1
|
Murakami A. Impact of hormesis to deepen our understanding of the mechanisms underlying the bioactivities of polyphenols. Curr Opin Biotechnol 2024; 86:103074. [PMID: 38325232 DOI: 10.1016/j.copbio.2024.103074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 02/09/2024]
Abstract
Cells, organs, and the whole body are continuously exposed to various types of stressors, including oxidative stress, protein denaturation, hypoxia, energy starvation, and pathogen insults. Hormesis is an adaptive phenomenon in which a stressor induces cellular stress responses at low or moderate doses, while catastrophic damage is manifested at high doses. Polyphenols, as xenobiotic phytochemicals, exhibit stress responses in animal cells, as demonstrated in cellular and rodent models. In this review article, the author highlighted several molecular mechanisms underlying different types of stress adaptation and hormetic phenomena induced by bioactive polyphenols to substantially understand how and why those phytochemicals function in biological systems.
Collapse
Affiliation(s)
- Akira Murakami
- Department of Food Science and Nutrition, School of Human Science and Environment, University of Hyogo, 1-1-12, Shinzaike-Honcho, Himeji, Hyogo 670-0092, Japan.
| |
Collapse
|
2
|
Kyriazis M, Swas L, Orlova T. The Impact of Hormesis, Neuronal Stress Response, and Reproduction, upon Clinical Aging: A Narrative Review. J Clin Med 2023; 12:5433. [PMID: 37629475 PMCID: PMC10455615 DOI: 10.3390/jcm12165433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/05/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
INTRODUCTION The primary objective of researchers in the biology of aging is to gain a comprehensive understanding of the aging process while developing practical solutions that can enhance the quality of life for older individuals. This involves a continuous effort to bridge the gap between fundamental biological research and its real-world applications. PURPOSE In this narrative review, we attempt to link research findings concerning the hormetic relationship between neurons and germ cells, and translate these findings into clinically relevant concepts. METHODS We conducted a literature search using PubMed, Embase, PLOS, Digital Commons Network, Google Scholar and Cochrane Library from 2000 to 2023, analyzing studies dealing with the relationship between hormetic, cognitive, and reproductive aspects of human aging. RESULTS The process of hormesis serves as a bridge between the biology of neuron-germ cell interactions on one hand, and the clinical relevance of these interactions on the other. Details concerning these processes are discussed here, emphasizing new research which strengthens the overall concept. CONCLUSIONS This review presents a scientifically and clinically relevant argument, claiming that maintaining a cognitively active lifestyle may decrease age-related degeneration, and improve overall health in aging. This is a totally novel approach which reflects current developments in several relevant aspects of our biology, technology, and society.
Collapse
|
3
|
Georgieva M, Vassileva V. Stress Management in Plants: Examining Provisional and Unique Dose-Dependent Responses. Int J Mol Sci 2023; 24:ijms24065105. [PMID: 36982199 PMCID: PMC10049000 DOI: 10.3390/ijms24065105] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
The purpose of this review is to critically evaluate the effects of different stress factors on higher plants, with particular attention given to the typical and unique dose-dependent responses that are essential for plant growth and development. Specifically, this review highlights the impact of stress on genome instability, including DNA damage and the molecular, physiological, and biochemical mechanisms that generate these effects. We provide an overview of the current understanding of predictable and unique dose-dependent trends in plant survival when exposed to low or high doses of stress. Understanding both the negative and positive impacts of stress responses, including genome instability, can provide insights into how plants react to different levels of stress, yielding more accurate predictions of their behavior in the natural environment. Applying the acquired knowledge can lead to improved crop productivity and potential development of more resilient plant varieties, ensuring a sustainable food source for the rapidly growing global population.
