1
|
Bonnefont-Rousselot D. [Lipoprotein-associated phospholipase A 2 (Lp-PLA 2): Relevant biomarker and therapeutic target?]. ANNALES PHARMACEUTIQUES FRANÇAISES 2025; 83:45-57. [PMID: 39241907 DOI: 10.1016/j.pharma.2024.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 09/09/2024]
Abstract
Over the last fifteen years, numerous studies have sought to decipher the role of lipoprotein-associated phospholipase A2 (Lp-PLA2) in vascular inflammation-related diseases, notably atherosclerosis. Despite the disappointing results of clinical trials using the Lp-PLA2 inhibitor darapladib, new pathophysiological, epidemiological and genetic data have enabled the development of new inhibitors. Recent studies also show that Lp-PLA2 is involved in vascular inflammation-related diseases other than atherosclerosis (ischemic stroke, Alzheimer's disease and vascular dementia, diabetes, cancers…), and inhibition of Lp-PLA2 could have beneficial therapeutic in these diseases. This review aims to present new data on Lp-PLA2 and to evaluate its current interest as a biomarker but also as a therapeutic target.
Collapse
Affiliation(s)
- Dominique Bonnefont-Rousselot
- Service de biochimie métabolique, hôpitaux universitaires Pitié-Salpêtrière-Charles-Foix, AP-HP, 47-83, boulevard de l'Hôpital, 75651 Paris, France; Inserm, CNRS, UFR de pharmacie, UTCBS, université Paris Cité, Paris, France.
| |
Collapse
|
2
|
Simental-Mendia LE, Simental-Mendía M, Gamboa-Gomez CI, Jamialahmadi T, Sahebkar A. Effect of Fibrates on Lipoprotein-associated Phospholipase A2 Mass and Activity: A Systematic Review and Meta-analysis of Controlled Clinical Trials. Curr Pharm Des 2025; 31:1205-1212. [PMID: 39812055 DOI: 10.2174/0113816128345231240925095400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 01/16/2025]
Abstract
BACKGROUND In vascular tissue, macrophages and inflammatory cells produce the enzyme lipoprotein- associated phospholipase A2 (Lp-PLA2). Treatment with fibrates decreases Lp-PLA2 levels in individuals with obesity and metabolic syndrome; however, these findings have not been fully clarified. OBJECTIVE The goal of this study was to investigate the possible effects of fibrate therapy on Lp-PLA2 mass and activity through a meta-analysis of clinical trials. METHODS Web of Science, PubMed, Scopus, Google Scholar, and ClinicalTrials.gov databases were searched using MeSH terms and keywords. Randomized controlled trials (RCT) evaluating the effect of statins on Lp- PLA2 mass and/or activity were included in the meta-analysis. Quantitative data were analyzed using a random- effects model and the generic inverse variance method. RESULTS The meta-analysis of 10 clinical trials indicated that fibrate treatment has no significant effect on Lp- PLA2 mass (fibrate vs. placebo/nothing = WMD: -3.29 ng/ml, 95% CI: -21.35, 14.78, p = 0.72; fibrate vs. active control = WMD: -1.08 ng/ml, 95% CI: -51.38, 49.22, p = 0.97); Lp-PLA2 activity (fibrate vs. active control = WMD: 0.84 nmol/ml/min, 95% CI: -0.17, 1.84, p = 0.10); HDL-LpPLA2 activity (fibrate vs. active control = WMD: 0.77 nmol/ml/min, 95% CI: -0.33, 1.88, p = 0.17); and secretory PLA2 (fibrate vs. active control = WMD: 0.37 ng/ml, 95% CI: -1.22, 1.97, p = 0.65). Also, the results of the sensitivity analysis were robust for all these parameters. CONCLUSION In conclusion, fibrate therapy did not reduce the mass and activity of Lp-PLA2.
Collapse
Affiliation(s)
- Luis E Simental-Mendia
- Unidad de Investigación Biomédica, Instituto Mexicano del Seguro Social, Durango, México
| | - Mario Simental-Mendía
- Department of Orthopedics and Traumatology, Facultad de Medicina, Hospital Universitario "Dr. José E. González", Universidad Autónoma de Nuevo León, Monterrey, NL, México
| | - Claudia I Gamboa-Gomez
- Unidad de Investigación Biomédica, Instituto Mexicano del Seguro Social, Durango, México
| | - Tannaz Jamialahmadi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Agouridis AP, Filippatos TD, Kostapanos M, Kostara C, Tsimihodimos V. The effect of rosuvastatin alone or in combination with fenofibrate or omega-3 fatty acids on lipoprotein(a) levels in patients with mixed hyperlipidemia. Arch Med Sci Atheroscler Dis 2024; 9:e26-e32. [PMID: 38434941 PMCID: PMC10905261 DOI: 10.5114/amsad/178441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/08/2024] [Indexed: 03/05/2024] Open
Abstract
Introduction Lipoprotein(a) [Lp(a)] is a strong, genetically determined, pathogenetic factor of atherosclerotic cardiovascular disease (ASCVD). The aim of this post-hoc analysis was to compare the effect of hypolipidemic treatment on Lp(a) levels of patients with mixed hyperlipidemia. Material and methods We previously randomized patients with mixed hyperlipidemia (low-density lipoprotein [LDL-C] > 160 mg/dl and triglycerides > 200 mg/dl) to rosuvastatin monotherapy 40 mg/day (R group, n = 30) or rosuvastatin 10 mg/day combined with fenofibrate 200 mg/day (RF group, n = 30) or omega-3 fatty acids 2 g/day (RΩ group, n = 30). In the present post-hoc analysis, we included only the patients whose Lp(a) levels were assessed (16, 16 and 15 in the R, RF and RΩ groups, respectively). Lipid profile and Lp(a) were measured at baseline and after 3 months of treatment. Results Significant reductions in total cholesterol, LDL-C, non-high-density lipoprotein-cholesterol (non-HDL-C) and triglyceride levels were observed in all groups. A significant increase in Lp(a) levels was noted in the R (p = 0.017) and RF (p = 0.029) groups, while no significant difference was seen in the RΩ group (p = NS). Regarding Lp(a) elevations, no differences were found between groups. In the R group, a strong negative correlation between the changes in Lp(a) and LDL-C (r = -0.500, p = 0.049) was observed, while a significant negative correlation between the changes in Lp(a) and triglycerides (r = -0.531, p = 0.034) was noted in the RF group. Conclusions Rosuvastatin and/or fenofibrate treatment increases Lp(a) levels in patients with mixed hyperlipidemia. Novel therapies should target Lp(a) level reduction to decrease the residual ASCVD risk in patients with mixed hyperlipidemia.
