1
|
Cheng C, Zhou MX, He X, Liu Y, Huang Y, Niu M, Liu YX, Gao Y, Lu YW, Song XH, Li HF, Xiao XH, Wang JB, Ma ZT. Metabolomic Analysis Uncovers Lipid and Amino Acid Metabolism Disturbance During the Development of Ascites in Alcoholic Liver Disease. Front Med (Lausanne) 2022; 9:815467. [PMID: 35770013 PMCID: PMC9234647 DOI: 10.3389/fmed.2022.815467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 05/19/2022] [Indexed: 12/20/2022] Open
Abstract
Ascites is one of the most common complications of cirrhosis, and there is a dearth of knowledge about ascites-related pathologic metabolism. In this study, 122 alcoholic liver disease (ALD) patients, including 49 cases without ascites, 18 cases with mild-ascites, and 55 cases with large-ascites (1) were established according to the International Ascites Club (2), and untargeted metabolomics coupled with pattern recognition approaches were performed to profile and extract metabolite signatures. A total of 553 metabolites were uniquely discovered in patients with ascites, of which 136 metabolites had been annotated in the human metabolome database. Principal component analysis (PCA) analysis was used to further identify 21 ascites-related fingerprints. The eigenmetabolite calculated by reducing the dimensions of the 21 metabolites could be used to effectively identify those ALD patients with or without ascites. The eigenmetabolite showed a decreasing trend during ascites production and accumulation and was negatively related to the disease progress. These metabolic fingerprints mainly belong to the metabolites in lipid metabolism and the amino acid pathway. The results imply that lipid and amino acid metabolism disturbance may play a critical role in the development of ascites in ALD patients and could be a potent prognosis marker.
Collapse
Affiliation(s)
- Cheng Cheng
- College of Chinese Medicine and Food Engineering, Shanxi University of Traditional Chinese Medicine, Jinzhong, China
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ming-xi Zhou
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xian He
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yao Liu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Ying Huang
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ming Niu
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yi-xuan Liu
- College of Chinese Medicine and Food Engineering, Shanxi University of Traditional Chinese Medicine, Jinzhong, China
| | - Yuan Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Ya-wen Lu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Xin-hua Song
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Hui-fang Li
- College of Chinese Medicine and Food Engineering, Shanxi University of Traditional Chinese Medicine, Jinzhong, China
| | - Xiao-he Xiao
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jia-bo Wang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- *Correspondence: Jia-bo Wang,
| | - Zhi-tao Ma
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Zhi-tao Ma,
| |
Collapse
|
2
|
Carolina dos Santos Costa A, Pereira DE, de Cássia de Araújo Bidô R, Freire de Carvalho CV, Milhomens Ferreira Melo PC, de Castro Querino Dias C, Golzio dos Santos S, Fernandes de Souza Araújo D, Bernardo Guerra GC, Rufino de Freitas JC, Estevez Pintado MM, Viera VB, Barbosa Soares JK. Consumption of clarified goat butter added with turmeric (Curcuma longa L.) increase oleic fatty acid and lipid peroxidation in the liver of adolescent rats. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2020.100799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
3
|
Safety and bioactive potential of nanoparticles containing Cantaloupe melon ( Cucumis melo L.) carotenoids in an experimental model of chronic inflammation. ACTA ACUST UNITED AC 2020; 28:e00567. [PMID: 33304841 PMCID: PMC7714681 DOI: 10.1016/j.btre.2020.e00567] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/18/2022]
Abstract
Carotenoids present anti-inflammatory effects in healthy and overweight adults. Nanotechnology can enhance carotenoid's bioactive potential. Nanoparticles loaded with carotenoids from Cantaloupe melon were used in obese rats. Animals receiving the nanoparticles showed no signs of toxicity. Animals treated with nanoparticles had organs better aspect compared to untreated.
The safety and bioactive potential of crude carotenoid extract from Cantaloupe melon nanoencapsulated in porcine gelatin (EPG) were evaluated in a chronic inflammatory experimental model. Animals were fed a high glycemic index and high glycemic load (HGLI) diet for 17 weeks and treated for ten days with 1) HGLI diet, 2) standard diet, 3) HGLI diet + crude carotenoid extract (CE) (12.5 mg/kg), and 4) HGLI diet + EPG (50 mg/kg). General toxicity signals were investigated, considering body weight, food intake, hematological, biochemical parameters, relative weight, morphology, and histopathology of organs. The biochemical parameters indicated the low toxicity of EPG. Acute hepatitis was observed in animals' livers, but CE and EPG groups presented improved tissue appearance. Chronic enteritis was observed in animals, with villi and intestinal glands preservation in the EPG group. The results suggest the safety and the bioactive effect of EPG, possibly related to its anti-inflammatory potential.
