1
|
Takahashi I. Importance of Heparan Sulfate Proteoglycans in Pancreatic Islets and β-Cells. Int J Mol Sci 2022; 23:12082. [PMID: 36292936 PMCID: PMC9603760 DOI: 10.3390/ijms232012082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 09/20/2022] [Indexed: 12/15/2022] Open
Abstract
β-cells in the islets of Langerhans of the pancreas secrete insulin in response to the glucose concentration in the blood. When these pancreatic β-cells are damaged, diabetes develops through glucose intolerance caused by insufficient insulin secretion. High molecular weight polysaccharides, such as heparin and heparan sulfate (HS) proteoglycans, and HS-degrading enzymes, such as heparinase, participate in the protection, maintenance, and enhancement of the functions of pancreatic islets and β-cells, and the demand for studies on glycobiology within the field of diabetes research has increased. This review introduces the roles of complex glycoconjugates containing high molecular weight polysaccharides and their degrading enzymes in pancreatic islets and β-cells, including those obtained in studies conducted by us earlier. In addition, from the perspective of glycobiology, this study proposes the possibility of application to diabetes medicine.
Collapse
Affiliation(s)
- Iwao Takahashi
- Division of Molecular and Cellular Pharmacology, Department of Pathophysiology and Pharmacology, School of Pharmacy, Iwate Medical University, 1-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Morioka 028-3694, Iwate, Japan
| |
Collapse
|
2
|
Igreja C, Sommer RJ. The Role of Sulfation in Nematode Development and Phenotypic Plasticity. Front Mol Biosci 2022; 9:838148. [PMID: 35223994 PMCID: PMC8869759 DOI: 10.3389/fmolb.2022.838148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/24/2022] [Indexed: 12/25/2022] Open
Abstract
Sulfation is poorly understood in most invertebrates and a potential role of sulfation in the regulation of developmental and physiological processes of these organisms remains unclear. Also, animal model system approaches did not identify many sulfation-associated mechanisms, whereas phosphorylation and ubiquitination are regularly found in unbiased genetic and pharmacological studies. However, recent work in the two nematodes Caenorhabditis elegans and Pristionchus pacificus found a role of sulfatases and sulfotransferases in the regulation of development and phenotypic plasticity. Here, we summarize the current knowledge about the role of sulfation in nematodes and highlight future research opportunities made possible by the advanced experimental toolkit available in these organisms.
Collapse
Affiliation(s)
- Catia Igreja
- *Correspondence: Catia Igreja, ; Ralf J. Sommer,
| | | |
Collapse
|
3
|
Patel VN, Pineda DL, Berenstein E, Hauser BR, Choi S, Prochazkova M, Zheng C, Goldsmith CM, van Kuppevelt TH, Kulkarni A, Song Y, Linhardt RJ, Chibly AM, Hoffman MP. Loss of Hs3st3a1 or Hs3st3b1 enzymes alters heparan sulfate to reduce epithelial morphogenesis and adult salivary gland function. Matrix Biol 2021; 103-104:37-57. [PMID: 34653670 DOI: 10.1016/j.matbio.2021.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/10/2021] [Accepted: 10/04/2021] [Indexed: 12/25/2022]
Abstract
Heparan sulfate 3-O-sulfotransferases generate highly sulfated but rare 3-O-sulfated heparan sulfate (HS) epitopes on cell surfaces and in the extracellular matrix. Previous ex vivo experiments suggested functional redundancy exists among the family of seven enzymes but that Hs3st3a1 and Hs3st3b1 sulfated HS increases epithelial FGFR signaling and morphogenesis. Single-cell RNAseq analysis of control SMGs identifies increased expression of Hs3st3a1 and Hs3st3b1 in endbud and myoepithelial cells, both of which are progenitor cells during development and regeneration. To analyze their in vivo functions, we generated both Hs3st3a1-/- and Hs3st3b1-/- single knockout mice, which are viable and fertile. Salivary glands from both mice have impaired fetal epithelial morphogenesis when cultured with FGF10. Hs3st3b1-/- mice have reduced intact SMG branching morphogenesis and reduced 3-O-sulfated HS in the basement membrane. Analysis of HS biosynthetic enzyme transcription highlighted some compensatory changes in sulfotransferases expression early in development. The overall glycosaminoglycan composition of adult control and KO mice were similar, although HS disaccharide analysis showed increased N- and non-sulfated disaccharides in Hs3st3a1-/- HS. Analysis of adult KO gland function revealed normal secretory innervation, but without stimulation there was an increase in frequency of drinking behavior in both KO mice, suggesting basal salivary hypofunction, possibly due to myoepithelial dysfunction. Understanding how 3-O-sulfation regulates myoepithelial progenitor function will be important to manipulate HS-binding growth factors to enhance tissue function and regeneration.
Collapse
Affiliation(s)
- Vaishali N Patel
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dallas L Pineda
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Elsa Berenstein
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Belinda R Hauser
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sophie Choi
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michaela Prochazkova
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Changyu Zheng
- Translational Research Core, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Corinne M Goldsmith
- Translational Research Core, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Toin H van Kuppevelt
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud university medical Centre, Nijmegen, Netherlands
| | - Ashok Kulkarni
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yuefan Song
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Robert J Linhardt
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Alejandro M Chibly
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Matthew P Hoffman
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
4
|
Takahashi I. Role of Heparan Sulfate Proteoglycans in Insulin-producing Pancreatic β-cell Function. TRENDS GLYCOSCI GLYC 2021. [DOI: 10.4052/tigg.2028.1j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Iwao Takahashi
- Department of Medical Biochemistry, School of Pharmacy, Iwate Medical University
| |
Collapse
|
5
|
Takahashi I. Role of Heparan Sulfate Proteoglycans in Insulin-producing Pancreatic β-cell Function. TRENDS GLYCOSCI GLYC 2021. [DOI: 10.4052/tigg.2028.1e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Iwao Takahashi
- Department of Medical Biochemistry, School of Pharmacy, Iwate Medical University
| |
Collapse
|
6
|
Cizeron M, Granger L, Bülow HE, Bessereau JL. Specific heparan sulfate modifications stabilize the synaptic organizer MADD-4/Punctin at C. elegans neuromuscular junctions. Genetics 2021; 218:6275221. [PMID: 33983408 DOI: 10.1093/genetics/iyab073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/16/2021] [Indexed: 01/01/2023] Open
Abstract
Heparan sulfate proteoglycans contribute to the structural organization of various neurochemical synapses. Depending on the system, their role involves either the core protein or the glycosaminoglycan chains. These linear sugar chains are extensively modified by heparan sulfate modification enzymes, resulting in highly diverse molecules. Specific modifications of glycosaminoglycan chains may thus contribute to a sugar code involved in synapse specificity. Caenorhabditis elegans is particularly useful to address this question because of the low level of genomic redundancy of these enzymes, as opposed to mammals. Here, we systematically mutated the genes encoding heparan sulfate modification enzymes in C. elegans and analyzed their impact on excitatory and inhibitory neuromuscular junctions. Using single chain antibodies that recognize different heparan sulfate modification patterns, we show in vivo that these two heparan sulfate epitopes are carried by the SDN-1 core protein, the unique C. elegans syndecan orthologue, at neuromuscular junctions. Intriguingly, these antibodies differentially bind to excitatory and inhibitory synapses, implying unique heparan sulfate modification patterns at different neuromuscular junctions. Moreover, while most enzymes are individually dispensable for proper organization of neuromuscular junctions, we show that 3-O-sulfation of SDN-1 is required to maintain wild-type levels of the extracellular matrix protein MADD-4/Punctin, a central synaptic organizer that defines the identity of excitatory and inhibitory synaptic domains at the plasma membrane of muscle cells.
