1
|
Zhao S, Nie Y, Wen L, Qin X, Huang L, Chu C, Qu M. Cognitive impairment and vulnerability of cholinergic brain network in the Alzheimer's continuum: free-water imaging based on diffusion tensor imaging. Front Neurosci 2025; 19:1587702. [PMID: 40370658 PMCID: PMC12075144 DOI: 10.3389/fnins.2025.1587702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Accepted: 04/14/2025] [Indexed: 05/16/2025] Open
Abstract
Background Increased extracellular free water (FW) is considered to provide better pathophysiological information than conventional diffusion tensor imaging (DTI) metrics. The cholinergic brain network is a key hub for cognitive function, and microstructural changes detected by free water imaging in this system may be associated with cognitive impairment in Alzheimer's disease (AD). However, the specific impact of FW changes in the cholinergic brain network on cognitive domains across the AD continuum and their diagnostic value remain unclear. Methods Here, we investigated the basal forebrain cholinergic free water alterations based on free water-corrected diffusion tensor imaging in healthy controls (n = 36), amnestic mild cognitive impairment (aMCI; n = 31), the AD group (n = 33). The cholinergic basal forebrain subregions were divided into the Broca diagonal band (Ch1-3) and the Meynert basal nucleus (Ch4). The cognitive domains performance was measured using the Montreal Cognitive Assessment (MoCA). Additionally, we evaluated the diagnostic value of free water fraction (FWf) within the cholinergic system. Results FWf in the bilateral Ch1-3 and Ch4 regions increased with age, and was significantly higher in aMCI and AD (p < 0.001). In AD, the FWf within Ch4 was correlated with total MoCA score (R = -0.42, p = 0.015), especially with visual spatial/executive (R = -0.47, p = 0.006) and orientation deficits (R = -0.38, p = 0.029). No significant correlations were found in the aMCI group. ROC curve analysis showed that FWf within the cholinergic brain network had high diagnostic efficacy for AD versus HC (AUC = 0.958, 95% CI = 0.909-1.00), and moderate diagnostic efficacy for aMCI versus HC (AUC = 0.795, 95% CI = 0.685-0.905) and aMCI versus AD (AUC = 0.719, 95% CI = 0.589-0.850). Conclusion FW imaging captures microstructural damage in the cholinergic brain network across the entire AD continuum. These changes occur early in aMCI but selectively affect domain-specific cognition in the later stages of AD, possibly through cholinergic network dysfunction. Our results highlight the potential of free water imaging as a biomarker for cognitive decline.
Collapse
Affiliation(s)
- Simin Zhao
- Third Clinical Medical College of Beijing University of Chinese Medicine, Beijing, China
| | - Yuting Nie
- The Department of Neurology, Gansu Provincial Hospital, Lanzhou, China
| | - Lulu Wen
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Xinzuo Qin
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Liyuan Huang
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Changbiao Chu
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Miao Qu
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
- Department of Chinese Medicine, Xuanwu Hospital of Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Moghadam FF, Gutierrez Guzman BE, Zheng X, Parsa M, Hozyen LM, Dannenberg H. Cholinergic dynamics in the septo-hippocampal system provide phasic multiplexed signals for spatial novelty and correlate with behavioral states. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.21.634097. [PMID: 39896475 PMCID: PMC11785060 DOI: 10.1101/2025.01.21.634097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
In the hippocampal formation, cholinergic modulation from the medial septum/diagonal band of Broca (MSDB) is known to correlate with the speed of an animal's movements at sub-second timescales and also supports spatial memory formation. Yet, the extent to which sub-second cholinergic dynamics, if at all, align with transient behavioral and cognitive states supporting the encoding of novel spatial information remains unknown. In this study, we used fiber photometry to record the temporal dynamics in the population activity of septo-hippocampal cholinergic neurons at sub-second resolution during a hippocampus-dependent object location memory task using ChAT-Cre mice. Using a general linear model, we quantified the extent to which cholinergic dynamics were explained by changes in movement speed, behavioral states such as locomotion, grooming, and rearing, and hippocampus-dependent cognitive states such as recognizing a novel location of a familiar object. The data show that cholinergic dynamics contain a multiplexed code of fast and slow signals i) coding for the logarithm of movement speed at sub-second timescales, ii) providing a phasic spatial novelty signal during the brief periods of exploring a novel object location, and iii) coding for environmental novelty at a seconds-long timescale. Furthermore, behavioral event-related phasic cholinergic activity around the onset and offset of the behavior demonstrates that fast cholinergic transients help facilitate a switch in cognitive and behavioral state before and during the onset of behavior. These findings enhance understanding of the mechanisms by which cholinergic modulation contributes to the coding of movement speed and encoding of novel spatial information.
Collapse
Affiliation(s)
| | | | - Xihui Zheng
- Interdisciplinary Program for Neuroscience, George Mason University, Fairfax, VA, United States
| | - Mina Parsa
- Interdisciplinary Program for Neuroscience, George Mason University, Fairfax, VA, United States
| | - Lojy M. Hozyen
- Department of Bioengineering, George Mason University, Fairfax, VA, United States
| | - Holger Dannenberg
- Department of Bioengineering, George Mason University, Fairfax, VA, United States
- Interdisciplinary Program for Neuroscience, George Mason University, Fairfax, VA, United States
| |
Collapse
|
3
|
Runyon K, Bui T, Mazanek S, Hartle A, Marschalko K, Howe WM. Distinct cholinergic circuits underlie discrete effects of reward on attention. Front Mol Neurosci 2024; 17:1429316. [PMID: 39268248 PMCID: PMC11390659 DOI: 10.3389/fnmol.2024.1429316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/01/2024] [Indexed: 09/15/2024] Open
Abstract
Attention and reward are functions that are critical for the control of behavior, and massive multi-region neural systems have evolved to support the discrete computations associated with each. Previous research has also identified that attention and reward interact, though our understanding of the neural mechanisms that mediate this interplay is incomplete. Here, we review the basic neuroanatomy of attention, reward, and cholinergic systems. We then examine specific contexts in which attention and reward computations interact. Building on this work, we propose two discrete neural circuits whereby acetylcholine, released from cell groups located in different parts of the brain, mediates the impact of stimulus-reward associations as well as motivation on attentional control. We conclude by examining these circuits as a potential shared loci of dysfunction across diseases states associated with deficits in attention and reward.
Collapse
Affiliation(s)
- Kelly Runyon
- School of Neuroscience at Virginia Tech, Blacksburg, VA, United States
| | - Tung Bui
- School of Neuroscience at Virginia Tech, Blacksburg, VA, United States
| | - Sarah Mazanek
- School of Neuroscience at Virginia Tech, Blacksburg, VA, United States
| | - Alec Hartle
- School of Neuroscience at Virginia Tech, Blacksburg, VA, United States
| | - Katie Marschalko
- School of Neuroscience at Virginia Tech, Blacksburg, VA, United States
| | | |
Collapse
|
4
|
Brown T, Kim K, Gehring WJ, Lustig C, Bohnen NI. Sensitivity to and Control of Distraction: Distractor-Entrained Oscillation and Frontoparietal EEG Gamma Synchronization. Brain Sci 2024; 14:609. [PMID: 38928609 PMCID: PMC11202030 DOI: 10.3390/brainsci14060609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
While recent advancements have been made towards a better understanding of the involvement of the prefrontal cortex (PFC) in the context of cognitive control, the exact mechanism is still not fully understood. Successful behavior requires the correct detection of goal-relevant cues and resisting irrelevant distractions. Frontal parietal networks have been implicated as important for maintaining cognitive control in the face of distraction. The present study investigated the role of gamma-band power in distraction resistance and frontoparietal networks, as its increase is linked to cholinergic activity. We examined changes in gamma activity and their relationship to frontoparietal top-down modulation for distractor challenges and to bottom-up distractor processing. Healthy young adults were tested using a modified version of the distractor condition sustained attention task (dSAT) while wearing an EEG. The modified distractor was designed so that oscillatory activities could be entrained to it, and the strength of entrainment was used to assess the degree of distraction. Increased top-down control during the distractor challenge increased gamma power in the left parietal regions rather than the right prefrontal regions predicted from rodent studies. Specifically, left parietal gamma power increased in response to distraction where the amount of this increase was negatively correlated with the neural activity reflecting bottom-up distractor processing in the visual area. Variability in gamma power in right prefrontal regions was associated with increased response time variability during distraction. This may suggest that the right prefrontal region may contribute to the signaling needed for top-down control rather than its implementation.
Collapse
Affiliation(s)
- Taylor Brown
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Kamin Kim
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA; (K.K.); (W.J.G.); (C.L.)
| | - William J. Gehring
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA; (K.K.); (W.J.G.); (C.L.)
| | - Cindy Lustig
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA; (K.K.); (W.J.G.); (C.L.)
| | - Nicolaas I. Bohnen
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA;
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Neurology Service and GRECC, VA Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA
| |
Collapse
|
5
|
Schiffino FL, McNally JM, Maness EB, McKenna JT, Brown RE, Strecker RE. Basal forebrain parvalbumin neurons modulate vigilant attention and rescue deficits produced by sleep deprivation. J Sleep Res 2024; 33:e13919. [PMID: 37211393 PMCID: PMC10659990 DOI: 10.1111/jsr.13919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 05/23/2023]
Abstract
Attention is impaired in many neuropsychiatric disorders, as well as by sleep disruption, leading to decreased workplace productivity and increased risk of accidents. Thus, understanding the neural substrates is important. Here we test the hypothesis that basal forebrain neurons that contain the calcium-binding protein parvalbumin modulate vigilant attention in mice. Furthermore, we test whether increasing the activity of basal forebrain parvalbumin neurons can rescue the deleterious effects of sleep deprivation on vigilance. A lever release version of the rodent psychomotor vigilance test was used to assess vigilant attention. Brief and continuous low-power optogenetic excitation (1 s, 473 nm @ 5 mW) or inhibition (1 s, 530 nm @ 10 mW) of basal forebrain parvalbumin neurons was used to test the effect on attention, as measured by reaction time, under control conditions and following 8 hr of sleep deprivation by gentle handling. Optogenetic excitation of basal forebrain parvalbumin neurons that preceded the cue light signal by 0.5 s improved vigilant attention as indicated by quicker reaction times. By contrast, both sleep deprivation and optogenetic inhibition slowed reaction times. Importantly, basal forebrain parvalbumin excitation rescued the reaction time deficits in sleep-deprived mice. Control experiments using a progressive ratio operant task confirmed that optogenetic manipulation of basal forebrain parvalbumin neurons did not alter motivation. These findings reveal for the first time a role for basal forebrain parvalbumin neurons in attention, and show that increasing their activity can compensate for disruptive effects of sleep deprivation.
