for the lumbar interbody with positron emission tomography (PET)/computed tomography (CT) 18F sodium fluoride (18F-NaF). Methods: This was an observational clinical study that included patients who underwent surgery for degenerative disease with lumbar interbody fusion performed with custom-made TTCs. Data related to the metabolic-reparative reaction following the surgery and its relationship with clinical follow-up from PET/CT performed at different weeks were evaluated. PET/CTs provided reliable data, such as areas showing abnormally high increases in uptake using a volumetric region of interest (VOI) comprising the upper (UP) and lower (DOWN) limits of the cage. Results: A total of 15 patients was selected for PET examination. Timing of PET/CTs ranged from one week to a maximum of 100 weeks after surgery. The analysis showed a negative correlation between the variables SUVmaxDOWN/time (r = −0.48, p = 0.04), ratio-DOWN/time (r = −0.53, p = 0.02), and ratio-MEAN/time (r = −0.5, p = 0.03). Shapiro−Wilk normality tests showed significant results for the variables ratio-DOWN (p = 0.002), ratio-UP (0.013), and ratio-MEAN (0.002). Conclusions: 18F-NaF PET/CT has proven to be a reliable tool for investigating the metabolic-reparative reaction following implantation of TTCs, demonstrating radiologically how this type of cage can induce reparative osteoblastic activity at the level of the vertebral endplate surface. This study further confirms how electron-beam melting (EBM)-molded titanium trabecular cages represent a promising material for reducing hardware complication rates and promoting fusion.
Collapse
|
46
|
王 彦, 周 英, 柴 旭, 禚 汉. [Application of three-dimensional printed porous titanium alloy cage and poly-ether-ether-ketone cage in posterior lumbar interbody fusion]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2022; 36:1126-1131. [PMID: 36111476 PMCID: PMC9626292 DOI: 10.7507/1002-1892.202204011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 01/24/2023]
Abstract
Objective To compare the effectiveness between three-dimensional (3D) printed porous titanium alloy cage (3D Cage) and poly-ether-ether-ketone cage (PEEK Cage) in the posterior lumbar interbody fusion (PLIF). Methods A total of 66 patients who were scheduled to undergo PLIF between January 2018 and June 2019 were selected as the research subjects, and were divided into the trial group (implantation of 3D Cage, n=33) and the control group (implantation of PEEK Cage, n=33) according to the random number table method. Among them, 1 case in the trial group did not complete the follow-up exclusion study, and finally 32 cases in the trial group and 33 cases in the control group were included in the statistical analysis. There was no significant difference in gender, age, etiology, disease duration, surgical segment, and preoperative Japanese Orthopaedic Association (JOA) score between the two groups (P>0.05). The operation time, intraoperative blood loss, complications, JOA score, intervertebral height loss, and interbody fusion were recorded and compared between the two groups. Results The operations of two groups were completed successfully. There was 1 case of dural rupture complicated with cerebrospinal fluid leakage during operation in the trial group, and no complication occurred in the other patients of the two groups. All incisions healed by first intention. There was no significant difference in operation time and intraoperative blood loss between groups (P>0.05). All patients were followed up 12-24 months (mean, 16.7 months). The JOA scores at 1 year after operation in both groups significantly improved when compared with those before operation (P<0.05); there was no significant difference between groups (P>0.05) in the difference between pre- and post-operation and the improvement rate of JOA score at 1 year after operation. X-ray film reexamination showed that there was no screw loosening, screw rod fracture, Cage collapse, or immune rejection in the two groups during follow-up. At 3 months and 1 year after operation, the rate of intervertebral height loss was significantly lower in the trial group than in the control group (P<0.05). At 3 and 6 months after operation, the interbody fusion rating of trial group was significantly better in the trial group than in the control group (P<0.05); and at 1 year after operation, there was no significant difference between groups (P>0.05). Conclusion There is no significant difference between 3D Cage and PEEK Cage in PLIF, in terms of operation time, intraoperative blood loss, complications, postoperative neurological recovery, and final intervertebral fusion. But the former can effectively reduce vertebral body subsidence and accelerate intervertebral fusion.