Collapse
Affiliation(s)
- Mélissa Cizeron
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U 1217, Institut NeuroMyoGène, 69008 Lyon, France
| | - Laure Granger
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U 1217, Institut NeuroMyoGène, 69008 Lyon, France
| | - Hannes E Bülow
- Department of Genetics & Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Jean-Louis Bessereau
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U 1217, Institut NeuroMyoGène, 69008 Lyon, France
| |
Collapse
|
7
|
Abstract
Establishment of neural circuits requires reproducible and precise interactions between growing axons, dendrites and their tissue environment. Cell adhesion molecules and guidance factors are involved in the process, but how specificity is achieved remains poorly understood. Glycans are the third major class of biopolymers besides nucleic acids and proteins, and are usually covalently linked to proteins to form glycoconjugates. Common to most glycans is an extraordinary level of molecular diversity, making them attractive candidates to contribute specificity during neural development. Indeed, many genes important for neural development encode glycoproteins, or enzymes involved in synthesizing or modifying glycans. Glycoconjugates are classified based on both the types of glycans and type of attachment that link them to proteins. Here I discuss progress in understanding the function of glycans, glycan modifications and glycoconjugates during neural development in Caenorhabditis elegans. I will also highlight relevance to human disease and known roles of glycoconjugates in regeneration.
Collapse
Affiliation(s)
- Hannes E Bülow
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, United States; Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States.
| |
Collapse
|
8
|
A complement factor H homolog, heparan sulfation, and syndecan maintain inversin compartment boundaries in C. elegans cilia. Proc Natl Acad Sci U S A 2021; 118:2016698118. [PMID: 33859044 DOI: 10.1073/pnas.2016698118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Age-related macular degeneration (AMD) is a leading cause of blindness among the elderly. Canonical disease models suggest that defective interactions between complement factor H (CFH) and cell surface heparan sulfate (HS) result in increased alternative complement pathway activity, cytolytic damage, and tissue inflammation in the retina. Although these factors are thought to contribute to increased disease risk, multiple studies indicate that noncanonical mechanisms that result from defective CFH and HS interaction may contribute to the progression of AMD as well. A total of 60 ciliated sensory neurons in the nematode Caenorhabditis elegans detect chemical, olfactory, mechanical, and thermal cues in the environment. Here, we find that a C. elegans CFH homolog localizes on CEP mechanosensory neuron cilia where it has noncanonical roles in maintaining inversin/NPHP-2 within its namesake proximal compartment and preventing inversin/NPHP-2 accumulation in distal cilia compartments in aging adults. CFH localization and maintenance of inversin/NPHP-2 compartment integrity depend on the HS 3-O sulfotransferase HST-3.1 and the transmembrane proteoglycan syndecan/SDN-1. Defective inversin/NPHP-2 localization in mouse and human photoreceptors with CFH mutations indicates that these functions and interactions may be conserved in vertebrate sensory neurons, suggesting that previously unappreciated defects in cilia structure may contribute to the progressive photoreceptor dysfunction associated with CFH loss-of-function mutations in some AMD patients.
Collapse
|
9
|
Mochizuki H, Futatsumori H, Suzuki E, Kimata K. A quantitative method to detect non-antithrombin-binding 3-O-sulfated units in heparan sulfate. J Biol Chem 2021; 296:100115. [PMID: 33234593 PMCID: PMC7948761 DOI: 10.1074/jbc.ra120.015864] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/18/2020] [Accepted: 11/24/2020] [Indexed: 11/22/2022] Open
Abstract
Heparan sulfate is synthesized by most animal cells and interacts with numerous proteins via specific sulfation motifs to regulate various physiological processes. Various 3-O-sulfated motifs are considered to be key in controlling the binding specificities to the functional proteins. One such motif synthesized by 3-O-sulfotransferase-1 (3OST-1) serves as a binding site for antithrombin (AT) and has been thoroughly studied because of its pharmacological importance. However, the physiological roles of 3-O-sulfates produced by other 3OST isoforms, which do not bind AT, remain obscure, in part due to the lack of a standard method to analyze this rare modification. This study aims to establish a method for quantifying 3-O-sulfated components of heparan sulfate, focusing on non-AT-binding units. We previously examined the reaction products of human 3OST isoforms and identified five 3-O-sulfated components, including three non-AT-binding disaccharides and two AT-binding tetrasaccharides, as digestion products of heparin lyases. In this study, we prepared these five components as a standard saccharide for HPLC analysis. Together with eight non-3-O-sulfated disaccharides, a standard mixture of 13 units was prepared. Using reverse-phase ion-pair HPLC with a postcolumn fluorescent labeling system, the separation conditions were optimized to quantify the 13 units. Finally, we analyzed the compositional changes of 3-O-sulfated units in heparan sulfate from P19 cells before and after neuronal differentiation. We successfully detected the 3-O-sulfated units specifically expressed in the differentiated neurons. This is the first report that shows the quantification of three non-AT-binding 3-O-sulfated units and establishes a new approach to explore the physiological functions of 3-O-sulfate.
Collapse
Affiliation(s)
- Hideo Mochizuki
- Central Research Laboratories, Seikagaku Corporation, Higashiyamato, Tokyo, Japan.
| | - Hideyuki Futatsumori
- Central Research Laboratories, Seikagaku Corporation, Higashiyamato, Tokyo, Japan
| | - Eriko Suzuki
- Central Research Laboratories, Seikagaku Corporation, Higashiyamato, Tokyo, Japan
| | - Koji Kimata
- Multidisciplinary Pain Center, Aichi Medical University, Nagakute, Aichi, Japan
| |
Collapse
|
10
|
Alzheimer’s Disease Genetics: Review of Novel Loci Associated with Disease. CURRENT GENETIC MEDICINE REPORTS 2020. [DOI: 10.1007/s40142-020-00182-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
11
|
Gesteira TF, Coulson-Thomas VJ. Structural basis of oligosaccharide processing by glycosaminoglycan sulfotransferases. Glycobiology 2019; 28:885-897. [PMID: 29878110 DOI: 10.1093/glycob/cwy055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 06/06/2018] [Indexed: 02/04/2023] Open
Abstract
Heparan sulfate (HS) is a sulfated polysaccharide that plays a key role in morphogenesis, physiology and pathogenesis. The biosynthesis of HS takes place in the Golgi apparatus by a group of enzymes that polymerize, epimerize and sulfate the sugar chain. This biosynthetic process introduces varying degrees of sulfate substitution, which are tightly regulated and directly dictate binding specificity to different cytokines, morphogens and growth factors. Here, we report the use of molecular dynamics simulations to investigate the dynamics of substrate recognition of two glycosaminoglycan (GAG) sulfotransferases, N-deacetylase-N-sulfotransferase and 2-O-sulfotransferase to the HS chain during the biosynthetic process. We performed multiple simulations of the binding of the sulfotransferase domains to both the HS oligosaccharide substrate and sulfate donor, 3'-phosphoadenosine-5'-phosphosulfate. Analysis of extended simulations provide detailed and useful insights into the atomic interactions that are at work during oligosaccharide processing. The fast information matching method was used to detect the enzyme global dynamics and to predict the pairwise contact of residues responsible for GAG-enzyme binding and unbinding. The correlation between HS displacement and the location of the modified GAG chain were calculated, indicating a possible route for HS and heparin during sulfotransferase processing. Our data also show sulfotransferases contain a conserved interspaced positively charged amino acid residues that form a patch which controls the protein-GAG binding equilibrium. Together, our findings provide further understanding on the fine-tuned complex mechanism of GAG biosynthesis. Our findings can also be extrapolated to other systems for calculating rates of protein-GAG binding.