Collapse
Affiliation(s)
- Felipe L. Schiffino
- VA Boston Healthcare System and Department of Psychiatry, Harvard Medical School, West Roxbury, MA 02132, USA
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA. Work performed at the VA
| | - James M. McNally
- VA Boston Healthcare System and Department of Psychiatry, Harvard Medical School, West Roxbury, MA 02132, USA
| | - Eden B. Maness
- VA Boston Healthcare System and Department of Psychiatry, Harvard Medical School, West Roxbury, MA 02132, USA
| | - James T. McKenna
- VA Boston Healthcare System and Department of Psychiatry, Harvard Medical School, West Roxbury, MA 02132, USA
| | - Ritchie E. Brown
- VA Boston Healthcare System and Department of Psychiatry, Harvard Medical School, West Roxbury, MA 02132, USA
| | - Robert E. Strecker
- VA Boston Healthcare System and Department of Psychiatry, Harvard Medical School, West Roxbury, MA 02132, USA
| |
Collapse
|
6
|
Liang HB, He WY, Liu YP, Wang HB. Pain Comorbidities with Attention Deficit: A Narrative Review of Clinical and Preclinical Research. J Pain Res 2024; 17:1055-1065. [PMID: 38505503 PMCID: PMC10948333 DOI: 10.2147/jpr.s443915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 02/23/2024] [Indexed: 03/21/2024] Open
Abstract
A negative correlation exists between attention and pain. The cognitive impairments linked to pain can significantly impede a patient's healing process and everyday tasks, particularly for individuals experiencing persistent pain. Furthermore, it has been demonstrated that diversion can effectively decrease pain levels in individuals. The focus of this review is to analyze clinical trials and fundamental investigations regarding alterations in focus and persistent discomfort. Moreover, we investigated the common neuroanatomy associated with attention and pain. Furthermore, we examined the impact of various neuromodulators on the transmission of pain and processes related to attention, while also considering the potential neural mechanisms that contribute to the co-occurrence of pain and attention deficits. Further investigation in this field will enhance our comprehension of patient symptoms and the underlying pathophysiology, ultimately resulting in more objective approaches to treatment.
Collapse
Affiliation(s)
- Hong-Bin Liang
- Graduate School of Guangdong Medical University, Zhanjiang, Guangdong Province, People’s Republic of China
- Department of Anesthesiology, The First People’s Hospital of Foshan, Foshan, Guangdong Province, People’s Republic of China
| | - Wan-You He
- Department of Anesthesiology, The First People’s Hospital of Foshan, Foshan, Guangdong Province, People’s Republic of China
| | - Yan-Ping Liu
- College of Nursing, Shandong First Medical University (Shandong Academy of Medical Science), Jinan, Shandong Province, People’s Republic of China
| | - Han-Bing Wang
- Graduate School of Guangdong Medical University, Zhanjiang, Guangdong Province, People’s Republic of China
- Department of Anesthesiology, The First People’s Hospital of Foshan, Foshan, Guangdong Province, People’s Republic of China
| |
Collapse
|
7
|
Maness EB, Blumenthal SA, Burk JA. Dual orexin/hypocretin receptor antagonism attenuates NMDA receptor hypofunction-induced attentional impairments in a rat model of schizophrenia. Behav Brain Res 2023; 450:114497. [PMID: 37196827 PMCID: PMC10330488 DOI: 10.1016/j.bbr.2023.114497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 05/19/2023]
Abstract
Schizophrenia is a neuropsychiatric condition that is associated with impaired attentional processing and performance. Failure to support increasing attentional load may result, in part, from inhibitory failure in attention-relevant cortical regions, and available antipsychotics often fail to address this issue. Orexin/hypocretin receptors are found throughout the brain and are expressed on neurons relevant to both attention and schizophrenia, highlighting them as a potential target to treat schizophrenia-associated attentional dysfunction. In the present experiment, rats (N = 14) trained in a visual sustained attention task that required discrimination of trials which presented a visual signal from trials during which no signal was presented. Once trained, rats were then co-administered the psychotomimetic N-methyl-D-aspartate (NMDA) receptor antagonist dizocilpine (MK-801: 0 or 0.1 mg/kg, intraperitoneal injections) and the dual orexin receptor antagonist filorexant (MK-6096: 0, 0.1, or 1 mM, intracerebroventricular infusions) prior to task performance across six sessions. Dizocilpine impaired overall accuracy during signal trials, slowed reaction times for correctly-responded trials, and increased the number of omitted trials throughout the task. Dizocilpine-induced increases in signal trial deficits, correct response latencies, and errors of omission were reduced following infusions of the 0.1 mM, but not 1 mM, dose of filorexant. As such, orexin receptor blockade may improve attentional deficits in a state of NMDA receptor hypofunction.
Collapse
Affiliation(s)
- Eden B Maness
- Department of Psychological Sciences, College of William and Mary, Williamsburg, VA 23187, USA; VA Boston Healthcare System and Department of Psychiatry, Harvard Medical School, West Roxbury, MA 02132, USA.
| | - Sarah A Blumenthal
- Center for Translational Social Neuroscience, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Joshua A Burk
- Department of Psychological Sciences, College of William and Mary, Williamsburg, VA 23187, USA
| |
Collapse
|
8
|
Berry AS, Harrison TM. New perspectives on the basal forebrain cholinergic system in Alzheimer's disease. Neurosci Biobehav Rev 2023; 150:105192. [PMID: 37086935 PMCID: PMC10249144 DOI: 10.1016/j.neubiorev.2023.105192] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/27/2023] [Accepted: 03/28/2023] [Indexed: 04/24/2023]
Abstract
The basal forebrain cholinergic system (BFCS) has long been implicated in age-related cognitive changes and the pathophysiology of Alzheimer's disease (AD). Limitations of cholinergic interventions helped to inspire a shift away from BFCS in AD research. A resurgence in interest in the BFCS following methodological and analytical advances has resulted in a call for the BFCS to be examined in novel frameworks. We outline the basic structure and function of the BFCS, its role in supporting cognitive and affective function, and its vulnerability to aging and AD. We consider the BFCS in the context of the amyloid hypothesis and evolving concepts in AD research: resilience and resistance to pathology, selective neuronal vulnerability, trans-synaptic pathology spread and sleep health. We highlight 1) the potential role of the BFCS in cognitive resilience, 2) recent work refining understanding about the selective vulnerability of BFCS to AD, 3) BFCS connectivity that suggests it is related to tau spreading and neurodegeneration and 4) the gap between BFCS involvement in AD and sleep-wake cycles.
Collapse
Affiliation(s)
| | - Theresa M Harrison
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
9
|
Nara S, Yamaguti Y, Tsuda I. Review: Nicotinic acetylcholine receptors to regulate important brain activity-what occurs at the molecular level? Cogn Neurodyn 2023:1-6. [PMID: 37362764 PMCID: PMC10197064 DOI: 10.1007/s11571-023-09975-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/02/2023] [Accepted: 04/19/2023] [Indexed: 06/28/2023] Open
Abstract
Herein, we briefly review the role of nicotinic acetylcholine receptors in regulating important brain activity by controlled release of acetylcholine from subcortical neuron groups, focusing on a microscopic viewpoint and considering the nonlinear dynamics of biological macromolecules associated with neuron activity and how they give rise to advanced brain functions of brain.
Collapse
Affiliation(s)
- Shigetoshi Nara
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530 Japan
| | - Yutaka Yamaguti
- Faculty of Information Engineering, Fukuoka Institute of Technology, 3-30-1 Wajiro-higashi, Higashi-ku, Fukuoka, 811-0295 Japan
| | - Ichiro Tsuda
- Chubu University Academy of Emerging Sciences/Center for Mathematical Science and Artificial Intelligence, Chubu University, Aichi, 487-8501 Japan
| |
Collapse
|
10
|
Maness EB, Blumenthal SA, Burk JA. Dual orexin/hypocretin receptor antagonism attenuates attentional impairments in an NMDA receptor hypofunction model of schizophrenia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.05.527043. [PMID: 36778441 PMCID: PMC9915718 DOI: 10.1101/2023.02.05.527043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Schizophrenia is a neuropsychiatric condition that is associated with impaired attentional processing and performance. Failure to support increasing attentional load may result, in part, from abnormally overactive basal forebrain projections to the prefrontal cortex, and available antipsychotics often fail to address this issue. Orexin/hypocretin receptors are expressed on corticopetal cholinergic neurons, and their blockade has been shown to decrease the activity of cortical basal forebrain outputs and prefrontal cortical cholinergic neurotransmission. In the present experiment, rats (N = 14) trained in a visual sustained attention task that required discrimination of trials which presented a visual signal from trials during which no signal was presented. Once trained, rats were then co-administered the psychotomimetic N-methyl-D-aspartate (NMDA) receptor antagonist dizocilpine (MK-801: 0 or 0.1 mg/kg, intraperitoneal injections) and the dual orexin receptor antagonist filorexant (MK-6096: 0, 0.1, or 1 mM, intracerebroventricular infusions) prior to task performance across six sessions. Dizocilpine impaired overall accuracy during signal trials, slowed reaction times for correctly-responded trials, and increased the number of omitted trials throughout the task. Dizocilpine-induced increases in signal trial deficits, correct response latencies, and errors of omission were reduced following infusions of the 0.1 mM, but not 1 mM, dose of filorexant. Orexin receptor blockade, perhaps through anticholinergic mechanisms, may improve attentional deficits in a state of NMDA receptor hypofunction. Highlights Schizophrenia is associated with attentional deficits that may stem from abnormally reactive BF projections to the prefrontal cortexOrexin receptor antagonists decrease acetylcholine release and reduce prefrontal cortical activityThe dual orexin receptor antagonist filorexant alleviated impairments of attention following NMDA receptor blockade.
Collapse
Affiliation(s)
- Eden B. Maness
- VA Boston Healthcare System and Department of Psychiatry, Harvard Medical School, West Roxbury, MA, 02132, USA
- Department of Psychological Sciences, College of William and Mary, Williamsburg, VA, 23187, USA
| | - Sarah A. Blumenthal
- Center for Translational Social Neuroscience, Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| | - Joshua A. Burk
- Department of Psychological Sciences, College of William and Mary, Williamsburg, VA, 23187, USA
| |
Collapse
|
11
|
Bruno JP. Enhancing the resolution of behavioral measures: Key observations during a forty year career in behavioral neuroscience. Neurosci Biobehav Rev 2023; 145:105004. [PMID: 36549379 DOI: 10.1016/j.neubiorev.2022.105004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/04/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
This manuscript reviews several key observations from the research program of Professor John P. Bruno that are believed to have significantly advanced our understanding of the brain's mediation of behavior. This review focuses on findings within several important research areas in behavioral neuroscience, including a) age-dependent neurobehavioral plasticity following brain damage; b) the role of the cortical cholinergic system in attentional processing and cognitive flexibility; and c) the design and validation of animal models of cognitive deficits in schizophrenia. In selecting these observations, emphasis was given to examples in which the heuristic potency was increased by maximizing the resolution and microanalysis of behavioral assays in the same fashion as one typically refines neuronal manipulations. Professor Bruno served the International Behavioral Neuroscience Society (IBNS) as an IBNS Fellow (1995-present) and President of the IBNS (2001-02).
Collapse
Affiliation(s)
- John P Bruno
- Department of Psychology, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
12
|
Chebolu S, Dayan P, Lloyd K. Vigilance, arousal, and acetylcholine: Optimal control of attention in a simple detection task. PLoS Comput Biol 2022; 18:e1010642. [PMID: 36315594 PMCID: PMC9648841 DOI: 10.1371/journal.pcbi.1010642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 11/10/2022] [Accepted: 10/06/2022] [Indexed: 11/05/2022] Open
Abstract
Paying attention to particular aspects of the world or being more vigilant in general can be interpreted as forms of ‘internal’ action. Such arousal-related choices come with the benefit of increasing the quality and situational appropriateness of information acquisition and processing, but incur potentially expensive energetic and opportunity costs. One implementational route for these choices is widespread ascending neuromodulation, including by acetylcholine (ACh). The key computational question that elective attention poses for sensory processing is when it is worthwhile paying these costs, and this includes consideration of whether sufficient information has yet been collected to justify the higher signal-to-noise ratio afforded by greater attention and, particularly if a change in attentional state is more expensive than its maintenance, when states of heightened attention ought to persist. We offer a partially observable Markov decision-process treatment of optional attention in a detection task, and use it to provide a qualitative model of the results of studies using modern techniques to measure and manipulate ACh in rodents performing a similar task. Paying attention to a stimulus is costly, both in terms of energy and the lost opportunity to pay attention to something else. It is also beneficial, providing more information about its target. Thus, whether and when we pay more or less attention may best be considered as a choice of internal action that responds to this trade-off. Furthermore, measurements and manipulation of the neuromodulator acetylcholine have suggested that it is one of the instruments of attention, providing us with a window onto this choice. Here, we build an abstract model of a task in which an animal must look out for a brief visual stimulus that may or may not occur on each trial. We show that optimal attentional choices in the model depend on many factors, including how likely a signal is to occur across time, the balance between the improvement in information possible by paying greater attention and its increased cost, and whether there are also costs associated with switching between different attentional states. We also show that our model can qualitatively match results from experiments involving acetylcholine.