Collapse
Affiliation(s)
- Aris P Agouridis
- School of Medicine, European University Cyprus, Nicosia, Cyprus
- Department of Internal Medicine, German Oncology Center, Limassol, Cyprus
- Department of Internal Medicine, Medical School, University of Ioannina, Ioannina, Greece
| | - Theodosios D Filippatos
- Department of Internal Medicine, Medical School, University of Ioannina, Ioannina, Greece
- Department of Internal Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | - Michael Kostapanos
- Department of Internal Medicine, Medical School, University of Ioannina, Ioannina, Greece
- Lipid Clinic, Department of General Medicine, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom
| | - Christina Kostara
- Laboratory of Clinical Chemistry, Faculty of Medicine, University of Ioannina, Ioannina, Greece
| | - Vasilis Tsimihodimos
- Department of Internal Medicine, Medical School, University of Ioannina, Ioannina, Greece
| |
Collapse
|
4
|
Ugovšek S, Zupan J, Rehberger Likozar A, Šebeštjen M. Influence of lipid-lowering drugs on inflammation: what is yet to be done? Arch Med Sci 2022; 18:855-869. [PMID: 35832698 PMCID: PMC9266870 DOI: 10.5114/aoms/133936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/04/2021] [Indexed: 12/17/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory disease that is associated with risk of cardiovascular events. The best-characterised and well-standardised clinical indicator of inflammation is C-reactive protein. Current evidence-based drug therapies for prevention and treatment of cardiovascular diseases are mainly focused on reduction of low-density lipoprotein cholesterol. However, these drugs do not provide sufficient protection against recurrent cardiovascular events. One of the possible mechanisms behind this recurrence might be the persistence of residual inflammation. For the most commonly used lipid-lowering drugs, the statins, their reduction of cardiovascular events goes beyond lowering of low-density lipoprotein cholesterol. Here, we review the effects of these lipid-lowering drugs on inflammation, considering statins, ezetimibe, fibrates, niacin, proprotein convertase subtilisin/kexin type 9 inhibitors, bempedoic acid, ethyl eicosapentaenoic acid and antisense oligonucleotides. We focus in particular on C-reactive protein, and discuss how the effects of the statins might be related to reduced rates of cardiovascular events.
Collapse
Affiliation(s)
- Sabina Ugovšek
- Department of Internal Medicine, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Janja Zupan
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | | | - Miran Šebeštjen
- Department of Internal Medicine, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Department of Vascular Diseases, University Medical Centre, Ljubljana, Slovenia
- University Medical Centre Ljubljana, Department of Cardiology, Slovenia
| |
Collapse
|
5
|
Yan P, Cao J, Zhou Y, Zhou X, Sun Z, Zhu X. Serum levels of sLOX-1 and Lp-PLA2 can predict the prognosis of acute cerebral infarction with a high specificity. Physiol Rep 2022; 10:e15160. [PMID: 35005850 PMCID: PMC8744129 DOI: 10.14814/phy2.15160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/11/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023] Open
Abstract
Soluble lectin-like oxidized low-density lipoprotein receptor-1 (sLOX-1) and lipoprotein-associated phospholipase A2 (Lp-PLA2) plays an important role in acute cerebral infarction (ACI), whereas its clinical value in predicting the prognosis is unclear. Thus, this study aimed to explore this issue. A total of 127 ACI patients were included in this prospective observational study. The concentrations of sLOX-1 and Lp-PLA2 in serum were measured and their relationship with a poor prognosis 90 days after the onset of ACI was analyzed. We found that patients with poor prognosis had higher mean serum levels of sLOX-1 and Lp-PLA2. The level of sLOX-1 and Lp-PLA2 could predict the functional outcome of ACI. At the optimal cut off value of sLOX-1 level (1257.92 ng/ml), the sensitivity and specificity for the poor functional outcome were 0.69 and 0.753, respectively, and the area under ROC curve (AUC) was 0.727. Similarly, the optimal value for Lp-PLA2 level was 160.9 ng/ml, at which the sensitivity and specificity were 0.643 and 0.835, respectively; and the AUC was 0.758. When the two biomarkers were used in combination, the AUC was 0.855, and the sensitivity and specificity were 0.643 and 0.976, respectively, indicating a significant improvement of the diagnostic specificity. The level of sLOX-1 or Lp-PLA2 could thus serve as useful biomarkers to predict the functional outcome of ACI. Combined use of both indicators is better than the use of either single indicator, and provides the highest specificity in predicting poor prognosis.
Collapse
Affiliation(s)
- Ping Yan
- Department of NeurologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Jing Cao
- Department of NeurologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Yajun Zhou
- Department of NeurologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Xia Zhou
- Department of NeurologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Zhongwu Sun
- Department of NeurologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Xiaoqun Zhu
- Department of NeurologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| |
Collapse
|
6
|
Fras Z, Tršan J, Banach M. On the present and future role of Lp-PLA 2 in atherosclerosis-related cardiovascular risk prediction and management. Arch Med Sci 2021; 17:954-964. [PMID: 34336025 PMCID: PMC8314407 DOI: 10.5114/aoms.2020.98195] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 02/02/2020] [Indexed: 12/23/2022] Open
Abstract
Circulating concentration and activity of secretory phospholipase A2 (sPLA2) and lipoprotein-associated phospholipase A2 (Lp-PLA2) have been proven as biomarkers of increased risk of atherosclerosis-related cardiovascular disease (ASCVD). Lp-PLA2 might be part of the atherosclerotic process and may contribute to plaque destabilisation through inflammatory activity within atherosclerotic lesions. However, all attempts to translate the inhibition of phospholipase into clinically beneficial ASCVD risk reduction, including in randomised studies, by either non-specific inhibition of sPLA2 (by varespladib) or specific Lp-PLA2 inhibition by darapladib, unexpectedly failed. This gives us a strong imperative to continue research aimed at a better understanding of how Lp-PLA2 and sPLA2 regulate vascular inflammation and atherosclerotic plaque development. From the clinical viewpoint there is a need to establish and validate the existing and emerging novel anti-inflammatory therapeutic strategies to fight against ASCVD development, by using potentially better animal models and differently designed clinical trials in humans.