Collapse
Key Words
- ALP, alkaline phosphatase
- ALT, alanine aminotransferase
- AST, aspartate transferase
- BSD, Bowman’s space dilation
- CE, crude carotenoid extract
- CEUA, Ethics Committee on the Use of Animals
- Curcubitaceae
- EI, efficiency of incorporation
- EPG, crude carotenoid extract from Cantaloupe melon nanoencapsulated in porcine gelatin
- FTIR, Fourier Transform Infrared Spectroscopy
- GGT, gamma-glutamyl transferase
- HGLI, high glycemic index and high glycemic load
- IIF, inflammatory infiltrate foci
- Nanotechnology
- OECD, Organization for Economic Co-operation and Development
- Obesity
- PHT, presence of hypertrophic tubules
- PIGI, percentage of intestinal gland integrity
- PUV, percentage of ulcerated villi
- PVA, percentage of villous absence
- PVI, percentage of villus integrity
- PVN, percentage of villous necrosis
- SEM, Scanning Electron Microscope
- THC, tubular hyaline cylinders
- Toxicity
- β-carotene
Collapse
|
4
|
Hussein NS, S Helmy A, Sherif NM, Ghanem HZ, A Ibrahim N, El Gendy ANG, Abdel-Hamid AHZ. Lipidomic analysis reveals the efficiency of Eclipta prostrata on diet-induced nonalcoholic fatty liver disease in rats. J Pharm Biomed Anal 2018; 165:224-232. [PMID: 30553982 DOI: 10.1016/j.jpba.2018.11.060] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 11/26/2018] [Accepted: 11/28/2018] [Indexed: 01/05/2023]
Abstract
Non-alcoholic fatty liver disease is a leading cause of chronic liver disease in western countries. The current study aimed to detect and evaluate lipidomic biomarkers for early detection of NAFLD as well as the potential efficiency of methanolic extract of Eclipta prostrata (E. prostrata) on disease management. In this study, Phytochemical screening of E. prostrata methanolic extract was performed using HPLC. NAFLD was induced in albino rats using a high-fat diet together with cholesterol and cholic acid. Comprehensive lipidomic analyses on sera from rats bearing NAFLD as well as normal healthy animals were carried out based on GCMS and multivariate data analysis. The results showed that high doses (300&200 mg/kg.BW) of E. prostrata extract exhibited significant improvement in liver enzymes (ALT & AST) and lipid profile [total cholesterol (TC), triacylglycerides (TAGs), high-density lipoprotein cholesterol (HDL-C) and low-density lipoprotein-cholesterol (LDL-C)] in rats bearing NAFLD. Glycerol, linoleic acid, arachidonic acid and cholest-5-en-3-ol (3β) acetate were detected as lipidomic biomarkers for early detection of NAFLD in rats' sera. Furthermore, E. prostrata extract showed a significant amelioration in the levels of these metabolic biomarkers in both protective and treated groups. These finding devoutly recommend using of lipidomic biomarkers for early detection of NAFLD and E. prostrata could be used as a protective agent as well as ameliorate this disease through its probable action on the fore-mentioned metabolites.
Collapse
Affiliation(s)
- Noha Said Hussein
- Department of Therapeutic Chemistry, National Research Centre, Cairo, Egypt.