Collapse
Affiliation(s)
- Sahiti Chebolu
- Graduate Training Centre of Neuroscience, International Max Planck Research School, Tübingen, Germany
- Indian Institute of Science Education and Research Pune, India
| | - Peter Dayan
- Department for Computational Neuroscience, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- University of Tübingen, Tübingen, Germany
| | - Kevin Lloyd
- Department for Computational Neuroscience, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- * E-mail:
| |
Collapse
|
13
|
Yegla B, Joshi S, Strupp J, Parikh V. Dynamic interplay of frontoparietal cholinergic innervation and cortical reorganization in the regulation of attentional capacities in aging. Neurobiol Aging 2021; 105:186-198. [PMID: 34102380 PMCID: PMC8338743 DOI: 10.1016/j.neurobiolaging.2021.04.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 04/09/2021] [Accepted: 04/27/2021] [Indexed: 01/21/2023]
Abstract
Cortical remodeling is linked to age-related cognitive changes in humans; however, the mechanisms underlying cortical reorganization in aging remain unknown. Here we examined the consequences of mild cholinergic thinning of the prefrontal cortex (PFC) and parietal cortex (PC) on attention performance-associated changes in cortical activity in young and aged rats. Prefrontal manipulation produced attentional deficits in aged but not young rats regardless of cholinergic pruning. Stereological assessment of c-fos expression revealed age-related reductions in occipital activity and a corresponding increase in PC activity, but these patterns did not correlate with performance. PC cholinergic deafferentation produced opposite changes in PFC recruitment between young and aged rats. Cholinergic pruning reversed the effects of PFC/PC cholinergic manipulations on the activity of CaMKII- and GAD-positive neurons in aged rats. Our results indicate that cortical shifts depend on multiple factors including chronological age, cholinergic changes, and cortical insult, and that cortical reorganization is not necessarily compensatory. Moreover, the cholinergic system modulates excitation/inhibition homeostasis to improve the efficiency of reorganized cortical circuits and stabilize attentional performance.
Collapse
Affiliation(s)
- Brittney Yegla
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, USA
| | - Surbhi Joshi
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, USA
| | - Jacob Strupp
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, USA
| | - Vinay Parikh
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
14
|
Amalric M, Pattij T, Sotiropoulos I, Silva JM, Sousa N, Ztaou S, Chiamulera C, Wahlberg LU, Emerich DF, Paolone G. Where Dopaminergic and Cholinergic Systems Interact: A Gateway for Tuning Neurodegenerative Disorders. Front Behav Neurosci 2021; 15:661973. [PMID: 34366802 PMCID: PMC8340002 DOI: 10.3389/fnbeh.2021.661973] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 06/14/2021] [Indexed: 12/18/2022] Open
Abstract
Historically, many investigations into neurodegenerative diseases have focused on alterations in specific neuronal populations such as, for example, the loss of midbrain dopaminergic neurons in Parkinson's disease (PD) and loss of cholinergic transmission in Alzheimer's disease (AD). However, it has become increasingly clear that mammalian brain activities, from executive and motor functioning to memory and emotional responses, are strictly regulated by the integrity of multiple interdependent neuronal circuits. Among subcortical structures, the dopaminergic nigrostriatal and mesolimbic pathways as well as cholinergic innervation from basal forebrain and brainstem, play pivotal roles in orchestrating cognitive and non-cognitive symptoms in PD and AD. Understanding the functional interactions of these circuits and the consequent neurological changes that occur during degeneration provides new opportunities to understand the fundamental inter-workings of the human brain as well as develop new potential treatments for patients with dysfunctional neuronal circuits. Here, excerpted from a session of the European Behavioral Pharmacology Society meeting (Braga, Portugal, August 2019), we provide an update on our recent work in behavioral and cellular neuroscience that primarily focuses on interactions between cholinergic and dopaminergic systems in PD models, as well as stress in AD. These brief discussions include descriptions of (1) striatal cholinergic interneurons (CINs) and PD, (2) dopaminergic and cholinergic modulation of impulse control, and (3) the use of an implantable cell-based system for drug delivery directly the into brain and (4) the mechanisms through which day life stress, a risk factor for AD, damage protein and RNA homeostasis leading to AD neuronal malfunction.
Collapse
Affiliation(s)
- Marianne Amalric
- Centre National de la Recherche Scientifique (CNRS), UMR 7291, Laboratoire de Neurosciences Cognitives, Aix-Marseille University (AMU), Marseille, France
| | - Tommy Pattij
- Amsterdam Neuroscience, Department of Anatomy and Neurosciences, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Ioannis Sotiropoulos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga, Portugal
| | - Joana M. Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga, Portugal
| | - Nuno Sousa
- ICVS/3B’s – PT Government Associate Laboratory, Braga, Portugal
| | - Samira Ztaou
- Centre National de la Recherche Scientifique (CNRS), UMR 7291, Laboratoire de Neurosciences Cognitives, Aix-Marseille University (AMU), Marseille, France
- Department of Molecular Therapeutics, New York State Psychiatric Institute, Department of Psychiatry, Columbia University, New York, NY, United States
| | - Cristiano Chiamulera
- Department of Diagnostic and Public Health, Section of Pharmacology, University of Verona, Verona, Italy
| | | | | | - Giovanna Paolone
- Department of Diagnostic and Public Health, Section of Pharmacology, University of Verona, Verona, Italy
| |
Collapse
|
15
|
Duggan MR, Joshi S, Strupp J, Parikh V. Chemogenetic inhibition of prefrontal projection neurons constrains top-down control of attention in young but not aged rats. Brain Struct Funct 2021; 226:2357-2373. [PMID: 34247267 PMCID: PMC8355172 DOI: 10.1007/s00429-021-02336-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 07/01/2021] [Indexed: 11/25/2022]
Abstract
The prefrontal cortex (PFC) governs top-down control of attention and is known to be vulnerable in aging. Cortical reorganization with increased PFC recruitment is suggested to account for functional compensation. Here, we hypothesized that reduced PFC output would exert differential effects on attentional capacities in young and aged rats, with the latter exhibiting a more robust decline in performance. A chemogenetic approach involving designer receptors exclusively activated by designer drugs was utilized to determine the impact of silencing PFC projection neurons in rats performing an operant attention task. Visual distractors were presented in all behavioral testing sessions to tax attentional resources. Under control conditions, aged rats exhibited impairments in discriminating signals with the shortest duration from non-signal events. Surprisingly, chemogenetic inhibition of PFC output neurons did not worsen performance amongst aged animals. Conversely, significant impairments in attentional capacities were observed in young subjects following such manipulation. Given the involvement of PFC-projecting basal forebrain cholinergic neurons in top-down regulation of attention, amperometric recordings were conducted to measure alterations in prefrontal cholinergic transmission in a separate cohort of young and aged rats. While PFC silencing resulted in a robust attenuation of tonic cholinergic signaling across age groups, the capacity to generate phasic cholinergic transients was impaired only amongst young animals. Collectively, our findings suggest a reduced efficiency of PFC-mediated top-down control of attention and cholinergic system in aging, and that activity of PFC output neurons does not reflect compensation in aged rats, at least in the attention domain.
Collapse
Affiliation(s)
- Michael R Duggan
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, 19122, USA
| | - Surbhi Joshi
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, 19122, USA
| | - Jacob Strupp
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, 19122, USA
| | - Vinay Parikh
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, 19122, USA.
| |
Collapse
|
16
|
Lockhofen DEL, Mulert C. Neurochemistry of Visual Attention. Front Neurosci 2021; 15:643597. [PMID: 34025339 PMCID: PMC8133366 DOI: 10.3389/fnins.2021.643597] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/12/2021] [Indexed: 11/25/2022] Open
Abstract
Visual attention is the cognitive process that mediates the selection of important information from the environment. This selection is usually controlled by bottom-up and top-down attentional biasing. Since for most humans vision is the dominant sense, visual attention is critically important for higher-order cognitive functions and related deficits are a core symptom of many neuropsychiatric and neurological disorders. Here, we summarize the importance and relative contributions of different neuromodulators and neurotransmitters to the neural mechanisms of top-down and bottom-up attentional control. We will not only review the roles of widely accepted neuromodulators, such as acetylcholine, dopamine and noradrenaline, but also the contributions of other modulatory substances. In doing so, we hope to shed some light on the current understanding of the role of neurochemistry in shaping neuron properties contributing to the allocation of attention in the visual field.
Collapse
Affiliation(s)
| | - Christoph Mulert
- Center for Psychiatry and Psychotherapy, Justus-Liebig University, Hessen, Germany
| |
Collapse
|
17
|
Demidenko MI, Weigard AS, Ganesan K, Jang H, Jahn A, Huntley ED, Keating DP. Interactions between methodological and interindividual variability: How Monetary Incentive Delay (MID) task contrast maps vary and impact associations with behavior. Brain Behav 2021; 11:e02093. [PMID: 33750042 PMCID: PMC8119872 DOI: 10.1002/brb3.2093] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 02/01/2021] [Accepted: 02/05/2021] [Indexed: 12/28/2022] Open
Abstract
INTRODUCTION Phenomena related to reward responsiveness have been extensively studied in their associations with substance use and socioemotional functioning. One important task in this literature is the Monetary Incentive Delay (MID) task. By cueing and delivering performance-contingent reward, the MID task has been demonstrated to elicit robust activation of neural circuits involved in different phases of reward responsiveness. However, systematic evaluations of common MID task contrasts have been limited to between-study comparisons of group-level activation maps, limiting their ability to directly evaluate how researchers' choice of contrasts impacts conclusions about individual differences in reward responsiveness or brain-behavior associations. METHODS In a sample of 104 participants (Age Mean = 19.3, SD = 1.3), we evaluate similarities and differences between contrasts in: group- and individual-level activation maps using Jaccard's similarity index, region of interest (ROI) mean signal intensities using Pearson's r, and associations between ROI mean signal intensity and psychological measures using Bayesian correlation. RESULTS Our findings demonstrate more similarities than differences between win and loss cues during the anticipation contrast, dissimilarity between some win anticipation contrasts, an apparent deactivation effect in the outcome phase, likely stemming from the blood oxygen level-dependent undershoot, and behavioral associations that are less robust than previously reported. CONCLUSION Consistent with recent empirical findings, this work has practical implications for helping researchers interpret prior MID studies and make more informed a priori decisions about how their contrast choices may modify results.
