1
|
Ktena N, Kaplanis SI, Kolotuev I, Georgilis A, Kallergi E, Stavroulaki V, Nikoletopoulou V, Savvaki M, Karagogeos D. Autophagic degradation of CNS myelin maintains axon integrity. Cell Stress 2022; 6:93-107. [PMID: 36478958 PMCID: PMC9707329 DOI: 10.15698/cst2022.12.274] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/01/2022] [Accepted: 11/09/2022] [Indexed: 09/05/2023] Open
Abstract
(Macro)autophagy is a major lysosome-dependent degradation mechanism which engulfs, removes and recycles unwanted cytoplasmic material, including damaged organelles and toxic protein aggregates. Although a few studies implicate autophagy in CNS demyelinating pathologies, its role, particularly in mature oligodendrocytes and CNS myelin, remains poorly studied. Here, using both pharmacological and genetic inhibition of the autophagic machinery, we provide evidence that autophagy is an essential mechanism for oligodendrocyte maturation in vitro. Our study reveals that two core myelin proteins, namely proteolipid protein (PLP) and myelin basic protein (MBP) are incorporated into autophagosomes in oligodendrocytes, resulting in their degradation. Furthermore, we ablated atg5, a core gene of the autophagic machinery, specifically in myelinating glial cells in vivo by tamoxifen administration (plp-Cre ERT2 ; atg5 f/f ) and showed that myelin maintenance is perturbed, leading to PLP accumulation. Significant morphological defects in myelin membrane such as decompaction accompanied with increased axonal degeneration are observed. As a result, the mice exhibit behavioral deficits. In summary, our data highlight that the maintenance of adult myelin homeostasis in the CNS requires the involvement of a fully functional autophagic machinery.
Collapse
Affiliation(s)
- Niki Ktena
- School of Medicine, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, FORTH, Heraklion, Greece
| | - Stefanos Ioannis Kaplanis
- School of Medicine, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, FORTH, Heraklion, Greece
| | - Irina Kolotuev
- Electron Microscopy Facility (PME), University of Lausanne, Lausanne, Switzerland
| | | | - Emmanouela Kallergi
- Department of Fundamental Neurosciences (DNF), University of Lausanne, Lausanne, Switzerland
| | - Vasiliki Stavroulaki
- School of Medicine, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, FORTH, Heraklion, Greece
| | | | - Maria Savvaki
- School of Medicine, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, FORTH, Heraklion, Greece
| | - Domna Karagogeos
- School of Medicine, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, FORTH, Heraklion, Greece
| |
Collapse
|
2
|
Möbius W, Hümmert S, Ruhwedel T, Kuzirian A, Gould R. New Species Can Broaden Myelin Research: Suitability of Little Skate, Leucoraja erinacea. Life (Basel) 2021; 11:136. [PMID: 33670172 PMCID: PMC7916940 DOI: 10.3390/life11020136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/02/2021] [Accepted: 02/06/2021] [Indexed: 02/06/2023] Open
Abstract
Although myelinated nervous systems are shared among 60,000 jawed vertebrates, studies aimed at understanding myelination have focused more and more on mice and zebrafish. To obtain a broader understanding of the myelination process, we examined the little skate, Leucoraja erinacea. The reasons behind initiating studies at this time include: the desire to study a species belonging to an out group of other jawed vertebrates; using a species with embryos accessible throughout development; the availability of genome sequences; and the likelihood that mammalian antibodies recognize homologs in the chosen species. We report that the morphological features of myelination in a skate hatchling, a stage that supports complex behavioral repertoires needed for survival, are highly similar in terms of: appearances of myelinating oligodendrocytes (CNS) and Schwann cells (PNS); the way their levels of myelination conform to axon caliber; and their identity in terms of nodal and paranodal specializations. These features provide a core for further studies to determine: axon-myelinating cell communication; the structures of the proteins and lipids upon which myelinated fibers are formed; the pathways used to transport these molecules to sites of myelin assembly and maintenance; and the gene regulatory networks that control their expressions.
Collapse
Affiliation(s)
- Wiebke Möbius
- Electron Microscopy Core Unit, Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, 37075 Göttingen, Germany; (W.M.); (S.H.); (T.R.)