Collapse
|
4
|
Rétif J, Zalouk-Vergnoux A, Briant N, Poirier L. From geochemistry to ecotoxicology of rare earth elements in aquatic environments: Diversity and uses of normalization reference materials and anomaly calculation methods. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:158890. [PMID: 36262004 DOI: 10.1016/j.scitotenv.2022.158890] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/05/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
The geochemistry of rare earth elements (REEs) has been studied for a long time and has allowed us to highlight enrichments or depletions of REEs in aquatic ecosystems and to estimate anthropogenic inputs through normalization of data to different reference materials. This review of current literature on REE normalization highlighted the large number of different reference materials (a total of 12), as well as different anomaly calculation methods. This statement showed a real need for method harmonization to simplify the comparison between studies, which is currently very difficult. Normalization to Post-Archean Australian Shale (PAAS) emerged as being the most used (33 % of reported studies) regardless of the location and the nature of the studied samples and seem to be of higher quality. The interest of other reference materials was nevertheless underlined, as they could better represent the geographical situation or the nature of samples. Two main anomaly calculation methods have been highlighted: the linear interpolation/extrapolation and the geometric extrapolation using logarithmic modeling. However, due to variations in the estimation of neighbors' values, these two methods produce many different equations for the anomaly calculation of a single element. Current normalization practices based on shales and chondrites are suitable for abiotic samples but are questionable for biota. Indeed, normalization is increasingly used in studies addressing ecotoxicological issues which focus on biota and often aim to estimate the anthropogenic origin of bioaccumulated REEs. Due to the interspecific variability, as well as the complexity of mechanisms occurring in organisms when exposed to contaminants, new reference materials need to be established to consider the bioaccumulation/metabolization processes and the anthropogenic inputs of REEs based on the results of biotic samples.
Collapse
Affiliation(s)
- Julie Rétif
- Nantes Université, Institut des Substances et Organismes de la Mer, ISOMer, UR 2160, F-44000 Nantes, France.
| | - Aurore Zalouk-Vergnoux
- Nantes Université, Institut des Substances et Organismes de la Mer, ISOMer, UR 2160, F-44000 Nantes, France.
| | - Nicolas Briant
- Ifremer, Centre Atlantique, Biogéochimie et Ecotoxicologie, BE, Laboratoire de Biogéochimie des Contaminants Métalliques, LBCM, F-44000 Nantes, France.
| | - Laurence Poirier
- Nantes Université, Institut des Substances et Organismes de la Mer, ISOMer, UR 2160, F-44000 Nantes, France.
| |
Collapse
|
5
|
Schulte K, Blakeslee SB, Kandil FI, Stock-Schröer B, Seifert G. The Effect of Cold-Water Hydrotherapy According to Sebastian Kneipp for Immune Stimulation: A Nonrandomized, Controlled, Explorative, Mixed-Methods Clinical Study. JOURNAL OF INTEGRATIVE AND COMPLEMENTARY MEDICINE 2022; 28:749-756. [PMID: 35649190 DOI: 10.1089/jicm.2022.0476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Highlights Home-based hydrotherapy leads to fewer missed kindergarten-days in total. In the application group, more fever days could be registered. Hydrotherapy, according to the hormesis principle by Sebastian Kneipp, aims to reduce infections of the lower respiratory tract. Parents participation motivated by increase in applicable health knowledge for their children. Objectives: This study investigates the effect of cold-water hydrotherapy stimulation according to the hormesis principle by Sebastian Kneipp on the number of missing kindergarten-days, fever days, and respiratory tract infections in children aged 3-6 years. Study design: A nonrandomized, controlled, explorative, mixed-methods clinical study. Intervention: The hydrotherapeutic intervention treated children aged 3-6 years with Kneipp arm affusions over 6 weeks. The control group received no intervention. Number of missed kindergarten-days, fever days, and respiratory tract infections were assessed by means of a digital diary. Through a self-developed structured questionnaire, sociodemographic data of both groups were compared and reason for participation in the study was recorded and qualitatively evaluated. Results: Twenty children participants and their parents in the intervention group and 18 in the control group were evaluated. The intervention was conducted at home by the parents. Statistical analysis revealed no significant differences between the groups but still showed intermediate effect sizes (indicating an underpowered study). These effect sizes point to a potentially lower proportion of children in the application group versus the control group with missed kindergarten-days in total (d = 0.67), days missed due to fever (d = 0.29), and infections of the lower respiratory tract (d = 0.60). In a future study, these parameters will thus serve as promising factors for evaluation. Parent's stated reasons for participation interest were to improve health, increase their own health knowledge, and because of their interest in alternative therapies and to support research. Conclusions: Cold-water hydrotherapy stimulation, according to the hormesis principle by Sebastian Kneipp, did reduce the number of days absent in kindergarten in total in the intervention group and lower respiratory tract infections occurred less frequently. Parent' participation interest demonstrated a desire to increase health literacy and implement this with their own children. Due to the small sample size, the results should be interpreted cautiously. Clinical Trial Registration Number: German Register of Clinical Trials (DRKS): ID 00017562.