Collapse
Affiliation(s)
| | - Alexander S Weigard
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA.,Addiction Center, Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | | | - Hyesue Jang
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Andrew Jahn
- The Functional MRI Laboratory, University of Michigan, Ann Arbor, MI, USA
| | - Edward D Huntley
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Daniel P Keating
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA.,Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
18
|
Sarter M, Avila C, Kucinski A, Donovan E. Make a Left Turn: Cortico-Striatal Circuitry Mediating the Attentional Control of Complex Movements. Mov Disord 2021; 36:535-546. [PMID: 33615556 DOI: 10.1002/mds.28532] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/21/2021] [Accepted: 01/25/2021] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND In movement disorders such as Parkinson's disease (PD), cholinergic signaling is disrupted by the loss of basal forebrain cholinergic neurons, as well as aberrant activity in striatal cholinergic interneurons (ChIs). Several lines of evidence suggest that gait imbalance, a key disabling symptom of PD, may be driven by alterations in high-level frontal cortical and cortico-striatal processing more typically associated with cognitive dysfunction. METHODS Here we describe the corticostriatal circuitry that mediates the cognitive-motor interactions underlying such complex movement control. The ability to navigate dynamic, obstacle-rich environments requires the continuous integration of information about the environment with movement selection and sequencing. The cortical-attentional processing of extero- and interoceptive cues requires modulation by cholinergic activity to guide striatal movement control. Cue-derived information is "transferred" to striatal circuitry primarily via fronto-striatal glutamatergic projections. RESULT Evidence from parkinsonian fallers and from a rodent model reproducing the dual cholinergic-dopaminergic losses observed in these patients supports the main hypotheses derived from this neuronal circuitry-guided conceptualization of parkinsonian falls. Furthermore, in the striatum, ChIs constitute a particularly critical node for the integration of cortical with midbrain dopaminergic afferents and thus for cues to control movements. CONCLUSION Procholinergic treatments that enhance or rescue cortical and striatal mechanisms may improve complex movement control in parkinsonian fallers and perhaps also in older persons suffering from gait disorders and a propensity for falls. © 2021 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Martin Sarter
- Department of Psychology & Neuroscience Program, University of Michigan, Ann Arbor, Michigan, USA
| | - Cassandra Avila
- Department of Psychology & Neuroscience Program, University of Michigan, Ann Arbor, Michigan, USA
| | - Aaron Kucinski
- Department of Psychology & Neuroscience Program, University of Michigan, Ann Arbor, Michigan, USA
| | - Eryn Donovan
- Department of Psychology & Neuroscience Program, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
19
|
Georgiou R, Lamnisos D, Giannakou K. Anticholinergic Burden and Cognitive Performance in Patients With Schizophrenia: A Systematic Literature Review. Front Psychiatry 2021; 12:779607. [PMID: 35027893 PMCID: PMC8748260 DOI: 10.3389/fpsyt.2021.779607] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 10/21/2021] [Indexed: 01/06/2023] Open
Abstract
Objective: Cognitive impairment in schizophrenia forms the key cause of the disease's disability, leading to serious functional, and socioeconomic implications. Dopaminergic-cholinergic balance is considered essential to cognitive performance in schizophrenia and patients are often treated with many drugs with anticholinergic properties. This study aims to examine the cognitive impact of anticholinergic burden in patients with schizophrenia. Methods: A systematic literature review was performed on English-language studies published on PubMed, Embase, and Web of Science, from inception to June 2021, to identify research studies that examined the effect of anticholinergic load on cognition in clinically stable patients with schizophrenia. No restrictions on study design, age of participants, or geographical distribution were applied. Two researchers performed independently the screening and shortlisting of the eligible articles. A narrative synthesis of the main characteristics and findings of studies included was reported. Results: In total, 17 articles of varying methodological design met the inclusion criteria. Three of them found statistically significant improvement in cognition after anticholinergic tapering without adverse effects. Thirteen studies found a statistically significant association between high anticholinergic burden and cognitive impairment (neurocognitive composite scores and individual cognitive domains such as learning and memory, executive function, processing speed), apart from a study, related to the specific characteristics of clozapine. Conclusions: Medication with increased anticholinergic load has been found in most of the studies to negatively affect neurocognitive performance of patients with schizophrenia. However, the clinical and methodological heterogeneity of studies included limit our interpretation and conclusions.
Collapse
Affiliation(s)
- Rafaella Georgiou
- Department of Health Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
| | - Demetris Lamnisos
- Department of Health Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
| | - Konstantinos Giannakou
- Department of Health Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
| |
Collapse
|
20
|
Chrna5 is Essential for a Rapid and Protected Response to Optogenetic Release of Endogenous Acetylcholine in Prefrontal Cortex. J Neurosci 2020; 40:7255-7268. [PMID: 32817066 DOI: 10.1523/jneurosci.1128-20.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/01/2020] [Accepted: 08/09/2020] [Indexed: 12/16/2022] Open
Abstract
Optimal attention performance requires cholinergic modulation of corticothalamic neurons in the prefrontal cortex. These pyramidal cells express specialized nicotinic acetylcholine receptors containing the α5 subunit encoded by Chrna5 Disruption of this gene impairs attention, but the advantage α5 confers on endogenous cholinergic signaling is unknown. To ascertain this underlying mechanism, we used optogenetics to stimulate cholinergic afferents in prefrontal cortex brain slices from compound-transgenic wild-type and Chrna5 knock-out mice of both sexes. These electrophysiological experiments identify that Chrna5 is critical for the rapid onset of the postsynaptic cholinergic response. Loss of α5 slows cholinergic excitation and delays its peak, and these effects are observed in two different optogenetic mouse lines. Disruption of Chrna5 does not otherwise perturb the magnitude of the response, which remains strongly mediated by nicotinic receptors and tightly controlled by autoinhibition via muscarinic M2 receptors. However, when conditions are altered to promote sustained cholinergic receptor stimulation, it becomes evident that α5 also works to protect nicotinic responses against desensitization. Rescuing Chrna5 disruption thus presents the double challenge of improving the onset of nicotinic signaling without triggering desensitization. Here, we identify that an agonist for the unorthodox α-α nicotinic binding site can allosterically enhance the cholinergic pathway considered vital for attention. Treatment with NS9283 restores the rapid onset of the postsynaptic cholinergic response without triggering desensitization. Together, this work demonstrates the advantages of speed and resilience that Chrna5 confers on endogenous cholinergic signaling, defining a critical window of interest for cue detection and attentional processing.SIGNIFICANCE STATEMENT The α5 nicotinic receptor subunit (Chrna5) is important for attention, but its advantage in detecting endogenous cholinergic signals is unknown. Here, we show that α5 subunits permit rapid cholinergic responses in prefrontal cortex and protect these responses from desensitization. Our findings clarify why Chrna5 is required for optimal attentional performance under demanding conditions. To treat the deficit arising from Chrna5 disruption without triggering desensitization, we enhanced nicotinic receptor affinity using NS9283 stimulation at the unorthodox α-α nicotinic binding site. This approach successfully restored the rapid-onset kinetics of endogenous cholinergic neurotransmission. In summary, we reveal a previously unknown role of Chrna5 as well as an effective approach to compensate for genetic disruption and permit fast cholinergic excitation of prefrontal attention circuits.
Collapse
|
21
|
Do Nicotinic Receptors Modulate High-Order Cognitive Processing? Trends Neurosci 2020; 43:550-564. [DOI: 10.1016/j.tins.2020.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/19/2020] [Accepted: 06/01/2020] [Indexed: 12/19/2022]
|
22
|
Forebrain Cholinergic Signaling: Wired and Phasic, Not Tonic, and Causing Behavior. J Neurosci 2020; 40:712-719. [PMID: 31969489 DOI: 10.1523/jneurosci.1305-19.2019] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 10/29/2019] [Accepted: 11/04/2019] [Indexed: 01/21/2023] Open
Abstract
Conceptualizations of cholinergic signaling as primarily spatially diffuse and slow-acting are based largely on measures of extracellular brain ACh levels that require several minutes to generate a single data point. In addition, most such studies inhibited the highly potent catalytic enzyme for ACh, AChE, to facilitate measurement of ACh. Absent such inhibition, AChE limits the presence of ambient ACh and thus renders it unlikely that ACh influences target regions via slow changes in extracellular ACh concentrations. We describe an alternative view by which forebrain signaling in cortex driving cognition is largely phasic (milliseconds to perhaps seconds), and unlikely to be volume-transmitted. This alternative is supported by new evidence from real-time amperometric recordings of cholinergic signaling indicating a specific function of rapid, phasic, transient cholinergic signaling in attentional contexts. Previous neurochemical evidence may be reinterpreted in terms of integrated phasic cholinergic activity that mediates specific behavioral and cognitive operations; this reinterpretation fits well with recent computational models. Optogenetic studies support a causal relationship between cholinergic transients and behavior. This occurs in part via transient-evoked muscarinic receptor-mediated high-frequency oscillations in cortical regions. Such oscillations outlast cholinergic transients and thus link transient ACh signaling with more sustained postsynaptic activity patterns to support relatively persistent attentional biases. Reconceptualizing cholinergic function as spatially specific, phasic, and modulating specific cognitive operations is theoretically powerful and may lead to pharmacologic treatments more effective than those based on traditional views.Dual Perspectives Companion Paper: Diverse Spatiotemporal Scales of Cholinergic Signaling in the Neocortex, by Anita A. Disney and Michael J. Higley.
Collapse
|
23
|
Pichon S, Garibotto V, Wissmeyer M, Seimbille Y, Antico L, Ratib O, Vuilleumier P, Haller S, Picard F. Higher availability of α4β2 nicotinic receptors (nAChRs) in dorsal ACC is linked to more efficient interference control. Neuroimage 2020; 214:116729. [DOI: 10.1016/j.neuroimage.2020.116729] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 01/15/2020] [Accepted: 03/08/2020] [Indexed: 12/21/2022] Open
|
24
|
Complex Movement Control in a Rat Model of Parkinsonian Falls: Bidirectional Control by Striatal Cholinergic Interneurons. J Neurosci 2020; 40:6049-6067. [PMID: 32554512 DOI: 10.1523/jneurosci.0220-20.2020] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/10/2020] [Accepted: 05/15/2020] [Indexed: 01/18/2023] Open
Abstract
Older persons and, more severely, persons with Parkinson's disease (PD) exhibit gait dysfunction, postural instability and a propensity for falls. These dopamine (DA) replacement-resistant symptoms are associated with losses of basal forebrain and striatal cholinergic neurons, suggesting that falls reflect disruption of the corticostriatal transfer of movement-related cues and their striatal integration with movement sequencing. To advance a rodent model of the complex movement deficits of Parkinsonian fallers, here we first demonstrated that male and female rats with dual cortical cholinergic and striatal DA losses (DL rats) exhibit cued turning deficits, modeling the turning deficits seen in these patients. As striatal cholinergic interneurons (ChIs) are positioned to integrate movement cues with gait, and as ChI loss has been associated with falls in PD, we next used this task, as well as a previously established task used to reveal heightened fall rates in DL rats, to broadly test the role of ChIs. Chemogenetic inhibition of ChIs in otherwise intact male and female rats caused cued turning deficits and elevated fall rates. Spontaneous turning was unaffected. Furthermore, chemogenetic stimulation of ChIs in DL rats reduced fall rates and restored cued turning performance. Stimulation of ChIs was relatively more effective in rats with viral transfection spaces situated lateral to the DA depletion areas in the dorsomedial striatum. These results indicate that striatal ChIs are essential for the control of complex movements, and they suggest a therapeutic potential of stimulation of ChIs to restore gait and balance, and to prevent falls in PD.SIGNIFICANCE STATEMENT In persons with Parkinson's disease, gait dysfunction and the associated risk for falls do not benefit from dopamine replacement therapy and often result in long-term hospitalization and nursing home placement. Here, we first validated a new task to demonstrate impairments in cued turning behavior in rodents modeling the cholinergic-dopaminergic losses observed in Parkinsonian fallers. We then demonstrated the essential role of striatal cholinergic interneurons for turning behavior as well as for traversing dynamic surfaces and avoiding falls. Stimulation of these interneurons in the rat model rescued turning performance and reduced fall rates. Our findings indicate the feasibility of investigating the neuronal circuitry underling complex movement control in rodents, and that striatal cholinergic interneurons are an essential node of such circuitry.