Collapse
Affiliation(s)
- Zlatko Fras
- Centre for Preventive Cardiology, Department of Vascular Medicine, Division of Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Chair of Internal Medicine, Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Jure Tršan
- Centre for Preventive Cardiology, Department of Vascular Medicine, Division of Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Maciej Banach
- Department of Hypertension, Medical University of Lodz, Poland
- Polish Mother’s Memorial Hospital Research Institute, Lodz, Poland
| |
Collapse
|
7
|
Ruscica M, Corsini A, Ferri N, Banach M, Sirtori CR. Clinical approach to the inflammatory etiology of cardiovascular diseases. Pharmacol Res 2020; 159:104916. [PMID: 32445957 PMCID: PMC7238995 DOI: 10.1016/j.phrs.2020.104916] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 02/06/2023]
Abstract
Inflammation is an obligatory marker of arterial disease, both stemming from the inflammatory activity of cholesterol itself and from well-established molecular mechanisms. Raised progenitor cell recruitment after major events and clonal hematopoiesis related mechanisms have provided an improved understanding of factors regulating inflammatory phenomena. Trials with inflammation antagonists have led to an extensive evaluation of biomarkers such as the high sensitivity C reactive protein (hsCRP), not exerting a causative role, but frequently indicative of the individual cardiovascular (CV) risk. Aim of this review is to provide indication on the anti-inflammatory profile of agents of general use in CV prevention, i.e. affecting lipids, blood pressure, diabetes as well nutraceuticals such as n-3 fatty acids. A crucial issue in the evaluation of the benefit of the anti-inflammatory activity is the frequent discordance between a beneficial activity on a major risk factor and associated changes of hsCRP, as in the case of statins vs PCSK9 antagonists. In hypertension, angiotensin converting enzyme inhibitors exert an optimal anti-inflammatory activity, vs the case of sartans. The remarkable preventive activity of SLGT-2 inhibitors in heart failure is not associated with a clear anti-inflammatory mechanism. Finally, icosapent ethyl has been shown to reduce the CV risk in hypertriglyceridemia, with a 27 % reduction of hsCRP. The inflammation-based approach to arterial disease has considerably gained from an improved understanding of the clinical diagnostic strategy and from a better knowledge on the mode of action of numerous agents, including nutraceuticals.
Collapse
Affiliation(s)
- Massimiliano Ruscica
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Alberto Corsini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy; Multimedica IRCCS, Milano, Italy
| | - Nicola Ferri
- Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, Padua, Italy
| | - Maciej Banach
- Department of Hypertension, WAM University Hospital in Lodz, Medical University of Lodz, Lodz, Poland; Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland; Cardiovascular Research Centre, University of Zielona Gora, Zielona Gora, Poland.
| | - Cesare R Sirtori
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
8
|
Pappa E, Rizos CV, Filippatos TD, Elisaf MS. Emerging Fixed-Dose Combination Treatments for Hyperlipidemia. J Cardiovasc Pharmacol Ther 2019; 24:315-322. [DOI: 10.1177/1074248419838506] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Eleni Pappa
- Department of Internal Medicine, School of Medicine, University of Ioannina, Ioannina, Greece
| | - Christos V. Rizos
- Department of Internal Medicine, School of Medicine, University of Ioannina, Ioannina, Greece
| | - Theodosios D. Filippatos
- Department of Internal Medicine, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Moses S. Elisaf
- Department of Internal Medicine, School of Medicine, University of Ioannina, Ioannina, Greece
| |
Collapse
|
9
|
Ruscica M, Ferri N, Macchi C, Corsini A, Sirtori CR. Lipid lowering drugs and inflammatory changes: an impact on cardiovascular outcomes? Ann Med 2018; 50:461-484. [PMID: 29976096 DOI: 10.1080/07853890.2018.1498118] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Inflammatory changes are responsible for maintenance of the atherosclerotic process and may underlie some of the most feared vascular complications. Among the multiple mechanisms of inflammation, the arterial deposition of lipids and particularly of cholesterol crystals is the one responsible for the activation of inflammasome NLRP3, followed by the rise of circulating markers, mainly C-reactive protein (CRP). Elevation of lipoproteins, LDL but also VLDL and remnants, associates with increased inflammatory changes and coronary risk. Lipid lowering medications can reduce cholesterolemia and CRP: patients with elevations of both are at greatest cardiovascular (CV) risk and receive maximum benefit from therapy. Evaluation of the major drug series indicates that statins exert the largest LDL and CRP reduction, accompanied by reduced CV events. Other drugs, mainly active on the triglyceride/HDL axis, for example, PPAR agonists, may improve CRP and the lipid pattern, especially in patients with metabolic syndrome. PCSK9 antagonists, the newest most potent medications, do not induce significant changes in inflammatory markers, but patients with the highest baseline CRP levels show the best CV risk reduction. Parallel evaluation of lipids and inflammatory changes clearly indicates a significant link, both guiding to patients at highest risk, and to the best pharmacological approach. Key messages Lipid lowering agents with "pleiotropic" effects provide a more effective approach to CV prevention In CANTOS study, patients achieving on-treatment hsCRP concentrations ≤2 mg/L had a higher benefit in terms of reduction in major CV events The anti-inflammatory activity of PCSK9 antagonists appears to be of a minimal extent.
