1
|
Buechner GS, Millington ME, Perry K, D'Antonio EL. The crystal structure of glucokinase from Leishmania braziliensis. Mol Biochem Parasitol 2018; 227:47-52. [PMID: 30571993 DOI: 10.1016/j.molbiopara.2018.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/30/2018] [Accepted: 12/07/2018] [Indexed: 11/30/2022]
Abstract
Glucokinase from pathogenic protozoa of the genus Leishmania is a potential drug target for the chemotherapeutic treatment against leishmaniasis because this enzyme is located at a nodal point between two critically important metabolic pathways, glycolysis and the pentose phosphate pathway (PPP). L. braziliensis glucokinase (LbGlcK) was evaluated for its structural characterization and enzymatic performance. The enzyme catalyzes the phosphorylation of d-glucose with co-substrate ATP to yield the products G6P and ADP. LbGlcK had KM values determined as 6.61 ± 2.63 mM and 0.338 ± 0.080 mM for d-glucose and ATP, respectively. The 1.85 Å resolution X-ray crystal structure of the apo form of LbGlcK was determined and a homodimer was revealed where each subunit (both in open conformations) included the typical small and large domains. Structural comparisons were assessed in relationship to Homo sapiens hexokinase IV and Trypanosoma cruzi glucokinase. Comparisons revealed that all residues important for making hydrogen bonding interactions with d-glucose in the active site and catalysis were strictly conserved. LbGlcK was screened against four glucosamine analogue inhibitors and the stronger inhibitor of the series, HPOP-GlcN, had a Ki value of 56.9 ± 16.6 μM that exhibited competitive inhibition. For the purpose of future structure-based drug design experimentation, L. braziliensis glucokinase was observed to be very similar to T. cruzi glucokinase even though there was a 44% protein sequence identity between the two enzymes.
Collapse
Affiliation(s)
- Gregory S Buechner
- Department of Natural Sciences, University of South Carolina Beaufort, 1 University Boulevard, Bluffton, SC, 29909, USA
| | - Matthew E Millington
- Department of Natural Sciences, University of South Carolina Beaufort, 1 University Boulevard, Bluffton, SC, 29909, USA
| | - Kay Perry
- NE-CAT, Department of Chemistry and Chemical Biology, Cornell University, Building 436E, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL, 60439, USA
| | - Edward L D'Antonio
- Department of Natural Sciences, University of South Carolina Beaufort, 1 University Boulevard, Bluffton, SC, 29909, USA.
| |
Collapse
|
2
|
Jardim A, Hardie DB, Boitz J, Borchers CH. Proteomic Profiling of Leishmania donovani Promastigote Subcellular Organelles. J Proteome Res 2018; 17:1194-1215. [PMID: 29332401 DOI: 10.1021/acs.jproteome.7b00817] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To facilitate a greater understanding of the biological processes in the medically important Leishmania donovani parasite, a combination of differential and density-gradient ultracentrifugation techniques were used to achieve a comprehensive subcellular fractionation of the promastigote stage. An in-depth label-free proteomic LC-MS/MS analysis of the density gradients resulted in the identification of ∼50% of the Leishmania proteome (3883 proteins detected), which included ∼645 integral membrane proteins and 1737 uncharacterized proteins. Clustering and subcellular localization of proteins was based on a subset of training Leishmania proteins with known subcellular localizations that had been determined using biochemical, confocal microscopy, or immunoelectron microscopy approaches. This subcellular map will be a valuable resource that will help dissect the cell biology and metabolic processes associated with specific organelles of Leishmania and related kinetoplastids.