Collapse
|
25
|
Balachandran RC, Hatcher KM, Sieg ML, Sullivan EK, Molina LM, Mahoney MM, Eubig PA. Pharmacological challenges examining the underlying mechanism of altered response inhibition and attention due to circadian disruption in adult Long-Evans rats. Pharmacol Biochem Behav 2020; 193:172915. [DOI: 10.1016/j.pbb.2020.172915] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 03/08/2020] [Accepted: 03/23/2020] [Indexed: 02/08/2023]
|
26
|
Activation of alpha7 nicotinic and NMDA receptors is necessary for performance in a working memory task. Psychopharmacology (Berl) 2020; 237:1723-1735. [PMID: 32162104 PMCID: PMC7313359 DOI: 10.1007/s00213-020-05495-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 02/19/2020] [Indexed: 10/24/2022]
Abstract
RATIONALE Working memory deficits are present in schizophrenia (SZ) but remain insufficiently resolved by medications. Similar cognitive dysfunctions can be produced acutely in animals by elevating brain levels of kynurenic acid (KYNA). KYNA's effects may reflect interference with the function of both the α7 nicotinic acetylcholine receptor (α7nAChR) and the glycineB site of the NMDA receptor. OBJECTIVES The aim of the present study was to examine, using pharmacological tools, the respective roles of these two receptor sites on performance in a delayed non-match-to-position working memory (WM) task (DNMTP). METHODS DNMTP consisted of 120 trials/session (5, 10, and 15 s delays). Rats received two doses (25 or 100 mg/kg, i.p.) of L-kynurenine (KYN; bioprecursor of KYNA) or L-4-chlorokynurenine (4-Cl-KYN; bioprecursor of the selective glycineB site antagonist 7-Cl-kynurenic acid). Attenuation of KYN- or 4-Cl-KYN-induced deficits was assessed by co-administration of galantamine (GAL, 3 mg/kg) or PAM-2 (1 mg/kg), two positive modulators of α7nAChR function. Reversal of 4-Cl-KYN-induced deficits was examined using D-cycloserine (DCS; 30 mg/kg), a partial agonist at the glycineB site. RESULTS Both KYN and 4-Cl-KYN administration produced dose-related deficits in DNMTP accuracy that were more severe at the longer delays. In KYN-treated rats, these deficits were reversed to control levels by GAL or PAM-2 but not by DCS. In contrast, DCS eliminated performance deficits in 4-Cl-KYN-treated animals. CONCLUSIONS These experiments reveal that both α7nAChR and NMDAR activity are necessary for normal WM accuracy. They provide substantive new support for the therapeutic potential of positive modulators at these two receptor sites in SZ and other major brain diseases.
Collapse
|
27
|
McBurney-Lin J, Sun Y, Tortorelli LS, Nguyen QAT, Haga-Yamanaka S, Yang H. Bidirectional pharmacological perturbations of the noradrenergic system differentially affect tactile detection. Neuropharmacology 2020; 174:108151. [PMID: 32445638 DOI: 10.1016/j.neuropharm.2020.108151] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/27/2020] [Accepted: 05/15/2020] [Indexed: 12/21/2022]
Abstract
The brain neuromodulatory systems heavily influence behavioral and cognitive processes. Previous work has shown that norepinephrine (NE), a classic neuromodulator mainly derived from the locus coeruleus (LC), enhances neuronal responses to sensory stimuli. However, the role of the LC-NE system in modulating perceptual task performance is not well understood. In addition, systemic perturbation of NE signaling has often been proposed to specifically target the LC in functional studies, yet the assumption that localized (specific) and systemic (nonspecific) perturbations of LC-NE have the same behavioral impact remains largely untested. In this study, we trained mice to perform a head-fixed, quantitative tactile detection task, and administered an α2 adrenergic receptor agonist or antagonist to pharmacologically down- or up-regulate LC-NE activity, respectively. We addressed the outstanding question of how bidirectional perturbations of LC-NE activity affect tactile detection, and tested whether localized and systemic drug treatments exert the same behavioral effects. We found that both localized and systemic suppression of LC-NE impaired tactile detection by reducing motivation. Surprisingly, while locally activating LC-NE enabled mice to perform in a near-optimal regime, systemic activation impaired behavior by promoting impulsivity. Our results demonstrate that localized silencing and activation of LC-NE differentially affect tactile detection, and that localized and systemic NE activation induce distinct behavioral changes.
Collapse
Affiliation(s)
- Jim McBurney-Lin
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA; Neuroscience Graduate Program, University of California, Riverside, CA, 92521, USA
| | - Yina Sun
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA
| | - Lucas S Tortorelli
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA
| | - Quynh Anh T Nguyen
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA; Neuroscience Graduate Program, University of California, Riverside, CA, 92521, USA
| | - Sachiko Haga-Yamanaka
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA; Neuroscience Graduate Program, University of California, Riverside, CA, 92521, USA
| | - Hongdian Yang
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA; Neuroscience Graduate Program, University of California, Riverside, CA, 92521, USA.
| |
Collapse
|
28
|
Jaffe PI, Brainard MS. Acetylcholine acts on songbird premotor circuitry to invigorate vocal output. eLife 2020; 9:e53288. [PMID: 32425158 PMCID: PMC7237207 DOI: 10.7554/elife.53288] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 04/01/2020] [Indexed: 01/14/2023] Open
Abstract
Acetylcholine is well-understood to enhance cortical sensory responses and perceptual sensitivity in aroused or attentive states. Yet little is known about cholinergic influences on motor cortical regions. Here we use the quantifiable nature of birdsong to investigate how acetylcholine modulates the cortical (pallial) premotor nucleus HVC and shapes vocal output. We found that dialyzing the cholinergic agonist carbachol into HVC increased the pitch, amplitude, tempo and stereotypy of song, similar to the natural invigoration of song that occurs when males direct their songs to females. These carbachol-induced effects were associated with increased neural activity in HVC and occurred independently of basal ganglia circuitry. Moreover, we discovered that the normal invigoration of female-directed song was also accompanied by increased HVC activity and was attenuated by blocking muscarinic acetylcholine receptors. These results indicate that, analogous to its influence on sensory systems, acetylcholine can act directly on cortical premotor circuitry to adaptively shape behavior.
Collapse
Affiliation(s)
- Paul I Jaffe
- Departments of Physiology and Psychiatry, University of California, San FranciscoSan FranciscoUnited States
- Center for Integrative Neuroscience, University of California, San FranciscoSan FranciscoUnited States
- Kavli Institute for Fundamental Neuroscience, University of California, San FranciscoSan FranciscoUnited States
| | - Michael S Brainard
- Departments of Physiology and Psychiatry, University of California, San FranciscoSan FranciscoUnited States
- Center for Integrative Neuroscience, University of California, San FranciscoSan FranciscoUnited States
- Kavli Institute for Fundamental Neuroscience, University of California, San FranciscoSan FranciscoUnited States
- Howard Hughes Medical Institute, University of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
29
|
Azimi M, Oemisch M, Womelsdorf T. Dissociation of nicotinic α7 and α4/β2 sub-receptor agonists for enhancing learning and attentional filtering in nonhuman primates. Psychopharmacology (Berl) 2020; 237:997-1010. [PMID: 31865424 DOI: 10.1007/s00213-019-05430-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 12/11/2019] [Indexed: 12/22/2022]
Abstract
RATIONALE Nicotinic acetylcholine receptors (nAChRs) modulate attention, memory, and higher executive functioning, but it is unclear how nACh sub-receptors mediate different mechanisms supporting these functions. OBJECTIVES We investigated whether selective agonists for the alpha-7 nAChR versus the alpha-4/beta-2 nAChR have unique functional contributions for value learning and attentional filtering of distractors in the nonhuman primate. METHODS Two adult rhesus macaque monkeys performed reversal learning following systemic administration of either the alpha-7 nAChR agonist PHA-543613 or the alpha-4/beta-2 nAChR agonist ABT-089 or a vehicle control. Behavioral analysis quantified performance accuracy, speed of processing, reversal learning speed, the control of distractor interference, perseveration tendencies, and motivation. RESULTS We found that the alpha-7 nAChR agonist PHA-543613 enhanced the learning speed of feature values but did not modulate how salient distracting information was filtered from ongoing choice processes. In contrast, the selective alpha-4/beta-2 nAChR agonist ABT-089 did not affect learning speed but reduced distractibility. This dissociation was dose-dependent and evident in the absence of systematic changes in overall performance, reward intake, motivation to perform the task, perseveration tendencies, or reaction times. CONCLUSIONS These results suggest nicotinic sub-receptor specific mechanisms consistent with (1) alpha-4/beta-2 nAChR specific amplification of cholinergic transients in prefrontal cortex linked to enhanced cue detection in light of interferences, and (2) alpha-7 nAChR specific activation prolonging cholinergic transients, which could facilitate subjects to follow-through with newly established attentional strategies when outcome contingencies change. These insights will be critical for developing function-specific drugs alleviating attention and learning deficits in neuro-psychiatric diseases.
Collapse
Affiliation(s)
- Marzyeh Azimi
- Department of Biology, Centre for Vision Research, York University, Toronto, Ontario, M6J 1P3, Canada
| | - Mariann Oemisch
- Department of Biology, Centre for Vision Research, York University, Toronto, Ontario, M6J 1P3, Canada.,The Zanvyl Krieger Mind/Brain Institute, Department of Neuroscience, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Thilo Womelsdorf
- Department of Biology, Centre for Vision Research, York University, Toronto, Ontario, M6J 1P3, Canada. .,Department of Psychology, Vanderbilt University, PMB 407817, 2301, Vanderbilt Place, Nashville, TN, 37240-7817, USA.
| |
Collapse
|
30
|
Tarder-Stoll H, Jayakumar M, Dimsdale-Zucker HR, Günseli E, Aly M. Dynamic internal states shape memory retrieval. Neuropsychologia 2020; 138:107328. [DOI: 10.1016/j.neuropsychologia.2019.107328] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 12/13/2019] [Accepted: 12/22/2019] [Indexed: 12/30/2022]
|
31
|
Phillips KB, Sarter M. Addiction vulnerability and the processing of significant cues: Sign-, but not goal-, tracker perceptual sensitivity relies on cue salience. Behav Neurosci 2020; 134:133-143. [PMID: 31916796 DOI: 10.1037/bne0000353] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The identification of broadly defined psychological traits that bestow vulnerability for the manifestation of addiction-like behaviors can guide the discovery of the neuronal mechanisms underlying the propensity for drug taking. Sign-tracking behavior in rats (STs) signifies the presence of a trait that predicts a relatively greater behavioral control of Pavlovian drug and reward cues than in rats that exhibit goal-tracking behavior (GTs). We previously demonstrated that relatively poor cholinergic-attentional control in STs is an essential component of the trait indexed by sign-tracking and that this trait aspect contributes to the relatively greater power of drug cues to control the behavior of STs. Here we addressed the possibility that STs and GTs employ fundamentally different psychological mechanisms for the detection of cues in attention-demanding contexts. Rats were trained to perform an operant Sustained Attention Task. As task training advanced to the stage that taxed attentional control, the relative brightness of visual target signals significantly influenced detection performance in STs but not GTs. This finding suggests that STs, but not GTs, rely on bottom-up, cue salience-driven mechanisms to detect cues. GTs may be able to resist behavioral control by Pavlovian drug cues by utilizing goal-directed decisional processes that minimize the influence of the salience of drug cues. (PsycINFO Database Record (c) 2020 APA, all rights reserved).