| | - Azza S Helmy
- Biochemistry Department, Faculty of Science, Ain-Shams University, Cairo, Egypt
| | - Naglaa M Sherif
- Biochemistry Department, Faculty of Science, Ain-Shams University, Cairo, Egypt
| | - Hassan Z Ghanem
- Department of Therapeutic Chemistry, National Research Centre, Cairo, Egypt
| | | | | | | |
Collapse
|
5
|
Yanina IY, Lazareva EN, Tuchin VV. Refractive index of adipose tissue and lipid droplet measured in wide spectral and temperature ranges. APPLIED OPTICS 2018; 57:4839-4848. [PMID: 30118111 DOI: 10.1364/ao.57.004839] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 05/06/2018] [Indexed: 06/08/2023]
Abstract
This study presents refractive index measurements of human and porcine adipose tissues and lipid droplet content in the visible and near-infrared. The coefficients of the Sellmeier formula were calculated for approximation of tissue dispersion. For the first time, to the best of our knowledge, the phase transition temperatures and temperature increments dn/dT of adipose tissue were quantified for a wide wavelength range from 480 to 1550 nm and from room temperature up to 50°C. For human abdominal adipose tissue, the refractive index increment averaged across all wavelengths is dn/dT=-(3.54±0.15)×10-4°C-1, for porcine tissue dn/dT=-7.92(0.74)×10-4°C-1, and for porcine lipid droplet dn/dT=-6.01(0.29)×10-4°C-1. Data available in literature for refractive indices of adipose tissues measured by different techniques are summarized and compared with the received data.
Collapse
|
6
|
Batista ÂG, Lenquiste SA, Moldenhauer C, Godoy JT, Reis SMPM, Maróstica Júnior MR. Jaboticaba (Myrciaria jaboticaba (Vell.) Berg.) peel improved triglycerides excretion and hepatic lipid peroxidation in high-fat-fed rats. REV NUTR 2013. [DOI: 10.1590/s1415-52732013000500008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJECTIVE: The aim of this study was to evaluate the influence of high-fat diets with 1%, 2%, and 4% freeze-dried jaboticaba peel on the serum, liver, and fecal lipid profile of obese rats. METHODS: Thirty male Sprague-Dawley rats were divided into 5 groups. Obesity was induced in four groups using a high-fat diet (35% lipids). One group was used as a high-fat diet control (High-fat group - HF). The other three high-fat-diet groups were given 1%, 2%, and 4% freeze-dried jaboticaba peel (High-Fat Jaboticaba - HFJ1, HFJ2, and HFJ4, respectively) in the last 40 experimental days. Blood and the liver were collected after 70 days of treatment and feces were collected in the last experimental week. Total cholesterol, triglycerides, and lipids were measured in the serum, liver, and dried feces. ffer in the experimental groups. HFJ2 group had the highest hepatic and fecal lipid contents compared with the group fed a diet with normal fat content (N), but low hepatic lipid peroxidation. HFJ4 group had the highest mean hepatic and fecal cholesterol levels. Hepatic triglyceride levels did not differ among the groups, and groups HFJ1 and HFJ4 presented the highest fecal triglyceride content. CONCLUSION: The amounts of jaboticaba peel used by this study did not protect against hepatic steatosis or undesired levels of other studied lipids, but it did increase fecal triglycerides. Lipid peroxidation in the liver decreased in the HFJ2 group.
Collapse
|
7
|
Neto Angéloco LR, Deminice R, Leme IDA, Lataro RC, Jordão AA. Bioelectrical impedance analysis and anthropometry for the determination of body composition in rats: effects of high-fat and high-sucrose diets. REV NUTR 2012. [DOI: 10.1590/s1415-52732012000300003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
OBJECTIVE: The aim of the present study was to determine the impedance of Wistar rats treated with high-fat and high-sucrose diets and correlate their biochemical and anthropometric parameters with chemical analysis of the carcass. METHODS: Twenty-four male Wistar rats were fed a standard (AIN-93), high-fat (50% fat) or high-sucrose (59% of sucrose) diet for 4 weeks. Abdominal and thoracic circumference and body length were measured. Bioelectrical impedance analysis was used to determine resistance and reactance. Final body composition was determined by chemical analysis. RESULTS: Higher fat intake led to a high percentage of liver fat and cholesterol and low total body water in the High-Fat group, but these changes in the biochemical profile were not reflected by the anthropometric measurements or bioelectrical impedance analysis variables. Anthropometric and bioelectrical impedance analysis changes were not observed in the High-Sucrose group. However, a positive association was found between body fat and three anthropometric variables: body mass index, Lee index and abdominal circumference. CONCLUSION: Bioelectrical impedance analysis did not prove to be sensitive for detecting changes in body composition, but body mass index, Lee index and abdominal circumference can be used for estimating the body composition of rats.
Collapse
Affiliation(s)
| | - Rafael Deminice
- Universidade de São Paulo, Brasil; Universidade de Londrina, Brasil
| | | | | | | |
Collapse
|