1
|
Vasyltsiv R, Harms J, Clark M, Gladstone DJ, Pogue BW, Zhang R, Bruza P. Design and characterization of a novel scintillator array for UHDR PBS proton therapy surface dosimetry. Med Phys 2025. [PMID: 40450336 DOI: 10.1002/mp.17922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 05/13/2025] [Accepted: 05/23/2025] [Indexed: 06/03/2025] Open
Abstract
BACKGROUND Ultrahigh dose rate (UHDR) proton therapy has shown promise in normal tissue sparing by enhancing the therapeutic ratio through a method termed the FLASH effect. As in all radiotherapy, accurate in vivo dosimetry is crucial for quality assurance of safe and efficient treatment delivery. However, this remains a challenge for UHDR as existing dosimetry systems lack the spatial and temporal resolution required to verify dose and dose rate in complex anatomical regions, especially for pencil beam scanning (PBS) proton therapy. PURPOSE This study aims to develop and evaluate a novel 3D surface dosimetry method for UHDR PBS proton therapy using high-speed imaging of a scintillator array, coupled with stereovision to provide real-time, high-resolution surface dose monitoring during treatment. The spatial, temporal, and dosimetric components of the proposed system are validated via imaging of a custom QA phantom and are compared against a gafchromic film reading of the same field delivered onto a flat surface. METHODS A freely deformable multielement scintillator array was designed with a single element pitch of 7.5 mm and interelement gap of 0.5 mm. Scintillation linearity with dose was evaluated along with the variation in scintillator response with increasing imaging and irradiation angles. Water-equivalent thickness (WET) testing was conducted to evaluate beam attenuation at two energy levels. Scintillation emission in response to dose delivery was imaged at 1000 Hz using a high frame rate camera (BeamSite Ultra, DoseOptics LLC) and the array position was monitored via a 2-camera stereovision system. Imaging system setup was validated using a custom 3D QA phantom to assess spatial accuracy and guide systematic setup correction. Stereovision properties of each array element were used to guide angular emission correction, and geometric transformation to beams-eye-view (BEV). Kernel-based residual spot fitting was applied to derive cumulative dose maps which were then compared to the flat film dose profile of a 5 × 5 cm UHDR PBS delivery using 3%/2 mm gamma analysis. PBS and maximum dose rate maps were also calculated. RESULTS System setup achieved an average localization error of 0.62 mm, surpassing the typical 1+ mm threshold used in clinical practice. Intensity correction based on angular information was applied and yielded a cumulative spot dose uncertainty of ∼1% (5.428 mGy). The processed dose map was compared to film via gamma analysis with 3%/2 mm criteria and showed a 99.9% passing rate, indicating high agreement between the planned and measured dose profiles. The WET of the scintillator array was measured to be 1.1 mm, minimizing its impact on dose distribution. CONCLUSION The novel scintillator array system provides accurate, real-time surface dose monitoring with high spatial and temporal resolution, making it a promising tool for in vivo dosimetry in UHDR proton therapy. Future work will focus on optimizing the system and expanding its application to other modalities, such as photon and electron therapy.
Collapse
Affiliation(s)
- Roman Vasyltsiv
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| | - Joseph Harms
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Megan Clark
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| | - David J Gladstone
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| | - Brian W Pogue
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Rongxiao Zhang
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
- Department of Radiation Oncology, University of Missouri, Columbia, Missouri, USA
| | - Petr Bruza
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| |
Collapse
|
2
|
Bell BI, Velten C, Pennock M, Kang M, Tanaka KE, Selvaraj B, Bookbinder A, Koba W, Vercellino J, English J, Małachowska B, Pandey S, Duddempudi PK, Yang Y, Shajahan S, Hasan S, Choi JI, Simone CB, Yang WL, Tomé WA, Lin H, Guha C. Whole Abdominal Pencil Beam Scanned Proton FLASH Increases Acute Lethality. Int J Radiat Oncol Biol Phys 2025; 121:493-505. [PMID: 39299552 DOI: 10.1016/j.ijrobp.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/29/2024] [Accepted: 09/02/2024] [Indexed: 09/22/2024]
Abstract
PURPOSE Ultrahigh dose-rate FLASH radiation therapy has emerged as a modality that promises to reduce normal tissue toxicity while maintaining tumor control. Previous studies of gastrointestinal toxicity using passively scattered FLASH proton therapy (PRT) have, however, yielded mixed results, suggesting that the requirements for gastrointestinal sparing by FLASH are an open question. Furthermore, the more clinically relevant pencil beam scanned (PBS) FLASH PRT has not yet been assessed in this context, despite differences in the spatiotemporal dose-rate distributions compared with passively scattered PRT. Here, to our knowledge, we provide the first report on the effects of PBS FLASH PRT on acute gastrointestinal injury in mice after whole abdominal irradiation. METHODS AND MATERIALS Whole abdominal irradiation was performed on C57BL/6J mice using the entrance channel of the Bragg curve of a 250 MeV PBS proton beam at field-averaged dose rates of 0.6 Gy/s for conventional (CONV) and 80 to 100 Gy/s for FLASH PRT. A 2D strip ionization chamber array was used to measure the dose and dose rate for each mouse. Survival was assessed at 14 Gy. Intestines were harvested and processed as Swiss rolls for analysis using a novel artificial intelligence-based crypt assay to quantify crypt regeneration 4 days after irradiation. RESULTS Survival was significantly reduced after 14 Gy FLASH PRT compared with CONV (P < .001). Our artificial intelligence-based crypt assays demonstrated no significant difference in intestinal crypts/cm or crypt depth between groups 4 days after irradiation. Furthermore, we found no significant difference in 5-ethynyl-2'-deoxyuridine+ cells/crypt or Olfactomedin4+ intestinal stem cells with FLASH relative to CONV PRT. CONCLUSIONS Overall, our data demonstrate significantly impaired survival after abdominal PBS FLASH PRT without apparent differences in intestinal histology 4 days after irradiation.