Collapse
Affiliation(s)
- Tarsis F Gesteira
- College of Optometry, University of Houston, 4901 Calhoun Rd, Houston, TX, USA.,Department of Biochemistry, Universidade Federal de São Paulo, Rua Três de Maio,100 - 6o andar, 04044-020 São Paulo, SP, Brazil
| | | |
Collapse
|
12
|
Ferreras L, Moles A, Situmorang GR, El Masri R, Wilson IL, Cooke K, Thompson E, Kusche-Gullberg M, Vivès RR, Sheerin NS, Ali S. Heparan sulfate in chronic kidney diseases: Exploring the role of 3-O-sulfation. Biochim Biophys Acta Gen Subj 2019; 1863:839-848. [PMID: 30794825 DOI: 10.1016/j.bbagen.2019.02.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 02/07/2019] [Accepted: 02/16/2019] [Indexed: 01/03/2023]
Abstract
One of the main feature of chronic kidney disease is the development of renal fibrosis. Heparan Sulfate (HS) is involved in disease development by modifying the function of growth factors and cytokines and creating chemokine gradients. In this context, we aimed to understand the function of HS sulfation in renal fibrosis. Using a mouse model of renal fibrosis, we found that total HS 2-O-sulfation was increased in damaged kidneys, whilst, tubular staining of HS 3-O-sulfation was decreased. The expression of HS modifying enzymes significantly correlated with the development of fibrosis with HS3ST1 demonstrating the strongest correlation. The pro-fibrotic factors TGFβ1 and TGFβ2/IL1β significantly downregulated HS3ST1 expression in both renal epithelial cells and renal fibroblasts. To determine the implication of HS3ST1 in growth factor binding and signalling, we generated an in vitro model of renal epithelial cells overexpressing HS3ST1 (HKC8-HS3ST1). Heparin Binding EGF like growth factor (HB-EGF) induced rapid, transient STAT3 phosphorylation in control HKC8 cells. In contrast, a prolonged response was demonstrated in HKC8-HS3ST1 cells. Finally, we showed that both HS 3-O-sulfation and HB-EGF tubular staining were decreased with the development of fibrosis. Taken together, these data suggest that HS 3-O-sulfation is modified in fibrosis and highlight HS3ST1 as an attractive biomarker of fibrosis progression with a potential role in HB-EGF signalling.
Collapse
Affiliation(s)
- Laura Ferreras
- Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, NE2 4HH, UK
| | - Anna Moles
- Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, NE2 4HH, UK
| | - Gerhard R Situmorang
- Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, NE2 4HH, UK
| | - Rana El Masri
- Univ. Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France
| | - Imogen L Wilson
- Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, NE2 4HH, UK
| | - Katie Cooke
- Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, NE2 4HH, UK
| | - Emily Thompson
- Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, NE2 4HH, UK
| | - Marion Kusche-Gullberg
- University of Bergen, Department of Biomedicine, Jonas Lies vei 91, N-5009 Bergen, Norway
| | | | - Neil S Sheerin
- Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, NE2 4HH, UK; Newcastle upon Tyne Hospitals, NHS Foundation Trust, NIHR Newcastle Biomedical Research Centre, United Kingdom
| | - Simi Ali
- Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, NE2 4HH, UK.
| |
Collapse
|
13
|
Wang J, Yin Y, Lau S, Sankaran J, Rothenberg E, Wohland T, Meier-Schellersheim M, Knaut H. Anosmin1 Shuttles Fgf to Facilitate Its Diffusion, Increase Its Local Concentration, and Induce Sensory Organs. Dev Cell 2018; 46:751-766.e12. [PMID: 30122631 DOI: 10.1016/j.devcel.2018.07.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 05/26/2018] [Accepted: 07/18/2018] [Indexed: 02/08/2023]
Abstract
Growth factors induce and pattern sensory organs, but how their distribution is regulated by the extracellular matrix (ECM) is largely unclear. To address this question, we analyzed the diffusion behavior of Fgf10 molecules during sensory organ formation in the zebrafish posterior lateral line primordium. In this tissue, secreted Fgf10 induces organ formation at a distance from its source. We find that most Fgf10 molecules are highly diffusive and move rapidly through the ECM. We identify Anosmin1, which when mutated in humans causes Kallmann Syndrome, as an ECM protein that binds to Fgf10 and facilitates its diffusivity by increasing the pool of fast-moving Fgf10 molecules. In the absence of Anosmin1, Fgf10 levels are reduced and organ formation is impaired. Global overexpression of Anosmin1 slows the fast-moving Fgf10 molecules and results in Fgf10 dispersal. These results suggest that Anosmin1 liberates ECM-bound Fgf10 and shuttles it to increase its signaling range.
Collapse
Affiliation(s)
- John Wang
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Yandong Yin
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Stephanie Lau
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Jagadish Sankaran
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Eli Rothenberg
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Thorsten Wohland
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Martin Meier-Schellersheim
- Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Holger Knaut
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA.
| |
Collapse
|
14
|
Townley RA, Bülow HE. Deciphering functional glycosaminoglycan motifs in development. Curr Opin Struct Biol 2018; 50:144-154. [PMID: 29579579 PMCID: PMC6078790 DOI: 10.1016/j.sbi.2018.03.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 03/07/2018] [Accepted: 03/08/2018] [Indexed: 01/12/2023]
Abstract
Glycosaminoglycans (GAGs) such as heparan sulfate, chondroitin/dermatan sulfate, and keratan sulfate are linear glycans, which when attached to protein backbones form proteoglycans. GAGs are essential components of the extracellular space in metazoans. Extensive modifications of the glycans such as sulfation, deacetylation and epimerization create structural GAG motifs. These motifs regulate protein-protein interactions and are thereby repsonsible for many of the essential functions of GAGs. This review focusses on recent genetic approaches to characterize GAG motifs and their function in defined signaling pathways during development. We discuss a coding approach for GAGs that would enable computational analyses of GAG sequences such as alignments and the computation of position weight matrices to describe GAG motifs.