- Cluster of Excellence Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells (MBExC), University of Göttingen, 37073 Göttingen, Germany
| | - Sophie Hümmert
- Electron Microscopy Core Unit, Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, 37075 Göttingen, Germany; (W.M.); (S.H.); (T.R.)
| | - Torben Ruhwedel
- Electron Microscopy Core Unit, Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, 37075 Göttingen, Germany; (W.M.); (S.H.); (T.R.)
| | - Alan Kuzirian
- Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA 02540, USA;
| | - Robert Gould
- Whitman Science Center, Marin Biological Laboratory, Woods Hole, MA 02540, USA
| |
Collapse
|
3
|
Ravera S, Morelli AM, Panfoli I. Myelination increases chemical energy support to the axon without modifying the basic physicochemical mechanism of nerve conduction. Neurochem Int 2020; 141:104883. [PMID: 33075435 DOI: 10.1016/j.neuint.2020.104883] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/28/2020] [Accepted: 10/12/2020] [Indexed: 01/31/2023]
Abstract
The existence of different conductive patterns in unmyelinated and myelinated axons is uncertain. It seems that considering exclusively physical electrical phenomena may be an oversimplification. A novel interpretation of the mechanism of nerve conduction in myelinated nerves is proposed, to explain how the basic mechanism of nerve conduction has been adapted to myelinated conditions. The neurilemma would bear the voltage-gated channels and Na+/K+-ATPase in both unmyelinated and myelinated conditions, the only difference being the sheath wrapping it. The dramatic increase in conduction speed of the myelinated axons would essentially depend on an increment in ATP availability within the internode: myelin would be an aerobic ATP supplier to the axoplasm, through connexons. In fact, neurons rely on aerobic metabolism and on trophic support from oligodendrocytes, that do not normally duplicate after infancy in humans. Such comprehensive framework of nerve impulse propagation in axons may shed new light on the pathophysiology of nervous system disease in humans, seemingly strictly dependent on the viability of the pre-existing oligodendrocyte.
Collapse
Affiliation(s)
- Silvia Ravera
- Department of Experimental Medicine, University of Genoa, Genoa, I 16132, Italy
| | - Alessandro Maria Morelli
- Laboratory of Biochemistry, Department of Pharmacy-DIFAR, University of Genoa, Genoa, I 16132, Italy.
| | - Isabella Panfoli
- Laboratory of Biochemistry, Department of Pharmacy-DIFAR, University of Genoa, Genoa, I 16132, Italy
| |
Collapse
|
4
|
Wang SS, Bi HZ, Chu SF, Dong YX, He WB, Tian YJ, Zang YD, Zhang DM, Zhang Z, Chen NH. CZ-7, a new derivative of Claulansine F, promotes remyelination induced by cuprizone by enhancing myelin debris clearance. Brain Res Bull 2020; 159:67-78. [PMID: 32289743 DOI: 10.1016/j.brainresbull.2020.03.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 03/18/2020] [Accepted: 03/23/2020] [Indexed: 12/11/2022]
Abstract
The mechanism of demyelinating diseases is controversial, while demyelination and remyeliantion disorder is the acknowledged etiology and therapeutic target. Untill now, there is no efficient therapy for these diseases. CZ-7, a new derivative of Claulansine F, which has been reported before, were investigated its pro-remyelination effect and its associated mechanism in cuprizone (CPZ)-induced demyelination model. In this study, male C57BL/6 mice were subjected to CPZ (300 mg/kg) through intragastric gavage and were orally administered CZ-7 (20 mg/kg) meanwhile. The results of weight monitoring and behavioral testing showed that CZ-7 can significantly improve behavior dysfunction in the demyelinating mice. Luxol-fast blue (LFB) staining, myelin basic protein (MBP) immunostaining, transmission electron microscopy (TEM) and QPCR results indicated the therapeutic effect of CZ-7 on CPZ mice model. Furthermore, degraded myelin basic protein (dMBP) immunofluorescent staining and oil red O staining showed that CZ-7 contributed to the clearance of degraded myelin debris. More microglia displayed phagocytic shape assembled in corpus callosum (CC) and there was an active process of phagocytosis in microglia after CZ-7 treatment. Immunofluorescent staining and QPCR analysis revealed the M2-polarized phenotype switch of microglia in the process of myelin debris removel, which demostrated the microenvironment improvement of CZ-7. Moreover, immunofluorescent staining of NG2 and O4 demonstated that more oligodendrocyte precursor cells (OPCs) existed in CC after CZ-7 treatment. In conclusion, our results demonstrated CZ-7 has a potential therapeutic effect for MS and other demyelinating diseases through enhancing myelin debris clearance to improve the microenvironment.