Collapse
Affiliation(s)
- 彦金 王
- 河南中医药大学洛阳平乐正骨学院(郑州 450046)Luoyang Pingle Orthopedic Graduate School, Henan University of Chinese Medicine, Zhengzhou Henan, 450046, P. R. China
| | - 英杰 周
- 河南中医药大学洛阳平乐正骨学院(郑州 450046)Luoyang Pingle Orthopedic Graduate School, Henan University of Chinese Medicine, Zhengzhou Henan, 450046, P. R. China
| | - 旭斌 柴
- 河南中医药大学洛阳平乐正骨学院(郑州 450046)Luoyang Pingle Orthopedic Graduate School, Henan University of Chinese Medicine, Zhengzhou Henan, 450046, P. R. China
| | - 汉杰 禚
- 河南中医药大学洛阳平乐正骨学院(郑州 450046)Luoyang Pingle Orthopedic Graduate School, Henan University of Chinese Medicine, Zhengzhou Henan, 450046, P. R. China
| |
Collapse
|
47
|
Davoodi E, Montazerian H, Mirhakimi AS, Zhianmanesh M, Ibhadode O, Shahabad SI, Esmaeilizadeh R, Sarikhani E, Toorandaz S, Sarabi SA, Nasiri R, Zhu Y, Kadkhodapour J, Li B, Khademhosseini A, Toyserkani E. Additively manufactured metallic biomaterials. Bioact Mater 2022; 15:214-249. [PMID: 35386359 PMCID: PMC8941217 DOI: 10.1016/j.bioactmat.2021.12.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/17/2021] [Accepted: 12/21/2021] [Indexed: 02/06/2023] Open
Abstract
Metal additive manufacturing (AM) has led to an evolution in the design and fabrication of hard tissue substitutes, enabling personalized implants to address each patient's specific needs. In addition, internal pore architectures integrated within additively manufactured scaffolds, have provided an opportunity to further develop and engineer functional implants for better tissue integration, and long-term durability. In this review, the latest advances in different aspects of the design and manufacturing of additively manufactured metallic biomaterials are highlighted. After introducing metal AM processes, biocompatible metals adapted for integration with AM machines are presented. Then, we elaborate on the tools and approaches undertaken for the design of porous scaffold with engineered internal architecture including, topology optimization techniques, as well as unit cell patterns based on lattice networks, and triply periodic minimal surface. Here, the new possibilities brought by the functionally gradient porous structures to meet the conflicting scaffold design requirements are thoroughly discussed. Subsequently, the design constraints and physical characteristics of the additively manufactured constructs are reviewed in terms of input parameters such as design features and AM processing parameters. We assess the proposed applications of additively manufactured implants for regeneration of different tissue types and the efforts made towards their clinical translation. Finally, we conclude the review with the emerging directions and perspectives for further development of AM in the medical industry.
Collapse
Affiliation(s)
- Elham Davoodi
- Multi-Scale Additive Manufacturing (MSAM) Laboratory, Mechanical and Mechatronics Engineering Department, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
- Department of Bioengineering, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute (CNSI), University of California, Los Angeles, California 90095, United States
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90024, United States
| | - Hossein Montazerian
- Department of Bioengineering, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute (CNSI), University of California, Los Angeles, California 90095, United States
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90024, United States
| | - Anooshe Sadat Mirhakimi
- Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, Isfahan 84156-83111, Iran
| | - Masoud Zhianmanesh
- School of Biomedical Engineering, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Osezua Ibhadode
- Multi-Scale Additive Manufacturing (MSAM) Laboratory, Mechanical and Mechatronics Engineering Department, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Shahriar Imani Shahabad
- Multi-Scale Additive Manufacturing (MSAM) Laboratory, Mechanical and Mechatronics Engineering Department, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Reza Esmaeilizadeh
- Multi-Scale Additive Manufacturing (MSAM) Laboratory, Mechanical and Mechatronics Engineering Department, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Einollah Sarikhani
- Department of Nanoengineering, Jacobs School of Engineering, University of California, San Diego, California 92093, United States
| | - Sahar Toorandaz
- Multi-Scale Additive Manufacturing (MSAM) Laboratory, Mechanical and Mechatronics Engineering Department, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Shima A. Sarabi
- Mechanical and Aerospace Engineering Department, University of California, Los Angeles, California 90095, United States
| | - Rohollah Nasiri
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90024, United States
| | - Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90024, United States
| | - Javad Kadkhodapour
- Department of Mechanical Engineering, Shahid Rajaee Teacher Training University, Tehran, Tehran 16785-163, Iran
- Institute for Materials Testing, Materials Science and Strength of Materials, University of Stuttgart, Stuttgart 70569, Germany
| | - Bingbing Li
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90024, United States
- Department of Manufacturing Systems Engineering and Management, California State University, Northridge, California 91330, United States
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90024, United States
| | - Ehsan Toyserkani
- Multi-Scale Additive Manufacturing (MSAM) Laboratory, Mechanical and Mechatronics Engineering Department, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
48
|
Veletić M, Apu EH, Simić M, Bergsland J, Balasingham I, Contag CH, Ashammakhi N. Implants with Sensing Capabilities. Chem Rev 2022; 122:16329-16363. [PMID: 35981266 DOI: 10.1021/acs.chemrev.2c00005] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Because of the aging human population and increased numbers of surgical procedures being performed, there is a growing number of biomedical devices being implanted each year. Although the benefits of implants are significant, there are risks to having foreign materials in the body that may lead to complications that may remain undetectable until a time at which the damage done becomes irreversible. To address this challenge, advances in implantable sensors may enable early detection of even minor changes in the implants or the surrounding tissues and provide early cues for intervention. Therefore, integrating sensors with implants will enable real-time monitoring and lead to improvements in implant function. Sensor integration has been mostly applied to cardiovascular, neural, and orthopedic implants, and advances in combined implant-sensor devices have been significant, yet there are needs still to be addressed. Sensor-integrating implants are still in their infancy; however, some have already made it to the clinic. With an interdisciplinary approach, these sensor-integrating devices will become more efficient, providing clear paths to clinical translation in the future.