Collapse
Affiliation(s)
- Robert A Townley
- Department of Biological Sciences, Columbia University, New York, NY 10027, United States
| | - Hannes E Bülow
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, United States; Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, United States.
| |
Collapse
|
15
|
Synaptogenesis Is Modulated by Heparan Sulfate in Caenorhabditis elegans. Genetics 2018; 209:195-208. [PMID: 29559501 PMCID: PMC5937176 DOI: 10.1534/genetics.118.300837] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 03/06/2018] [Indexed: 01/06/2023] Open
Abstract
The nervous system regulates complex behaviors through a network of neurons interconnected by synapses. How specific synaptic connections are genetically determined is still unclear. Male mating is the most complex behavior in Caenorhabditis elegans It is composed of sequential steps that are governed by > 3000 chemical connections. Here, we show that heparan sulfates (HS) play a role in the formation and function of the male neural network. HS, sulfated in position 3 by the HS modification enzyme HST-3.1/HS 3-O-sulfotransferase and attached to the HS proteoglycan glypicans LON-2/glypican and GPN-1/glypican, functions cell-autonomously and nonautonomously for response to hermaphrodite contact during mating. Loss of 3-O sulfation resulted in the presynaptic accumulation of RAB-3, a molecule that localizes to synaptic vesicles, and disrupted the formation of synapses in a component of the mating circuits. We also show that the neural cell adhesion protein NRX-1/neurexin promotes and the neural cell adhesion protein NLG-1/neuroligin inhibits the formation of the same set of synapses in a parallel pathway. Thus, neural cell adhesion proteins and extracellular matrix components act together in the formation of synaptic connections.
Collapse
|
16
|
Saied-Santiago K, Bülow HE. Diverse roles for glycosaminoglycans in neural patterning. Dev Dyn 2018; 247:54-74. [PMID: 28736980 PMCID: PMC5866094 DOI: 10.1002/dvdy.24555] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 07/13/2017] [Accepted: 07/17/2017] [Indexed: 01/11/2023] Open
Abstract
The nervous system coordinates the functions of most multicellular organisms and their response to the surrounding environment. Its development involves concerted cellular interactions, including migration, axon guidance, and synapse formation. These processes depend on the molecular constituents and structure of the extracellular matrices (ECM). An essential component of ECMs are proteoglycans, i.e., proteins containing unbranched glycan chains known as glycosaminoglycans (GAGs). A defining characteristic of GAGs is their enormous molecular diversity, created by extensive modifications of the glycans during their biosynthesis. GAGs are widely expressed, and their loss can lead to catastrophic neuronal defects. Despite their importance, we are just beginning to understand the function and mechanisms of GAGs in neuronal development. In this review, we discuss recent evidence suggesting GAGs have specific roles in neuronal patterning and synaptogenesis. We examine the function played by the complex modifications present on GAG glycans and their roles in regulating different aspects of neuronal patterning. Moreover, the review considers the function of proteoglycan core proteins in these processes, stressing their likely role as co-receptors of different signaling pathways in a redundant and context-dependent manner. We conclude by discussing challenges and future directions toward a better understanding of these fascinating molecules during neuronal development. Developmental Dynamics 247:54-74, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Hannes E. Bülow
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, 10461
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, 10461
| |
Collapse
|
17
|
Wang Z, Hsieh PH, Xu Y, Thieker D, Chai EJE, Xie S, Cooley B, Woods RJ, Chi L, Liu J. Synthesis of 3-O-Sulfated Oligosaccharides to Understand the Relationship between Structures and Functions of Heparan Sulfate. J Am Chem Soc 2017; 139:5249-5256. [PMID: 28340300 PMCID: PMC5624809 DOI: 10.1021/jacs.7b01923] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The sulfation at the 3-OH position of glucosamine is an important modification in forming structural domains for heparan sulfate to enable its biological functions. Seven 3-O-sulfotransferase isoforms in the human genome are involved in the biosynthesis of 3-O-sulfated heparan sulfate. As a rare modification present in heparan sulfate, the availability of 3-O-sulfated oligosaccharides is very limited. Here, we report the use of a chemoenzymatic synthetic approach to synthesize six 3-O-sulfated oligosaccharides, including three hexasaccharides and three octasaccharides. The synthesis was achieved by rearranging the enzymatic modification sequence to accommodate the substrate specificity of 3-O-sulfotransferase 3. We studied the impact of 3-O-sulfation on the conformation of the pyranose ring of 2-O-sulfated iduronic acid using NMR, and on the correlation between ring conformation and anticoagulant activity. We identified a novel octasaccharide that interacts with antithrombin and displays anti factor Xa activity. Interestingly, the octasaccharide displays a faster clearance rate than fondaparinux, an FDA-approved pentasaccharide drug, in a rat model, making this octasaccharide a potential short-acting anticoagulant drug candidate that could reduce bleeding risk. Having access to a set of critically important 3-O-sulfated oligosaccharides offers the potential to develop new heparan sulfate-based therapeutics.
Collapse
Affiliation(s)
- Zhangjie Wang
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina , Chapel Hill, North Carolina 27599, United States
- National Glycoengineering Research Center, Shandong University , Jinan 250100, China
| | - Po-Hung Hsieh
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina , Chapel Hill, North Carolina 27599, United States
| | - Yongmei Xu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina , Chapel Hill, North Carolina 27599, United States
| | - David Thieker
- Complex Carbohydrate Research Center, University of Georgia , Athens, Georgia 30602, United States
| | - Evangeline Juan En Chai
- School of Pharmacy, University College London , 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Shaoshuai Xie
- National Glycoengineering Research Center, Shandong University , Jinan 250100, China
| | - Brian Cooley
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina , Chapel Hill, North Carolina 27599, United States
| | - Robert J Woods
- Complex Carbohydrate Research Center, University of Georgia , Athens, Georgia 30602, United States
| | - Lianli Chi
- National Glycoengineering Research Center, Shandong University , Jinan 250100, China
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina , Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
18
|
Blanchette CR, Thackeray A, Perrat PN, Hekimi S, Bénard CY. Functional Requirements for Heparan Sulfate Biosynthesis in Morphogenesis and Nervous System Development in C. elegans. PLoS Genet 2017; 13:e1006525. [PMID: 28068429 PMCID: PMC5221758 DOI: 10.1371/journal.pgen.1006525] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 12/06/2016] [Indexed: 12/28/2022] Open
Abstract
The regulation of cell migration is essential to animal development and physiology. Heparan sulfate proteoglycans shape the interactions of morphogens and guidance cues with their respective receptors to elicit appropriate cellular responses. Heparan sulfate proteoglycans consist of a protein core with attached heparan sulfate glycosaminoglycan chains, which are synthesized by glycosyltransferases of the exostosin (EXT) family. Abnormal HS chain synthesis results in pleiotropic consequences, including abnormal development and tumor formation. In humans, mutations in either of the exostosin genes EXT1 and EXT2 lead to osteosarcomas or multiple exostoses. Complete loss of any of the exostosin glycosyltransferases in mouse, fish, flies and worms leads to drastic morphogenetic defects and embryonic lethality. Here we identify and study previously unavailable viable hypomorphic mutations in the two C. elegans exostosin glycosyltransferases genes, rib-1 and rib-2. These partial loss-of-function mutations lead to a severe reduction of HS levels and result in profound but specific developmental defects, including abnormal cell and axonal migrations. We find that the expression pattern of the HS copolymerase is dynamic during embryonic and larval morphogenesis, and is sustained throughout life in specific cell types, consistent with HSPGs playing both developmental and post-developmental roles. Cell-type specific expression of the HS copolymerase shows that HS elongation is required in both the migrating neuron and neighboring cells to coordinate migration guidance. Our findings provide insights into general principles underlying HSPG function in development. During animal development, cells and neurons navigate long distances to reach their final target destinations. Migrating cells are guided by extracellular molecular cues, and cellular responses to these cues are regulated by heparan sulfate proteoglycans. Heparan sulfate proteoglycans are proteins with long heparan sulfate polysaccharide chains attached. Here we identify and study previously unavailable viable mutants that disrupt the elongation of the heparan sulfate chains in the nematode C. elegans. Our analysis shows that these HS-chain-elongation mutations affect the development of the nervous system as they result in misguided migrations of neurons and axons. Furthermore, we find that heparan sulfate chain elongation occurs in numerous cell types during development and that the coordinated production of heparan sulfate proteoglycans, in both the migrating cell and neighboring tissues, ensures proper migration. Our findings highlight the critical roles of heparan sulfate proteoglycans in nervous system development and the evolutionary conservation of the molecular mechanisms driving guided migrations.