Collapse
Affiliation(s)
- M Ruscica
- a Dipartimento di Scienze Farmacologiche e Biomolecolari , Università degli Studi di Milano , Milan , Italy
| | - N Ferri
- b Dipartimento di Scienze del Farmaco , Università degli Studi di Padova , Padova , Italy
| | - C Macchi
- a Dipartimento di Scienze Farmacologiche e Biomolecolari , Università degli Studi di Milano , Milan , Italy
| | - A Corsini
- a Dipartimento di Scienze Farmacologiche e Biomolecolari , Università degli Studi di Milano , Milan , Italy
| | - C R Sirtori
- c Centro Dislipidemie , A.S.S.T. Grande Ospedale Metropolitano Niguarda , Milan , Italy
| |
Collapse
|
10
|
Filippatos TD, Kei A, Rizos CV, Elisaf MS. Effects of PCSK9 Inhibitors on Other than Low-Density Lipoprotein Cholesterol Lipid Variables. J Cardiovasc Pharmacol Ther 2017; 23:3-12. [DOI: 10.1177/1074248417724868] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Low-density lipoprotein cholesterol (LDL-C) is a major cardiovascular risk factor, but other lipid variables such as triglycerides (TRGs), high-density lipoprotein cholesterol (HDL-C) and lipoprotein a [Lp(a)] also affect cardiovascular risk. Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors significantly lower LDL-C concentration but also modestly improve the concentrations of TRGs and HDL-C and more robustly decrease Lp(a) levels. The review presents the associated mechanisms of the beneficial effects of PCSK9 inhibitors on the other than LDL-C lipid variables, including the effects on lipid/apolipoprotein secretion and clearance and the heteroexchange between lipoproteins, as well as the possible effects on other variables involved in lipid metabolism such as sortilin. Proprotein convertase subtilisin/kexin type 9 inhibitors improve the overall lipid profile, and these beneficial effects may play a role in the reduction of cardiovascular risk.
Collapse
Affiliation(s)
| | - Anastazia Kei
- Department of Internal Medicine, School of Medicine, University of Ioannina, Ioannina, Greece
| | - Christos V. Rizos
- Department of Internal Medicine, School of Medicine, University of Ioannina, Ioannina, Greece
| | - Moses S. Elisaf
- Department of Internal Medicine, School of Medicine, University of Ioannina, Ioannina, Greece
| |
Collapse
|
11
|
Effects of pitavastatin and pravastatin on markers of immune activation and arterial inflammation in HIV. AIDS 2017; 31:797-806. [PMID: 28252528 DOI: 10.1097/qad.0000000000001427] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Persistent immune activation is thought to contribute to increased cardiovascular disease risk in HIV and statins may help modulate systemic immune activation. We aimed to compare the effects of two key statins on markers of systemic immune activation and arterial inflammation in the HIV population. DESIGN Double-blind, active-controlled, parallel-group comparative trial performed in 45 sites. METHODS Two hundred and fifty-two antiretroviral therapy-treated HIV-infected participants with dyslipidemia were randomized (1 : 1) to pitavastatin 4 mg daily vs. pravastatin 40 mg daily in the HIV-infected patieNts and TREatment with PItavastatin vs. pravastatin for Dyslipidemia (INTREPID) trial. In this analysis of the INTREPID trial, we assessed markers of immune activation and arterial inflammation using a modified intent-to-treat population. This trial is registered with ClinicalTrials.gov (NCT01301066). RESULTS One hundred and twenty-six participants were randomized to receive pitavastatin and 126 to pravastatin. Ninety-nine participants in the pitavastatin group and 91 participants in the pravastatin group completed the study. Median age was 50 (45, 56) years [median (interquartile range)]. Baseline, low-density lipoprotein-cholestrol (LDL-C) was 153 (135, 171) mg/dl, log HIV-1 viral load was 1.1 ± 0.2 copies/ml, and CD4 cell count was 580 (439, 794) cells/μl. At week 52, the pitavastatin group had a significantly greater reduction (% change) compared with pravastatin in soluble CD14 (sCD14), (-10.0 vs. 0.6%, P = 0.02), oxidized LDL (oxLDL) (-26.9 vs. -17.5%, P = 0.02), and lipoprotein-associated phospholipase 2 (Lp-PLA2) (-26.6 vs. -15.5%, P = 0.005) (pitavastatin vs. pravastatin). CONCLUSION Fifty-two weeks of pitavastatin 4 mg daily (vs. pravastatin 40 mg daily) led to a greater reduction in select markers of immune activation and arterial inflammation (sCD14, oxLDL, and LpPLA2) among HIV-infected participants. Further work is needed to assess whether immune-modulatory effects of pitavastatin reduce cardiovascular disease risk in HIV.
Collapse
|
12
|
Filippatos TD, Florentin M, Georgoula M, Elisaf MS. Pharmacological management of diabetic dyslipidemia. Expert Rev Clin Pharmacol 2016; 10:187-200. [DOI: 10.1080/17512433.2017.1263565] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- T. D. Filippatos
- Department of Internal Medicine, School of Medicine, University of Ioannina, Ioannina, Greece
| | - M. Florentin
- Department of Internal Medicine, School of Medicine, University of Ioannina, Ioannina, Greece
| | - M. Georgoula
- Department of Internal Medicine, School of Medicine, University of Ioannina, Ioannina, Greece
| | - M. S. Elisaf
- Department of Internal Medicine, School of Medicine, University of Ioannina, Ioannina, Greece
| |
Collapse
|
13
|
Sahebkar A, Hernández-Aguilera A, Abelló D, Sancho E, Camps J, Joven J. Systematic review and meta-analysis deciphering the impact of fibrates on paraoxonase-1 status. Metabolism 2016; 65:609-622. [PMID: 27085770 DOI: 10.1016/j.metabol.2016.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 12/27/2015] [Accepted: 01/05/2016] [Indexed: 12/21/2022]
Abstract
OBJECTIVE A significant residual cardiovascular risk is consistently observed in patients treated with statins. A combined treatment with fibrates reduces cardiovascular events in very high-risk patients. Because this is apparently unconnected to an improvement in lipid-related outcomes we hypothesized that the cardioprotective effects of fibrates might be associated with an improvement in paraoxonase-1 (PON1) status. METHOD The search for existing evidence, using the Medline, Scopus and Cochrane databases, was systematic and followed the PRISMA statement without restrictions on publication date. We excluded non-clinical and observational studies and we extracted data on baseline and post-treatment values of serum PON1 activity and other measurements of PON1 status. RESULTS Nine studies (including 12 treatment arms) in patients with hyperlipidemia, diabetes or metabolic syndrome treated with fibrates, alone or in combination with statins, were included to synthesize results. A meta-analysis of the data using a random-effects model revealed a significant increase in serum PON1 activity following fibrate therapy (WMD: 15.64U/L, 95% CI: 6.94, 24.34, p<0.001), an effect that was robust and not sensitive to any particular study. Subgroup analysis indicated differences in the effect size among types of fibrates and that PON1 alterations were associated with high-density lipoprotein cholesterol changes following fibrate therapy. CONCLUSIONS Results indicate a significant PON1-enhancing effect of fibrates. Whether this effect is associated with a clinical benefit, although likely, remains to be further investigated.
