1
|
Ohba A, Yamaguchi H. The Art of Chilling Out: How Neurons Regulate Torpor. Bioessays 2025; 47:e202400190. [PMID: 39600072 PMCID: PMC11755697 DOI: 10.1002/bies.202400190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/29/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024]
Abstract
Endothermic animals expend significant energy to maintain high body temperatures, which offers adaptability to varying environmental conditions. However, this high metabolic rate requires increased food intake. In conditions of low environmental temperature and scarce food resources, some endothermic animals enter a hypometabolic state known as torpor to conserve energy. Torpor involves a marked reduction in body temperature, heart rate, respiratory rate, and locomotor activity, enabling energy conservation. Despite their biological significance and potential medical applications, the neuronal mechanisms regulating torpor still need to be fully understood. Recent studies have focused on fasting-induced daily torpor in mice due to their suitability for advanced neuroscientific techniques. In this review, we highlight recent advances that extend our understanding of neuronal mechanisms regulating torpor. We also discuss unresolved issues in this research field and future directions.
Collapse
Affiliation(s)
- Akinobu Ohba
- Department of Cell PhysiologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Hiroshi Yamaguchi
- Division of Multicellular Circuit DynamicsNational Institute for Physiological SciencesOkazakiJapan
| |
Collapse
|
2
|
Benoy A, Ramaswamy S. Histamine in the neocortex: Towards integrating multiscale effectors. Eur J Neurosci 2024; 60:4597-4623. [PMID: 39032115 DOI: 10.1111/ejn.16447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/10/2024] [Accepted: 06/05/2024] [Indexed: 07/22/2024]
Abstract
Histamine is a modulatory neurotransmitter, which has received relatively less attention in the central nervous system than other neurotransmitters. The functional role of histamine in the neocortex, the brain region that controls higher-order cognitive functions such as attention, learning and memory, remains largely unknown. This article focuses on the emerging roles and mechanisms of histamine release in the neocortex. We describe gaps in current knowledge and propose the application of interdisciplinary tools to dissect the detailed multiscale functional logic of histaminergic action in the neocortex ranging from sub-cellular, cellular, dendritic and synaptic levels to microcircuits and mesoscale effects.
Collapse
Affiliation(s)
- Amrita Benoy
- Neural Circuits Laboratory, Biosciences Institute, Newcastle University, Newcastle, UK
| | - Srikanth Ramaswamy
- Neural Circuits Laboratory, Biosciences Institute, Newcastle University, Newcastle, UK
- Theoretical Sciences Visiting Program (TSVP), Okinawa Institute of Science and Technology Graduate University, Onna, Japan
| |
Collapse
|
3
|
Hernandez CM, Florant GL, Stranahan AM. Seasonal fluctuations in BDNF regulate hibernation and torpor in golden-mantled ground squirrels. Am J Physiol Regul Integr Comp Physiol 2024; 326:R311-R318. [PMID: 38344803 PMCID: PMC11283892 DOI: 10.1152/ajpregu.00186.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/23/2023] [Accepted: 01/30/2024] [Indexed: 03/24/2024]
Abstract
Aphagic hibernators such as the golden-mantled ground squirrel (GMGS; Callospermophilus lateralis) can fast for months and exhibit profound seasonal fluctuations in body weight, food intake, and behavior. Brain-derived neurotrophic factor (BDNF) regulates cellular and systemic metabolism via mechanisms that are conserved across mammalian species. In this study, we characterized regional changes in BDNF with hibernation, hypothermia, and seasonal cycle in GMGS. Analysis of BDNF protein concentrations by ELISA revealed overlapping seasonal patterns in the hippocampus and hypothalamus, where BDNF levels were highest in summer and lowest in winter. BDNF is the primary ligand for receptor tyrosine kinase B (TrkB), and BDNF/TrkB signaling in the brain potently regulates energy expenditure. To examine the functional relevance of seasonal variation in BDNF, hibernating animals were injected with the small molecule TrkB agonist 7,8-dihydroxyflavone (DHF) daily for 2 wk. When compared with vehicle, DHF-treated animals exhibited fewer torpor bouts and shorter bout durations. These results suggest that activating BDNF/TrkB disrupts hibernation and raise intriguing questions related to the role of BDNF as a potential regulatory mechanism or downstream response to seasonal changes in body temperature and environment.NEW & NOTEWORTHY Golden-mantled ground squirrels exhibit dramatic seasonal fluctuations in metabolism and can fast for months while hibernating. Brain-derived neurotrophic factor is an essential determinant of cellular and systemic metabolism, and in this study, we characterized seasonal fluctuations in BDNF expression and then administered the small molecule BDNF mimetic 7,8-dihydroxyflavone (DHF) in hibernating squirrels. The results indicate that activating BDNF/TrkB signaling disrupts hibernation, with implications for synaptic homeostasis in prolonged hypometabolic states.
Collapse
Affiliation(s)
- Caterina M Hernandez
- Department of Neuroscience and Regenerative Medicine, Augusta University, Medical College of Georgia, Augusta, Georgia, United States
- Department of Pharmaceutical Sciences, Appalachian College of Pharmacy, Oakwood, Virginia, United States
| | - Gregory L Florant
- Department of Biology, Colorado State University, Fort Collins, Colorado, United States
| | - Alexis M Stranahan
- Department of Neuroscience and Regenerative Medicine, Augusta University, Medical College of Georgia, Augusta, Georgia, United States
| |
Collapse
|
4
|
Junkins MS, Feng NY, Murphy LA, Curtis G, Merriman DK, Bagriantsev SN, Gracheva EO. Neural control of fluid homeostasis is engaged below 10°C in hibernation. Curr Biol 2024; 34:923-930.e5. [PMID: 38325375 PMCID: PMC11232715 DOI: 10.1016/j.cub.2024.01.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 11/29/2023] [Accepted: 01/12/2024] [Indexed: 02/09/2024]
Abstract
Thirteen-lined ground squirrels (Ictidomys tridecemlineatus) hibernate for several months each winter without access to water,1 but the mechanisms that maintain fluid homeostasis during hibernation are poorly understood. In torpor, when body temperature (TB) reaches 4°C, squirrels decrease metabolism, slow heart rate, and reduce plasma levels of the antidiuretic hormones arginine vasopressin (AVP) and oxytocin (OXT).1 Squirrels spontaneously undergo interbout arousal (IBA) every 2 weeks, temporarily recovering an active-like metabolism and a TB of 37°C for up to 48 h.1,2 Despite the low levels of AVP and OXT during torpor, profound increases in blood pressure and heart rate during the torpor-IBA transition are not associated with massive fluid loss, suggesting the existence of a mechanism that protects against diuresis at a low TB. Here, we demonstrate that the antidiuretic hormone release pathway is activated by hypothalamic supraoptic nucleus (SON) neurons early in the torpor-arousal transition. SON neuron activity, dense-core vesicle release from the posterior pituitary, and plasma hormone levels all begin to increase before TB reaches 10°C. In vivo fiber photometry of SON neurons from hibernating squirrels, together with RNA sequencing and c-FOS immunohistochemistry, confirms that SON is electrically, transcriptionally, and translationally active to monitor blood osmolality throughout the dynamic torpor-arousal transition. Our work emphasizes the importance of the antidiuretic pathway during the torpor-arousal transition and reveals that the neurophysiological mechanism that coordinates the hormonal response to retain fluid is active at an extremely low TB, which is prohibitive for these processes in non-hibernators.
Collapse
Affiliation(s)
- Madeleine S Junkins
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA; Department of Neuroscience, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA; Department of Neuroscience and Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA
| | - Ni Y Feng
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA; Department of Neuroscience, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA; Department of Neuroscience and Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA; Neuroscience & Behavior Program, Wesleyan University, 52 Lawn Ave, Middletown, CT 06459, USA.
| | - Lyle A Murphy
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA
| | - Genevieve Curtis
- Department of Biology, Wesleyan University, 52 Lawn Ave, Middletown, CT 06459, USA
| | - Dana K Merriman
- Department of Biology, University of Wisconsin-Oshkosh, 800 Algoma Blvd, Oshkosh, WI 54901, USA
| | - Sviatoslav N Bagriantsev
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA.
| | - Elena O Gracheva
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA; Department of Neuroscience, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA; Department of Neuroscience and Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA; Kavli Institute for Neuroscience, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA.
| |
Collapse
|
5
|
Haugg E, Borner J, Stalder G, Kübber‐Heiss A, Giroud S, Herwig A. Comparative transcriptomics of the garden dormouse hypothalamus during hibernation. FEBS Open Bio 2024; 14:241-257. [PMID: 37925593 PMCID: PMC10839406 DOI: 10.1002/2211-5463.13731] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/25/2023] [Accepted: 11/02/2023] [Indexed: 11/06/2023] Open
Abstract
Torpor or heterothermy is an energy-saving mechanism used by endotherms to overcome harsh environmental conditions. During winter, the garden dormouse (Eliomys quercinus) hibernates with multiday torpor bouts and body temperatures of a few degrees Celsius, interrupted by brief euthermic phases. This study investigates gene expression within the hypothalamus, the key brain area controlling energy balance, adding information on differential gene expression potentially relevant to orchestrate torpor. A de novo assembled transcriptome of the hypothalamus was generated from garden dormice hibernating under constant darkness without food and water at 5 °C. Samples were collected during early torpor, late torpor, and interbout arousal. During early torpor, 765 genes were differentially expressed as compared with interbout arousal. Twenty-seven pathways were over-represented, including pathways related to hemostasis, extracellular matrix organization, and signaling of small molecules. Only 82 genes were found to be differentially expressed between early and late torpor, and no pathways were over-represented. During late torpor, 924 genes were differentially expressed relative to interbout arousal. Despite the high number of differentially expressed genes, only 10 pathways were over-represented. Of these, eight were also observed to be over-represented when comparing early torpor and interbout arousal. Our results are largely consistent with previous findings in other heterotherms. The addition of a transcriptome of a novel species may help to identify species-specific and overarching torpor mechanisms through future species comparisons.