Collapse
Affiliation(s)
- Cassandra R. Blanchette
- Department of Neurobiology, UMass Medical School, Worcester, Massachusetts, United States of America
| | - Andrea Thackeray
- Department of Neurobiology, UMass Medical School, Worcester, Massachusetts, United States of America
| | - Paola N. Perrat
- Department of Neurobiology, UMass Medical School, Worcester, Massachusetts, United States of America
| | | | - Claire Y. Bénard
- Department of Neurobiology, UMass Medical School, Worcester, Massachusetts, United States of America
- Department of Biological Sciences, University of Quebec at Montreal, Montreal, Canada
- * E-mail: ,
| |
Collapse
|
19
|
Thacker BE, Seamen E, Lawrence R, Parker MW, Xu Y, Liu J, Vander Kooi CW, Esko JD. Expanding the 3-O-Sulfate Proteome--Enhanced Binding of Neuropilin-1 to 3-O-Sulfated Heparan Sulfate Modulates Its Activity. ACS Chem Biol 2016; 11:971-80. [PMID: 26731579 DOI: 10.1021/acschembio.5b00897] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Binding of proteins to heparan sulfate is driven predominantly by electrostatic interactions between positively charged amino acid residues in the protein and negatively charged sulfate groups located at various positions along the polysaccharide chain. Although many heparin/heparan-sulfate-binding proteins have been described, few exhibit preferential binding for heparan sulfates containing relatively rare 3-O-sulfated glucosamine residues. To expand the "3-O-sulfate proteome," affinity matrices were created from Chinese hamster ovary (CHO) cell heparan sulfate engineered in vitro with and without 3-O-sulfate groups. Fractionation of different animal sera yielded several proteins that bound specifically to columns containing 3-O-sulfated heparan sulfate modified by two members of the heparan sulfate 3-O-sulfotransferase superfamily, Hs3st1 and Hs3st2. Neuropilin-1 was analyzed in detail because it has been implicated in angiogenesis and axon guidance. We show that 3-O-sulfation enhanced the binding of neuropilin-1 to heparan sulfate immobilized on plastic plates and to heparan sulfate present on cultured cells. Chemoenzymatically synthesized 3-O-sulfated heparan sulfate dodecamers protected neuropilin-1 from thermal denaturation and inhibited neuropilin-1-dependent, semaphorin-3a-induced growth cone collapse of neurons derived from murine dorsal root ganglia. The effect of 3-O-sulfation was cell autonomous and specific to Hs3st2 based on collapse assays of neurons derived from Hs3st1- and Hs3st2-deficient mice. Finally, 3-O-sulfated heparan sulfate enhanced the inhibition of endothelial cell sprouting by exogenous heparan sulfate. These findings demonstrate a reliable method to identify members of the 3-O-sulfate proteome and that 3-O-sulfation of heparan sulfate can modulate axonal growth cone collapse and endothelial cell sprouting.
Collapse
Affiliation(s)
| | | | | | - Matthew W. Parker
- Center
for Structural Biology, Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Yongmei Xu
- Division
of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Jian Liu
- Division
of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Craig W. Vander Kooi
- Center
for Structural Biology, Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky 40536, United States
| | | |
Collapse
|
20
|
Abstract
Heparan sulfate proteoglycans (HSPGs) have long been implicated in a wide range of cell-cell signaling and cell-matrix interactions, both in vitro and in vivo in invertebrate models. Although many of the genes that encode HSPG core proteins and the biosynthetic enzymes that generate and modify HSPG sugar chains have not yet been analyzed by genetics in vertebrates, recent studies have shown that HSPGs do indeed mediate a wide range of functions in early vertebrate development, for example during left-right patterning and in cardiovascular and neural development. Here, we provide a comprehensive overview of the various roles of HSPGs in these systems and explore the concept of an instructive heparan sulfate sugar code for modulating vertebrate development. Summary: This Review article examines the role of heparan sulfate proteoglycans in vertebrate development and explores the concept of an instructive 'sugar code' for modulating development.
Collapse
Affiliation(s)
- Fabienne E Poulain
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - H Joseph Yost
- University of Utah, Department of Neurobiology and Anatomy, Department of Pediatrics, Salt Lake City, UT 84132, USA
| |
Collapse
|
21
|
The Caenorhabditis elegans Ephrin EFN-4 Functions Non-cell Autonomously with Heparan Sulfate Proteoglycans to Promote Axon Outgrowth and Branching. Genetics 2015; 202:639-60. [PMID: 26645816 DOI: 10.1534/genetics.115.185298] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 12/02/2015] [Indexed: 01/21/2023] Open
Abstract
The Eph receptors and their cognate ephrin ligands play key roles in many aspects of nervous system development. These interactions typically occur within an individual tissue type, serving either to guide axons to their terminal targets or to define boundaries between the rhombomeres of the hindbrain. We have identified a novel role for the Caenorhabditis elegans ephrin EFN-4 in promoting primary neurite outgrowth in AIY interneurons and D-class motor neurons. Rescue experiments reveal that EFN-4 functions non-cell autonomously in the epidermis to promote primary neurite outgrowth. We also find that EFN-4 plays a role in promoting ectopic axon branching in a C. elegans model of X-linked Kallmann syndrome. In this context, EFN-4 functions non-cell autonomously in the body-wall muscle and in parallel with HS modification genes and HSPG core proteins. This is the first report of an epidermal ephrin providing a developmental cue to the nervous system.
Collapse
|
22
|
Gopal S, Søgaard P, Multhaupt HAB, Pataki C, Okina E, Xian X, Pedersen ME, Stevens T, Griesbeck O, Park PW, Pocock R, Couchman JR. Transmembrane proteoglycans control stretch-activated channels to set cytosolic calcium levels. J Cell Biol 2015; 210:1199-211. [PMID: 26391658 PMCID: PMC4586746 DOI: 10.1083/jcb.201501060] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 08/25/2015] [Indexed: 02/07/2023] Open
Abstract
Syndecans regulate members of the transient receptor potential family to control cytosolic calcium levels with impact on cell adhesion, junction formation, and neuronal guidance. Transmembrane heparan sulfate proteoglycans regulate multiple aspects of cell behavior, but the molecular basis of their signaling is unresolved. The major family of transmembrane proteoglycans is the syndecans, present in virtually all nucleated cells, but with mostly unknown functions. Here, we show that syndecans regulate transient receptor potential canonical (TRPCs) channels to control cytosolic calcium equilibria and consequent cell behavior. In fibroblasts, ligand interactions with heparan sulfate of syndecan-4 recruit cytoplasmic protein kinase C to target serine714 of TRPC7 with subsequent control of the cytoskeleton and the myofibroblast phenotype. In epidermal keratinocytes a syndecan–TRPC4 complex controls adhesion, adherens junction composition, and early differentiation in vivo and in vitro. In Caenorhabditis elegans, the TRPC orthologues TRP-1 and -2 genetically complement the loss of syndecan by suppressing neuronal guidance and locomotory defects related to increases in neuronal calcium levels. The widespread and conserved syndecan–TRPC axis therefore fine tunes cytoskeletal organization and cell behavior.