Collapse
Affiliation(s)
- Sha-Sha Wang
- Institute of Pharmaceutical & Food Engineering, Shanxi University of Traditional Chinese Medicine, Taiyuan, 030619, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Hao-Zhi Bi
- Institute of Pharmaceutical & Food Engineering, Shanxi University of Traditional Chinese Medicine, Taiyuan, 030619, China
| | - Shi-Feng Chu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yi-Xiao Dong
- Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Wen-Bin He
- Institute of Pharmaceutical & Food Engineering, Shanxi University of Traditional Chinese Medicine, Taiyuan, 030619, China
| | - Ya-Juan Tian
- Institute of Pharmaceutical & Food Engineering, Shanxi University of Traditional Chinese Medicine, Taiyuan, 030619, China
| | - Ying-Da Zang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Dong-Ming Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Zhao Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Nai-Hong Chen
- Institute of Pharmaceutical & Food Engineering, Shanxi University of Traditional Chinese Medicine, Taiyuan, 030619, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| |
Collapse
|
5
|
Wang SS, Zhang Z, Zhu TB, Chu SF, He WB, Chen NH. Myelin injury in the central nervous system and Alzheimer's disease. Brain Res Bull 2018; 140:162-168. [PMID: 29730417 DOI: 10.1016/j.brainresbull.2018.05.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/18/2018] [Accepted: 05/02/2018] [Indexed: 12/20/2022]
Abstract
Myelin is a membrane wrapped around the axon of the nerve cell, which is composed of the mature oligodendrocytes. The role of myelin is to insulate and prevent the nerve electrical impulses from the axon of the neurons to the axons of the other neurons, which is essential for the proper functioning of the nervous system. Minor changes in myelin thickness could lead to substantial changes in conduction speed and may thus alter neural circuit function. Demyelination is the myelin damage, which characterized by the loss of nerve sheath and the relative fatigue of the neuronal sheath and axon. Studies have shown that myelin injury may be closely related to neurodegenerative diseases and may be an early diagnostic criteria and therapeutic target. Thus this review summarizes the recent result of pathologic effect and signal pathways of myelin injury in neurodegenerative diseases, especially the Alzheimer's disease to provide new and effective therapeutic targets.
Collapse
Affiliation(s)
- Sha-Sha Wang
- School of Basic Medicine, Shanxi University of Traditional Chinese Medicine, Taiyuan 030619, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhao Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Tian-Bi Zhu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Shi-Feng Chu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Wen-Bin He
- School of Basic Medicine, Shanxi University of Traditional Chinese Medicine, Taiyuan 030619, China
| | - Nai-Hong Chen
- School of Basic Medicine, Shanxi University of Traditional Chinese Medicine, Taiyuan 030619, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
6
|
Ravera S, Signorello MG, Bartolucci M, Ferrando S, Manni L, Caicci F, Calzia D, Panfoli I, Morelli A, Leoncini G. Extramitochondrial energy production in platelets. Biol Cell 2018. [PMID: 29537672 DOI: 10.1111/boc.201700025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND INFORMATION Energy demand in human platelets is very high, to carry out their functions. As for most human cells, the aerobic metabolism represents the primary energy source in platelets, even though mitochondria are negligibly represented. Following the hypothesis that other structures could be involved in chemical energy production, in this work, we have investigated the functional expression of an extramitochondrial aerobic metabolism in platelets. RESULTS Oximetric and luminometric analyses showed that platelets consume large amounts of oxygen and produce ATP in the presence of common respiring substrates, such as pyruvate + malate or succinate, although morphological electron microscopy analysis showed that these contain few mitochondria. However, evaluation of the anaerobic glycolytic metabolism showed that only 13% of consumed glucose was converted to lactate. Interestingly, the highest OXPHOS activity was observed in the presence of NADH, not a readily permeant respiring substrate for mitochondria. Also, oxygen consumption and ATP synthesis fuelled by NADH were not affected by atractyloside, an inhibitor of the adenine nucleotide translocase, suggesting that these processes may not be ascribed to mitochondria. Functional data were confirmed by immunofluorescence microscopy and Western blot analyses, showing a consistent expression of the β subunit of F1 Fo -ATP synthase and COXII, a subunit of Complex IV, but a low signal of translocase of the inner mitochondrial membrane (a protein not involved in OXPHOS metabolism). Interestingly, the NADH-stimulated oxygen consumption and ATP synthesis increased in the presence of the physiological platelets agonists, thrombin or collagen. CONCLUSIONS Data suggest that in platelets, aerobic energy production is mainly driven by an extramitochondrial OXPHOS machinery, originated inside the megakaryocyte, and that this metabolism plays a pivotal role in platelet activation. SIGNIFICANCE This work represents a further example of the existence of an extramitochondrial aerobic metabolism, which can contribute to the cellular energy balance.
