1
|
Daccache J, Park E, Junejo M, Abdelghaffar M, Hwang E, Mohanty C, Singh CK, Wang G, Wheeler JO, Shields BE, Nelson CA, Wang Y, Damsky W. Spatial transcriptomics reveals organized and distinct immune activation in cutaneous granulomatous disorders. J Allergy Clin Immunol 2024; 154:1216-1231. [PMID: 39098508 PMCID: PMC11560686 DOI: 10.1016/j.jaci.2024.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 06/20/2024] [Accepted: 07/08/2024] [Indexed: 08/06/2024]
Abstract
BACKGROUND Noninfectious (inflammatory) cutaneous granulomatous disorders include cutaneous sarcoidosis (CS), granuloma annulare (GA), necrobiosis lipoidica (NL), and necrobiotic xanthogranuloma (NXG). These disorders share macrophage-predominant inflammation histologically, but the inflammatory architecture and the pattern of extracellular matrix alteration varies. The underlying molecular explanations for these differences remain unclear. OBJECTIVE We sought to understand spatial gene expression characteristics in these disorders. METHODS We performed spatial transcriptomics in cases of CS, GA, NL, and NXG to compare patterns of immune activation and other molecular features in a spatially resolved fashion. RESULTS CS is characterized by a polarized, spatially organized type 1-predominant response with classical macrophage activation. GA is characterized by a mixed but spatially organized pattern of type 1 and type 2 polarization with both classical and alternative macrophage activation. NL showed concomitant activation of type 1, type 2, and type 3 immunity with a mixed pattern of macrophage activation. Activation of type 1 immunity was shared among, CS, GA, and NL and included upregulation of IL-32. NXG showed upregulation of CXCR4-CXCL12/14 chemokine signaling and exaggerated alternative macrophage polarization. Histologic alteration of extracellular matrix correlated with hypoxia and glycolysis programs and type 2 immune activation. CONCLUSIONS Inflammatory cutaneous granulomatous disorders show distinct and spatially organized immune activation that correlate with hallmark histologic changes.
Collapse
Affiliation(s)
- Joseph Daccache
- Department of Pathology, NYU Langone Health, New York, NY; Department of Dermatology, Yale School of Medicine, New Haven, Conn.
| | - Eunsuh Park
- Department of Dermatology, Yale School of Medicine, New Haven, Conn
| | - Muhammad Junejo
- Department of Dermatology, Yale School of Medicine, New Haven, Conn
| | | | - Erica Hwang
- Department of Dermatology, Yale School of Medicine, New Haven, Conn
| | - Chitrasen Mohanty
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, Wis
| | - Chandra K Singh
- Department of Dermatology, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Guilin Wang
- Keck Microarray Shared Resource, Yale School of Medicine, New Haven, Conn
| | - John O Wheeler
- Keck Microarray Shared Resource, Yale School of Medicine, New Haven, Conn
| | - Bridget E Shields
- Department of Dermatology, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | | | - Yiwei Wang
- Department of Dermatology, Yale School of Medicine, New Haven, Conn
| | - William Damsky
- Department of Dermatology, Yale School of Medicine, New Haven, Conn; Department of Pathology, Yale School of Medicine, New Haven, Conn.
| |
Collapse
|
2
|
Macrophage Biology in Human Granulomatous Skin Inflammation. Int J Mol Sci 2023; 24:ijms24054624. [PMID: 36902053 PMCID: PMC10003716 DOI: 10.3390/ijms24054624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/15/2023] [Accepted: 02/22/2023] [Indexed: 03/04/2023] Open
Abstract
Cutaneous granulomatoses represent a heterogeneous group of diseases, which are defined by macrophage infiltration in the skin. Skin granuloma can be formed in the context of infectious and non-infectious conditions. Recent technological advances have deepened our understanding of the pathophysiology of granulomatous skin inflammation, and they provide novel insights into human tissue macrophage biology at the site of ongoing disease. Here, we discuss findings on macrophage immune function and metabolism derived from three prototypic cutaneous granulomatoses: granuloma annulare, sarcoidosis, and leprosy.
Collapse
|
3
|
Molnar K, Voniatis C, Feher D, Szabo G, Varga R, Reiniger L, Juriga D, Kiss Z, Krisch E, Weber G, Ferencz A, Varga G, Zrinyi M, Nagy KS, Jedlovszky-Hajdu A. Poly(amino acid) based fibrous membranes with tuneable in vivo biodegradation. PLoS One 2021; 16:e0254843. [PMID: 34388163 PMCID: PMC8362958 DOI: 10.1371/journal.pone.0254843] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/04/2021] [Indexed: 11/19/2022] Open
Abstract
In this work two types of biodegradable polysuccinimide-based, electrospun fibrous membranes are presented. One contains disulfide bonds exhibiting a shorter (3 days) in vivo biodegradation time, while the other one has alkyl crosslinks and a longer biodegradation time (more than 7 days). According to the mechanical measurements, the tensile strength of the membranes is comparable to those of soft the connective tissues and visceral tissues. Furthermore, the suture retention test suggests, that the membranes would withstand surgical handling and in vivo fixation. The in vivo biocompatibility study demonstrates how membranes undergo in vivo hydrolysis and by the 3rd day they become poly(aspartic acid) fibrous membranes, which can be then enzymatically degraded. After one week, the disulfide crosslinked membranes almost completely degrade, while the alkyl-chain crosslinked ones mildly lose their integrity as the surrounding tissue invades them. Histopathology revealed mild acute inflammation, which diminished to a minimal level after seven days.
Collapse
Affiliation(s)
- Kristof Molnar
- Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
- Department of Food, Agricultural and Biological Engineering, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Wooster, OH, United States of America
| | - Constantinos Voniatis
- Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
- Department of Surgical Research and Techniques, Semmelweis University, Budapest, Hungary
| | - Daniella Feher
- Department of Surgical Research and Techniques, Semmelweis University, Budapest, Hungary
| | - Gyorgyi Szabo
- Department of Surgical Research and Techniques, Semmelweis University, Budapest, Hungary
| | - Rita Varga
- Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Lilla Reiniger
- 1 Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - David Juriga
- Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Zoltan Kiss
- Department of Polymer Engineering, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Budapest, Hungary
- Biomechanical Research Center, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Budapest, Hungary
| | - Eniko Krisch
- Department of Food, Agricultural and Biological Engineering, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Wooster, OH, United States of America
| | - Gyorgy Weber
- Department of Surgical Research and Techniques, Semmelweis University, Budapest, Hungary
| | - Andrea Ferencz
- Department of Surgical Research and Techniques, Semmelweis University, Budapest, Hungary
| | - Gabor Varga
- Department of Oral Biology, Semmelweis University, Budapest, Hungary
| | - Miklos Zrinyi
- Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Krisztina S. Nagy
- Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
- Department of Oral Biology, Semmelweis University, Budapest, Hungary
| | - Angela Jedlovszky-Hajdu
- Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| |
Collapse
|