Collapse
Affiliation(s)
- Sandeep Gopal
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark Biotech Research and Innovation Center, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Pernille Søgaard
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark Biotech Research and Innovation Center, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Hinke A B Multhaupt
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark Biotech Research and Innovation Center, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Csilla Pataki
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark Biotech Research and Innovation Center, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Elena Okina
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark Biotech Research and Innovation Center, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Xiaojie Xian
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark Biotech Research and Innovation Center, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Mikael E Pedersen
- Biotech Research and Innovation Center, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Troy Stevens
- Department of Pharmacology, Center for Lung Biology, University of South Alabama, Mobile, AL 36688 Department of Medicine, Center for Lung Biology, University of South Alabama, Mobile, AL 36688
| | - Oliver Griesbeck
- Max Planck Institute of Neurobiology, 82152 Martinsried, Germany
| | - Pyong Woo Park
- Division of Newborn Medicine, Children's Hospital, Harvard Medical School, Boston, MA 02115 Division of Respiratory Diseases, Children's Hospital, Harvard Medical School, Boston, MA 02115
| | - Roger Pocock
- Biotech Research and Innovation Center, University of Copenhagen, 2200 Copenhagen, Denmark
| | - John R Couchman
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark Biotech Research and Innovation Center, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
23
|
Díaz-Balzac CA, Lázaro-Peña MI, Ramos-Ortiz GA, Bülow HE. The Adhesion Molecule KAL-1/anosmin-1 Regulates Neurite Branching through a SAX-7/L1CAM-EGL-15/FGFR Receptor Complex. Cell Rep 2015; 11:1377-84. [PMID: 26004184 PMCID: PMC4464948 DOI: 10.1016/j.celrep.2015.04.057] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 03/20/2015] [Accepted: 04/27/2015] [Indexed: 01/10/2023] Open
Abstract
Neurite branching is essential for correct assembly of neural circuits, yet it remains a poorly understood process. For example, the neural cell adhesion molecule KAL-1/anosmin-1, which is mutated in Kallmann syndrome, regulates neurite branching through mechanisms largely unknown. Here, we show that KAL-1/anosmin-1 mediates neurite branching as an autocrine co-factor with EGL-17/FGF through a receptor complex consisting of the conserved cell adhesion molecule SAX-7/L1CAM and the fibroblast growth factor receptor EGL-15/FGFR. This protein complex, which appears conserved in humans, requires the immunoglobulin (Ig) domains of SAX-7/L1CAM and the FN(III) domains of KAL-1/anosmin-1 for formation in vitro as well as function in vivo. The kinase domain of the EGL-15/FGFR is required for branching, and genetic evidence suggests that ras-mediated signaling downstream of EGL-15/FGFR is necessary to effect branching. Our studies establish a molecular pathway that regulates neurite branching during development of the nervous system.
Collapse
Affiliation(s)
- Carlos A Díaz-Balzac
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - María I Lázaro-Peña
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Gibram A Ramos-Ortiz
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Biology, University of Puerto Rico-Río Piedras, San Juan 00931, Puerto Rico
| | - Hannes E Bülow
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
24
|
Abstract
One of the most fascinating questions in the field of neurobiology is to understand how neuronal connections are properly formed. During development, neurons extend axons that are guided along defined paths by attractive and repulsive cues to reach their brain target. Most of these guidance factors are regulated by heparan sulfate proteoglycans (HSPGs), a family of cell-surface and extracellular core proteins with attached heparan sulfate (HS) glycosaminoglycans. The unique diversity and structural complexity of HS sugar chains, as well as the variety of core proteins, have been proposed to generate a complex "sugar code" essential for brain wiring. While the functions of HSPGs have been well characterized in C. elegans or Drosophila, relatively little is known about their roles in nervous system development in vertebrates. In this chapter, we describe the advantages and the different methods available to study the roles of HSPGs in axon guidance directly in vivo in zebrafish. We provide protocols for visualizing axons in vivo, including precise dye labeling and time-lapse imaging, and for disturbing the functions of HS-modifying enzymes and core proteins, including morpholino, DNA, or RNA injections.
Collapse
Affiliation(s)
- Fabienne E Poulain
- Department of Biological Sciences, University of South Carolina, Coker Life Science Building, 715 Sumter street, Columbia, SC, 29208, USA,
| |
Collapse
|
25
|
Akiyoshi S, Nomura KH, Dejima K, Murata D, Matsuda A, Kanaki N, Takaki T, Mihara H, Nagaishi T, Furukawa S, Ando KG, Yoshina S, Mitani S, Togayachi A, Suzuki Y, Shikanai T, Narimatsu H, Nomura K. RNAi screening of human glycogene orthologs in the nematode Caenorhabditis elegans and the construction of the C. elegans glycogene database. Glycobiology 2015; 25:8-20. [PMID: 25091817 PMCID: PMC4245905 DOI: 10.1093/glycob/cwu080] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 07/16/2014] [Accepted: 07/30/2014] [Indexed: 12/16/2022] Open
Abstract
In this study, we selected 181 nematode glycogenes that are orthologous to human glycogenes and examined their RNAi phenotypes. The results are deposited in the Caenorhabditis elegans Glycogene Database (CGGDB) at AIST, Tsukuba, Japan. The most prominent RNAi phenotypes observed are disruptions of cell cycle progression in germline mitosis/meiosis and in early embryonic cell mitosis. Along with the previously reported roles of chondroitin proteoglycans, glycosphingolipids and GPI-anchored proteins in cell cycle progression, we show for the first time that the inhibition of the functions of N-glycan synthesis genes (cytoplasmic alg genes) resulted in abnormal germline formation, ER stress and small body size phenotypes. The results provide additional information on the roles of glycoconjugates in the cell cycle progression mechanisms of germline and embryonic cells.