Collapse
Affiliation(s)
- Elena Haugg
- Institute of NeurobiologyUlm UniversityGermany
| | - Janus Borner
- Sackler Institute for Comparative GenomicsAmerican Museum of Natural HistoryNew YorkNYUSA
| | - Gabrielle Stalder
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife EcologyUniversity of Veterinary MedicineViennaAustria
| | - Anna Kübber‐Heiss
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife EcologyUniversity of Veterinary MedicineViennaAustria
| | - Sylvain Giroud
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife EcologyUniversity of Veterinary MedicineViennaAustria
- Energetics Lab, Department of BiologyNorthern Michigan UniversityMarquetteMIUSA
| | | |
Collapse
|
6
|
Kamata T, Yamada S, Sekijima T. Differential AMPK-mediated metabolic regulation observed in hibernation-style polymorphisms in Siberian chipmunks. Front Physiol 2023; 14:1220058. [PMID: 37664438 PMCID: PMC10468594 DOI: 10.3389/fphys.2023.1220058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/07/2023] [Indexed: 09/05/2023] Open
Abstract
Hibernation is a unique physiological phenomenon allowing extreme hypothermia in endothermic mammals. Hypometabolism and hypothermia tolerance in hibernating animals have been investigated with particular interest; recently, studies of cultured cells and manipulation of the nervous system have made it possible to reproduce physiological states related to hypothermia induction. However, much remains unknown about the periodic regulation of hibernation. In particular, the physiological mechanisms facilitating the switch from an active state to a hibernation period, including behavioral changes and the acquisition of hypothermia tolerance remain to be elucidated. AMPK is a protein known to play a central role not only in feeding behavior but also in metabolic regulation in response to starvation. Our previous research has revealed that chipmunks activate AMPK in the brain during hibernation. However, whether AMPK is activated during winter in non-hibernating animals is unknown. Previous comparative studies between hibernating and non-hibernating animals have often been conducted between different species, consequently it has been impossible to account for the effects of phylogenetic differences. Our long-term monitoring of siberian chipmunks, has revealed intraspecific variation between those individuals that hibernate annually and those that never become hypothermic. Apparent differences were found between hibernating and non-hibernating types with seasonal changes in lifespan and blood HP levels. By comparing seasonal changes in AMPK activity between these polymorphisms, we clarified the relationship between hibernation and AMPK regulation. In hibernating types, phosphorylation of p-AMPK and p-ACC was enhanced throughout the brain during hibernation, indicating that AMPK-mediated metabolic regulation is activated. In non-hibernating types, AMPK and ACC were not seasonally activated. In addition, AMPK activation in the hypothalamus had already begun during high Tb before hibernation. Changes in AMPK activity in the brain during hibernation may be driven by circannual rhythms, suggesting a hibernation-regulatory mechanism involving AMPK activation independent of Tb. The differences in brain AMPK regulation between hibernators and non-hibernators revealed in this study were based on a single species thus did not involve phylogenetic differences, thereby supporting the importance of brain temperature-independent AMPK activation in regulating seasonal metabolism in hibernating animals.
Collapse
Affiliation(s)
- Taito Kamata
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
- Faculty of Agriculture, Niigata University, Niigata, Japan
| | - Shintaro Yamada
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
- Institute of Biomedical Science, Kansai Medical University, Osaka, Japan
| | | |
Collapse
|
7
|
Mousavi S, Qiu H, Andrews MT, Checco JW. Peptidomic Analysis Reveals Seasonal Neuropeptide and Peptide Hormone Changes in the Hypothalamus and Pituitary of a Hibernating Mammal. ACS Chem Neurosci 2023; 14:2569-2581. [PMID: 37395621 PMCID: PMC10529138 DOI: 10.1021/acschemneuro.3c00268] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023] Open
Abstract
During the winter, hibernating mammals undergo extreme changes in physiology, which allow them to survive several months without access to food. These animals enter a state of torpor, which is characterized by decreased metabolism, near-freezing body temperatures, and a dramatically reduced heart rate. The neurochemical basis of this regulation is largely unknown. Based on prior evidence suggesting that the peptide-rich hypothalamus plays critical roles in hibernation, we hypothesized that changes in specific cell-cell signaling peptides (neuropeptides and peptide hormones) underlie physiological changes during torpor/arousal cycles. To test this hypothesis, we used a mass spectrometry-based peptidomics approach to examine seasonal changes of endogenous peptides that occur in the hypothalamus and pituitary of a model hibernating mammal, the thirteen-lined ground squirrel (Ictidomys tridecemlineatus). In the pituitary, we observed changes in several distinct peptide hormones as animals prepared for torpor in October, exited torpor in March, and progressed from spring (March) to fall (August). In the hypothalamus, we observed an overall increase in neuropeptides in October (pre-torpor), a decrease as the animal entered torpor, and an increase in a subset of neuropeptides during normothermic interbout arousals. Notable changes were observed for feeding regulatory peptides, opioid peptides, and several peptides without well-established functions. Overall, our study provides critical insight into changes in endogenous peptides in the hypothalamus and pituitary during mammalian hibernation that were not available from transcriptomic measurements. Understanding the molecular basis of the hibernation phenotype may pave the way for future efforts to employ hibernation-like strategies for organ preservation, combating obesity, and treatment of stroke.
Collapse
Affiliation(s)
- Somayeh Mousavi
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
| | - Haowen Qiu
- Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
- The Nebraska Center for Integrated Biomolecular Communication (NCIBC), University of Nebraska-Lincoln, Lincoln, NE 68588, United States
| | - Matthew T. Andrews
- School of Natural Resources, University of Nebraska-Lincoln, Lincoln, NE 68583, United States
| | - James W. Checco
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
- The Nebraska Center for Integrated Biomolecular Communication (NCIBC), University of Nebraska-Lincoln, Lincoln, NE 68588, United States
| |
Collapse
|
8
|
López JM, Carballeira P, Pozo J, León-Espinosa G, Muñoz A. Hypothalamic orexinergic neuron changes during the hibernation of the Syrian hamster. Front Neuroanat 2022; 16:993421. [PMID: 36157325 PMCID: PMC9501701 DOI: 10.3389/fnana.2022.993421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/09/2022] [Indexed: 11/23/2022] Open
Abstract
Hibernation in small mammals is a highly regulated process with periods of torpor involving drops in body temperature and metabolic rate, as well as a general decrease in neural activity, all of which proceed alongside complex brain adaptive changes that appear to protect the brain from extreme hypoxia and low temperatures. All these changes are rapidly reversed, with no apparent brain damage occurring, during the short periods of arousal, interspersed during torpor—characterized by transitory and partial rewarming and activity, including sleep activation, and feeding in some species. The orexins are neuropeptides synthesized in hypothalamic neurons that project to multiple brain regions and are known to participate in the regulation of a variety of processes including feeding behavior, the sleep-wake cycle, and autonomic functions such as brown adipose tissue thermogenesis. Using multiple immunohistochemical techniques and quantitative analysis, we have characterized the orexinergic system in the brain of the Syrian hamster—a facultative hibernator. Our results revealed that orexinergic neurons in this species consisted of a neuronal population restricted to the lateral hypothalamic area, whereas orexinergic fibers distribute throughout the rostrocaudal extent of the brain, particularly innervating catecholaminergic and serotonergic neuronal populations. We characterized the changes of orexinergic cells in the different phases of hibernation based on the intensity of immunostaining for the neuronal activity marker C-Fos and orexin A (OXA). During torpor, we found an increase in C-Fos immunostaining intensity in orexinergic neurons, accompanied by a decrease in OXA immunostaining. These changes were accompanied by a volume reduction and a fragmentation of the Golgi apparatus (GA) as well as a decrease in the colocalization of OXA and the GA marker GM-130. Importantly, during arousal, C-Fos and OXA expression in orexinergic neurons was highest and the structural appearance and the volume of the GA along with the colocalization of OXA/GM-130 reverted to euthermic levels. We discuss the involvement of orexinergic cells in the regulation of mammalian hibernation and, in particular, the possibility that the high activation of orexinergic cells during the arousal stage guides the rewarming as well as the feeding and sleep behaviors characteristic of this phase.
Collapse
Affiliation(s)
- Jesús M. López
- Departamento de Biología Celular, Universidad Complutense, Madrid, Spain
| | - Paula Carballeira
- Departamento de Biología Celular, Universidad Complutense, Madrid, Spain
| | - Javier Pozo
- Departamento de Biología Celular, Universidad Complutense, Madrid, Spain
| | - Gonzalo León-Espinosa
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-Centro de Estudios Universitarios (CEU), Madrid, Spain
| | - Alberto Muñoz
- Departamento de Biología Celular, Universidad Complutense, Madrid, Spain
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica (CTB), Universidad Politécnica de Madrid, Madrid, Spain
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- *Correspondence: Alberto Muñoz,
| |
Collapse
|
9
|
Haugg E, Borner J, Diedrich V, Herwig A. Comparative transcriptomics of the Djungarian hamster hypothalamus during short photoperiod acclimation and spontaneous torpor. FEBS Open Bio 2022; 12:443-459. [PMID: 34894101 PMCID: PMC8804604 DOI: 10.1002/2211-5463.13350] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/30/2021] [Accepted: 12/10/2021] [Indexed: 12/03/2022] Open
Abstract
The energy-saving strategy of Djungarian hamsters (Phodopus sungorus, Cricetidae) to overcome harsh environmental conditions comprises of behavioral, morphological, and physiological adjustments, including spontaneous daily torpor, a metabolic downstate. These acclimatizations are triggered by short photoperiod and orchestrated by the hypothalamus. Key mechanisms of long-term photoperiodic acclimatizations have partly been described, but specific mechanisms that acutely control torpor remain incomplete. Here, we performed comparative transcriptome analysis on hypothalamus of normometabolic hamsters in their summer- and winter-like state to enable us to identify changes in gene expression during photoperiodic acclimations. Comparing nontorpid and torpid hamsters may also be able to pin down mechanisms relevant for torpor control. A de novo assembled transcriptome of the hypothalamus was generated from hamsters acclimated to long photoperiod or to short photoperiod. The hamsters were sampled either during long photoperiod normothermia, short photoperiod normothermia, or short photoperiod-induced spontaneous torpor with a body temperature of 24.6 ± 1.0 °C, or. The mRNA-seq analysis revealed that 32 and 759 genes were differentially expressed during photoperiod or torpor, respectively. Biological processes were not enriched during photoperiodic acclimatization but were during torpor, where transcriptional and metabolic processes were reinforced. Most extremely regulated genes (those genes with |log2(FC)| > 2.0 and padj < 0.05 of a pairwise group comparison) underpinned the role of known key players in photoperiodic comparison, but these genes exhibit adaptive and protective adjustments during torpor. Targeted analyses of genes from potentially involved hypothalamic systems identified gene regulation of previously described torpor-relevant systems and a potential involvement of glucose transport.