Collapse
Affiliation(s)
- Amirhossein Sahebkar
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Metabolic Research Centre, School of Medicine and Pharmacology, University of Western Australia, Perth, Australia
| | - Anna Hernández-Aguilera
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Campus of International Excellence Southern Catalonia, Carrer Sant Llorenç 21, 43201 Reus, Spain
| | - David Abelló
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Campus of International Excellence Southern Catalonia, Carrer Sant Llorenç 21, 43201 Reus, Spain
| | - Elena Sancho
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Campus of International Excellence Southern Catalonia, Carrer Sant Llorenç 21, 43201 Reus, Spain
| | - Jordi Camps
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Campus of International Excellence Southern Catalonia, Carrer Sant Llorenç 21, 43201 Reus, Spain
| | - Jorge Joven
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Campus of International Excellence Southern Catalonia, Carrer Sant Llorenç 21, 43201 Reus, Spain.
| |
Collapse
|
14
|
Switching statin-treated patients from fenofibrate to the prescription omega-3 therapy icosapent ethyl: a retrospective case series. DRUGS & THERAPY PERSPECTIVES 2016; 32:162-169. [PMID: 27065746 PMCID: PMC4801984 DOI: 10.1007/s40267-016-0288-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Introduction Patients receiving statin therapy for dyslipidaemia often require treatment with an additional agent to control triglyceride levels. Options for add-on therapy include fibrates and omega-3 fatty acids. This case series describes the effects of switching add-on therapy from fenofibrate to icosapent ethyl (the ethyl ester of the omega-3 fatty acid, eicosapentaenoic acid) on patient lipid profiles. Methods This was a retrospective analysis of patient records from a private medical practice in western New York. Statin-treated patients with dyslipidaemia who had been treated with fenofibrate and later switched to icosapent ethyl were selected for analysis. Lipid profiles before and after the switch to icosapent ethyl were compared. Results The records of five patients were analysed. All patients had hypertension and were overweight, male, and at high cardiovascular risk. After the switch to icosapent ethyl (treatment duration 3.9–5.8 months), triglyceride levels decreased in four patients, and low-density lipoprotein cholesterol, non-high-density lipoprotein cholesterol, and total cholesterol levels decreased in all patients. High-density lipoprotein levels increased in four patients. Icosapent ethyl was well tolerated. Conclusions Switching from fenofibrate to icosapent ethyl as add-on to a statin therapy due to clinical need may provide an option for patients to maintain or improve lipid parameters.
Collapse
|
15
|
Protective effects of fenofibrate against acute lung injury induced by intestinal ischemia/reperfusion in mice. Sci Rep 2016; 6:22044. [PMID: 26902261 PMCID: PMC4763198 DOI: 10.1038/srep22044] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 02/04/2016] [Indexed: 11/08/2022] Open
Abstract
This experiment was conducted to evaluate whether pretreatment with fenofibrate could mitigate acute lung injury (ALI) in a mice model of intestinal ischemia/reperfusion (I/R). Male C57BL/6 mice were randomly assigned into three groups (n = 6): sham, intestinal I/R + vehicle, and intestinal I/R + fenofibrate. Intestinal I/R was achieved by clamping the superior mesenteric artery. Fenofibrate (100 mg/kg) or equal volume of vehicle was injected intraperitoneally 60 minutes before the ischemia. At the end of experiment, measurement of pathohistological score, inflammatory mediators and other markers were performed. In addition, a 24-hour survival experiment was conducted in intestinal I/R mice treated with fenofibrate or vehicle. The chief results were as anticipated. Pathohistological evaluation indicated that fenofibrate ameliorated the local intestine damage and distant lung injury. Pretreatment with fenofibrate significantly decreased inflammatory factors in both the intestine and the lung. Consistently, renal creatine levels and hepatic ALT levels were significantly decreased in the fenofibrate group. Moreover, serum systemic inflammatory response indicators were significantly alleviated in the fenofibrate group. In addition, fenofibrate administration significantly improved the survival rate. Collectively, our data indicated that pretreatment with fenofibrate prior to ischemia attenuated intestinal I/R injury and ALI.
Collapse
|
16
|
Maiolino G, Bisogni V, Rossitto G, Rossi GP. Lipoprotein-associated phospholipase A2 prognostic role in atherosclerotic complications. World J Cardiol 2015; 7:609-620. [PMID: 26516415 PMCID: PMC4620072 DOI: 10.4330/wjc.v7.i10.609] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 06/11/2015] [Accepted: 09/28/2015] [Indexed: 02/06/2023] Open
Abstract
Atherosclerosis manifests itself clinically at advanced stages when plaques undergo hemorrhage and/or rupture with superimposed thrombosis, thus abruptly stopping blood supply. Identification of markers of plaque destabilization at a pre-clinical stage is, therefore, a major goal of cardiovascular research. Promising results along this line were provided by studies investigating the lipoprotein-associated phospholipase A2 (Lp-PLA2), a member of phospholipase A2 proteins family that plays a key role in the metabolism of pro-inflammatory phospholipids, as oxidized low-density lipoproteins, and in the generation of pro-atherogenic metabolites, including lysophosphatidylcholine and oxidized free fatty acids. We herein review the experimental and clinical studies supporting use of Lp-PLA2 activity for predicting cardiovascular events. To his end we considered not only Lp-PLA2 activity and mass, but also Lp-PLA2 gene variations and their association with incident coronary artery disease, stroke, and cardiovascular mortality. Based on these evidences the major scientific societies have included in their guidelines the measurement of Lp-PLA2 activity among the biomarkers that are useful in risk stratification of adult asymptomatic patients at intermediate cardiovascular risk. The results of two recently published major clinical trials with the Lp-PLA2 inhibitor darapladib, which seem to challenge the pathogenic role of Lp-PLA2, will also be discussed.