Collapse
Affiliation(s)
- Brett I Bell
- Departments of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York; Departments of Radiation Oncology and Pathology, Albert Einstein College of Medicine, Bronx, New York
| | - Christian Velten
- Departments of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York
| | - Michael Pennock
- Departments of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York
| | | | - Kathryn E Tanaka
- Departments of Radiation Oncology and Pathology, Albert Einstein College of Medicine, Bronx, New York
| | | | | | - Wade Koba
- Department of Radiology, Albert Einstein College of Medicine, Bronx, New York
| | - Justin Vercellino
- Departments of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York; Departments of Radiation Oncology and Pathology, Albert Einstein College of Medicine, Bronx, New York
| | - Jeb English
- Departments of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York; Departments of Radiation Oncology and Pathology, Albert Einstein College of Medicine, Bronx, New York
| | - Beata Małachowska
- Departments of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York
| | - Sanjay Pandey
- Departments of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York
| | | | - Yunjie Yang
- New York Proton Center, New York, New York; Departments of Medical Physics and Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Shahin Shajahan
- Departments of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York
| | | | - J Isabelle Choi
- New York Proton Center, New York, New York; Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Charles B Simone
- New York Proton Center, New York, New York; Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Weng-Lang Yang
- Departments of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York
| | - Wolfgang A Tomé
- Departments of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York; Department of Neurology, Albert Einstein College of Medicine, Bronx, New York
| | - Haibo Lin
- Departments of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York; New York Proton Center, New York, New York; Departments of Medical Physics and Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Chandan Guha
- Departments of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York; Departments of Radiation Oncology and Pathology, Albert Einstein College of Medicine, Bronx, New York.
| |
Collapse
|
3
|
Yin L, Masumi U, Ota K, Sforza DM, Miles D, Rezaee M, Wong JW, Jia X, Li H. Feasibility of Synchrotron-Based Ultra-High Dose Rate (UHDR) Proton Irradiation with Pencil Beam Scanning for FLASH Research. Cancers (Basel) 2024; 16:221. [PMID: 38201648 PMCID: PMC10778151 DOI: 10.3390/cancers16010221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND This study aims to present the feasibility of developing a synchrotron-based proton ultra-high dose rate (UHDR) pencil beam scanning (PBS) system. METHODS The RF extraction power in the synchrotron system was increased to generate 142.4 MeV pulsed proton beams for UHDR irradiation at ~100 nA beam current. The charge per spill was measured using a Faraday cup. The spill length and microscopic time structure of each spill was measured with a 2D strip transmission ion chamber. The measured UHDR beam fluence was used to derive the spot dwell time for pencil beam scanning. Absolute dose distributions at various depths and spot spacings were measured using Gafchromic films in a solid-water phantom. RESULTS For proton UHDR beams at 142.4 MeV, the maximum charge per spill is 4.96 ± 0.10 nC with a maximum spill length of 50 ms. This translates to an average beam current of approximately 100 nA during each spill. Using a 2 × 2 spot delivery pattern, the delivered dose per spill at 5 cm and 13.5 cm depth is 36.3 Gy (726.3 Gy/s) and 56.2 Gy (1124.0 Gy/s), respectively. CONCLUSIONS The synchrotron-based proton therapy system has the capability to deliver pulsed proton UHDR PBS beams. The maximum deliverable dose and field size per pulse are limited by the spill length and extraction charge.
Collapse
Affiliation(s)
- Lingshu Yin
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (D.M.S.); (D.M.); (M.R.); (J.W.W.); (X.J.); (H.L.)
| | - Umezawa Masumi
- Hitachi, Ltd., Research and Development Group, Center for Technology Innovation–Energy, 7-2-1, Omika-chou, Hitachi-shi 319-1292, Ibaraki-ken, Japan;
| | - Kan Ota
- Pyramid Technical Consultants, Inc., Boston, MA 02452, USA;
| | - Daniel M. Sforza
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (D.M.S.); (D.M.); (M.R.); (J.W.W.); (X.J.); (H.L.)
| | - Devin Miles
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (D.M.S.); (D.M.); (M.R.); (J.W.W.); (X.J.); (H.L.)
| | - Mohammad Rezaee
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (D.M.S.); (D.M.); (M.R.); (J.W.W.); (X.J.); (H.L.)
| | - John W. Wong
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (D.M.S.); (D.M.); (M.R.); (J.W.W.); (X.J.); (H.L.)
| | - Xun Jia
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (D.M.S.); (D.M.); (M.R.); (J.W.W.); (X.J.); (H.L.)
| | - Heng Li
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (D.M.S.); (D.M.); (M.R.); (J.W.W.); (X.J.); (H.L.)
| |
Collapse
|