Collapse
Affiliation(s)
- Elena Haugg
- Institute of NeurobiologyUlm UniversityGermany
| | - Janus Borner
- Institute of Evolutionary Ecology and Conservation GenomicsUlm UniversityGermany
- Sackler Institute for Comparative GenomicsAmerican Museum of Natural HistoryNew YorkNYUSA
| | | | | |
Collapse
|
10
|
Shi Z, Qin M, Huang L, Xu T, Chen Y, Hu Q, Peng S, Peng Z, Qu LN, Chen SG, Tuo QH, Liao DF, Wang XP, Wu RR, Yuan TF, Li YH, Liu XM. Human torpor: translating insights from nature into manned deep space expedition. Biol Rev Camb Philos Soc 2020; 96:642-672. [PMID: 33314677 DOI: 10.1111/brv.12671] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/09/2020] [Accepted: 11/17/2020] [Indexed: 12/12/2022]
Abstract
During a long-duration manned spaceflight mission, such as flying to Mars and beyond, all crew members will spend a long period in an independent spacecraft with closed-loop bioregenerative life-support systems. Saving resources and reducing medical risks, particularly in mental heath, are key technology gaps hampering human expedition into deep space. In the 1960s, several scientists proposed that an induced state of suppressed metabolism in humans, which mimics 'hibernation', could be an ideal solution to cope with many issues during spaceflight. In recent years, with the introduction of specific methods, it is becoming more feasible to induce an artificial hibernation-like state (synthetic torpor) in non-hibernating species. Natural torpor is a fascinating, yet enigmatic, physiological process in which metabolic rate (MR), body core temperature (Tb ) and behavioural activity are reduced to save energy during harsh seasonal conditions. It employs a complex central neural network to orchestrate a homeostatic state of hypometabolism, hypothermia and hypoactivity in response to environmental challenges. The anatomical and functional connections within the central nervous system (CNS) lie at the heart of controlling synthetic torpor. Although progress has been made, the precise mechanisms underlying the active regulation of the torpor-arousal transition, and their profound influence on neural function and behaviour, which are critical concerns for safe and reversible human torpor, remain poorly understood. In this review, we place particular emphasis on elaborating the central nervous mechanism orchestrating the torpor-arousal transition in both non-flying hibernating mammals and non-hibernating species, and aim to provide translational insights into long-duration manned spaceflight. In addition, identifying difficulties and challenges ahead will underscore important concerns in engineering synthetic torpor in humans. We believe that synthetic torpor may not be the only option for manned long-duration spaceflight, but it is the most achievable solution in the foreseeable future. Translating the available knowledge from natural torpor research will not only benefit manned spaceflight, but also many clinical settings attempting to manipulate energy metabolism and neurobehavioural functions.
Collapse
Affiliation(s)
- Zhe Shi
- National Clinical Research Center for Mental Disorders, and Department of Psychaitry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.,Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.,State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200030, China
| | - Meng Qin
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Lu Huang
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, 510632, China
| | - Tao Xu
- Department of Anesthesiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Ying Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qin Hu
- College of Life Sciences and Bio-Engineering, Beijing University of Technology, Beijing, 100024, China
| | - Sha Peng
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Zhuang Peng
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Li-Na Qu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Shan-Guang Chen
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Qin-Hui Tuo
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Duan-Fang Liao
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Xiao-Ping Wang
- National Clinical Research Center for Mental Disorders, and Department of Psychaitry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Ren-Rong Wu
- National Clinical Research Center for Mental Disorders, and Department of Psychaitry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Ti-Fei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200030, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226000, China
| | - Ying-Hui Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Xin-Min Liu
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.,State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China.,Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| |
Collapse
|
11
|
Sonntag M, Arendt T. Neuronal Activity in the Hibernating Brain. Front Neuroanat 2019; 13:71. [PMID: 31338028 PMCID: PMC6629779 DOI: 10.3389/fnana.2019.00071] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 06/26/2019] [Indexed: 11/13/2022] Open
Abstract
Hibernation is a natural phenomenon in many species which helps them to survive under extreme ambient conditions, such as cold temperatures and reduced availability of food in the winter months. It is characterized by a dramatic and regulated drop of body temperature, which in some cases can be near 0°C. Additionally, neural control of hibernation is maintained over all phases of a hibernation bout, including entrance into, during and arousal from torpor, despite a marked decrease in overall neural activity in torpor. In the present review, we provide an overview on what we know about neuronal activity in the hibernating brain focusing on cold-induced adaptations. We discuss pioneer and more recent in vitro and in vivo electrophysiological data and molecular analyses of activity markers which strikingly contributed to our understanding of the brain's sensitivity to dramatic changes in temperature across the hibernation cycle. Neuronal activity is markedly reduced with decreasing body temperature, and many neurons may fire infrequently in torpor at low brain temperatures. Still, there is convincing evidence that specific regions maintain their ability to generate action potentials in deep torpor, at least in response to adequate stimuli. Those regions include the peripheral system and primary central regions. However, further experiments on neuronal activity are needed to more precisely determine temperature effects on neuronal activity in specific cell types and specific brain nuclei.
Collapse
Affiliation(s)
- Mandy Sonntag
- Paul-Flechsig-Institute of Brain Research, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Thomas Arendt
- Paul-Flechsig-Institute of Brain Research, Medical Faculty, University of Leipzig, Leipzig, Germany
| |
Collapse
|
12
|
Gene expression profiling during hibernation in the European hamster. Sci Rep 2018; 8:13167. [PMID: 30177816 PMCID: PMC6120936 DOI: 10.1038/s41598-018-31506-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 08/21/2018] [Indexed: 12/14/2022] Open
Abstract
Hibernation is an exceptional physiological response to a hostile environment, characterized by a seasonal period of torpor cycles involving dramatic reductions of body temperature and metabolism, and arousal back to normothermia. As the mechanisms regulating hibernation are still poorly understood, here we analysed the expression of genes involved in energy homeostasis, torpor regulation, and daily or seasonal timing using digital droplet PCR in various central and peripheral tissues sampled at different stages of torpor/arousal cycles in the European hamster. During torpor, the hypothalamus exhibited strongly down-regulated gene expression, suggesting that hypothalamic functions were reduced during this period of low metabolic activity. During both torpor and arousal, many structures (notably the brown adipose tissue) exhibited altered expression of deiodinases, potentially leading to reduced tissular triiodothyronine availability. During the arousal phase, all analysed tissues showed increased expression of the core clock genes Per1 and Per2. Overall, our data indicated that the hypothalamus and brown adipose tissue were the tissues most affected during the torpor/arousal cycle, and that clock genes may play critical roles in resetting the body’s clocks at the beginning of the active period.
Collapse
|
13
|
Faherty SL, Villanueva‐Cañas JL, Blanco MB, Albà MM, Yoder AD. Transcriptomics in the wild: Hibernation physiology in free‐ranging dwarf lemurs. Mol Ecol 2018; 27:709-722. [DOI: 10.1111/mec.14483] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/13/2017] [Accepted: 12/14/2017] [Indexed: 12/30/2022]
Affiliation(s)
| | - José Luis Villanueva‐Cañas
- Institute of Evolutionary Biology (CSIC‐Universitat Pompeu Fabra) Barcelona Spain
- Evolutionary Genomics Group Research Programme on Biomedical Informatics (GRIB) Hospital del Mar Research Institute (IMIM) Universitat Pompeu Fabra (UPF) Barcelona Spain
| | | | - M. Mar Albà
- Evolutionary Genomics Group Research Programme on Biomedical Informatics (GRIB) Hospital del Mar Research Institute (IMIM) Universitat Pompeu Fabra (UPF) Barcelona Spain
- Catalan Institution for Research and Advanced Studies (ICREA) Barcelona Spain
| | - Anne D. Yoder
- Department of Biology Duke University Durham NC USA
- Duke Lemur Center Durham NC USA
| |
Collapse
|
14
|
Ikeno T, Williams CT, Buck CL, Barnes BM, Yan L. Clock Gene Expression in the Suprachiasmatic Nucleus of Hibernating Arctic Ground Squirrels. J Biol Rhythms 2017; 32:246-256. [PMID: 28452286 DOI: 10.1177/0748730417702246] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Most organisms have a circadian system, entrained to daily light-dark cycles, that regulates 24-h rhythms of physiology and behavior. It is unclear, however, how circadian systems function in animals that exhibit seasonal metabolic suppression, particularly when this coincides with the long-term absence of a day-night cycle. The arctic ground squirrel, Urocytellus parryii, is a medium-sized, semi-fossorial rodent that appears above-ground daily during its short active season in spring and summer before re-entering a constantly dark burrow for 6 to 9 months of hibernation. This hibernation consists of multiple week-long torpor bouts interrupted by short (< 20 h) arousal intervals when metabolism and body temperature (Tb) return to normal levels. Here, we used immunohistochemistry to measure the expression of daily or circadian rhythms of the protein products of 3 circadian clock genes, PER1, PER2, BMAL1, and the neural activity marker c-FOS in the suprachiasmatic nucleus (SCN) of arctic ground squirrels before, during, and after the first torpor bout of hibernation. Before torpor, while under 12:12-h light:dark conditions, animals showed significant daily rhythms in their Tb, as well as in protein expression levels of PER1 and PER2, but not BMAL1. Upon entering first torpor (Tb < 30°C), animals were moved into constant darkness. When sampled at 6-h intervals-beginning 24 h after the last light out, with Tb 3°C to 4°C-there were no circadian oscillations in PER1, PER2, or c-FOS expression. Sampling across 24 h during the first spontaneous arousal interval, c-FOS expression was elevated only when Tb reached 20°C and PER1 and PER2 expression did not show any Tb- or time-dependent changes. These results suggest that the central circadian clock might have stopped functioning during hibernation in this species, and the timing of arousal from torpor in arctic ground squirrels is unlikely to be controlled by the circadian clock within the SCN.
Collapse
Affiliation(s)
- Tomoko Ikeno
- Department of Psychology, Michigan State University, East Lansing, Michigan.,1. Department of Biological Sciences, Graduate School of Science, The University of Tokyo
| | - Cory T Williams
- Department of Biological Sciences & Center for Bioengineering Innovation, Northern Arizona University, Flagstaff, Arizona
| | - C Loren Buck
- Department of Biological Sciences & Center for Bioengineering Innovation, Northern Arizona University, Flagstaff, Arizona
| | - Brian M Barnes
- Institute of Arctic Biology, University of Alaska Fairbanks
| | - Lily Yan
- Department of Psychology, Michigan State University, East Lansing, Michigan.,Neuroscience Program, Michigan State University, East Lansing, Michigan
| |
Collapse
|
15
|
Jastroch M, Giroud S, Barrett P, Geiser F, Heldmaier G, Herwig A. Seasonal Control of Mammalian Energy Balance: Recent Advances in the Understanding of Daily Torpor and Hibernation. J Neuroendocrinol 2016; 28. [PMID: 27755687 DOI: 10.1111/jne.12437] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/07/2016] [Accepted: 10/15/2016] [Indexed: 12/20/2022]
Abstract
Endothermic mammals and birds require intensive energy turnover to sustain high body temperatures and metabolic rates. To cope with the energetic bottlenecks associated with the change of seasons, and to minimise energy expenditure, complex mechanisms and strategies are used, such as daily torpor and hibernation. During torpor, metabolic depression and low body temperatures save energy. However, these bouts of torpor, lasting for hours to weeks, are interrupted by active 'euthermic' phases with high body temperatures. These dynamic transitions require precise communication between the brain and peripheral tissues to defend rheostasis in energetics, body mass and body temperature. The hypothalamus appears to be the major control centre in the brain, coordinating energy metabolism and body temperature. The sympathetic nervous system controls body temperature by adjustments of shivering and nonshivering thermogenesis, with the latter being primarily executed by brown adipose tissue. Over the last decade, comparative physiologists have put forward integrative studies on the ecophysiology, biochemistry and molecular regulation of energy balance in response to seasonal challenges, food availability and ambient temperature. Mammals coping with such environments comprise excellent model organisms for studying the dynamic regulation of energy metabolism. Beyond the understanding of how animals survive in nature, these studies also uncover general mechanisms of mammalian energy homeostasis. This research will benefit efforts of translational medicine aiming to combat emerging human metabolic disorders. The present review focuses on recent advances in the understanding of energy balance and its neuronal and endocrine control during the most extreme metabolic fluctuations in nature: daily torpor and hibernation.