Collapse
Affiliation(s)
- Klaudia Schulte
- Department of Pediatric Oncology/Hematology, Otto-Heubner Centre for Pediatric and Adolescent Medicine (OHC), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Sarah B Blakeslee
- Department of Pediatric Oncology/Hematology, Otto-Heubner Centre for Pediatric and Adolescent Medicine (OHC), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Farid I Kandil
- Department of Pediatric Oncology/Hematology, Otto-Heubner Centre for Pediatric and Adolescent Medicine (OHC), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Beate Stock-Schröer
- Department of Human Medicine and Integrated Accompanying Studies in Anthroposophic Medicine (IBAM), University of Witten/Herdecke Faculty of Health, Herdecke, Germany
| | - Georg Seifert
- Department of Pediatric Oncology/Hematology, Otto-Heubner Centre for Pediatric and Adolescent Medicine (OHC), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
- Department of Pediatrics, University of São Paulo Faculty of Medicine, São Paulo, Brazil
| |
Collapse
|
6
|
Siracusa R, Voltarelli VA, Trovato Salinaro A, Modafferi S, Cuzzocrea S, Calabrese EJ, Di Paola R, Otterbein LE, Calabrese V. NO, CO and H 2S: A Trinacrium of Bioactive Gases in the Brain. Biochem Pharmacol 2022; 202:115122. [PMID: 35679892 DOI: 10.1016/j.bcp.2022.115122] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 11/02/2022]
Abstract
Oxygen and carbon dioxide are time honored gases that have direct bearing on almost all life forms, but over the past thirty years, and in large part due to the Nobel Prize Award in Medicine for the elucidation of nitric oxide (NO) as a bioactive gas, the research and medical communities now recognize other gases as critical for survival. In addition to NO, hydrogen sulfide (H2S) and carbon monoxide (CO) have emerged as a triumvirate or Trinacrium of gases with analogous importance and that serve important homeostatic functions. Perhaps, one of the most intriguing aspects of these gases is the functional interaction between them, which is intimately linked by the enzyme systems that produce them. Despite the need to better understand NO, H2S and CO biology, the notion that these are environmental pollutants remains ever present. For this reason, incorporating the concept of hormesis becomes imperative and must be included in discussions when considering developing new therapeutics that involve these gases. While there is now an enormous literature base for each of these gasotransmitters, we provide here an overview of their respective physiologic roles in the brain.
Collapse
Affiliation(s)
- Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, 98166, Italy
| | - Vanessa A Voltarelli
- Department of Surgery, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, 02115, USA
| | - Angela Trovato Salinaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Sergio Modafferi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, 98166, Italy
| | - Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA
| | - Rosanna Di Paola
- Department of Veterinary Science, University of Messina, 98168, Messina, Italy
| | - Leo E Otterbein
- Department of Surgery, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, 02115, USA.