Collapse
Affiliation(s)
- Armando Jardim
- Institute of Parasitology, Macdonald Campus, McGill University , 21111 Lakeshore Road, Saine-Anne-de-Bellevue, Québec H9X 3V9, Canada
| | - Darryl B Hardie
- University of Victoria -Genome British Columbia Proteomics Centre , #3101-4464 Markham Street, Vancouver Island Technology Park, Victoria, British Columbia V8Z7X8, Canada
| | - Jan Boitz
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University , Portland, Oregon 97239, United States
| | - Christoph H Borchers
- University of Victoria -Genome British Columbia Proteomics Centre , #3101-4464 Markham Street, Vancouver Island Technology Park, Victoria, British Columbia V8Z7X8, Canada.,Department of Biochemistry and Biophysics, University of North Carolina , 120 Mason Farm Road, Campus Box 7260 Third Floor, Genetic Medicine Building, Chapel Hill, North Carolina 27599, United States.,Department of Biochemistry and Microbiology, University of Victoria , Petch Building, Room 270d, 3800 Finnerty Road, Victoria, British Columbia V8P 5C2, Canada.,Gerald Bronfman Department of Oncology, Jewish General Hospital, McGill University , 3755 Côte Ste-Catherine Road, Montreal, Quebec H3T 1E2, Canada.,Proteomics Centre, Segal Cancer Centre, Lady Davis Institute, Jewish General Hospital, McGill University , 3755 Côte Ste-Catherine Road, Montreal, Quebec H3T 1E2, Canada
| |
Collapse
|
3
|
Flaherty DP, Harris MT, Schroeder CE, Khan H, Kahney EW, Hackler AL, Patrick SL, Weiner WS, Aubé J, Sharlow ER, Morris JC, Golden JE. Optimization and Evaluation of Antiparasitic Benzamidobenzoic Acids as Inhibitors of Kinetoplastid Hexokinase 1. ChemMedChem 2017; 12:1994-2005. [PMID: 29105342 PMCID: PMC5808564 DOI: 10.1002/cmdc.201700592] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 10/26/2017] [Indexed: 11/05/2022]
Abstract
Kinetoplastid-based infections are neglected diseases that represent a significant human health issue. Chemotherapeutic options are limited due to toxicity, parasite susceptibility, and poor patient compliance. In response, we studied a molecular-target-directed approach involving intervention of hexokinase activity-a pivotal enzyme in parasite metabolism. A benzamidobenzoic acid hit with modest biochemical inhibition of Trypanosoma brucei hexokinase 1 (TbHK1, IC50 =9.1 μm), low mammalian cytotoxicity (IMR90 cells, EC50 >25 μm), and no appreciable activity on whole bloodstream-form (BSF) parasites was optimized to afford a probe with improved TbHK1 potency and, significantly, efficacy against whole BSF parasites (TbHK1, IC50 =0.28 μm; BSF, ED50 =1.9 μm). Compounds in this series also inhibited the hexokinase enzyme from Leishmania major (LmHK1), albeit with less potency than toward TbHK1, suggesting that inhibition of the glycolytic pathway may be a promising opportunity to target multiple disease-causing trypanosomatid protozoa.
Collapse
Affiliation(s)
- Daniel P Flaherty
- University of Kansas Specialized Chemistry Center, University of Kansas, Lawrence, KS, 66049, USA
- Present Address: Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 West Stadium Avenue, West Lafayette, IN, 47907, USA
| | - Michael T Harris
- Eukaryotic Pathogens Innovation Center, Department of Genetics and Biochemistry, Clemson University, Clemson, SC, 29634, USA
- Present Address: Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Chad E Schroeder
- University of Kansas Specialized Chemistry Center, University of Kansas, Lawrence, KS, 66049, USA
| | - Haaris Khan
- Eukaryotic Pathogens Innovation Center, Department of Genetics and Biochemistry, Clemson University, Clemson, SC, 29634, USA
| | - Elizabeth W Kahney
- Eukaryotic Pathogens Innovation Center, Department of Genetics and Biochemistry, Clemson University, Clemson, SC, 29634, USA
- Present Address: Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Amber L Hackler
- Eukaryotic Pathogens Innovation Center, Department of Genetics and Biochemistry, Clemson University, Clemson, SC, 29634, USA
| | - Stephen L Patrick
- Eukaryotic Pathogens Innovation Center, Department of Genetics and Biochemistry, Clemson University, Clemson, SC, 29634, USA
| | - Warren S Weiner
- University of Kansas Specialized Chemistry Center, University of Kansas, Lawrence, KS, 66049, USA
| | - Jeffrey Aubé
- University of Kansas Specialized Chemistry Center, University of Kansas, Lawrence, KS, 66049, USA