Collapse
Affiliation(s)
- M Jastroch
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center & German Diabetes Center (DZD), Helmholtz Zentrum München, Neuherberg, Germany
| | - S Giroud
- Department of Integrative Biology and Evolution, Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - P Barrett
- Rowett Institute for Nutrition and Health, University of Aberdeen, Aberdeen, UK
| | - F Geiser
- Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale, Australia
| | - G Heldmaier
- Animal Physiology, Philipps-Universität Marburg, Marburg, Germany
| | - A Herwig
- Zoological Institute, University of Hamburg, Hamburg, Germany
| |
Collapse
|
16
|
Jansen HT, Leise T, Stenhouse G, Pigeon K, Kasworm W, Teisberg J, Radandt T, Dallmann R, Brown S, Robbins CT. The bear circadian clock doesn't 'sleep' during winter dormancy. Front Zool 2016; 13:42. [PMID: 27660641 PMCID: PMC5026772 DOI: 10.1186/s12983-016-0173-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 08/22/2016] [Indexed: 01/25/2023] Open
Abstract
Background Most biological functions are synchronized to the environmental light:dark cycle via a circadian timekeeping system. Bears exhibit shallow torpor combined with metabolic suppression during winter dormancy. We sought to confirm that free-running circadian rhythms of body temperature (Tb) and activity were expressed in torpid grizzly (brown) bears and that they were functionally responsive to environmental light. We also measured activity and ambient light exposures in denning wild bears to determine if rhythms were evident and what the photic conditions of their natural dens were. Lastly, we used cultured skin fibroblasts obtained from captive torpid bears to assess molecular clock operation in peripheral tissues. Circadian parameters were estimated using robust wavelet transforms and maximum entropy spectral analyses. Results Captive grizzly bears housed in constant darkness during winter dormancy expressed circadian rhythms of activity and Tb. The rhythm period of juvenile bears was significantly shorter than that of adult bears. However, the period of activity rhythms in adult captive bears was virtually identical to that of adult wild denning bears as was the strength of the activity rhythms. Similar to what has been found in other mammals, a single light exposure during the bear’s active period delayed subsequent activity onsets whereas these were advanced when light was applied during the bear’s inactive period. Lastly, in vitro studies confirmed the expression of molecular circadian rhythms with a period comparable to the bear’s own behavioral rhythms. Conclusions Based on these findings we conclude that the circadian system is functional in torpid bears and their peripheral tissues even when housed in constant darkness, is responsive to phase-shifting effects of light, and therefore, is a normal facet of torpid bear physiology. Electronic supplementary material The online version of this article (doi:10.1186/s12983-016-0173-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Heiko T Jansen
- Department of Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University, Mailstop 7620, Veterinary and Biomedical Research Bldg., Room 205, Pullman, WA 99164-7620 USA
| | - Tanya Leise
- Department of Mathematics and Statistics, Amherst College, Amherst, MA 01002 USA
| | | | - Karine Pigeon
- Foothills Research Institute, Hinton, AB T7V 1X6 Canada
| | | | | | | | - Robert Dallmann
- Institute for Pharmacology and Toxicology, University of Zürich, Zürich, 8057 Switzerland ; Present address: Warwick Medical School and Warwick Systems Biology Centre, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL UK
| | - Steven Brown
- Institute for Pharmacology and Toxicology, University of Zürich, Zürich, 8057 Switzerland
| | - Charles T Robbins
- School of the Environment, Washington State University, Pullman, WA 99164 USA
| |
Collapse
|
17
|
Onufriev MV, Semenova TP, Volkova EP, Sergun’kina MA, Yakovlev AA, Zakharova NM, Gulyaeva NV. Seasonal changes in actin and Cdk5 expression in different brain regions of the Yakut ground squirrel (Spermophilus undulatus). NEUROCHEM J+ 2016. [DOI: 10.1134/s1819712416020070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Onufriev MV, Semenova TP, Volkova EP, Sergun’kina MA, Yakovlev AA, Zakharova NM, Gulyaeva NV. The characteristics of the expression of the Cdk1 and Cyclin B1 Proteins in the brain of the Yakut ground squirrel (Spermophilus undulatus) at different stages of the hibernation cycle. NEUROCHEM J+ 2016. [DOI: 10.1134/s1819712416020082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Abstract
Extended bouts of fasting are ingrained in the ecology of many organisms, characterizing aspects of reproduction, development, hibernation, estivation, migration, and infrequent feeding habits. The challenge of long fasting episodes is the need to maintain physiological homeostasis while relying solely on endogenous resources. To meet that challenge, animals utilize an integrated repertoire of behavioral, physiological, and biochemical responses that reduce metabolic rates, maintain tissue structure and function, and thus enhance survival. We have synthesized in this review the integrative physiological, morphological, and biochemical responses, and their stages, that characterize natural fasting bouts. Underlying the capacity to survive extended fasts are behaviors and mechanisms that reduce metabolic expenditure and shift the dependency to lipid utilization. Hormonal regulation and immune capacity are altered by fasting; hormones that trigger digestion, elevate metabolism, and support immune performance become depressed, whereas hormones that enhance the utilization of endogenous substrates are elevated. The negative energy budget that accompanies fasting leads to the loss of body mass as fat stores are depleted and tissues undergo atrophy (i.e., loss of mass). Absolute rates of body mass loss scale allometrically among vertebrates. Tissues and organs vary in the degree of atrophy and downregulation of function, depending on the degree to which they are used during the fast. Fasting affects the population dynamics and activities of the gut microbiota, an interplay that impacts the host's fasting biology. Fasting-induced gene expression programs underlie the broad spectrum of integrated physiological mechanisms responsible for an animal's ability to survive long episodes of natural fasting.
Collapse
Affiliation(s)
- Stephen M Secor
- Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama, USA
| | - Hannah V Carey
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
20
|
Pan P, Treat MD, van Breukelen F. A systems-level approach to understanding transcriptional regulation by p53 during mammalian hibernation. ACTA ACUST UNITED AC 2015; 217:2489-98. [PMID: 25031456 DOI: 10.1242/jeb.103614] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Presumably to conserve energy, many mammals enter into hibernation during the winter. Homeostatic processes such as transcription and translation are virtually arrested. To further elucidate transcriptional regulation during hibernation, we studied the transcription factor p53. Here, we demonstrate that changes in liver mRNA and protein concentrations of known regulators of p53 are consistent with activation. p53 mRNA and protein concentrations are unrelated. Importantly, p53 protein concentration is increased ~2-fold during the interbout arousal that punctuates bouts of torpor. As a result, both the interbout arousal and the torpid state are characterized by high levels of nuclear-localized p53. Chromatin immunoprecipitation assays indicate that p53 binds DNA during the winter. Furthermore, p53 recruits RNA polymerase II, as indicated by nuclear run-on data. However, and consistent with previous data indicating an arrest of transcriptional elongation during torpor, p53 'activity' does not result in expected changes in target gene transcripts. These data demonstrate the importance of using a systems level-approach in understanding a complex phenotype such as mammalian hibernation. Relying on interpretations of data that are based on steady-state regulation in other systems may be misleading in the context of non-steady-state conditions such as torpor.
Collapse
Affiliation(s)
- Peipei Pan
- School of Life Sciences, University of Nevada, Las Vegas, 4505 Maryland Parkway, Las Vegas, NV 89154, USA
| | - Michael D Treat
- School of Life Sciences, University of Nevada, Las Vegas, 4505 Maryland Parkway, Las Vegas, NV 89154, USA
| | - Frank van Breukelen
- School of Life Sciences, University of Nevada, Las Vegas, 4505 Maryland Parkway, Las Vegas, NV 89154, USA
| |
Collapse
|
21
|
Grabek KR, Diniz Behn C, Barsh GS, Hesselberth JR, Martin SL. Enhanced stability and polyadenylation of select mRNAs support rapid thermogenesis in the brown fat of a hibernator. eLife 2015; 4. [PMID: 25626169 PMCID: PMC4383249 DOI: 10.7554/elife.04517] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 12/23/2014] [Indexed: 12/21/2022] Open
Abstract
During hibernation, animals cycle between torpor and arousal. These cycles involve
dramatic but poorly understood mechanisms of dynamic physiological regulation at the
level of gene expression. Each cycle, Brown Adipose Tissue (BAT) drives periodic
arousal from torpor by generating essential heat. We applied digital transcriptome
analysis to precisely timed samples to identify molecular pathways that underlie the
intense activity cycles of hibernator BAT. A cohort of transcripts increased during
torpor, paradoxical because transcription effectively ceases at these low
temperatures. We show that this increase occurs not by elevated transcription but
rather by enhanced stabilization associated with maintenance and/or extension of long
poly(A) tails. Mathematical modeling further supports a temperature-sensitive
mechanism to protect a subset of transcripts from ongoing bulk degradation instead of
increased transcription. This subset was enriched in a C-rich motif and genes
required for BAT activation, suggesting a model and mechanism to prioritize
translation of key proteins for thermogenesis. DOI:http://dx.doi.org/10.7554/eLife.04517.001 Many mammals hibernate to avoid food scarcity and harsh conditions during winter.
Hibernation involves entering a state called torpor, which drastically reduces the
amount of energy used by the body. During torpor, body temperature also decreases.
This is particularly exemplified in ground squirrels, whose body temperature can
hover at just above or even below the point of freezing. However, hibernating mammals
cannot remain in this state continuously over the months of hibernation but instead
cycle between bouts of torpor lasting for 1–3 weeks and brief periods of
‘arousal’ lasting between 12–24 hr, during which their body
rapidly warms up. The heat required to start warming up the hibernator is generated from a specialized
form of fat called brown adipose tissue. Normally, the bursts of metabolic activity
that are required to create this heat depend on certain proteins being produced.