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.
| |
Collapse
|
7
|
Seong KM, Seo S, Lee D, Kim MJ, Lee SS, Park S, Jin YW. Is the Linear No-Threshold Dose-Response Paradigm Still Necessary for the Assessment of Health Effects of Low Dose Radiation? J Korean Med Sci 2016; 31 Suppl 1:S10-23. [PMID: 26908982 PMCID: PMC4756336 DOI: 10.3346/jkms.2016.31.s1.s10] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 09/17/2015] [Indexed: 12/17/2022] Open
Abstract
Inevitable human exposure to ionizing radiation from man-made sources has been increased with the proceeding of human civilization and consequently public concerns focus on the possible risk to human health. Moreover, Fukushima nuclear power plant accidents after the 2011 East-Japan earthquake and tsunami has brought the great fear and anxiety for the exposure of radiation at low levels, even much lower levels similar to natural background. Health effects of low dose radiation less than 100 mSv have been debated whether they are beneficial or detrimental because sample sizes were not large enough to allow epidemiological detection of excess effects and there was lack of consistency among the available experimental data. We have reviewed an extensive literature on the low dose radiation effects in both radiation biology and epidemiology, and highlighted some of the controversies therein. This article could provide a reasonable view of utilizing radiation for human life and responding to the public questions about radiation risk. In addition, it suggests the necessity of integrated studies of radiobiology and epidemiology at the national level in order to collect more systematic and profound information about health effects of low dose radiation.
Collapse
Affiliation(s)
- Ki Moon Seong
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Songwon Seo
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Dalnim Lee
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Min-Jeong Kim
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Seung-Sook Lee
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Sunhoo Park
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Young Woo Jin
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| |
Collapse
|
8
|
Abstract
This review compares the biological and physiological function of Sigma receptors [σRs] and their potential therapeutic roles. Sigma receptors are widespread in the central nervous system and across multiple peripheral tissues. σRs consist of sigma receptor one (σ1R) and sigma receptor two (σ2R) and are expressed in numerous regions of the brain. The sigma receptor was originally proposed as a subtype of opioid receptors and was suggested to contribute to the delusions and psychoses induced by benzomorphans such as SKF-10047 and pentazocine. Later studies confirmed that σRs are non-opioid receptors (not an µ opioid receptor) and play a more diverse role in intracellular signaling, apoptosis and metabolic regulation. σ1Rs are intracellular receptors acting as chaperone proteins that modulate Ca2+ signaling through the IP3 receptor. They dynamically translocate inside cells, hence are transmembrane proteins. The σ1R receptor, at the mitochondrial-associated endoplasmic reticulum membrane, is responsible for mitochondrial metabolic regulation and promotes mitochondrial energy depletion and apoptosis. Studies have demonstrated that they play a role as a modulator of ion channels (K+ channels; N-methyl-d-aspartate receptors [NMDAR]; inositol 1,3,5 triphosphate receptors) and regulate lipid transport and metabolism, neuritogenesis, cellular differentiation and myelination in the brain. σ1R modulation of Ca2+ release, modulation of cardiac myocyte contractility and may have links to G-proteins. It has been proposed that σ1Rs are intracellular signal transduction amplifiers. This review of the literature examines the mechanism of action of the σRs, their interaction with neurotransmitters, pharmacology, location and adverse effects mediated through them.
Collapse
Affiliation(s)
- Colin G Rousseaux
- a Department of Pathology and Laboratory Medicine , University of Ottawa , Ottawa , ON , Canada and
| | | |
Collapse
|
9
|
Abstract
The relationship between the dose of an effector and the biological response frequently is not described by a linear function and, moreover, in some cases the dose-response relationship may change from positive/adverse to adverse/positive with increasing dose. This complicated relationship is called "hormesis". This paper provides a short analysis of the concept along with a description of used approaches to characterize hormetic relationships. The whole hormetic curve can be divided into three zones: I - a lag-zone where no changes are observed with increasing dose; II - a zone where beneficial/adverse effects are observed, and III - a zone where the effects are opposite to those seen in zone II. Some approaches are proposed to analyze the molecular components involved in the development of the hormetic character of dose-response relationships with the use of specific genetic lines or inhibitors of regulatory pathways. The discussion is then extended to suggest a new parameter (half-width of the hormetic curve at zone II) for quantitative characterization of the hormetic curve. The problems limiting progress in the development of the hormesis concept such as low reproducibility and predictability may be solved, at least partly, by deciphering the molecular mechanisms underlying the hormetic dose-effect relationship.