- Present Address: School of Pharmacy, University of North Carolina, 3012 Marsico Hall, 125 Mason Farm Road, Chapel Hill, NC, 27599, USA
| | - Elizabeth R Sharlow
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908, USA
| | - James C Morris
- Eukaryotic Pathogens Innovation Center, Department of Genetics and Biochemistry, Clemson University, Clemson, SC, 29634, USA
| | - Jennifer E Golden
- University of Kansas Specialized Chemistry Center, University of Kansas, Lawrence, KS, 66049, USA
- Present Address: School of Pharmacy, Department of Pharmaceutical Sciences, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI, 53705, USA
| |
Collapse
|
4
|
Sun M, Liao S, Zhang L, Wu C, Qi N, Lv M, Li J, Lin X, Zhang J, Xie M, Zhu G, Cai J. Molecular and biochemical characterization of Eimeria tenella hexokinase. Parasitol Res 2016; 115:3425-33. [DOI: 10.1007/s00436-016-5104-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 04/28/2016] [Indexed: 12/20/2022]
|
5
|
Azmi K, Schonian G, Schnur LF, Nasereddin A, Ereqat S, Abdeen Z. Development of assays using hexokinase and phosphoglucomutase gene sequences that distinguish strains of Leishmania tropica from different zymodemes and microsatellite clusters and their application to Palestinian foci of cutaneous leishmaniasis. PLoS Negl Trop Dis 2013; 7:e2464. [PMID: 24086789 PMCID: PMC3784506 DOI: 10.1371/journal.pntd.0002464] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Accepted: 08/21/2013] [Indexed: 11/30/2022] Open
Abstract
Background/Objectives Palestinian strains of L.tropica characterized by multilocus enzyme electrophoresis (MLEE) fall into two zymodemes, either MON-137 or MON-307. Methodology/Principle Findings Assays employing PCR and subsequent RFLP were applied to sequences found in the Hexokinase (HK) gene, an enzyme that is not used in MLEE, and the Phosphoglucomutase (PGM) gene, an enzyme that is used for MLEE, to see if they would facilitate consigning local strains of L.tropica to either zymodeme MON-137 or zymodeme MON-307. Following amplification and subsequent double digestion with the restriction endonucleases MboI and HaeIII, variation in the restriction patterns of the sequence from the HK gene distinguished strains of L.tropica, L.major and L.infantum and also exposed two genotypes (G) among the strains of L.tropica: HK-LtG1, associated with strains of L.tropica of the zymodemes MON-137 and MON-265, and HK-LtG2, associated with strains of L.tropica of the zymodemes MON-307, MON-288, MON-275 and MON-54. Following amplification and subsequent digestion by the restriction endonuclease MboI, variation in the sequence from the PGM gene also exposed two genotypes among the strains of L.tropica: PGM-G1, associated only with strains of L.tropica of the zymodeme MON-137; and PGM-G2, associated with strains of L.tropica of the zymodemes MON-265, MON-307, MON-288, MON-275 and MON-54, and, also, with six strains of L.major, five of L.infantum and one of L.donovani. The use of the HK and PGM gene sequences enabled distinction the L.tropica strains of the zymodeme MON-137 from those of the zymodeme MON-265. This genotyping system ‘correctly’ identified reference strains of L.tropica of known zymodemal affiliation and also from clinical samples, with a level of sensitivity down to <1 fg in the case of the former and to 1 pg of DNA in the case of the latter. Conclusions/Significance Both assays proved useful for identifying leishmanial parasites in clinical samples without resource to culture and MLEE. The species L. major, L. tropica and L. infantum exist in Palestine and Israel where the first two cause CL and the third usually causes VL although cases of CL without visible signs of VL have been reported from Palestine. This means that diagnosis of locally acquired leishmaniases requires identification of their causative agents for further management of cases. Two molecular biological methods based on sequences from the genes of the enzymes HK and PGM and employing PCRs and consecutive RFLPs were developed and used together to distinguish among strains of the three species and between the two subtypes of L. tropica found in Palestinian foci that coincide with zymodemes MON-137 and MON-307. They were applied to, both, isolated parasites grown as promastigotes and to amastigotes in tissue preparations from cases and were able to identify strains and indicate their zymodemal affiliations.