Collapse
Affiliation(s)
- Silvia Ravera
- Department of Pharmacy, Biochemistry Lab, University of Genova, Genova, 16132, Italy
| | | | - Martina Bartolucci
- Department of Pharmacy, Biochemistry Lab, University of Genova, Genova, 16132, Italy
| | - Sara Ferrando
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita (DISTAV), University of Genoa, Genoa, 16132, Italy
| | - Lucia Manni
- Department of Biology, Università di Padova, Padova, Italy
| | | | - Daniela Calzia
- Department of Pharmacy, Biochemistry Lab, University of Genova, Genova, 16132, Italy
| | - Isabella Panfoli
- Department of Pharmacy, Biochemistry Lab, University of Genova, Genova, 16132, Italy
| | - Alessandro Morelli
- Department of Pharmacy, Biochemistry Lab, University of Genova, Genova, 16132, Italy
| | - Giuliana Leoncini
- Department of Pharmacy, Biochemistry Lab, University of Genova, Genova, 16132, Italy
| |
Collapse
|
7
|
Ravera S, Bartolucci M, Garbati P, Ferrando S, Calzia D, Ramoino P, Balestrino M, Morelli A, Panfoli I. Evaluation of the Acquisition of the Aerobic Metabolic Capacity by Myelin, during its Development. Mol Neurobiol 2015; 53:7048-7056. [PMID: 26676569 DOI: 10.1007/s12035-015-9575-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 11/29/2015] [Indexed: 12/15/2022]
Abstract
Our previous reports indicate that the electron transfer chain and FoF1-ATP synthase are functionally expressed in myelin sheath, performing an extra-mitochondrial oxidative phosphorylation (OXPHOS), which would provide energy to the nerve axon. This supports the idea that myelin plays a trophic role for the axon. Although the four ETC complexes and ATP synthase are considered exquisite mitochondrial proteins, they are found ectopically expressed in several membranous structures. This study was designed to understand when and how the mitochondrial OXPHOS machinery is embedded in myelin, following myelinogenesis in the rat, which starts at birth and continues until the first month of age. Rats were sacrificed at different time points (from day 5 to 90 post birth). Western blot, immunofluorescence microscopy, luminometric, and oximetric analyses show that the isolated myelin starts to show OXPHOS components around the 11th day after birth and increases proportionally to the rat age, becoming similar to those of adult rat around the 30-third day. Interestingly, WB data show the same temporal relationship between myelinogenesis and appearance of proteins involved in mitochondrial fusion and cellular trafficking. It may be speculated that the OXPHOS complexes may be transferred to the endoplasmic reticulum membrane (known to interact with mitochondria) and from there through the Golgi apparatus to the forming myelin membrane.