Collapse
Affiliation(s)
- Volodymyr I Lushchak
- Department of Biochemistry and Biotechnology, Vassyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk, 76025, Ukraine
| |
Collapse
|
10
|
Palou A, Pico C, Keijer J. Integration of risk and benefit analysis-the window of benefit as a new tool? Crit Rev Food Sci Nutr 2009; 49:670-80. [PMID: 19582643 DOI: 10.1080/10408390802145401] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Foods and food components can have positive and/or negative effects on our health, resulting in benefits and risks. At present these are evaluated in largely separated trajectories. In view of assessment, management, and communication, we here propose and argue for an integrated evaluation of risk and benefit of food components and foods. The window of benefit assessment concept is described as a framework to combine thresholds and scores. The recommended dietary allowance (RDA) and the tolerable upper intake level (UL) delimit the range of intakes that should be considered sufficient to prevent deficiency, while avoiding toxicity. Within these thresholds, two additional thresholds, the lower and upper level of additional benefit (LLAB and ULAB), define the range of intakes that constitute an additional benefit. Intake within these limits should thus be protective against a specified health or nutritional risk of public health relevance. To faithfully predict outcomes and to obtain the tools that are necessary to support scientific valid evaluations, a mechanism based systems biology understanding of the effects of foods and nutrients is seen as the way forward. Ultimately this should lead to an integrated risk-benefit assessment, which will allow better management and, especially, communication, to the benefit of the consumer.
Collapse
|
11
|
Son TG, Camandola S, Mattson MP. Hormetic dietary phytochemicals. Neuromolecular Med 2008; 10:236-46. [PMID: 18543123 DOI: 10.1007/s12017-008-8037-y] [Citation(s) in RCA: 226] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Accepted: 05/06/2008] [Indexed: 01/23/2023]
Abstract
Compelling evidence from epidemiological studies suggests beneficial roles of dietary phytochemicals in protecting against chronic disorders such as cancer, and inflammatory and cardiovascular diseases. Emerging findings suggest that several dietary phytochemicals also benefit the nervous system and, when consumed regularly, may reduce the risk of disorders such as Alzheimer's and Parkinson's diseases. The evidence supporting health benefits of vegetables and fruits provide a rationale for identification of the specific phytochemicals responsible, and for investigation of their molecular and cellular mechanisms of action. One general mechanism of action of phytochemicals that is emerging from recent studies is that they activate adaptive cellular stress response pathways. From an evolutionary perspective, the noxious properties of such phytochemicals play an important role in dissuading insects and other pests from eating the plants. However at the subtoxic doses ingested by humans that consume the plants, the phytochemicals induce mild cellular stress responses. This phenomenon has been widely observed in biology and medicine, and has been described as 'preconditioning' or 'hormesis.' Hormetic pathways activated by phytochemicals may involve kinases and transcription factors that induce the expression of genes that encode antioxidant enzymes, protein chaperones, phase-2 enzymes, neurotrophic factors, and other cytoprotective proteins. Specific examples of such pathways include the sirtuin-FOXO pathway, the NF-kappaB pathway, and the Nrf-2/ARE pathway. In this article, we describe the hormesis hypothesis of phytochemical actions with a focus on the Nrf2/ARE signaling pathway as a prototypical example of a neuroprotective mechanism of action of specific dietary phytochemicals.
Collapse
Affiliation(s)
- Tae Gen Son
- Laboratory of Neurosciences, National Institute on Aging, Intramural Research Program, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA
| | | | | |
Collapse
|