Collapse
Affiliation(s)
- Kifaya Azmi
- Al-Quds Nutrition and Health Research Institute, Faculty of Medicine, Al-Quds University, Abu-Deis, West Bank, Palestine
- Institute of Microbiology and Hygiene, Charité University Medicine Berlin, Berlin, Germany
- * E-mail:
| | - Gabriele Schonian
- Institute of Microbiology and Hygiene, Charité University Medicine Berlin, Berlin, Germany
| | - Lionel F. Schnur
- Kuvin Centre for the Study of Infectious and Tropical Diseases, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Abedelmajeed Nasereddin
- Al-Quds Nutrition and Health Research Institute, Faculty of Medicine, Al-Quds University, Abu-Deis, West Bank, Palestine
| | - Suheir Ereqat
- Al-Quds Nutrition and Health Research Institute, Faculty of Medicine, Al-Quds University, Abu-Deis, West Bank, Palestine
| | - Ziad Abdeen
- Al-Quds Nutrition and Health Research Institute, Faculty of Medicine, Al-Quds University, Abu-Deis, West Bank, Palestine
| |
Collapse
|
6
|
Chandra S, Ruhela D, Deb A, Vishwakarma RA. Glycobiology of theLeishmaniaparasite and emerging targets for antileishmanial drug discovery. Expert Opin Ther Targets 2010; 14:739-57. [DOI: 10.1517/14728222.2010.495125] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
7
|
Singh AR, Joshi S, Arya R, Kayastha AM, Srivastava KK, Tripathi LM, Saxena JK. Molecular cloning and characterization of Brugia malayi hexokinase. Parasitol Int 2008; 57:354-61. [PMID: 18499511 DOI: 10.1016/j.parint.2008.03.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Revised: 03/12/2008] [Accepted: 03/15/2008] [Indexed: 11/15/2022]
Abstract
5' EST from filarial gene database has been subjected to 3' rapid amplification of cDNA ends (RACE), semi-nested PCR and PCR to obtain full-length cDNA of Brugia malayi. Full-length hexokinase gene was obtained from cDNA using gene specific primers. The elicited PCR product was cloned, sequenced and expressed as an active enzyme in Escherichia coli. Sequence analysis of B. malayi hexokinase (BmHk) revealed 59% identity with nematode Caenorhabditis elegans but low similarity with all other available hexokinases including human. BmHk, an apparent tetramer with subunit molecular mass of 72 kDa, was able to phosphorylate glucose, fructose, mannose, maltose and galactose. The Km values for glucose, fructose and ATP were found to be 0.035+/-0.005, 75+/-0.3 and 1.09+/-0.5 mM respectively. BmHk was strongly inhibited by ADP, glucosamine, N-acetyl glucosamine and mannoheptulose. The recombinant enzyme was found to be activated by glucose-6-phosphate. ADP exhibited noncompetitive inhibition with the substrate glucose (Ki=0.55 mM) while, mixed type of inhibition was observed with inorganic pyrophosphate (PPi) when ATP was used as substrate (Ki=9.92 microM). The enzyme activity is highly dependent on maintenance of free sulfhydryl groups. CD analysis indicated that BmHk is composed of 37% alpha-helices and 26% beta-sheets. The observed differences in kinetic properties of BmHk as compared to host enzyme may facilitate designing of specific inhibitors against BmHk.
Collapse
Affiliation(s)
- Alok Ranjan Singh
- Division of Biochemistry, Central Drug Research Institute, Lucknow, India
| | | | | | | | | | | | | |
Collapse
|
8
|
Chavali AK, Whittemore JD, Eddy JA, Williams KT, Papin JA. Systems analysis of metabolism in the pathogenic trypanosomatid Leishmania major. Mol Syst Biol 2008; 4:177. [PMID: 18364711 PMCID: PMC2290936 DOI: 10.1038/msb.2008.15] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Accepted: 02/06/2008] [Indexed: 12/18/2022] Open
Abstract
Systems analyses have facilitated the characterization of metabolic networks of several organisms. We have reconstructed the metabolic network of Leishmania major, a poorly characterized organism that causes cutaneous leishmaniasis in mammalian hosts. This network reconstruction accounts for 560 genes, 1112 reactions, 1101 metabolites and 8 unique subcellular localizations. Using a systems-based approach, we hypothesized a comprehensive set of lethal single and double gene deletions, some of which were validated using published data with approximately 70% accuracy. Additionally, we generated hypothetical annotations to dozens of previously uncharacterized genes in the L. major genome and proposed a minimal medium for growth. We further demonstrated the utility of a network reconstruction with two proof-of-concept examples that yielded insight into robustness of the network in the presence of enzymatic inhibitors and delineation of promastigote/amastigote stage-specific metabolism. This reconstruction and the associated network analyses of L. major is the first of its kind for a protozoan. It can serve as a tool for clarifying discrepancies between data sources, generating hypotheses that can be experimentally validated and identifying ideal therapeutic targets.