Collapse
Affiliation(s)
- Silvia Ravera
- Department of Pharmacy (DIFAR), Biochemistry Laboratory, University of Genova, Viale Benedetto XV 3, 16132, Genova, Italy.
| | - Martina Bartolucci
- Department of Pharmacy (DIFAR), Biochemistry Laboratory, University of Genova, Viale Benedetto XV 3, 16132, Genova, Italy
| | - Patrizia Garbati
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Via de Toni 5, 16132, Genova, Italy
| | - Sara Ferrando
- DISTAV, University of Genova, C.so Europa 26, 16132, Genova, Italy
| | - Daniela Calzia
- Department of Pharmacy (DIFAR), Biochemistry Laboratory, University of Genova, Viale Benedetto XV 3, 16132, Genova, Italy
| | - Paola Ramoino
- DISTAV, University of Genova, C.so Europa 26, 16132, Genova, Italy
| | - Maurizio Balestrino
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Via de Toni 5, 16132, Genova, Italy
| | - Alessandro Morelli
- Department of Pharmacy (DIFAR), Biochemistry Laboratory, University of Genova, Viale Benedetto XV 3, 16132, Genova, Italy
| | - Isabella Panfoli
- Department of Pharmacy (DIFAR), Biochemistry Laboratory, University of Genova, Viale Benedetto XV 3, 16132, Genova, Italy
| |
Collapse
|
8
|
Bartolucci M, Ravera S, Garbarino G, Ramoino P, Ferrando S, Calzia D, Candiani S, Morelli A, Panfoli I. Functional Expression of Electron Transport Chain and FoF1-ATP Synthase in Optic Nerve Myelin Sheath. Neurochem Res 2015; 40:2230-41. [PMID: 26334391 DOI: 10.1007/s11064-015-1712-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 08/23/2015] [Accepted: 08/27/2015] [Indexed: 12/15/2022]
Abstract
Our previous studies reported evidence for aerobic ATP synthesis by myelin from both bovine brainstem and rat sciatic nerve. Considering that the optic nerve displays a high oxygen demand, here we evaluated the expression and activity of the five Respiratory Complexes in myelin purified from either bovine or murine optic nerves. Western blot analyses on isolated myelin confirmed the expression of ND4L (subunit of Complex I), COX IV (subunit of Complex IV) and β subunit of F1Fo-ATP synthase. Moreover, spectrophotometric and in-gel activity assays on isolated myelin, as well as histochemical activity assays on both bovine and murine transversal optic nerve sections showed that the respiratory Complexes are functional in myelin and are organized in a supercomplex. Expression of oxidative phosphorylation proteins was also evaluated on bovine optic nerve sections by confocal and transmission electron microscopy. Having excluded a mitochondrial contamination of isolated myelin and considering the results form in situ analyses, it is proposed that the oxidative phosphorylation machinery is truly resident in optic myelin sheath. Data may shed a new light on the unknown trophic role of myelin sheath. It may be energy supplier for the axon, explaining why in demyelinating diseases and neuropathies, myelin sheath loss is associated with axonal degeneration.
Collapse
Affiliation(s)
- Martina Bartolucci
- Biochemistry Laboratory, Department of Pharmacy (DIFAR), University of Genova, Viale Benedetto XV, 3, 16132, Genoa, Italy
| | - Silvia Ravera
- Biochemistry Laboratory, Department of Pharmacy (DIFAR), University of Genova, Viale Benedetto XV, 3, 16132, Genoa, Italy.
| | - Greta Garbarino
- Department of Earth, Environmental and Life Sciences, (DISTAV), University of Genova, C.so Europa 26, 16132, Genoa, Italy
| | - Paola Ramoino
- Department of Earth, Environmental and Life Sciences, (DISTAV), University of Genova, C.so Europa 26, 16132, Genoa, Italy
| | - Sara Ferrando
- Department of Earth, Environmental and Life Sciences, (DISTAV), University of Genova, C.so Europa 26, 16132, Genoa, Italy
| | - Daniela Calzia
- Biochemistry Laboratory, Department of Pharmacy (DIFAR), University of Genova, Viale Benedetto XV, 3, 16132, Genoa, Italy
| | - Simona Candiani
- Department of Earth, Environmental and Life Sciences, (DISTAV), University of Genova, C.so Europa 26, 16132, Genoa, Italy
| | - Alessandro Morelli
- Biochemistry Laboratory, Department of Pharmacy (DIFAR), University of Genova, Viale Benedetto XV, 3, 16132, Genoa, Italy
| | - Isabella Panfoli
- Biochemistry Laboratory, Department of Pharmacy (DIFAR), University of Genova, Viale Benedetto XV, 3, 16132, Genoa, Italy
| |
Collapse
|