Collapse
Affiliation(s)
| | - Kazuko H Nomura
- Department of Biological Sciences, Faculty of Sciences 33, Kyushu University, Fukuoka 812-8581, Japan Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Kawaguchi Center Building, 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan
| | - Katsufumi Dejima
- Department of Biological Sciences, Faculty of Sciences 33, Kyushu University, Fukuoka 812-8581, Japan Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Kawaguchi Center Building, 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo 162-8666, Japan
| | - Daisuke Murata
- Graduate School of Systems Life Sciences, and Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Kawaguchi Center Building, 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan
| | | | - Nanako Kanaki
- Department of Biological Sciences, Faculty of Sciences 33, Kyushu University, Fukuoka 812-8581, Japan
| | - Tetsuro Takaki
- Department of Biological Sciences, Faculty of Sciences 33, Kyushu University, Fukuoka 812-8581, Japan
| | - Hiroyuki Mihara
- Department of Biological Sciences, Faculty of Sciences 33, Kyushu University, Fukuoka 812-8581, Japan
| | - Takayuki Nagaishi
- Graduate School of Systems Life Sciences, and Department of Biological Sciences, Faculty of Sciences 33, Kyushu University, Fukuoka 812-8581, Japan
| | - Shuhei Furukawa
- Department of Biological Sciences, Faculty of Sciences 33, Kyushu University, Fukuoka 812-8581, Japan
| | - Keiko-Gengyo Ando
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Kawaguchi Center Building, 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo 162-8666, Japan
| | - Sawako Yoshina
- Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo 162-8666, Japan
| | - Shohei Mitani
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Kawaguchi Center Building, 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo 162-8666, Japan
| | - Akira Togayachi
- Glycomedicine Technology Research Center (GTRC), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Japan
| | - Yoshinori Suzuki
- Glycomedicine Technology Research Center (GTRC), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Japan
| | - Toshihide Shikanai
- Glycomedicine Technology Research Center (GTRC), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Japan
| | - Hisashi Narimatsu
- Glycomedicine Technology Research Center (GTRC), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Japan
| | - Kazuya Nomura
- Department of Biological Sciences, Faculty of Sciences 33, Kyushu University, Fukuoka 812-8581, Japan Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Kawaguchi Center Building, 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
26
|
Huang Y, Mao Y, Zong C, Lin C, Boons GJ, Zaia J. Discovery of a heparan sulfate 3-O-sulfation specific peeling reaction. Anal Chem 2014; 87:592-600. [PMID: 25486437 PMCID: PMC4287833 DOI: 10.1021/ac503248k] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
![]()
Heparan sulfate (HS) 3-O-sulfation determines
the binding specificity of HS/heparin for antithrombin III and plays
a key role in herpes simplex virus (HSV) infection. However, the low
natural abundance of HS 3-O-sulfation poses a serious
challenge for functional studies other than the two cases mentioned
above. By contrast, multiple distinct isoforms of 3-O-sulfotranserases exist in mammals (up to seven isoenzymes). Here
we describe a novel peeling reaction that specifically degrades HS
chains with 3-O-sulfated glucosamine at the reducing-end.
When HS/heparin is enzymatically depolymerized for compositional analysis,
3-O-sulfated glucosamine at the reducing ends appears
to be susceptible to degradation under mildly basic conditions. We
propose a 3-O-desulfation initiated peeling reaction
mechanism based on the intermediate and side-reaction products observed.
Our discovery calls for the re-evaluation of the natural abundance
and functions of HS 3-O-sulfation by taking into
consideration the negative impact of this novel peeling reaction.
Collapse
Affiliation(s)
- Yu Huang
- Department of Biochemistry, Boston University Medical Campus , 670 Albany Street, Boston, Massachusetts 02118, United States
| | | | | | | | | | | |
Collapse
|
27
|
Patel VN, Lombaert IMA, Cowherd SN, Shworak NW, Xu Y, Liu J, Hoffman MP. Hs3st3-modified heparan sulfate controls KIT+ progenitor expansion by regulating 3-O-sulfotransferases. Dev Cell 2014; 29:662-73. [PMID: 24960693 DOI: 10.1016/j.devcel.2014.04.024] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 04/03/2014] [Accepted: 04/22/2014] [Indexed: 11/30/2022]
Abstract
The exquisite control of growth factor function by heparan sulfate (HS) is dictated by tremendous structural heterogeneity of sulfated modifications. How specific HS structures control growth factor-dependent progenitor expansion during organogenesis is unknown. We isolated KIT+ progenitors from fetal salivary glands during a stage of rapid progenitor expansion and profiled HS biosynthetic enzyme expression. Enzymes generating a specific type of 3-O-sulfated-HS (3-O-HS) are enriched, and fibroblast growth factor 10 (FGF10)/FGF receptor 2b (FGFR2b) signaling directly regulates their expression. Bioengineered 3-O-HS binds FGFR2b and stabilizes FGF10/FGFR2b complexes in a receptor- and growth factor-specific manner. Rapid autocrine feedback increases 3-O-HS, KIT, and progenitor expansion. Knockdown of multiple Hs3st isoforms limits fetal progenitor expansion but is rescued with bioengineered 3-O-HS, which also increases adult progenitor expansion. Altering specific 3-O-sulfated epitopes provides a mechanism to rapidly respond to FGFR2b signaling and control progenitor expansion. 3-O-HS may expand KIT+ progenitors in vitro for regenerative therapy.
Collapse
Affiliation(s)
- Vaishali N Patel
- Matrix and Morphogenesis Section, Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Isabelle M A Lombaert
- Matrix and Morphogenesis Section, Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Samuel N Cowherd
- Matrix and Morphogenesis Section, Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicholas W Shworak
- Section of Cardiology, Department of Medicine, Geisel School of Medicine at Dartmouth, Hanover, NH 03756, USA
| | - Yongmei Xu
- Division of Medicinal Chemistry and Natural Products, School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jian Liu
- Division of Medicinal Chemistry and Natural Products, School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Matthew P Hoffman
- Matrix and Morphogenesis Section, Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
28
|
Díaz-Balzac CA, Lázaro-Peña MI, Tecle E, Gomez N, Bülow HE. Complex cooperative functions of heparan sulfate proteoglycans shape nervous system development in Caenorhabditis elegans. G3 (BETHESDA, MD.) 2014; 4:1859-70. [PMID: 25098771 PMCID: PMC4199693 DOI: 10.1534/g3.114.012591] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 07/25/2014] [Indexed: 11/18/2022]
Abstract
The development of the nervous system is a complex process requiring the integration of numerous molecular cues to form functional circuits. Many cues are regulated by heparan sulfates, a class of linear glycosaminoglycan polysaccharides. These sugars contain distinct modification patterns that regulate protein-protein interactions. Misexpressing the homolog of KAL-1/anosmin-1, a neural cell adhesion molecule mutant in Kallmann syndrome, in Caenorhabditis elegans causes a highly penetrant, heparan sulfate-dependent axonal branching phenotype in AIY interneurons. In an extended forward genetic screen for modifiers of this phenotype, we identified alleles in new as well as previously identified genes involved in HS biosynthesis and modification, namely the xylosyltransferase sqv-6, the HS-6-O-sulfotransferase hst-6, and the HS-3-O-sulfotransferase hst-3.2. Cell-specific rescue experiments showed that different HS biosynthetic and modification enzymes can be provided cell-nonautonomously by different tissues to allow kal-1-dependent branching of AIY. In addition, we show that heparan sulfate proteoglycan core proteins that carry the heparan sulfate chains act genetically in a highly redundant fashion to mediate kal-1-dependent branching in AIY neurons. Specifically, lon-2/glypican and unc-52/perlecan act in parallel genetic pathways and display synergistic interactions with sdn-1/syndecan to mediate kal-1 function. Because all of these heparan sulfate core proteins have been shown to act in different tissues, these studies indicate that KAL-1/anosmin-1 requires heparan sulfate with distinct modification patterns of different cellular origin for function. Our results support a model in which a three-dimensional scaffold of heparan sulfate mediates KAL-1/anosmin-1 and intercellular communication through complex and cooperative interactions. In addition, the genes we have identified could contribute to the etiology of Kallmann syndrome in humans.