Collapse
|
32
|
Abstract
The central cholinergic system is one of the most important modulator neurotransmitter system implicated in diverse behavioral processes. Activation of the basal forebrain cortical cholinergic input system represents a critical step in cortical information processing. This chapter explores recent developments illustrating cortical cholinergic transmission mediate defined cognitive operations, which is contrary to the traditional view that acetylcholine acts as a slowly acting neuromodulator that influences arousal cortex-wide. Specifically, we review the evidence that phasic cholinergic signaling in the prefrontal cortex is a causal mediator of signal detection. In addition, studies that support the neuromodulatory role of cholinergic inputs in top-down attentional control are summarized. Finally, we review new findings that reveal sex differences and hormonal regulation of the cholinergic-attention system.
Collapse
Affiliation(s)
- Vinay Parikh
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, USA.
| | - Debra A Bangasser
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, USA
| |
Collapse
|
33
|
Rescuing the attentional performance of rats with cholinergic losses by the M1 positive allosteric modulator TAK-071. Psychopharmacology (Berl) 2020; 237:137-153. [PMID: 31620809 DOI: 10.1007/s00213-019-05354-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 08/15/2019] [Indexed: 02/07/2023]
Abstract
RATIONALE Loss of basal forebrain cholinergic neurons contributes to the severity of the cognitive decline in age-related dementia and, in patients with Parkinson's disease (PD), to impairments in gait and balance and the resulting risks for falls. Contrasting with the extensive evidence indicating an essential role of cholinergic activity in mediating cognitive, specifically attentional abilities, treatment with conventional acetylcholinesterase inhibitors (AChEIs) has not fulfilled the promise of efficacy of pro-cholinergic treatments. OBJECTIVES Here, we investigated the potential usefulness of a muscarinic M1 positive allosteric modulator (PAM) in an animal model of cholinergic loss-induced impairments in attentional performance. Given evidence indicating that fast, transient cholinergic signaling mediates the detection of cues in attentional contexts, we hypothesized that a M1 PAM amplifies such transient signaling and thereby rescues attentional performance. RESULTS Rats performed an operant sustained attention task (SAT), including in the presence of a distractor (dSAT) and during a post-distractor (post-dSAT) period. The post-dSAT period served to assess the capacity for recovering performance following a disruptive event. Basal forebrain infusions of the cholino-specific immunotoxin 192 IgG-saporin impaired SAT performance, and greater cholinergic losses predicted lower post-dSAT performance. Administration of TAK-071 (0.1, 0.3 mg/kg, p.o., administered over 6-day blocks) improved the performance of all rats during the post-dSAT period (main effect of dose). Drug-induced improvement of post-dSAT performance was relatively greater in lesioned rats, irrespective of sex, but also manifested in female control rats. TAK-071 primarily improved perceptual sensitivity (d') in lesioned rats and facilitated the adoption of a more liberal response bias (B˝D) in all female rats. CONCLUSIONS These findings suggest that TAK-071 may benefit the attentional performance of patients with partial cholinergic losses and specifically in situations that tax top-down, or goal-driven, attentional control.
Collapse
|
34
|
Sajedin A, Menhaj MB, Vahabie AH, Panzeri S, Esteky H. Cholinergic Modulation Promotes Attentional Modulation in Primary Visual Cortex- A Modeling Study. Sci Rep 2019; 9:20186. [PMID: 31882838 PMCID: PMC6934489 DOI: 10.1038/s41598-019-56608-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 12/16/2019] [Indexed: 12/30/2022] Open
Abstract
Attention greatly influences sensory neural processing by enhancing firing rates of neurons that represent the attended stimuli and by modulating their tuning properties. The cholinergic system is believed to partly mediate the attention contingent improvement of cortical processing by influencing neuronal excitability, synaptic transmission and neural network characteristics. Here, we used a biophysically based model to investigate the mechanisms by which cholinergic system influences sensory information processing in the primary visual cortex (V1) layer 4C. The physiological properties and architectures of our model were inspired by experimental data and include feed-forward input from dorsal lateral geniculate nucleus that sets up orientation preference in V1 neural responses. When including a cholinergic drive, we found significant sharpening in orientation selectivity, desynchronization of LFP gamma power and spike-field coherence, decreased response variability and correlation reduction mostly by influencing intracortical interactions and by increasing inhibitory drive. Our results indicated that these effects emerged due to changes specific to the behavior of the inhibitory neurons. The behavior of our model closely resembles the effects of attention on neural activities in monkey V1. Our model suggests precise mechanisms through which cholinergic modulation may mediate the effects of attention in the visual cortex.
Collapse
Affiliation(s)
- Atena Sajedin
- Department of Electrical Engineering, Amirkabir University of Technology, Hafez Ave., 15875-4413, Tehran, Iran
| | - Mohammad Bagher Menhaj
- Department of Electrical Engineering, Amirkabir University of Technology, Hafez Ave., 15875-4413, Tehran, Iran.
| | - Abdol-Hossein Vahabie
- School of Cognitive Sciences (SCS), Institute for Research in Fundamental Sciences (IPM), 19395-5746, Tehran, Iran
| | - Stefano Panzeri
- Neural Computation Laboratory, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, 38068, Rovereto, Italy
| | - Hossein Esteky
- Research Group for Brain and Cognitive Sciences, School of Medicine, Shahid Beheshti Medical University, 19839-63113, Tehran, Iran.
| |
Collapse
|
35
|
Thiele A, Bellgrove MA. Neuromodulation of Attention. Neuron 2019; 97:769-785. [PMID: 29470969 PMCID: PMC6204752 DOI: 10.1016/j.neuron.2018.01.008] [Citation(s) in RCA: 201] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/26/2017] [Accepted: 01/02/2018] [Indexed: 02/07/2023]
Abstract
Attention is critical to high-level cognition and attention deficits are a hallmark of neurologic and neuropsychiatric disorders. Although years of research indicates that distinct neuromodulators influence attentional control, a mechanistic account that traverses levels of analysis (cells, circuits, behavior) is missing. However, such an account is critical to guide the development of next-generation pharmacotherapies aimed at forestalling or remediating the global burden associated with disorders of attention. Here, we summarize current neuroscientific understanding of how attention affects single neurons and networks of neurons. We then review key results that have informed our understanding of how neuromodulation shapes these neuron and network properties and thereby enables the appropriate allocation of attention to relevant external or internal events. Finally, we highlight areas where we believe hypotheses can be formulated and tackled experimentally in the near future, thereby critically increasing our mechanistic understanding of how attention is implemented at the cellular and network levels.
Collapse
Affiliation(s)
- Alexander Thiele
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK.
| | - Mark A Bellgrove
- Monash Institute of Cognitive and Clinical Neurosciences (MICCN) and School of Psychological Sciences, Monash University, Melbourne, Australia
| |
Collapse
|
36
|
Koshy Cherian A, Kucinski A, Wu R, de Jong IEM, Sarter M. Co-treatment with rivastigmine and idalopirdine reduces the propensity for falls in a rat model of falls in Parkinson's disease. Psychopharmacology (Berl) 2019; 236:1701-1715. [PMID: 30607479 DOI: 10.1007/s00213-018-5150-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 12/11/2018] [Indexed: 11/24/2022]
Abstract
RATIONALE Falls in patients with Parkinson's disease (PD) are associated with cognitive, specifically attentional impairments and with losses in cholinergic projection systems. We previously established an animal model of the combined basal forebrain cholinergic-striatal dopaminergic losses of PD fallers (Dual Lesioned, DL, rats) and demonstrated that treating DL rats with an acetylcholinesterase inhibitor (AChEI), donepezil, together with a 5HT6 receptor antagonist, idalopirdine, reduced fall frequency and improved associated aspects of the performance of DL rats traversing rotating rods. OBJECTIVES Here, we employed a longer and more taxing rotating beam apparatus to determine the potential therapeutic efficacy of idalopirdine when combined with the pseudo-irreversible, and thus relatively long-acting, AChE- and butyrylcholinesterase- (BuChE) inhibitor rivastigmine. RESULTS As before, vehicle-treated DL rats fell more frequently, committed more slips, and exhibited more movement stoppages than intact control rats. Repeated intermittent administration of rivastigmine and idalopirdine significantly improved the performance of DL rats. Rivastigmine alone also produced strong trends for reducing falls and slips. The combination treatment was more effective than rivastigmine alone in reducing stoppages and stoppage-associated falls. As before, idalopirdine treatment alone was ineffective. CONCLUSIONS These results extend the prediction that the combined treatment with idalopirdine and an AChEI improves complex movement control and reduces the propensity for falls in patients with movement disorders. Because of the importance of finding better treatments for gait and balance deficits in PD, the present results may further motivate a clinical exploration of the usefulness of this combination treatment.
Collapse
Affiliation(s)
- Ajeesh Koshy Cherian
- Department of Psychology, University of Michigan, 530 Church Street, Ann Arbor, MI, 48109, USA
| | - Aaron Kucinski
- Department of Psychology, University of Michigan, 530 Church Street, Ann Arbor, MI, 48109, USA
| | - Ryan Wu
- Department of Psychology, University of Michigan, 530 Church Street, Ann Arbor, MI, 48109, USA
| | | | - Martin Sarter
- Department of Psychology, University of Michigan, 530 Church Street, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
37
|
Shine JM. Neuromodulatory Influences on Integration and Segregation in the Brain. Trends Cogn Sci 2019; 23:572-583. [PMID: 31076192 DOI: 10.1016/j.tics.2019.04.002] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 04/01/2019] [Accepted: 04/04/2019] [Indexed: 12/20/2022]
Abstract
Cognitive function relies on the dynamic cooperation of specialized regions of the brain; however, the elements of the system responsible for coordinating this interaction remain poorly understood. In this Opinion article I argue that this capacity is mediated in part by competitive and cooperative dynamic interactions between two prominent metabotropic neuromodulatory systems - the cholinergic basal forebrain and the noradrenergic locus coeruleus (LC). I assert that activity in these projection nuclei regulates the amount of segregation and integration within the whole brain network by modulating the activity of a diverse set of specialized regions of the brain on a timescale relevant for cognition and attention.
Collapse
Affiliation(s)
- James M Shine
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
38
|
Koshy Cherian A, Tronson NC, Parikh V, Kucinski A, Blakely RD, Sarter M. Repetitive mild concussion in subjects with a vulnerable cholinergic system: Lasting cholinergic-attentional impairments in CHT+/- mice. Behav Neurosci 2019; 133:448-459. [PMID: 30896190 DOI: 10.1037/bne0000310] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Previous research emphasized the impact of traumatic brain injury on cholinergic systems and associated cognitive functions. Here we addressed the converse question: Because of the available evidence indicating cognitive and neuronal vulnerabilities in humans expressing low-capacity cholinergic systems or with declining cholinergic systems, do injuries cause more severe cognitive decline in such subjects, and what cholinergic mechanisms contribute to such vulnerability? Using mice heterozygous for the choline transporter (CHT+/- mice) as a model for a limited cholinergic capacity, we investigated the cognitive and neuronal consequences of repeated, mild concussion injuries (rmCc). After five rmCc, and compared with wild type (WT) mice, CHT+/- mice exhibited severe and lasting impairments in sustained attention performance, consistent with effects of cholinergic losses on attention. However, rmCc did not affect the integrity of neuronal cell bodies and did not alter the density of cortical synapses. As a cellular mechanism potentially responsible for the attentional impairment in CHT+/- mice, we found that rmCc nearly completely attenuated performance-associated, CHT-mediated choline transport. These results predict that subjects with an already vulnerable cholinergic system will experience severe and lasting cognitive-cholinergic effects after even relatively mild injuries. If confirmed in humans, such subjects may be excluded from, or receive special protection against, activities involving injury risk. Moreover, the treatment and long-term outcome of traumatic brain injuries may benefit from determining the status of cholinergic systems and associated cognitive functions. (PsycINFO Database Record (c) 2019 APA, all rights reserved).
