1
|
Huang X, Horder J, Wong WW, Wang N, Bian Y, Yamamura K, Aharonovich I, Jagadish C, Tan HH. Scalable Bright and Pure Single Photon Sources by Droplet Epitaxy on InP Nanowire Arrays. ACS NANO 2024. [PMID: 38315082 DOI: 10.1021/acsnano.3c11071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
High-quality quantum light sources are crucial components for the implementation of practical and reliable quantum technologies. The persistent challenge, however, is the lack of scalable and deterministic single photon sources that can be synthesized reproducibly. Here, we present a combination of droplet epitaxy with selective area epitaxy to realize the deterministic growth of single quantum dots in nanowire arrays. By optimization of the single quantum dot growth and the nanowire cavity design, single emissions are effectively coupled with the dominant mode of the nanowires to realize Purcell enhancement. The resonance-enhanced quantum emitter system boasts a brightness of millions of counts per second with nanowatt excitation power, a short radiation lifetime of 350 ± 5 ps, and a high single-photon purity with g(2)(0) value of 0.05 with continuous wave above-band excitation. Finite-difference time-domain (FDTD) simulation results show that the emissions of single quantum dots are coupled into the TM01 mode of the nanowires, giving a Purcell factor ≈ 3. Our technology can be used for creating on-chip scalable single photon sources for future quantum technology applications including quantum networks, quantum computation, and quantum imaging.
Collapse
Affiliation(s)
- Xiaoying Huang
- Department of Electronic Materials Engineering, Research School of Physics, The Australian National University, Canberra, Australian Capital Territory 2600, Australia
- Australian Research Council Centre of Excellence for Transformative Meta-Optical Systems, Research School of Physics, The Australian National University, Canberra, Australian Capital Territory 2600, Australia
| | - Jake Horder
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
- Australian Research Council Centre of Excellence for Transformative Meta-Optical Systems, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Wei Wen Wong
- Department of Electronic Materials Engineering, Research School of Physics, The Australian National University, Canberra, Australian Capital Territory 2600, Australia
- Australian Research Council Centre of Excellence for Transformative Meta-Optical Systems, Research School of Physics, The Australian National University, Canberra, Australian Capital Territory 2600, Australia
| | - Naiyin Wang
- Department of Electronic Materials Engineering, Research School of Physics, The Australian National University, Canberra, Australian Capital Territory 2600, Australia
| | - Yue Bian
- Department of Electronic Materials Engineering, Research School of Physics, The Australian National University, Canberra, Australian Capital Territory 2600, Australia
- Australian Research Council Centre of Excellence for Transformative Meta-Optical Systems, Research School of Physics, The Australian National University, Canberra, Australian Capital Territory 2600, Australia
| | - Karin Yamamura
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
- Australian Research Council Centre of Excellence for Transformative Meta-Optical Systems, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Igor Aharonovich
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
- Australian Research Council Centre of Excellence for Transformative Meta-Optical Systems, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Chennupati Jagadish
- Department of Electronic Materials Engineering, Research School of Physics, The Australian National University, Canberra, Australian Capital Territory 2600, Australia
- Australian Research Council Centre of Excellence for Transformative Meta-Optical Systems, Research School of Physics, The Australian National University, Canberra, Australian Capital Territory 2600, Australia
| | - Hark Hoe Tan
- Department of Electronic Materials Engineering, Research School of Physics, The Australian National University, Canberra, Australian Capital Territory 2600, Australia
- Australian Research Council Centre of Excellence for Transformative Meta-Optical Systems, Research School of Physics, The Australian National University, Canberra, Australian Capital Territory 2600, Australia
| |
Collapse
|