Collapse
|
17
|
Ferretti G, Bacchetti T, Sahebkar A. Effect of statin therapy on paraoxonase-1 status: A systematic review and meta-analysis of 25 clinical trials. Prog Lipid Res 2015; 60:50-73. [DOI: 10.1016/j.plipres.2015.08.003] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 08/08/2015] [Accepted: 08/30/2015] [Indexed: 12/20/2022]
|
18
|
Filippatos TD, Elisaf MS. Safety considerations with fenofibrate/simvastatin combination. Expert Opin Drug Saf 2015; 14:1481-93. [DOI: 10.1517/14740338.2015.1056778] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
19
|
Abstract
BACKGROUND Rosuvastatin is one of the most potent statins and is currently widely prescribed. It is therefore important to know the dose-related magnitude of effect of rosuvastatin on blood lipids. OBJECTIVES Primary objective To quantify the effects of various doses of rosuvastatin on serum total cholesterol, low-density lipoprotein (LDL)-cholesterol, high-density lipoprotein (HDL)-cholesterol, non-HDL-cholesterol and triglycerides in participants with and without evidence of cardiovascular disease. Secondary objectives To quantify the variability of the effect of various doses of rosuvastatin.To quantify withdrawals due to adverse effects (WDAEs) in the randomized placebo-controlled trials. SEARCH METHODS We searched the Cochrane Central Register of Controlled Trials (CENTRAL) Issue 10 of 12, 2014 in The Cochrane Library, MEDLINE (1946 to October week 5 2014), EMBASE (1980 to 2014 week 44), Web of Science Core Collection (1970 to 5 November 2014) and BIOSIS Citation Index (1969 to 31 October 2014). No language restrictions were applied. SELECTION CRITERIA Randomized controlled and uncontrolled before-and-after trials evaluating the dose response of different fixed doses of rosuvastatin on blood lipids over a duration of three to 12 weeks. DATA COLLECTION AND ANALYSIS Two review authors independently assessed eligibility criteria for studies to be included and extracted data. WDAEs information was collected from the placebo-controlled trials. MAIN RESULTS One-hundred and eight trials (18 placebo-controlled and 90 before-and-after) evaluated the dose-related efficacy of rosuvastatin in 19,596 participants. Rosuvastatin 10 to 40 mg/day caused LDL-cholesterol decreases of 46% to 55%, when all the trials were combined using the generic inverse variance method. The quality of evidence for these effects is high. Log dose-response data over doses of 1 to 80 mg, revealed strong linear dose-related effects on blood total cholesterol, LDL-cholesterol and non-HDL-cholesterol. When compared to atorvastatin, rosuvastatin was about three-fold more potent at reducing LDL-cholesterol. There was no dose-related effect of rosuvastatin on blood HDL-cholesterol, but overall, rosuvastatin increased HDL by 7%. There is a high risk of bias for the trials in this review, which would affect WDAEs, but unlikely to affect the lipid measurements. WDAEs were not statistically different between rosuvastatin and placebo in 10 of 18 of these short-term trials (risk ratio 0.84; 95% confidence interval 0.48 to 1.47). AUTHORS' CONCLUSIONS The total blood total cholesterol, LDL-cholesterol and non-HDL-cholesterol-lowering effect of rosuvastatin was linearly dependent on dose. Rosuvastatin log dose-response data were linear over the commonly prescribed dose range. Based on an informal comparison with atorvastatin, this represents a three-fold greater potency. This review did not provide a good estimate of the incidence of harms associated with rosuvastatin because of the short duration of the trials and the lack of reporting of adverse effects in 44% of the placebo-controlled trials.
Collapse
Affiliation(s)
- Stephen P Adams
- University of British ColumbiaDepartment of Anesthesiology, Pharmacology and Therapeutics2176 Health Sciences Mall, Medical Block CVancouverCanadaV6T 1Z3
| | - Sarpreet S Sekhon
- University of British ColumbiaDepartment of Anesthesiology, Pharmacology and Therapeutics2176 Health Sciences Mall, Medical Block CVancouverCanadaV6T 1Z3
| | - James M Wright
- University of British ColumbiaDepartment of Anesthesiology, Pharmacology and Therapeutics2176 Health Sciences Mall, Medical Block CVancouverCanadaV6T 1Z3
| |
Collapse
|
20
|
Kei A, Tellis C, Liberopoulos E, Tselepis A, Elisaf M. Effect of Switch to the Highest Dose of Rosuvastatin Versus Add-on-Statin Fenofibrate Versus Add-on-Statin Nicotinic Acid/Laropiprant on Oxidative Stress Markers in Patients with Mixed Dyslipidemia. Cardiovasc Ther 2014; 32:139-46. [DOI: 10.1111/1755-5922.12072] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Anastazia Kei
- Department of Internal Medicine; University of Ioannina Medical School; Ioannina Greece
| | - Constantinos Tellis
- Department of Biochemistry - Clinical Chemistry; University of Ioannina Chemistry School; Ioannina Greece
| | | | - Alexandros Tselepis
- Department of Biochemistry - Clinical Chemistry; University of Ioannina Chemistry School; Ioannina Greece
| | - Moses Elisaf
- Department of Internal Medicine; University of Ioannina Medical School; Ioannina Greece
| |
Collapse
|
21
|
Filippatos TD, Athyros VG, Elisaf MS. The pharmacokinetic considerations and adverse effects of DPP-4 inhibitors [corrected]. Expert Opin Drug Metab Toxicol 2014; 10:787-812. [PMID: 24746233 DOI: 10.1517/17425255.2014.907274] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Dipeptidyl-peptidase-4 (DPP-4) inhibitors are a class of anti-hyperglycemic agents with proven efficacy in patients with type 2 diabetes mellitus (T2DM). AREAS COVERED This review considers the pharmacokinetic profile, adverse effects and drug interactions of DPP-4 inhibitors. DPP-4 inhibitors have certain differences in their structure, metabolism, route of elimination and selectivity for DPP-4 over structurally related enzymes, such as DPP-8/DPP-9. They have a low potential for drug interactions, with the exception of saxagliptin that is largely metabolized by cytochrome CYP3A4/A5. Reports of pancreatitis and pancreatic cancer have raised concerns regarding the safety of DPP-4 inhibitors and are under investigation. Post-marketing surveillance has revealed less common adverse effects, especially a number of skin- and immune-related adverse effects. These issues are covered in the present review. EXPERT OPINION DPP-4 inhibitors are useful and efficient drugs. DPP-4 inhibitors have similar mechanism of action and similar efficacy. However, DPP-4 inhibitors have certain differences in their pharmacokinetic properties that may be associated with different clinical effects and adverse event profiles. Although clinical trials indicated a favorable safety profile, post-marketing reports revealed certain safety aspects that need further investigation. Certainly, more research is needed to clarify if the differences among DPP-4 inhibitors could lead to a different clinical and safety profile.