Collapse
Affiliation(s)
| | | | - Vinay Parikh
- Department of Psychology and Neuroscience Program
| | | | | | | |
Collapse
|
39
|
Kucinski A, Kim Y, Sarter M. Basal forebrain chemogenetic inhibition disrupts the superior complex movement control of goal-tracking rats. Behav Neurosci 2019; 133:121-134. [PMID: 30688488 DOI: 10.1037/bne0000290] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Sign- and goal-tracking behavior signifies the influence of opposed cognitive-motivational styles, with the former being characterized by a tendency for approaching and contacting reward cues, including a readiness for attending, bottom-up, to salient cues, and a relatively greater vulnerability for developing and maintaining addiction-like behaviors. We previously demonstrated that these styles also impact the cognitive-motor interactions that are taxed during traversal of dynamic surfaces, with goal-trackers (GTs) making less movement errors and falling less frequently than sign-trackers (STs). The present experiment tested the hypothesis that complex movement control in GTs, but not STs, depends on activation of the basal forebrain projection system to telencephalic regions. Chemogenetic inhibition of the basal forebrain increased movement errors and falls in GTs during traversal of a rotating zigzag rod but had no significant effect on the relatively lower performance of STs. Neurochemical evidence confirmed the efficacy of the inhibitory designer receptor exclusively activated by designer drug (DREADD). Administration of clozapine-N-oxide (CNO) had no significant effect in GTs not expressing the DREADD. These results indicate that GTs, but not STs, activate the basal forebrain projection system to mediate their relatively superior ability for complex movement control. STs may also serve as an animal model in research on the role of basal forebrain systems in aging- and Parkinson's disease-associated falls. (PsycINFO Database Record (c) 2019 APA, all rights reserved).
Collapse
Affiliation(s)
| | - Youngsoo Kim
- Department of Psychology and Neuroscience Program
| | | |
Collapse
|
40
|
Sarter M, Lustig C. Cholinergic double duty: cue detection and attentional control. Curr Opin Psychol 2019; 29:102-107. [PMID: 30711909 DOI: 10.1016/j.copsyc.2018.12.026] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/26/2018] [Accepted: 12/31/2018] [Indexed: 02/08/2023]
Abstract
Cholinergic signaling in the cortex involves fast or transient signaling as well as a relatively slower neuromodulatory component. These two components of cholinergic activity mediate separate yet interacting aspects of cue detection and attentional control. The transient component appears to support the activation of cue-associated task or response sets, whereas the slower modulatory component stabilizes task-set and context representations, therefore potentially facilitating top-down control. Evidence from humans expressing genetic variants of the choline transporter as well as from patients with degenerating cholinergic systems supports the hypothesis that attentional control capacities depend on levels of cholinergic neuromodulation. Deficits in cholinergic-attentional control impact diverse cognitive functions, including timing, working memory, and complex movement control.
Collapse
Affiliation(s)
- Martin Sarter
- Department of Psychology and Neuroscience Program, University of Michigan, Ann Arbor, MI 48109, United States.
| | - Cindy Lustig
- Department of Psychology and Neuroscience Program, University of Michigan, Ann Arbor, MI 48109, United States
| |
Collapse
|
41
|
Tashakori-Sabzevar F, Ward RD. Basal Forebrain Mediates Motivational Recruitment of Attention by Reward-Associated Cues. Front Neurosci 2018; 12:786. [PMID: 30425617 PMCID: PMC6218575 DOI: 10.3389/fnins.2018.00786] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 10/10/2018] [Indexed: 01/05/2023] Open
Abstract
The basal forebrain, composed of distributed nuclei, including substantia innominata (SI), nucleus basalis and nucleus of the diagonal band of Broca plays a crucial neuromodulatory role in the brain. In particular, its projections to the prefrontal cortex have been shown to be important in a wide variety of brain processes and functions, including attention, learning and memory, arousal, and decision-making. In the present study, we asked whether the basal forebrain is involved in recruitment of cognitive effort in response to reward-related cues. This interaction between motivation and cognition is critically impacted in psychiatric conditions such as schizophrenia. Using the Designer Receptor Exclusively Activated by Designer Drug (DREADD) technique combined with our recently developed signaled probability sustained attention task (SPSA), which explicitly assays the interaction between motivation and attention, we sought to determine the role of the basal forebrain in this interaction. Rats were stereotaxically injected in the basal forebrain with either hM4D(Gi) (a virus that expresses receptors which silence neurons in the presence of the drug clozapine-N-oxide; CNO) or a control virus and tested in the SPSA. Behavior of rats during baseline and under saline indicated control by reward probability. In the presence of CNO, differential accuracy of hM4D(Gi) rats on high and low reward-probability trials was abolished. This result occurred despite spared ability of the reward-probability signals to differentially impact choice-response latencies and omissions. These results indicate that the basal forebrain is critical for the motivational recruitment of attention in response to reward-related cues and are consistent with a role for basal forebrain in encoding and transmitting motivational salience of reward-related cues and readying prefrontal circuits for further attentional processing.
Collapse
Affiliation(s)
| | - Ryan D Ward
- Department of Psychology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
42
|
Pitchers KK, Sarter M, Robinson TE. The hot 'n' cold of cue-induced drug relapse. ACTA ACUST UNITED AC 2018; 25:474-480. [PMID: 30115769 PMCID: PMC6097766 DOI: 10.1101/lm.046995.117] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 05/27/2018] [Indexed: 12/21/2022]
Abstract
Environmental cues associated with rewards can acquire motivational properties. However, there is considerable variation in the extent to which a reward cue gains motivational control over behavior, depending on the individual and the form of the cue. When a discrete cue is paired with food reward, it acquires greater control over motivated behavior in some rats (sign-trackers, STs) than others (goal-trackers, GTs) as indicated by the propensity to approach the cue, the willingness to work to obtain it, and its ability to reinstate reward-seeking behavior. Here, we review studies that employ this ST/GT animal model to investigate characteristics of individuals that are especially susceptible to reward cue-elicited behavior and the involvement of dopamine and acetylcholine neuromodulator systems in the susceptibility to cue-induced drug relapse. First, we discuss individual differences in the attribution of incentive salience to different forms of reward cues and the involvement of the mesolimbic dopamine system. We then discuss individual differences in cognitive/attentional control and the contributions of the cholinergic system in processing reward cues. It is suggested that in STs a propensity to attribute motivational properties to a drug cue is combined with poor attentional control in the face of these cues, making them particularly vulnerable to transition from casual/experimental patterns of drug use to addiction and to cue-induced relapse.
Collapse
Affiliation(s)
- Kyle K Pitchers
- Department of Psychology (Biopsychology) and Neuroscience Program, The University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Martin Sarter
- Department of Psychology (Biopsychology) and Neuroscience Program, The University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Terry E Robinson
- Department of Psychology (Biopsychology) and Neuroscience Program, The University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
43
|
Sarter M, Phillips KB. The neuroscience of cognitive-motivational styles: Sign- and goal-trackers as animal models. Behav Neurosci 2018; 132:1-12. [PMID: 29355335 DOI: 10.1037/bne0000226] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cognitive-motivational styles describe predominant patterns of processing or biases that broadly influence human cognition and performance. Here we focus on the impact of cognitive-motivational styles on the response to cues predicting the availability of food or addictive drugs. An individual may preferably conduct an analysis of the motivational significance of reward cues, with the result that such cues per se are perceived as rewarding and worth approaching and working for. Alternatively, a propensity for a "cold" analysis of the behavioral utility of a reward cue may yield search behavior for food or drugs but not involve cue approach. Animal models for studying the neuronal mechanisms mediating such styles have originated from research concerning behavioral indices that predict differential vulnerability to addiction-like behaviors. Rats classified as sign- or goal-trackers (STs, GTs) were found to have opposed attentional biases (bottom-up or cue-driven attention vs. top-down or goal-driven attentional control) that are mediated primarily via relatively unresponsive versus elevated levels of cholinergic neuromodulation in the cortex. The capacity for cholinergic neuromodulation in STs is limited by a neuronal choline transporter (CHT) that fails to support increases in cholinergic activity. Moreover, in contrast to STs, the frontal dopamine system in GTs does not respond to the presence of drug cues and, thus, biases against cue-oriented behavior. The opponent cognitive-motivational styles that are indexed by sign- and goal-tracking bestow different cognitive-behavioral vulnerabilities that may contribute to the manifestation of a wide range of neuropsychiatric disorders. (PsycINFO Database Record
Collapse
Affiliation(s)
- Martin Sarter
- Department of Psychology and Neuroscience Program, University of Michigan
| | - Kyra B Phillips
- Department of Psychology and Neuroscience Program, University of Michigan
| |
Collapse
|
44
|
Compensatory dopaminergic-cholinergic interactions in conflict processing: Evidence from patients with Parkinson's disease. Neuroimage 2018; 190:94-106. [PMID: 29337277 DOI: 10.1016/j.neuroimage.2018.01.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 12/29/2017] [Accepted: 01/07/2018] [Indexed: 01/21/2023] Open
Abstract
Executive functions are complex both in the cognitive operations involved and in the neural structures and functions that support those operations. This complexity makes executive function highly vulnerable to the detrimental effects of aging, brain injury, and disease, but may also open paths to compensation. Neural compensation is often used to explain findings of additional or altered patterns of brain activations by older adults or patient populations compared to young adults or healthy controls, especially when associated with relatively preserved performance. Here we test the hypothesis of an alternative form of compensation, between different neuromodulator systems. 135 patients with Parkinson's Disease (PD) completed vesicular monoamine transporter type2 (VMAT2) and acetylcholinesterase PET scanning to assess the integrity of nigrostriatal dopaminergic, thalamic cholinergic, and cortical cholinergic pathways, and a behavioral test (Stroop + task-switching) that puts high demands on conflict processing, an important aspect of executive control. Supporting the compensatory hypothesis, regression models controlling for age and other covariates revealed an interaction between caudate dopamine and cortical cholinergic integrity: Cortical cholinergic integrity was a stronger predictor of conflict processing in patients with relatively low caudate dopaminergic function. These results suggest that although frontostriatal dopaminergic function plays a central role in executive control, cholinergic systems may also make an important contribution. The present results suggest potential pathways for remediation, and that the appropriate interventions for each patient may depend on their particular profile of decline. Furthermore, they help to elucidate the brain systems that underlie executive control, which may be important for understanding other disorders as well as executive function in healthy adults.