Collapse
Affiliation(s)
- Mladen Veletić
- Department of Electronic Systems, Norwegian University of Science and Technology, 7491 Trondheim, Norway.,The Intervention Centre, Technology and Innovation Clinic, Oslo University Hospital, 0372 Oslo, Norway
| | - Ehsanul Hoque Apu
- Institute for Quantitative Health Science and Engineering (IQ) and Department of Biomedical Engineering (BME), Michigan State University, East Lansing, Michigan 48824, United States.,Division of Hematology and Oncology, Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, Michigan 48105, United States
| | - Mitar Simić
- Faculty of Electrical Engineering, University of Banja Luka, 78000 Banja Luka, Bosnia and Herzegovina
| | - Jacob Bergsland
- The Intervention Centre, Technology and Innovation Clinic, Oslo University Hospital, 0372 Oslo, Norway
| | - Ilangko Balasingham
- Department of Electronic Systems, Norwegian University of Science and Technology, 7491 Trondheim, Norway.,The Intervention Centre, Technology and Innovation Clinic, Oslo University Hospital, 0372 Oslo, Norway
| | - Christopher H Contag
- Institute for Quantitative Health Science and Engineering (IQ) and Department of Biomedical Engineering (BME), Michigan State University, East Lansing, Michigan 48824, United States
| | - Nureddin Ashammakhi
- Institute for Quantitative Health Science and Engineering (IQ) and Department of Biomedical Engineering (BME), Michigan State University, East Lansing, Michigan 48824, United States.,Department of Bioengineering, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
49
|
Metallic Implants Used in Lumbar Interbody Fusion. MATERIALS 2022; 15:ma15103650. [PMID: 35629676 PMCID: PMC9146470 DOI: 10.3390/ma15103650] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 02/07/2023]
Abstract
Over the last decade, pedicle fixation systems have evolved and modifications in spinal fusion techniques have been developed to increase fusion rates and improve clinical outcomes after lumbar interbody fusion (LIF). Regarding materials used for screw and rod manufacturing, metals, especially titanium alloys, are the most popular resources. In the case of pedicle screws, that biomaterial can be also doped with hydroxyapatite, CaP, ECM, or tantalum. Other materials used for rod fabrication include cobalt-chromium alloys and nitinol (nickel-titanium alloy). In terms of mechanical properties, the ideal implant used in LIF should have high tensile and fatigue strength, Young's modulus similar to that of the bone, and should be 100% resistant to corrosion to avoid mechanical failures. On the other hand, a comprehensive understanding of cellular and molecular pathways is essential to identify preferable characteristics of implanted biomaterial to obtain fusion and avoid implant loosening. Implanted material elicits a biological response driven by immune cells at the site of insertion. These reactions are subdivided into innate (primary cellular response with no previous exposure) and adaptive (a specific type of reaction induced after earlier exposure to the antigen) and are responsible for wound healing, fusion, and also adverse reactions, i.e., hypersensitivity. The main purposes of this literature review are to summarize the physical and mechanical properties of metal alloys used for spinal instrumentation in LIF which include fatigue strength, Young's modulus, and corrosion resistance. Moreover, we also focused on describing biological response after their implantation into the human body. Our review paper is mainly focused on titanium, cobalt-chromium, nickel-titanium (nitinol), and stainless steel alloys.
Collapse
|
50
|
Zhang H, Wang Z, Wang Y, Li Z, Chao B, Liu S, Luo W, Jiao J, Wu M. Biomaterials for Interbody Fusion in Bone Tissue Engineering. Front Bioeng Biotechnol 2022; 10:900992. [PMID: 35656196 PMCID: PMC9152360 DOI: 10.3389/fbioe.2022.900992] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/21/2022] [Indexed: 12/04/2022] Open
Abstract
In recent years, interbody fusion cages have played an important role in interbody fusion surgery for treating diseases like disc protrusion and spondylolisthesis. However, traditional cages cannot achieve satisfactory results due to their unreasonable design, poor material biocompatibility, and induced osteogenesis ability, limiting their application. There are currently 3 ways to improve the fusion effect, as follows. First, the interbody fusion cage is designed to facilitate bone ingrowth through the preliminary design. Second, choose interbody fusion cages made of different materials to meet the variable needs of interbody fusion. Finally, complete post-processing steps, such as coating the designed cage, to achieve a suitable osseointegration microstructure, and add other bioactive materials to achieve the most suitable biological microenvironment of bone tissue and improve the fusion effect. The focus of this review is on the design methods of interbody fusion cages, a comparison of the advantages and disadvantages of various materials, the influence of post-processing techniques and additional materials on interbody fusion, and the prospects for the future development of interbody fusion cages.
Collapse
Affiliation(s)
- Han Zhang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Zhonghan Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
- Orthopaedic Research Institute of Jilin Province, Changchun, China
| | - Yang Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Zuhao Li
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
- Orthopaedic Research Institute of Jilin Province, Changchun, China
| | - Bo Chao
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Shixian Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Wangwang Luo
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Jianhang Jiao
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Minfei Wu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|