Collapse
Affiliation(s)
- Theodosios D Filippatos
- Aristotle University of Thessaloniki, Hippokration Hospital, Medical School, Second Propedeutic Department of Internal Medicine , Thessaloniki , Greece
| | | | | |
Collapse
|
22
|
Comparison of the effect of simvastatin versus simvastatin/ezetimibe versus rosuvastatin on markers of inflammation and oxidative stress in subjects with hypercholesterolemia. Atherosclerosis 2013; 231:8-14. [DOI: 10.1016/j.atherosclerosis.2013.08.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 07/27/2013] [Accepted: 08/13/2013] [Indexed: 01/08/2023]
|
23
|
Agouridis AP, Rizos CV, Elisaf MS, Filippatos TD. Does combination therapy with statins and fibrates prevent cardiovascular disease in diabetic patients with atherogenic mixed dyslipidemia? Rev Diabet Stud 2013; 10:171-90. [PMID: 24380091 DOI: 10.1900/rds.2013.10.171] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is associated with the development and progression of cardiovascular disease (CVD). Statins have an established efficacy in the management of dyslipidemia primarily by decreasing the levels of low-density lipoprotein cholesterol and thus decreasing CVD risk. They also have a favorable safety profile. Despite the statin-mediated benefit of CVD risk reduction a residual CVD risk remains, especially in T2DM patients with high triglyceride (TG) and low high-density lipoprotein cholesterol (HDL-C) values. Fibrates decrease TG levels, increase HDL-C concentrations, and improve many other atherosclerosis-related variables. Fibrate/statin co-administration improves the overall lipoprotein profile in patients with mixed dyslipidemia and may reduce the residual CVD risk during statin therapy. However, limited data exists regarding the effects of statin/fibrate combination on CVD outcomes in patients with T2DM. In the Action to Control Cardiovascular Risk in Diabetes (ACCORD) study the statin/fibrate combination did not significantly reduce the rate of CVD events compared with simvastatin/placebo in patients with T2DM. However, it did show a possible benefit in a pre-specified analysis in the subgroup of patients with high TG and low HDL-C levels. Furthermore, in the ACCORD study the simvastatin/fenofibrate combination significantly reduced the rate of progression of retinopathy compared with statin/placebo administration in patients with T2DM. The present review presents the available data regarding the effects of statin/fibrate combination in patients with T2DM and atherogenic mixed dyslipidemia.
Collapse
Affiliation(s)
- Aris P Agouridis
- Department of Internal Medicine, University of Ioannina, Ioannina, Greece
| | - Christos V Rizos
- Department of Internal Medicine, University of Ioannina, Ioannina, Greece
| | - Moses S Elisaf
- Department of Internal Medicine, University of Ioannina, Ioannina, Greece
| | | |
Collapse
|
24
|
Rizos CV, Liberopoulos EN, Tellis CC, Tselepis AD, Elisaf MS. The effect of combining rosuvastatin with sartans of different peroxisome proliferator receptor-γ activating capacity on plasma 8-isoprostane prostaglandin F2a levels. Arch Med Sci 2013; 9:172-6. [PMID: 23515108 PMCID: PMC3598137 DOI: 10.5114/aoms.2013.33357] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 09/06/2012] [Accepted: 09/21/2012] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Oxidative stress is associated with the development and progression of cardiovascular disease. Plasma 8-isoprostane prostaglandin F2a (8-iso-PGF2a) levels are a reliable marker of oxidative stress. MATERIAL AND METHODS Patients (n = 151) with hypertension, dyslipidemia and impaired fasting glucose were randomly allocated to rosuvastatin (10 mg/day) plus telmisartan 80 mg/day (RT group, n = 52) or irbesartan 300 mg/day (RI group, n = 48) or olmesartan 20 mg/day (RO group, n = 51). After 6 months of treatment, changes in plasma 8-iso-PGF2a levels were blindly evaluated. RESULTS A decrease of 8-iso-PGF2a levels vs baseline was observed only in the RT group (-8.6%; p = 0.02). A trend for decrease vs. baseline was observed in the RI (-5.7%; p = 0.40) and RO (-3.7%; p = 0.60) groups. Changes of 8-iso-PGF2a levels between groups were not significantly different (p = 0.70). CONCLUSIONS The combination of rosuvastatin with sartans of different peroxisome proliferator receptor-γ activating capacity was associated with a decrease in levels of plasma 8-iso-PGF2a. This decrease reached significance only in the telmisartan group.
Collapse
Affiliation(s)
- Christos V. Rizos
- Department of Internal Medicine, School of Medicine, University of Ioannina, Greece
| | | | | | | | - Moses S. Elisaf
- Department of Internal Medicine, School of Medicine, University of Ioannina, Greece
| |
Collapse
|
25
|
Arrivi A, Tanzilli G, Puddu PE, Iannucci L, Mangieri E. Rosuvastatin was Effective in Acute Heart Failure and Slow Coronary Flow: A Hypothesis-generating Case Report. Open Cardiovasc Med J 2013; 7:12-5. [PMID: 23459636 PMCID: PMC3584290 DOI: 10.2174/1874192401307010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 09/01/2012] [Indexed: 11/22/2022] Open
Abstract
Slow coronary flow phenomenon (SCFP) is characterized by angiographically normal coronary arteries with delayed run-off of contrast medium across the vasculature. Its etiology and clinical significance are still not completely known; however, acute congestive heart failure (CHF) is rare in this context. A 71 year-old woman with SCFP presented with acute CHF complicated by ventricular tachycardia. Treated with rosuvastatin (20 mg/day for 6 days) and inotropic drug infusion she had a complete recovery of left ventricular function and normalization of serum levels of the high-sensitivity C-reactive protein (hs-CRP), which were increased (3.6 mg/L) during the acute phase. This case illustrates that the anti-inflammatory properties of rosuvastatin may deserve specific clinical tests not only during the chronic phase but also in the acute phase of CHF patients.