Collapse
|
45
|
Howe WM, Brooks JL, Tierney PL, Pang J, Rossi A, Young D, Dlugolenski K, Guillmette E, Roy M, Hales K, Kozak R. α5 nAChR modulation of the prefrontal cortex makes attention resilient. Brain Struct Funct 2018; 223:1035-1047. [DOI: 10.1007/s00429-017-1601-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 12/26/2017] [Indexed: 12/21/2022]
|
46
|
Barnes SA, Young JW, Markou A, Adham N, Gyertyán I, Kiss B. The Effects of Cariprazine and Aripiprazole on PCP-Induced Deficits on Attention Assessed in the 5-Choice Serial Reaction Time Task. Psychopharmacology (Berl) 2018; 235:1403-1414. [PMID: 29473089 PMCID: PMC5920008 DOI: 10.1007/s00213-018-4857-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 02/01/2018] [Indexed: 01/29/2023]
Abstract
RATIONALE Attentional processing deficits are a core feature of schizophrenia, likely contributing to the persistent functional and occupational disability observed in patients with schizophrenia. The pathophysiology of schizophrenia is hypothesized to involve dysregulation of NMDA receptor-mediated glutamate transmission, contributing to disruptions in normal dopamine transmission. Preclinical investigations often use NMDA receptor antagonists, such as phencyclidine (PCP), to induce cognitive disruptions relevant to schizophrenia. We sought to test the ability of partial dopamine D2/D3 agonists, cariprazine and aripiprazole, to attenuate PCP-induced deficits in attentional performance. OBJECTIVES The objective of this study is to determine whether systemic administration of cariprazine or aripiprazole attenuated 5-choice serial reaction time task (5-CSRTT) deficits induced by repeated exposure to PCP. METHODS We utilized a repeated PCP-treatment regimen (2 mg/kg, subcutaneous [s.c.], once daily for 5 days) in rats to induce deficits in the 5-CSRTT. Rats were pre-treated with cariprazine (0.03, 0.1, or 0.3 mg/kg, oral [p.o.]) or aripiprazole (1, 3, or 10 mg/kg, p.o.) to determine whether they prevented PCP-induced deficits in the 5-CSRTT performance. RESULTS PCP treatment increased inappropriate responding in the 5-CSRTT, elevating incorrect, premature, and timeout responses. Cariprazine treatment reduced PCP-induced increases in inappropriate responding. However, at higher doses, cariprazine produced non-specific response suppression, confounding interpretation of the attenuated PCP-induced deficits. Aripiprazole treatment also attenuated PCP-induced deficits; however, unlike cariprazine treatment, aripiprazole reduced correct responding and increased omissions. CONCLUSIONS Cariprazine and aripiprazole both demonstrated potential in attenuating PCP-induced deficits in the 5-CSRTT performance. While both compounds produced non-specific response suppression, these effects were absent when 0.03 mg/kg cariprazine was administered.
Collapse
Affiliation(s)
- Samuel A. Barnes
- Department of Psychiatry, School of Medicine, University of California San Diego, 9500 Gilman Drive, M/C 0603, Room BSB2202, La Jolla, CA 92093 USA
| | - Jared W. Young
- Department of Psychiatry, School of Medicine, University of California San Diego, 9500 Gilman Drive, M/C 0603, Room BSB2202, La Jolla, CA 92093 USA
| | - Athina Markou
- Department of Psychiatry, School of Medicine, University of California San Diego, 9500 Gilman Drive, M/C 0603, Room BSB2202, La Jolla, CA 92093 USA
| | | | - István Gyertyán
- MTA-SE NAP B Cognitive Translational Behavioral Pharmacology Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary ,Institute of Cognitive Neuroscience and Psychology, Research Center for Natural Sciences, MTA, Budapest, Hungary
| | - Béla Kiss
- Gedeon Richter Plc, Budapest, Hungary
| |
Collapse
|
47
|
The cortical cholinergic system contributes to the top-down control of distraction: Evidence from patients with Parkinson's disease. Neuroimage 2017; 190:107-117. [PMID: 29277400 DOI: 10.1016/j.neuroimage.2017.12.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 10/27/2017] [Accepted: 12/05/2017] [Indexed: 12/21/2022] Open
Abstract
Past animal and human studies robustly report that the cholinergic system plays an essential role in both top-down and bottom-up attentional control, as well as other aspects of cognition (see Ballinger et al., 2016 for a recent review). However, current understanding of how two major cholinergic pathways in the human brain (the basal forebrain-cortical pathway, and the brainstem pedunculopontine-thalamic pathway) contribute to specific cognitive functions remains somewhat limited. To address this issue, we examine how individual variation in the integrity of striatal-dopaminergic, thalamic-cholinergic, and cortical-cholinergic pathways (measured using Positron Emission Tomography in patients with Parkinson's disease) was associated with individual variation in the initial goal-directed focus of attention, the ability to sustain attentional performance over time, and the ability to avoid distraction from a highly-salient, but irrelevant, environmental stimulus. Compared to healthy controls, PD patients performed similarly in the precision of attention-dependent judgments of duration, and in sustaining attention over time. However, PD patients' performance was strikingly more impaired by the distractor. More critically, regression analyses indicated that only cortical-cholinergic integrity, not thalamic-cholinergic or striatal-dopaminergic integrity, made a specific contribution to the ability to resist distraction after controlling for the other variables. These results demonstrate that the basal forebrain cortical cholinergic system serves a specific role in executing top-down control to resist external distraction.
Collapse
|
48
|
Pitchers KK, Kane LF, Kim Y, Robinson TE, Sarter M. 'Hot' vs. 'cold' behavioural-cognitive styles: motivational-dopaminergic vs. cognitive-cholinergic processing of a Pavlovian cocaine cue in sign- and goal-tracking rats. Eur J Neurosci 2017; 46:2768-2781. [PMID: 29044780 DOI: 10.1111/ejn.13741] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 09/08/2017] [Accepted: 10/10/2017] [Indexed: 12/15/2022]
Abstract
Discrete Pavlovian reward cues acquire more potent incentive motivational properties (incentive salience) in some animals (sign-trackers; STs) compared to others (goal-trackers; GTs). Conversely, GTs appear to be better than STs in processing more complex contextual cues, perhaps reflecting their relatively greater bias for goal-directed cue processing. Here, we investigated the activity of two major prefrontal neuromodulatory input systems, dopamine (DA) and acetylcholine (ACh), in response to a discrete Pavlovian cue that was previously paired with cocaine administration in STs and GTs. Rats underwent Pavlovian training in which light cue presentations were either paired or unpaired with an intravenous cocaine infusion. Following a 10-day abstinence period, prefrontal dialysates were collected in STs and GTs during cue presentations in the absence of cocaine. In STs, the cue previously paired with cocaine significantly increased prefrontal DA levels. DA levels remained elevated over baseline across multiple cue presentation blocks, and DA levels and approaches to the cue were significantly correlated. In STs, ACh levels were unaffected by cue presentations. In contrast, in GTs, presentations of the cocaine cue increased prefrontal ACh, but not DA, levels. GTs oriented towards the cue at rates similar to STs, but they did not approach it and elevated ACh levels did not correlate with conditioned orientation. The results indicate a double dissociation between the role of prefrontal DA and ACh in STs and GTs, and suggest that these phenotypes will be useful for studying the role of neuromodulator systems in mediating opponent behavioural-cognitive styles.
Collapse
Affiliation(s)
- Kyle K Pitchers
- Department of Psychology and Neuroscience Program, University of Michigan, 530 Church Street, 4030 East Hall, Ann Arbor, MI, 48109, USA
| | - Louisa F Kane
- Department of Psychology and Neuroscience Program, University of Michigan, 530 Church Street, 4030 East Hall, Ann Arbor, MI, 48109, USA
| | - Youngsoo Kim
- Department of Psychology and Neuroscience Program, University of Michigan, 530 Church Street, 4030 East Hall, Ann Arbor, MI, 48109, USA
| | - Terry E Robinson
- Department of Psychology and Neuroscience Program, University of Michigan, 530 Church Street, 4030 East Hall, Ann Arbor, MI, 48109, USA
| | - Martin Sarter
- Department of Psychology and Neuroscience Program, University of Michigan, 530 Church Street, 4030 East Hall, Ann Arbor, MI, 48109, USA
| |
Collapse
|
49
|
Bangasser DA, Wicks B, Waxler DE, Eck SR. Touchscreen Sustained Attention Task (SAT) for Rats. J Vis Exp 2017. [PMID: 28994786 DOI: 10.3791/56219] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Sustained attention is the ability to monitor intermittent and unpredictable events over a prolonged period of time. This attentional process subserves other aspects of cognition and is disrupted in certain neurodevelopmental, neuropsychiatric, and neurodegenerative disorders. Thus, it is clinically important to identify mechanisms that impair and improve sustained attention. Such mechanisms are often first discovered using rodent models. Therefore, several behavior procedures for testing aspects of sustained attention have been developed for rodents. One, first described by McGaughy and Sarter (1995), called the sustained attention task (SAT), trains rats to distinguish between signal (i.e., brief light presentation) and non-signal trials. The signals are short and thus require careful attention to be perceived. Attentional demands can be increased further by introducing a distractor (e.g., flashing houselight). We have modified this task for touchscreen operant chambers, which are configured with a touchscreen on one wall that can present stimuli and record responses. Here we detail our protocol for SAT in touchscreen chambers. Additionally, we present standard measures of performance in male and female Sprague-Dawley rats. Comparable performance on this task in both sexes highlights its use for attention studies, especially as more researchers are including female rodents in their experimental design. Moreover, the easy implementation of SAT for the increasingly popular touchscreen chambers increases its utility.
Collapse
Affiliation(s)
- Debra A Bangasser
- Psychology Department, Temple University; Neuroscience Program, Temple University;
| | | | | | | |
Collapse
|
50
|
Yegla B, Parikh V. Developmental suppression of forebrain trkA receptors and attentional capacities in aging rats: A longitudinal study. Behav Brain Res 2017; 335:111-121. [PMID: 28803853 DOI: 10.1016/j.bbr.2017.08.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 07/20/2017] [Accepted: 08/07/2017] [Indexed: 12/16/2022]
Abstract
Basal forebrain (BF) cholinergic neurons innervating the cortex regulate cognitive, specifically attentional, processes. Cholinergic atrophy and cognitive decline occur at an accelerated pace in age-related neurodegenerative disorders such as Alzheimer's disease; however, the mechanism responsible for this phenomenon remains unknown. Here we hypothesized that developmental suppression of nerve growth factor signaling, mediated via tropomyosin-related kinase A (trkA) receptors, would escalate age-related attentional vulnerability. An adeno-associated viral vector expressing trkA shRNA (AAV-trkA) was utilized to knockdown trkA receptors in postnatal rats at an ontogenetic time point when cortical cholinergic inputs mature, and the impact of this manipulation on performance was assessed in animals maintained on an operant attention task throughout adulthood and until old (24 months) age. A within-subject comparison across different time points illustrated a gradual age-related decline in attentional capacities. However, the performance under baseline and distracted conditions did not differ between the AAV-trkA-infused and animals infused with a vector expressing shRNA against the control protein luciferase at any time point. Additional analysis of cholinergic measures conducted at 24 months showed that the capacity of cholinergic terminals to release acetylcholine following a depolarizing stimulus, cortical cholinergic fiber density and BF cholinergic cell size remained comparable between the two groups. Contrary to our predictions, these data indicate that developmental BF trkA disruption does not impact age-related changes in attentional functions. It is possible that life-long engagement in cognitive activity might have potentially rescued the developmental insults on the cholinergic system, thus preserving attentional capacities in advanced age.
Collapse
Affiliation(s)
- Brittney Yegla
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19122, United States
| | - Vinay Parikh
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19122, United States.
| |
Collapse
|