Making a protein involves ‘translating’ its sequence from template
molecules called messenger RNA (mRNA), which are ‘transcribed’ from the
gene that encodes the protein. During the low body temperatures experienced during
torpor, both of these processes stop. So how is the hibernator able to quickly and
efficiently heat itself up during the arousal periods of hibernation? Grabek et al. investigated this by analyzing the relative levels of mRNA in the brown
adipose tissue of hibernating 13-lined ground squirrels. Using a special technique to
sample and sequence small fragments of mRNA taken from brown adipose tissue, Grabek
et al. compiled a profile of the mRNA molecules present at different points in the
torpor–arousal cycle and compared this with a similar profile taken from
squirrels that were not hibernating. From this analysis, Grabek et al. detected that a particular group of mRNA molecules
that are required for producing heat increase in abundance during torpor, even though
body temperature is low enough to stop gene transcription. This increased abundance
does not occur because more of the mRNA molecules are made; instead, the mRNA
molecules are modified to become more stable and long lasting. Once the animal warms
up during arousal, gene transcription is reactivated and more new mRNA molecules are
made. Grabek et al. suggest that the key mRNAs required for brown adipose tissue function
are selectively stabilized during torpor through a temperature-dependent protective
mechanism. These mRNAs are then preferentially translated into proteins during
arousal to rapidly and efficiently heat the hibernator. Most other mRNA molecules
degrade throughout torpor, and so their numbers decline as replacements are not
transcribed until body temperature briefly recovers during arousal. Whether this
protective mechanism is also used in other tissues during torpor remains a question
for future work. DOI:http://dx.doi.org/10.7554/eLife.04517.002
Collapse
Affiliation(s)
- Katharine R Grabek
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, United States
| | - Cecilia Diniz Behn
- Department of Applied Math and Statistics, Colorado School of Mines, Golden, United States
| | - Gregory S Barsh
- Department of Research, HudsonAlpha Institute for Biotechnology, Huntsville, United States
| | - Jay R Hesselberth
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, United States
| | - Sandra L Martin
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, United States
| |
Collapse
|
22
|
Gurvich A, Begemann M, Dahm L, Sargin D, Miskowiak K, Ehrenreich H. A role for prostaglandins in rapid cycling suggested by episode-specific gene expression shifts in peripheral blood mononuclear cells: a preliminary report. Bipolar Disord 2014; 16:881-8. [PMID: 24964373 DOI: 10.1111/bdi.12223] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 05/16/2014] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Over 12% of patients with bipolar disorder exhibit rapid cycling. The underlying biological mechanisms of this extreme form of bipolar disease are still unknown. This study aimed at replicating and extending findings of our previously published case report, where an involvement of prostaglandin synthesis-related genes in rapid cycling was first proposed. METHODS Psychopathological follow-up of the reported case was performed under cessation of celecoxib treatment. In a prospective observational study, patients with bipolar disorder (n = 47; of these, four had rapid cycling) or with monopolar depression (n = 97) were recruited over a period of three years. Repeated psychopathology measurements were conducted using standard instruments. Peripheral blood mononuclear cells (PBMC) were obtained during as many consecutive episodes as possible and processed for mRNA isolation and quantitative real-time reverse transcriptase polymerase chain reaction for prostaglandin D2 synthase (PTGDS), aldo-ketoreductase family 1, member C3 (AKR1C3), cyclooxygenase-2 (PAN means all splice variants) (COX2PAN ), prostaglandin-endoperoxide synthase 2 (PTGS2), and purinergic receptor P2X, ligand-gated ion channel 7 (P2RX7). RESULTS The follow-up of our original case of a patient with rapid cycling who had shown impressive psychopathological improvement under celecoxib revealed complete loss of this effect upon discontinuation of the COX2 inhibitor. Episode-specific gene expression measurements in PBMC of four newly recruited rapid cycling patients confirmed the higher expression of PTGDS in depressive compared to manic phases. Additionally, higher relative expression of PTGS2/COX2PAN was found. No comparable alterations were observable in samples available from the remaining 43 patients with bipolar disorder and the 97 monopolar depressed patients, emphasizing the advantages of the rapid cycling condition with its rapid and frequent shifts for identification of gene expression changes. CONCLUSIONS This study supports a role for prostaglandins in rapid cycling and advocates the cyclooxygenase cascade as a treatment target in this condition.
Collapse
Affiliation(s)
- Artem Gurvich
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine
| | | | | | | | | | | |
Collapse
|
23
|
Tessier SN, Storey KB. To be or not to be: the regulation of mRNA fate as a survival strategy during mammalian hibernation. Cell Stress Chaperones 2014; 19:763-76. [PMID: 24789358 PMCID: PMC4389848 DOI: 10.1007/s12192-014-0512-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 04/13/2014] [Indexed: 12/20/2022] Open
Abstract
Mammalian hibernators undergo profound behavioral, physiological, and biochemical changes in order to cope with hypothermia, ischemia-reperfusion, and finite fuel reserves over days or weeks of continuous torpor. Against a backdrop of global reductions in energy-expensive processes such as transcription and translation, a subset of genes/proteins are strategically upregulated in order to meet challenges associated with hibernation. Consequently, hibernation involves substantial transcriptional and posttranscriptional regulatory mechanisms and provides a phenomenon with which to understand how a set of common genes/proteins can be differentially regulated in order to enhance stress tolerance beyond that which is possible for nonhibernators. The present review focuses on the involvement of messenger RNA (mRNA) interacting factors that play a role in the regulation of gene/protein expression programs that define the hibernating phenotype. These include proteins involved in mRNA processing (i.e., capping, splicing, and polyadenylation) and the possible role of alternative splicing as a means of enhancing protein diversity. Since the total pool of mRNA remains constant throughout torpor, mechanisms which enhance mRNA stability are discussed in the context of RNA binding proteins and mRNA decay pathways. Furthermore, mechanisms which control the global reduction of cap-dependent translation and the involvement of internal ribosome entry sites in mRNAs encoding stress response proteins are also discussed. Finally, the concept of regulating each of these factors in discrete subcellular compartments for enhanced efficiency is addressed. The analysis draws on recent research from several well-studied mammalian hibernators including ground squirrels, bats, and bears.
Collapse
Affiliation(s)
- Shannon N. Tessier
- Institute of Biochemistry & Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6 Canada
| | - Kenneth B. Storey
- Institute of Biochemistry & Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6 Canada
| |
Collapse
|
24
|
Lei M, Dong D, Mu S, Pan YH, Zhang S. Comparison of brain transcriptome of the greater horseshoe bats (Rhinolophus ferrumequinum) in active and torpid episodes. PLoS One 2014; 9:e107746. [PMID: 25251558 PMCID: PMC4174523 DOI: 10.1371/journal.pone.0107746] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Accepted: 08/21/2014] [Indexed: 01/03/2023] Open
Abstract
Hibernation is an energy-saving strategy which is widely adopted by heterothermic mammals to survive in the harsh environment. The greater horseshoe bat (Rhinolophus ferrumequinum) can hibernate for a long period in the hibernation season. However, the global gene expression changes between hibernation and non-hibernation season in the greater horseshoe bat remain largely unknown. We herein reported a comprehensive survey of differential gene expression in the brain between winter hibernating and summer active greater horseshoe bats using next-generation sequencing technology. A total of 90,314,174 reads were generated and we identified 1,573 differentially expressed genes between active and torpid states. Interestingly, we found that differentially expressed genes are over-represented in some GO categories (such as metabolic suppression, cellular stress responses and oxidative stress), which suggests neuroprotective strategies might play an important role in hibernation control mechanisms. Our results determined to what extent the brain tissue of the greater horseshoe bats differ in gene expression between summer active and winter hibernating states and provided comprehensive insights into the adaptive mechanisms of bat hibernation.
Collapse
Affiliation(s)
- Ming Lei
- Institute of Molecular Ecology and Evolution, SKLEC & IECR, East China Normal University, Shanghai, China
| | - Dong Dong
- Institute of Molecular Ecology and Evolution, SKLEC & IECR, East China Normal University, Shanghai, China
- * E-mail: (DD); (SZ)
| | - Shuo Mu
- Institute of Molecular Ecology and Evolution, SKLEC & IECR, East China Normal University, Shanghai, China
| | - Yi-Hsuan Pan
- Institute of Molecular Ecology and Evolution, SKLEC & IECR, East China Normal University, Shanghai, China
| | - Shuyi Zhang
- Institute of Molecular Ecology and Evolution, SKLEC & IECR, East China Normal University, Shanghai, China
- * E-mail: (DD); (SZ)
| |
Collapse
|
25
|
Siran R, Ahmad AH, Abdul Aziz CB, Ismail Z. REM sleep deprivation induces changes of Down Regulatory Antagonist Modulator (DREAM) expression in the ventrobasal thalamic nuclei of Sprague–Dawley rats. J Physiol Biochem 2014; 70:877-89. [DOI: 10.1007/s13105-014-0356-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 09/02/2014] [Indexed: 01/24/2023]
|
26
|
Jani A, Martin SL, Jain S, Keys D, Edelstein CL. Renal adaptation during hibernation. Am J Physiol Renal Physiol 2013; 305:F1521-32. [PMID: 24049148 DOI: 10.1152/ajprenal.00675.2012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hibernators periodically undergo profound physiological changes including dramatic reductions in metabolic, heart, and respiratory rates and core body temperature. This review discusses the effect of hypoperfusion and hypothermia observed during hibernation on glomerular filtration and renal plasma flow, as well as specific adaptations in renal architecture, vasculature, the renin-angiotensin system, and upregulation of possible protective mechanisms during the extreme conditions endured by hibernating mammals. Understanding the mechanisms of protection against organ injury during hibernation may provide insights into potential therapies for organ injury during cold storage and reimplantation during transplantation.
Collapse
Affiliation(s)
- Alkesh Jani
- Univ. of Colorado Denver and the Health Sciences Center, Division of Renal Diseases and Hypertension, Box C281, 12700 East 19th Ave., Research 2, Aurora, CO 80262.
| | | | | | | | | |
Collapse
|
27
|
Pan P, van Breukelen F. Preference of IRES-mediated initiation of translation during hibernation in golden-mantled ground squirrels, Spermophilus lateralis. Am J Physiol Regul Integr Comp Physiol 2011; 301:R370-7. [PMID: 21613577 DOI: 10.1152/ajpregu.00748.2010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mammalian hibernation involves virtual cessation of energetically consumptive processes normally vital to homeostasis, including gene transcription and protein synthesis. As animals enter torpor, the bulk of initiation of translation is blocked at a body temperature of 18°C in golden-mantled ground squirrels [Spermophilus (Callospermophilus) lateralis]. Previous data demonstrated regulation of cap-dependent initiation of translation during torpor. We asked what happens to cap-independent, specifically, internal ribosome entry site (IRES)-mediated initiation of translation during hibernation. We analyzed polysome fractions for mRNAs that are known to contain or not to contain IRES elements. Here, we show that mRNAs harboring IRES elements preferentially associate with ribosomes as a torpor bout progresses. Squirrels allowed to naturally complete a torpor cycle have a higher IRES preference index than those animals that are prematurely aroused from torpor. Data indicate that this change in preference is not associated with gene expression, i.e., change is due to change in mRNA association with ribosomes as opposed to mRNA abundance. Thus, although processes like transcription and translation are virtually arrested during torpor, ribosomes are preferentially loaded with IRES-containing transcripts when squirrels arouse from torpor and translation resumes. Differential translation of preexisting mRNAs may allow for the preferential production of key stress proteins critical for survival of physiological insults that are lethal to other mammals.