Collapse
|
26
|
Agouridis AP, Kostapanos MS, Tsimihodimos V, Kostara C, Mikhailidis DP, Bairaktari ET, Tselepis AD, Elisaf MS. Effect of rosuvastatin monotherapy or in combination with fenofibrate or ω-3 fatty acids on lipoprotein subfraction profile in patients with mixed dyslipidaemia and metabolic syndrome. Int J Clin Pract 2012; 66:843-853. [PMID: 22897461 DOI: 10.1111/j.1742-1241.2012.02972.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Raised triglycerides (TG), decreased high-density lipoprotein cholesterol (HDL-C) levels and a predominance of small dense low density lipoproteins (sdLDL) are characteristics of the metabolic syndrome (MetS). OBJECTIVE To compare the effect of high-dose rosuvastatin monotherapy with moderate dosing combined with fenofibrate or ω-3 fatty acids on the lipoprotein subfraction profile in patients with mixed dyslipidaemia and MetS. METHODS We previously randomised patients with low-density lipoprotein cholesterol (LDL-C) > 160 and TG > 200 mg/dl to rosuvastatin monotherapy 40 mg/day (R group, n = 30) or rosuvastatin 10 mg/day combined with fenofibrate 200 mg/day (RF group, n = 30) or ω-3 fatty acids 2 g/day (Rω group, n = 30). In the present study, only patients with MetS were included (24, 23 and 24 in the R, RF and Rω groups respectively). At baseline and after 12 weeks of treatment, the lipoprotein subfraction profile was determined by polyacrylamide 3% gel electrophoresis. RESULTS The mean LDL size was significantly increased in all groups. This change was more prominent with RF than with other treatments in parallel with its greater hypotriglyceridemic capacity (p < 0.05 compared with R and Rω). A decrease in insulin resistance by RF was also noted. Only RF significantly raised HDL-C levels (by 7.7%, p < 0.05) by increasing the cholesterol of small HDL particles. The cholesterol of larger HDL subclasses was significantly increased by R and Rω. CONCLUSIONS All regimens increased mean LDL size; RF was the most effective. A differential effect of treatments was noted on the HDL subfraction profile.
Collapse
Affiliation(s)
- A P Agouridis
- Department of Internal Medicine, School of Medicine, University of Ioannina, Ioannina, Greece
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Kei AA, Filippatos TD, Tsimihodimos V, Elisaf MS. A review of the role of apolipoprotein C-II in lipoprotein metabolism and cardiovascular disease. Metabolism 2012; 61:906-21. [PMID: 22304839 DOI: 10.1016/j.metabol.2011.12.002] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 12/06/2011] [Accepted: 12/08/2011] [Indexed: 12/21/2022]
Abstract
The focus of this review is on the role of apolipoprotein C-II (apoC-II) in lipoprotein metabolism and the potential effects on the risk of cardiovascular disease (CVD). We searched PubMed/Scopus for articles regarding apoC-II and its role in lipoprotein metabolism and the risk of CVD. Apolipoprotein C-II is a constituent of chylomicrons, very low-density lipoprotein, low-density lipoprotein, and high-density lipoprotein (HDL). Apolipoprotein C-II contains 3 amphipathic α-helices. The lipid-binding domain of apoC-II is located in the N-terminal, whereas the C-terminal helix of apoC-II is responsible for the interaction with lipoprotein lipase (LPL). At intermediate concentrations (approximately 4 mg/dL) and in normolipidemic subjects, apoC-II activates LPL. In contrast, both an excess and a deficiency of apoC-II are associated with reduced LPL activity and hypertriglyceridemia. Furthermore, excess apoC-II has been associated with increased triglyceride-rich particles and alterations in HDL particle distribution, factors that may increase the risk of CVD. However, there is not enough current evidence to clarify whether increased apoC-II causes hypertriglyceridemia or is an epiphenomenon reflecting hypertriglyceridemia. A number of pharmaceutical interventions, including statins, fibrates, ezetimibe, nicotinic acid, and orlistat, have been shown to reduce the increased apoC-II concentrations. An excess of apoC-II is associated with increased triglyceride-rich particles and alterations in HDL particle distribution. However, prospective trials are needed to assess if apoC-II is a CVD marker or a risk factor in high-risk patients.
Collapse
Affiliation(s)
- Anastazia A Kei
- Department of Internal Medicine, School of Medicine, University of Ioannina, 45 110 Ioannina, Greece
| | | | | | | |
Collapse
|
28
|
Kouroumichakis I, Papanas N, Zarogoulidis P, Liakopoulos V, Maltezos E, Mikhailidis DP. Fibrates: therapeutic potential for diabetic nephropathy? Eur J Intern Med 2012; 23:309-16. [PMID: 22560376 DOI: 10.1016/j.ejim.2011.12.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 12/04/2011] [Accepted: 12/18/2011] [Indexed: 12/30/2022]
Abstract
Despite intensive glucose-lowering treatment and advanced therapies for cardiovascular risk factors, such as hypertension and dyslipidaemia, diabetes mellitus with its macro- and microvascular complications remains a major health problem. Especially diabetic nephropathy is a leading cause of morbidity and mortality, and its prevalence is increasing. Peroxisome proliferator-activated receptor-α (PPAR-α), a member of a large nuclear receptor superfamily, is expressed in several tissues including the kidney. Recently, experimental data have suggested that PPAR-α activation plays a pivotal role in the regulation of fatty acid oxidation, lipid metabolism, inflammatory and vascular responses, and might regulate various metabolic and intracellular signalling pathways that lead to diabetic microvascular complications. This review examines the role of PPAR-α activation in diabetic nephropathy and summarises data from experimental and clinical studies on the emerging therapeutic potential of fibrates in diabetic nephropathy.
Collapse
Affiliation(s)
- I Kouroumichakis
- Outpatient Clinic of Obesity, Diabetes and Metabolism, Second Department of Internal Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | | | | | | | | | | |
Collapse
|