Collapse
Affiliation(s)
- Carlos A Díaz-Balzac
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, 10461
| | - María I Lázaro-Peña
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, 10461
| | - Eillen Tecle
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, 10461
| | - Nathali Gomez
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, 10461
| | - Hannes E Bülow
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, 10461 Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, 10461
| |
Collapse
|
29
|
Guo Y, Feng Y, Li Z, Lin X. Drosophila heparan sulfate 3-O sulfotransferase B null mutant is viable and exhibits no defects in Notch signaling. J Genet Genomics 2014; 41:369-78. [PMID: 25064676 DOI: 10.1016/j.jgg.2014.04.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 04/18/2014] [Accepted: 04/24/2014] [Indexed: 11/26/2022]
Abstract
Heparan sulfate proteoglycans (HSPGs) are critically involved in a variety of biological events. The functions of HSPGs are determined by the nature of the core proteins and modifications of heparan sulfate (HS) glycosaminoglycan (GAG) chains. The distinct O-sulfotransferases are important for nonrandom modifications at specific positions. Two HS 3-O sulfotransferase (Hs3st) genes, Hs3st-A and Hs3st-B, were identified in Drosophila. Previous experiments using RNA interference (RNAi) suggested that Hs3st-B was required for Notch signaling. Here, we generated a null mutant of Hs3st-B via ends-out gene targeting and examined its role(s) in development. We found that homozygous Hs3st-B mutants have no neurogenic defects or alterations in the expression of Notch signaling target gene. Thus, our results strongly argue against an essential role for Hs3st-B in Notch signaling. Moreover, we have generated two independent Hs3st-A RNAi lines which worked to deplete Hs3st-A. Importantly, Hs3st-A RNAi combined with Hs3st-B mutant flies did not alter the expression of Notch signaling components, arguing that both Hs3st-A and Hs3st-B were not essential for Notch signaling. The establishment of Hs3st-B mutant and effective Hs3st-A RNAi lines provides essential tools for further studies of the physiological roles of Hs3st-A and Hs3st-B in development and homeostasis.
Collapse
Affiliation(s)
- Yueqin Guo
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Feng
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou 325000, China; State Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Zhouhua Li
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; School of Life Sciences, Capital Normal University, Beijing 100048, China.
| | - Xinhua Lin
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| |
Collapse
|
30
|
Thacker BE, Xu D, Lawrence R, Esko JD. Heparan sulfate 3-O-sulfation: a rare modification in search of a function. Matrix Biol 2013; 35:60-72. [PMID: 24361527 DOI: 10.1016/j.matbio.2013.12.001] [Citation(s) in RCA: 189] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 12/03/2013] [Accepted: 12/03/2013] [Indexed: 02/02/2023]
Abstract
Many protein ligands bind to heparan sulfate, which results in their presentation, protection, oligomerization or conformational activation. Binding depends on the pattern of sulfation and arrangement of uronic acid epimers along the chains. Sulfation at the C3 position of glucosamine is a relatively rare, yet biologically significant modification, initially described as a key determinant for binding and activation of antithrombin and later for infection by type I herpes simplex virus. In mammals, a family of seven heparan sulfate 3-O-sulfotransferases installs sulfate groups at this position and constitutes the largest group of sulfotransferases involved in heparan sulfate formation. However, to date very few proteins or biological systems have been described that are influenced by 3-O-sulfation. This review describes our current understanding of the prevalence and structure of 3-O-sulfation sites, expression and substrate specificity of the 3-O-sulfotransferase family and the emerging roles of 3-O-sulfation in biology.
Collapse
Affiliation(s)
- Bryan E Thacker
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093-0687, United States; Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093-0687, United States
| | - Ding Xu
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093-0687, United States
| | - Roger Lawrence
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093-0687, United States
| | - Jeffrey D Esko
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093-0687, United States; Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093-0687, United States.
| |
Collapse
|
31
|
Gysi S, Rhiner C, Flibotte S, Moerman DG, Hengartner MO. A network of HSPG core proteins and HS modifying enzymes regulates netrin-dependent guidance of D-type motor neurons in Caenorhabditis elegans. PLoS One 2013; 8:e74908. [PMID: 24066155 PMCID: PMC3774775 DOI: 10.1371/journal.pone.0074908] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 08/07/2013] [Indexed: 11/18/2022] Open
Abstract
Heparan sulfate proteoglycans (HSPGs) are proteins with long covalently attached sugar side chains of the heparan sulfate (HS) type. Depending on the cellular context HS chains carry multiple structural modifications such as sulfate residues or epimerized sugars allowing them to bind to a wide range of molecules. HSPGs have been found to play extremely diverse roles in animal development and were shown to interact with certain axon guidance molecules. In this study we describe the role of the Caenorhabditis elegans HSPG core proteins Syndecan (SDN-1) and Glypican (LON-2) and the HS modifying enzymes in the dorsal guidance of D-type motor axons, a process controlled mainly by the conserved axon guidance molecule UNC-6/Netrin. Our genetic analysis established the specific HS code relevant for this axon guidance event. Using two sensitized genetic backgrounds, we isolated novel components influencing D-type motor axon guidance with a link to HSPGs, as well as new alleles of several previously characterized axon guidance genes. Interestingly, the dorsal axon guidance defects induced by mutations in zfp-1 or lin-35 depended on the transgene oxIs12 used to visualize the D-type motor neurons. oxIs12 is a large multi-copy transgene that enlarges the X chromosome by approximately 20%. In a search for genes with a comparable phenotype we found that a mutation in the known dosage compensation gene dpy-21 showed similar axon guidance defects as zfp-1 or lin-35 mutants. Thus, derepression of genes on X, where many genes relevant for HS dependent axon guidance are located, might also influence axon guidance of D-type motor neurons.
Collapse
Affiliation(s)
- Stephan Gysi
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| | - Christa Rhiner
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Stephane Flibotte
- Department of Zoology, University of British Columbia, Vancouver, Canada
| | - Donald G. Moerman
- Department of Zoology, University of British Columbia, Vancouver, Canada
| | - Michael O. Hengartner
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
32
|
Neugebauer JM, Cadwallader AB, Amack JD, Bisgrove BW, Yost HJ. Differential roles for 3-OSTs in the regulation of cilia length and motility. Development 2013; 140:3892-902. [PMID: 23946439 DOI: 10.1242/dev.096388] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
As cells integrate molecular signals from their environment, cell surface receptors require modified proteoglycans for the robust activation of signaling pathways. Heparan sulfate proteoglycans (HSPGs) have long unbranched chains of repetitive disaccharide units that can be sulfated at specific positions by heparan sulfate O-sulfotransferase (OST) families. Here, we show that two members of the 3-OST family are required in distinct signaling pathways to control left-right (LR) patterning through control of Kupffer's vesicle (KV) cilia length and motility. 3-OST-5 functions in the fibroblast growth factor pathway to control cilia length via the ciliogenic transcription factors FoxJ1a and Rfx2. By contrast, a second 3-OST family member, 3-OST-6, does not regulate cilia length, but regulates cilia motility via kinesin motor molecule (Kif3b) expression and cilia arm dynein assembly. Thus, two 3-OST family members cell-autonomously control LR patterning through distinct pathways that regulate KV fluid flow. We propose that individual 3-OST isozymes create distinct modified domains or 'glycocodes' on cell surface proteoglycans, which in turn regulate the response to diverse cell signaling pathways.
Collapse
Affiliation(s)
- Judith M Neugebauer
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | | | | | | | | |
Collapse
|