Collapse
Affiliation(s)
- Peipei Pan
- School of Life Sciences, University of Nevada, Las Vegas, Nevada, USA
| | | |
Collapse
|
28
|
Otis JP, Raybould HE, Carey HV. Cholecystokinin activation of central satiety centers changes seasonally in a mammalian hibernator. Gen Comp Endocrinol 2011; 171:269-74. [PMID: 21362421 PMCID: PMC4441800 DOI: 10.1016/j.ygcen.2011.02.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 02/09/2011] [Accepted: 02/22/2011] [Indexed: 12/24/2022]
Abstract
Hibernators that rely on lipids during winter exhibit profound changes in food intake over the annual cycle. The mechanisms that regulate appetite changes in seasonal hibernators remain unclear, but likely consist of complex interactions between gut hormones, adipokines, and central processing centers. We hypothesized that seasonal changes in the sensitivity of neurons in the nucleus tractus solitarius (NTS) to the gut hormone cholecystokinin (CCK) may contribute to appetite regulation in ground squirrels. Spring (SPR), late summer (SUM), and winter euthermic hibernating (HIB) 13-lined ground squirrels (Ictidomys tridecemlineatus) were treated with intraperitoneal CCK (100 μg/kg) or vehicle (CON) for 3h and Fos expression in the NTS was quantified. In CON squirrels, numbers of Fos-positive neurons in HIB were low compared to SPR and SUM. CCK treatment increased Fos-positive neurons in the NTS at the levels of the area postrema (AP) and pre AP during all seasons and at the level of the rostral AP in HIB squirrels. The highest absolute levels of Fos-positive neurons were found in SPR CCK squirrels, but the highest relative increase from CON was found in HIB CCK squirrels. Fold-changes in Fos-positive neurons in SUM were intermediate between SPR and HIB. Thus, CCK sensitivity falls from SPR to SUM suggesting that seasonal changes in sensitivity of NTS neurons to vagally-derived CCK may influence appetite in the active phase of the annual cycle in hibernating squirrels. Enhanced sensitivity to CCK signaling in NTS neurons of hibernators indicates that changes in gut-brain signaling may contribute to seasonal changes in food intake during the annual cycle.
Collapse
Affiliation(s)
- Jessica P. Otis
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Dr., Madison, WI 53706, USA
| | - Helen E. Raybould
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California-Davis, 1321 Haring Hall, Davis, CA 95616, USA
| | - Hannah V. Carey
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Dr., Madison, WI 53706, USA
- Corresponding author: Fax: +1 608 263 3926. (H.V. Carey)
| |
Collapse
|
29
|
Alò R, Avolio E, Di Vito A, Carelli A, Facciolo RM, Canonaco M. Distinct α subunit variations of the hypothalamic GABAA receptor triplets (αβγ) are linked to hibernating state in hamsters. BMC Neurosci 2010; 11:111. [PMID: 20815943 PMCID: PMC2944354 DOI: 10.1186/1471-2202-11-111] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Accepted: 09/06/2010] [Indexed: 12/01/2022] Open
Abstract
Background The structural arrangement of the γ-aminobutyric acid type A receptor (GABAAR) is known to be crucial for the maintenance of cerebral-dependent homeostatic mechanisms during the promotion of highly adaptive neurophysiological events of the permissive hibernating rodent, i.e the Syrian golden hamster. In this study, in vitro quantitative autoradiography and in situ hybridization were assessed in major hypothalamic nuclei. Reverse Transcription Reaction-Polymerase chain reaction (RT-PCR) tests were performed for specific GABAAR receptor subunit gene primers synthases of non-hibernating (NHIB) and hibernating (HIB) hamsters. Attempts were made to identify the type of αβγ subunit combinations operating during the switching ON/OFF of neuronal activities in some hypothalamic nuclei of hibernators. Results Both autoradiography and molecular analysis supplied distinct expression patterns of all α subunits considered as shown by a strong (p < 0.01) prevalence of α1 ratio (over total α subunits considered in the present study) in the medial preoptic area (MPOA) and arcuate nucleus (Arc) of NHIBs with respect to HIBs. At the same time α2 subunit levels proved to be typical of periventricular nucleus (Pe) and Arc of HIB, while strong α4 expression levels were detected during awakening state in the key circadian hypothalamic station, i.e. the suprachiasmatic nucleus (Sch; 60%). Regarding the other two subunits (β and γ), elevated β3 and γ3 mRNAs levels mostly characterized MPOA of HIBs, while prevalently elevated expression concentrations of the same subunits were also typical of Sch, even though this time during the awakening state. In the case of Arc, notably elevated levels were obtained for β3 and γ2 during hibernating conditions. Conclusion We conclude that different αβγ subunits are operating as major elements either at the onset of torpor or during induction of the arousal state in the Syrian golden hamster. The identification of a brain regional distribution pattern of distinct GABAAR subunit combinations may prove to be very useful for highlighting GABAergic mechanisms functioning at least during the different physiological states of hibernators and this may have interesting therapeutic bearings on neurological sleeping disorders.
Collapse
Affiliation(s)
- Raffaella Alò
- Comparative Neuroanatomy Laboratory, Ecology Department, University of Calabria, Ponte Pietro Bucci, 87030 Arcavacata di Rende, Cosenza, Italy.
| | | | | | | | | | | |
Collapse
|
30
|
Otis JP, Ackermann LW, Denning GM, Carey HV. Identification of qRT-PCR reference genes for analysis of opioid gene expression in a hibernator. J Comp Physiol B 2009; 180:619-29. [PMID: 20033416 DOI: 10.1007/s00360-009-0430-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 10/14/2009] [Accepted: 11/23/2009] [Indexed: 12/26/2022]
Abstract
Previous work has suggested that central and peripheral opioid signaling are involved in regulating torpor behavior and tissue protection associated with the hibernation phenotype. We used quantitative real-time PCR (qRT-PCR) to measure mRNA levels of opioid peptide precursors and receptors in the brain and heart of summer ground squirrels (Ictidomys tridecemlineatus) and winter hibernating squirrels in the torpid or interbout arousal states. The use of appropriate reference genes for normalization of qRT-PCR gene expression data can have profound effects on the analysis and interpretation of results. This may be particularly important when experimental subjects, such as hibernating animals, undergo significant morphological and/or functional changes during the study. Therefore, an additional goal of this study was to identify stable reference genes for use in qRT-PCR studies of the 13-lined ground squirrel. Expression levels of 10 potential reference genes were measured in the small intestine, liver, brain, and heart, and the optimal combinations of the most stable reference genes were identified by the GeNorm Excel applet. Based on this analysis, we provide recommendations for reference genes to use in each tissue that would be suitable for comparative studies among different activity states. When appropriate normalization of mRNA levels was used, there were no changes in opioid-related genes in heart among the three activity states; in brain, DOR expression was highest during torpor, lowest in interbout arousal and intermediate in summer. The results support the idea that changes in DOR expression may regulate the level of neuronal activity in brain during the annual hibernation cycle and may contribute to hibernation-associated tissue protection.
Collapse
Affiliation(s)
- Jessica P Otis
- Department of Comparative Biosciences, University of Wisconsin-Madison, School of Veterinary Medicine, 2015 Linden Dr., Madison, WI 53706, USA
| | | | | | | |
Collapse
|
31
|
Epperson LE, Rose JC, Carey HV, Martin SL. Seasonal proteomic changes reveal molecular adaptations to preserve and replenish liver proteins during ground squirrel hibernation. Am J Physiol Regul Integr Comp Physiol 2009; 298:R329-40. [PMID: 19923364 DOI: 10.1152/ajpregu.00416.2009] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hibernators are unique among mammals in their ability to survive extended periods of time with core body temperatures near freezing and with dramatically reduced heart, respiratory, and metabolic rates in a state known as torpor. To gain insight into the molecular events underlying this remarkable physiological phenotype, we applied a proteomic screening approach to identify liver proteins that differ between the summer active (SA) and the entrance (Ent) phase of winter hibernation in 13-lined ground squirrels. The relative abundance of 1,600 protein spots separated on two-dimensional gels was quantitatively determined using fluorescence difference gel electrophoresis, and 74 unique proteins exhibiting significant differences between the two states were identified using liquid chromatography followed by tandem mass spectrometry (LC-MS/MS). Proteins elevated in Ent hibernators included liver fatty acid-binding protein, fatty acid transporter, and 3-hydroxy-3-methylglutaryl-CoA synthase, which support the known metabolic fuel switch to lipid and ketone body utilization in winter. Several proteins involved in protein stability and protein folding were also elevated in the Ent phase, consistent with previous findings. In contrast to transcript screening results, there was a surprising increase in the abundance of proteins involved in protein synthesis during Ent hibernation, including several initiation and elongation factors. This finding, coupled with decreased abundance of numerous proteins involved in amino acid and nitrogen metabolism, supports the intriguing hypothesis that the mechanism of protein preservation and resynthesis is used by hibernating ground squirrels to help avoid nitrogen toxicity and ensure preservation of essential amino acids throughout the long winter fast.
Collapse
Affiliation(s)
- L Elaine Epperson
- Dept. of Cell and Developmental Biology, Univ. of Colorado School of Medicine, PO Box 6511, MS 8108, Aurora, CO 80045, USA
| | | | | | | |
Collapse
|
32
|
Bushell WC. Longevity: potential life span and health span enhancement through practice of the basic yoga meditation regimen. Ann N Y Acad Sci 2009; 1172:20-7. [PMID: 19735236 DOI: 10.1111/j.1749-6632.2009.04538.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This chapter briefly reviews recent psychological, physiological, molecular biological, and anthropological research which has important implications, both direct and indirect, for the recognition and understanding of the potential life span and health span enhancing effects of the basic yoga meditational regimen. This regimen consists of meditation, yogic breath control practices, physical exercises (of both a postural- and movement-based, including aerobic nature), and dietary practices. While each of these component categories exhibit variations in different schools, lineages, traditions, and cultures, the focus of this chapter is primarily on basic forms of relaxation meditation and breath control, as well as postural and aerobic physical exercises (e.g., yogic prostration regimens, see below), and a standard form of yogic or ascetic diet, all of which constitute a basic form of regimen found in many if not most cultures, though with variations.
Collapse
Affiliation(s)
- William C Bushell
- Anthropology Program, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| |
Collapse
|
33
|
Michaelidis B, Hatzikamari M, Antoniou V, Anestis A, Lazou A. Stress activated protein kinases, JNKs and p38 MAPK, are differentially activated in ganglia and heart of land snail Helix lucorum (L.) during seasonal hibernation and arousal. Comp Biochem Physiol A Mol Integr Physiol 2009; 153:149-53. [DOI: 10.1016/j.cbpa.2009.01.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Revised: 01/23/2009] [Accepted: 01/29/2009] [Indexed: 11/15/2022]
|
34
|
Begemann M, Sargin D, Rossner MJ, Bartels C, Theis F, Wichert SP, Stender N, Fischer B, Sperling S, Stawicki S, Wiedl A, Falkai P, Nave KA, Ehrenreich H. Episode-specific differential gene expression of peripheral blood mononuclear cells in rapid cycling supports novel treatment approaches. Mol Med 2008; 14:546-52. [PMID: 18552976 DOI: 10.2119/2008-00053.begemann] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Accepted: 06/04/2008] [Indexed: 12/29/2022] Open
Abstract
Molecular mechanisms underlying bipolar affective disorders are unknown. Difficulties arise from genetic and phenotypic heterogeneity of patients and the lack of animal models. Thus, we focused on only one patient (n = 1) with an extreme form of rapid cycling. Ribonucleic acid (RNA) from peripheral blood mononuclear cells (PBMC) was analyzed in a three-tiered approach under widely standardized conditions. Firstly, RNA was extracted from PBMC of eight blood samples, obtained on two consecutive days within one particular episode, including two different consecutive depressive and two different consecutive manic episodes, and submitted to (1) screening by microarray hybridizations, followed by (2) detailed bioinformatic analysis, and (3) confirmation of episode-specific regulation of genes by quantitative real-time polymerase chain reaction (qRT-PCR).Secondly, results were validated in additional blood samples obtained one to two years later. Among gene transcripts elevated in depressed episodes were prostaglandin D synthetase (PTGDS) and prostaglandin D2 11-ketoreductase (AKR1C3), both involved in hibernation. We hypothesized them to account for some of the rapid cycling symptoms. A subsequent treatment approach over 5 months applying the cyclooxygenase inhibitor celecoxib (2 x 200 mg daily) resulted in reduced severity rating of both depressed and manic episodes. This case suggests that rapid cycling is a systemic disease, resembling hibernation, with prostaglandins playing a mediator role.
Collapse
Affiliation(s)
- Martin Begemann
- Division of Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Histamine is a transmitter in the nervous system and a signaling molecule in the gut, the skin, and the immune system. Histaminergic neurons in mammalian brain are located exclusively in the tuberomamillary nucleus of the posterior hypothalamus and send their axons all over the central nervous system. Active solely during waking, they maintain wakefulness and attention. Three of the four known histamine receptors and binding to glutamate NMDA receptors serve multiple functions in the brain, particularly control of excitability and plasticity. H1 and H2 receptor-mediated actions are mostly excitatory; H3 receptors act as inhibitory auto- and heteroreceptors. Mutual interactions with other transmitter systems form a network that links basic homeostatic and higher brain functions, including sleep-wake regulation, circadian and feeding rhythms, immunity, learning, and memory in health and disease.
Collapse
Affiliation(s)
- Helmut L Haas
- Institute of Neurophysiology, Heinrich-Heine-University, Duesseldorf, Germany.
| | | | | |
Collapse
|
36
|
Malatesta M, Biggiogera M, Baldelli B, Barabino SM, Martin TE, Zancanaro C. Hibernation as a far-reaching program for the modulation of RNA transcription. Microsc Res Tech 2008; 71:564-72. [DOI: 10.1002/jemt.20587] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
37
|
Abstract
Mammalian hibernators such as ground squirrels store massive amounts of fat each autumn. These fat depots serve as the main source of metabolic fuel throughout the winter, gradually decreasing over a period of months until the animals emerge from hibernation each spring. Fat deposition occurs on an approximately annual, i.e. on a circannual, basis. Although this rhythm occurs in the absence of environmental temperature and light cues, it is entrained by the length of daylight, with peak fat deposition occurring as days shorten in the autumn. Here we examine the circ-annual cycle of hibernation, and then explore the similarities and differences between the obligatory, yet reversible, natural obesity and accompanying insulin resistance of natural hibernation, and the pandemic of human obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Sandra L Martin
- University of Colorado School of Medicine, Department of Cell and Developmental Biology and Program in Molecular Biology, 12801 E. 17th Ave. Aurora, CO 80045, USA.
| |
Collapse
|
38
|
Yan J, Barnes BM, Kohl F, Marr TG. Modulation of gene expression in hibernating arctic ground squirrels. Physiol Genomics 2008; 32:170-81. [DOI: 10.1152/physiolgenomics.00075.2007] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We performed a broadscale screening of differential gene expression using both high-throughput bead-array technology and real-time PCR assay in brown adipose tissue, liver, heart, hypothalamus, and skeletal muscle in hibernating arctic ground squirrels, comparing animals sampled after two durations of steady-state torpor, during two stages of spontaneous arousal episodes, and in animals after they ended hibernation. Significant seasonal and torpor-arousal cycle differences of gene expression were detected in genes involved in glycolysis, fatty acid metabolism, gluconeogenesis, amino acid metabolism, molecular transport, detoxification, cardiac contractility, circadian rhythm, cell growth and apoptosis, muscle dystrophy, and RNA and protein protection. We observed, for the first time, complex modulation of gene expression during multiple stages of torpor-arousal cycles. The mRNA levels of certain metabolic genes drop significantly during the transition from late torpor to early arousal, perhaps due to the rapid turnover of mRNA transcripts resulting from the translational demands during thermogenesis in early arousal, whereas the mRNA levels of genes related to circadian rhythm, cell growth, and apoptosis rise significantly in the early or late arousal phases during torpor-arousal cycle, suggesting the resumption of circadian rhythm and cell cycle during arousal.
Collapse
Affiliation(s)
- Jun Yan
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska
- CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes of Biological Sciences, Shanghai, China
| | - Brian M. Barnes
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska
| | - Franziska Kohl
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska
| | - Thomas G. Marr
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska
- Hiberna Corporation, Boulder, Colorado
| |
Collapse
|
39
|
Yoo W, Lee K, Gwag T, Ju H, Yamashita M, Choi I. Seasonal proteomic plasticity in the brain of a mammalian hibernator. ACTA ACUST UNITED AC 2008. [DOI: 10.2187/bss.22.99] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
40
|
Bratincsák A, McMullen D, Miyake S, Tóth ZE, Hallenbeck JM, Palkovits M. Spatial and temporal activation of brain regions in hibernation: c-fos expression during the hibernation bout in thirteen-lined ground squirrel. J Comp Neurol 2007; 505:443-58. [PMID: 17912746 PMCID: PMC2774134 DOI: 10.1002/cne.21507] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hibernation results in dramatic changes in body temperature and metabolism; however, the central nervous system remains active during deep torpor. By cloning c-fos cDNA from the 13-lined ground squirrel (Spermophilus tridecemlineatus) and using squirrel c-fos mRNA probe for in situ hybridization histochemistry, we systematically analyzed and identified specific brain regions that were activated during six different phases of the hibernation bout. During entrance into torpor, we detected activation of the ventrolateral subdivision of the medial preoptic area ('thermoregulatory center'), and the reticular thalamic nucleus, which is known to inhibit the somatomotor cortex. During torpor, c-fos expression in the cortex was suppressed while the reticular thalamic nucleus remained uniformly active. Throughout torpor the suprachiasmatic nucleus ('biological clock') showed increasing activity, likely participating in phase-change regulation of the hibernation bout. Interestingly, during torpor very strong c-fos activation was seen in the epithelial cells of the choroid plexus and in tanycytes at the third ventricle, both peaking near the beginning of arousal. In arousal, activity of the suprachiasmatic and reticular thalamic nuclei and choroid epithelial cells diminished, while ependymal cells in the lateral and fourth ventricles showed stronger activity. Increasing body temperature during arousal was driven by the activation of neurons in the medial part of the preoptic area. In interbout awake animals, we demonstrated the activation of hypothalamic neurons located in the arcuate nucleus and the dorsolateral hypothalamus, areas involved in food intake. Our observations indicate that the hibernation bout is closely regulated and orchestrated by specific regions of the central nervous system. J. Comp. Neurol. 505:443-458, 2007. (c) 2007 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- András Bratincsák
- Laboratory of Genetics, National Institute of Mental Health, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| | | | | | | | | | | |
Collapse
|
41
|
Yuan L, Chen J, Lin B, Zhang J, Zhang S. Differential expression and functional constraint of PRL-2 in hibernating bat. Comp Biochem Physiol B Biochem Mol Biol 2007; 148:375-81. [PMID: 17683965 DOI: 10.1016/j.cbpb.2007.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Revised: 07/07/2007] [Accepted: 07/07/2007] [Indexed: 11/21/2022]
Abstract
Circannual hibernation is a biological adaptation to periods of cold and food shortage and the role of the brain in its control is poorly understood. An SSH library of hibernating bat brains (Rhinolophus ferrumequinum) was constructed in order to explore the molecular mechanism of hibernation. An up-regulated gene, PRL-2, was obtained from hibernating bat brains. PRL-2 is a member of PTP family and has an important function in controlling cell growth. Alignment of sequences showed that PRL-2 is highly conserved among species, including two species of hibernating bats (R. ferrumequinum and Myotis ricketti). Moreover, Maximum Likelihood Analysis suggested that it may experience strong selection pressure leading to functional constraint in evolution, which indicated the significance of PRL-2 in normal bio-function. RQ-PCR was performed and statistical analysis suggested that PRL-2 exhibited distinct differential expression patterns in different organs during hibernation. In heart, fat and brain tissue of hibernating bats, the transcriptional level of PRL-2 increased almost 170%, 35% and 12% respectively. However, in muscle it decreased nearly 70%. The change of mRNA level of PRL-2 in heart tissue of hibernating bats was significantly higher than that in heart tissue of active controls (P=0.043). However, the regulation mechanism of differential expression of PRL-2 and the signal pathway involved are still unknown.
Collapse
Affiliation(s)
- Lihong Yuan
- School of Life Science, East China Normal University, Shanghai 200062, China
| | | | | | | | | |
Collapse
|
42
|
Herwig A, Saboureau M, Pevet P, Steinlechner S. Daily torpor affects the molecular machinery of the circadian clock in Djungarian hamsters (Phodopus sungorus). Eur J Neurosci 2007; 26:2739-46. [DOI: 10.1111/j.1460-9568.2007.05927.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
43
|
Chen J, Yuan L, Sun M, Zhang L, Zhang S. Screening of hibernation-related genes in the brain of Rhinolophus ferrumequinum during hibernation. Comp Biochem Physiol B Biochem Mol Biol 2007; 149:388-93. [PMID: 18055242 DOI: 10.1016/j.cbpb.2007.10.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2007] [Revised: 10/29/2007] [Accepted: 10/29/2007] [Indexed: 01/17/2023]
Abstract
The greater horseshoe bat (Rhinolophus ferrumequinum) is a widely distributed small mammal that hibernates annually. A systematic study was initiated to identify differentially expressed genes in hibernating and aroused states of the greater horseshoe bat brain by using suppressed subtractive hybridization technique and dot blot. Forty-one over-expressed ESTs in the hibernating state were found and 17 were known genes reported in NCBI. Among these 17 genes, three were further checked by real time PCR. The bioinformatics analysis suggests that the major over-expressed ESTs may be responsible for the regulation of cell cycle and apoptosis, the growth of neurons, signal transduction and neuroprotection, gene expression regulation, and intracellular trafficking.
Collapse
Affiliation(s)
- Jinping Chen
- South China Institute of Endangered Animals, Guangzhou, 510260, China
| | | | | | | | | |
Collapse
|
44
|
Crawford FIJ, Hodgkinson CL, Ivanova E, Logunova LB, Evans GJ, Steinlechner S, Loudon ASI. Influence of torpor on cardiac expression of genes involved in the circadian clock and protein turnover in the Siberian hamster (Phodopus sungorus). Physiol Genomics 2007; 31:521-30. [PMID: 17848604 DOI: 10.1152/physiolgenomics.00131.2007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The Siberian hamster exhibits the key winter adaptive strategy of daily torpor, during which metabolism and heart rate are slowed for a few hours and body temperature declines by up to 20 degrees C, allowing substantial energetic savings. Previous studies of hibernators in which temperature drops by >30 degrees C for many days to weeks have revealed decreased transcription and translation during hypometabolism and identified several key physiological pathways involved. Here we used a cDNA microarray to define cardiac transcript changes over the course of a daily torpor bout and return to normothermia, and we show that, in common with hibernators, a relatively small proportion of the transcriptome (<5%) exhibited altered expression over a torpor bout. Pathways exhibiting significantly altered gene expression included transcriptional regulation, RNA stability and translational control, globin regulation, and cardiomyocyte function. Remarkably, gene representatives of the entire ubiquitylation pathway were significantly altered over the torpor bout, implying a key role for cardiac protein turnover and translation during a low-temperature torpor bout. The circadian clock maintained rhythmic transcription during torpor. Quantitative PCR profiling of heart, liver, and lung and in situ hybridization studies of clock genes in the hypothalamic circadian clock in the suprachiasmatic nucleus revealed that many circadian regulated transcripts exhibited synchronous alteration in expression during arousal. Our data highlight the potential importance of genes involved in protein turnover as part of the adaptive strategy of low-temperature torpor in a seasonal mammal.
Collapse
|
45
|
Drew KL, Buck CL, Barnes BM, Christian SL, Rasley BT, Harris MB. Central nervous system regulation of mammalian hibernation: implications for metabolic suppression and ischemia tolerance. J Neurochem 2007; 102:1713-1726. [PMID: 17555547 PMCID: PMC3600610 DOI: 10.1111/j.1471-4159.2007.04675.x] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Torpor during hibernation defines the nadir of mammalian metabolism where whole animal rates of metabolism are decreased to as low as 2% of basal metabolic rate. This capacity to decrease profoundly the metabolic demand of organs and tissues has the potential to translate into novel therapies for the treatment of ischemia associated with stroke, cardiac arrest or trauma where delivery of oxygen and nutrients fails to meet demand. If metabolic demand could be arrested in a regulated way, cell and tissue injury could be attenuated. Metabolic suppression achieved during hibernation is regulated, in part, by the central nervous system through indirect and possibly direct means. In this study, we review recent evidence for mechanisms of central nervous system control of torpor in hibernating rodents including evidence of a permissive, hibernation protein complex, a role for A1 adenosine receptors, mu opiate receptors, glutamate and thyrotropin-releasing hormone. Central sites for regulation of torpor include the hippocampus, hypothalamus and nuclei of the autonomic nervous system. In addition, we discuss evidence that hibernation phenotypes can be translated to non-hibernating species by H(2)S and 3-iodothyronamine with the caveat that the hypothermia, bradycardia, and metabolic suppression induced by these compounds may or may not be identical to mechanisms employed in true hibernation.
Collapse
Affiliation(s)
- Kelly L. Drew
- Institute of Arctic Biology, Alaska Basic Neuroscience Program, University of Alaska Fairbanks, Fairbanks, Alaska, USA
- Department of Chemistry and Biochemistry, Alaska Basic Neuroscience Program, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| | - C. Loren Buck
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, Alaska, USA
| | - Brian M. Barnes
- Institute of Arctic Biology, Alaska Basic Neuroscience Program, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| | - Sherri L. Christian
- Institute of Arctic Biology, Alaska Basic Neuroscience Program, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| | - Brian T. Rasley
- Department of Chemistry and Biochemistry, Alaska Basic Neuroscience Program, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| | - Michael B. Harris
- Institute of Arctic Biology, Alaska Basic Neuroscience Program, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| |
Collapse
|
46
|
HAMPTON MARSHALL, ANDREWS MATTHEWT. A simple molecular mathematical model of mammalian hibernation. J Theor Biol 2007; 247:297-302. [PMID: 17459419 PMCID: PMC2580757 DOI: 10.1016/j.jtbi.2007.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Revised: 03/04/2007] [Accepted: 03/06/2007] [Indexed: 02/07/2023]
Abstract
A simple model of the dynamics of the body temperature of a hibernating mammal is presented. Our model provides a good match to experimental data, showing the interruption of low-temperature torpor bouts with periodic interbout arousals (IBAs). In this paper we present a mathematical model of the molecules that participate in the initiation, regulation, and maintenance of the hibernating state. This model can be used to describe the role of regulatory molecules, signal transducers, downstream target enzymes, structural proteins, or metabolites. Because many of the biochemical mechanisms are unknown, this is a preliminary and largely phenomenological model that we hope will inspire further investigation.
Collapse
Affiliation(s)
- MARSHALL HAMPTON
- Department of Mathematics and Statistics, University of Minnesota, Duluth, 1117 University Drive,, Duluth, MN, 55812
| | - MATTHEW T. ANDREWS
- Department of Biology, University of Minnesota, Duluth, 1035 Kirby Drive, Duluth, MN, 55812
| |
Collapse
|
47
|
Yuan L, Chen J, Lin B, Liang B, Zhang S, Wu D. Up-regulation of a non-kinase activity isoform of Ca2+/calmodulin-dependent protein kinase kinase beta1 (CaMKKβ1) in hibernating bat brain. Comp Biochem Physiol B Biochem Mol Biol 2007; 146:438-44. [PMID: 17258919 DOI: 10.1016/j.cbpb.2006.12.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2006] [Revised: 12/04/2006] [Accepted: 12/05/2006] [Indexed: 11/17/2022]
Abstract
Hibernation is an adaptive strategy that is utilized by some animals to survive the harsh environments of low temperature and food scarce. Hibernators, however, can survive in frequent and dramatic fluctuation of body temperature and blood flow causing by periodic arousals during hibernation without brain insult, and this indicates that it must have some unique adaptive aspects of hibernation physiology. To find out the up-regulated genes of bat brain during hibernation and explore the brain function adaptive mechanism of bat, the suppression subtractive hybridization (SSH) library was constructed from the brain tissue of greater horseshoe bats. Dot blot screening was carried out and the up-regulated genes in hibernating state were obtained. Then RT-PCR and RQ-PCR were performed to test the expression patterns of selected cDNAs. Here we first show that the functional and non-functional isoforms of bat CaMKKbeta1 display distinct expression patterns between hibernating and active states. The up-regulation of non-functional form of CaMKKbeta1 may represent a new neuroprotective strategy adopted by bats or even other hibernators to avoid the CNS damage during hibernation. Our results showed that bat CaMKKbeta1 gene has four transcript isoforms and these transcript variants differ primarily in exons b and d, which are 129 bp and 43 bp respectively. Statistical analyses indicated that these isoforms display distinct expression patterns at different states, in which only isoform 3, the non-functional form, increased 300% at hibernating state. These results suggest that distinct expression patterns of transcript isoforms of a gene, which have different activity, may represent a new potential adaptive mechanism in hibernation, except for the simple up-regulation of selected genes/proteins and the reversible protein phosphorylation.
Collapse
Affiliation(s)
- Lihong Yuan
- Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, China
| | | | | | | | | | | |
Collapse
|
48
|
Kondo N. [The hibernation control system: a new biomedical field developed by hibernation research]. Nihon Yakurigaku Zasshi 2006; 127:97-102. [PMID: 16595980 DOI: 10.1254/fpj.127.97] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
|
49
|
Williams DR, Epperson LE, Li W, Hughes MA, Taylor R, Rogers J, Martin SL, Cossins AR, Gracey AY. Seasonally hibernating phenotype assessed through transcript screening. Physiol Genomics 2006; 24:13-22. [PMID: 16249311 DOI: 10.1152/physiolgenomics.00301.2004] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hibernation is a seasonally entrained and profound phenotypic transition to conserve energy in winter. It involves significant biochemical reprogramming, although our understanding of the underpinning molecular events is fragmentary and selective. We have conducted a large-scale gene expression screen of the golden-mantled ground squirrel, Spermophilus lateralis, to identify transcriptional responses associated specifically with the summer-winter transition and the torpid-arousal transition in winter. We used 112 cDNA microarrays comprising 12,288 probes that cover at least 5,109 genes. In liver, the profiles of torpid and active states in the winter were almost identical, although we identified 102 cDNAs that were differentially expressed between winter and summer, 90% of which were downregulated in the winter states. By contrast, in cardiac tissue, 59 and 115 cDNAs were elevated in interbout arousal and torpor, respectively, relative to the summer active condition, but only 7 were common to both winter states, and during arousal none was downregulated. In brain, 78 cDNAs were found to change in winter, 44 of which were upregulated. Thus transcriptional changes associated with hibernation are qualitatively modest and, since these changes are generally less than twofold, also quantitatively modest. Unbiased Gene Ontology profiling of the transcripts suggests a winter switch to β-oxidation of lipids in liver and heart, a reduction in metabolism of toxic compounds and the urea cycle in liver, and downregulated electron transport in the brain. We identified just one strongly winter-induced transcript common to all tissues, namely an RNA-binding protein, RBM3. This analysis clearly differentiates responses of the principal tissues, identifies a large number of new genes undergoing regulation, and broadens our understanding of affected cellular processes that, in part, account for the winter-adaptive hibernating phenotype.
Collapse
Affiliation(s)
- Daryl R Williams
- School of Biological Sciences, University of Liverpool, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
The functions of mammalian sleep remain unclear. Most theories suggest a role for non-rapid eye movement (NREM) sleep in energy conservation and in nervous system recuperation. Theories of REM sleep have suggested a role for this state in periodic brain activation during sleep, in localized recuperative processes and in emotional regulation. Across mammals, the amount and nature of sleep are correlated with age, body size and ecological variables, such as whether the animals live in a terrestrial or an aquatic environment, their diet and the safety of their sleeping site. Sleep may be an efficient time for the completion of a number of functions, but variations in sleep expression indicate that these functions may differ across species.
Collapse
Affiliation(s)
- Jerome M Siegel
- Neurobiology Research 151A3, VA GLAHS Sepulveda, Department of Psychiatry and Brain Research Institute, UCLA School of Medicine, North Hills, California 91343, USA.
| |
Collapse
|