Collapse
Affiliation(s)
- Arvind K Chavali
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Jeffrey D Whittemore
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - James A Eddy
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Kyle T Williams
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Jason A Papin
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
9
|
Cáceres AJ, Quiñones W, Gualdrón M, Cordeiro A, Avilán L, Michels PAM, Concepción JL. Molecular and biochemical characterization of novel glucokinases from Trypanosoma cruzi and Leishmania spp. Mol Biochem Parasitol 2007; 156:235-45. [PMID: 17904661 DOI: 10.1016/j.molbiopara.2007.08.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2007] [Revised: 08/17/2007] [Accepted: 08/22/2007] [Indexed: 10/22/2022]
Abstract
Glucokinase genes, found in the genome databases of Trypanosoma cruzi and Leishmania major, were cloned and sequenced. Their expression in Escherichia coli resulted in the synthesis of soluble and active enzymes, TcGlcK and LmjGlcK, with a molecular mass of 43 kDa and 46 kDa, respectively. The enzymes were purified, and values of their kinetic parameters determined. The K(m) values for glucose were 1.0 mM for TcGlcK and 3.3 mM for LmjGlcK. For ATP, the K(m) values were 0.36 mM (TcGlcK) and 0.35 mM (LmjGlcK). A lower K(m) value for glucose (2.55 mM) was found when the (His)(6)-tag was removed from the recombinant LmjGlcK, whereas the TcGlcK retained the same value. The V(max)'s of the T. cruzi and L. major GlcKs were 36.3 and 30.9 U/mg of protein, respectively. No inhibition was exerted by glucose-6-phosphate. Similarly, no inhibition by inorganic pyrophosphate was found in contrast to previous observations made for the T. cruzi and L. mexicana hexokinases. Both trypanosomatid enzymes were only able to phosphorylate glucose indicating that they are true glucokinases. Gel-filtration chromatography showed that the GlcK of both trypanosomatids may occur as a monomer or dimer, dependent on the protein concentration. Both GlcK sequences have a type-1 peroxisome-targeting signal. Indeed, they were shown to be present inside glycosomes using three different methods. These glucokinases present highest, albeit still a moderate 24% sequence identity with their counterpart from Trichomonas vaginalis, which has been classified into group A of the hexokinase family. This group comprises mainly eubacterial and cyanobacterial glucokinases. Indeed, multiple sequence comparisons, as well as kinetic properties, strongly support the notion that these trypanosomatid enzymes belong to group A of the hexokinases, in which they, according to a phylogenetic analysis, form a separate cluster.
Collapse
Affiliation(s)
- Ana Judith Cáceres
- Unidad de Bioquímica de Parásitos, Centro de Ingeniería Genética, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
| | | | | | | | | | | | | |
Collapse
|
10
|
Pabón MA, Cáceres AJ, Gualdrón M, Quiñones W, Avilán L, Concepción JL. Purification and characterization of hexokinase from Leishmania mexicana. Parasitol Res 2006; 100:803-10. [PMID: 17061112 DOI: 10.1007/s00436-006-0351-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Accepted: 09/26/2006] [Indexed: 11/29/2022]
Abstract
Hexokinase from Leishmania mexicana was purified to homogeneity from a glycosome-enriched fraction obtained after a differential centrifugation of promastigote form. The kinetic properties of the pure enzyme were determined and the Km values for glucose (Km = 66 microM) and ATP (Km = 303 muM) were comparable to those from hexokinase of Trypanosoma cruzi. L. mexicana hexokinase was able to use fructose (Km = 142 microM), which reflects the condition found in the insect host. In contrast with hexokinases from other trypanosomatids, the enzyme exhibited a moderate sensitivity to inhibition by glucose 6-phosphate. This inhibition was competitive with respect to both ATP and glucose, indicating that an allosteric site for glucose 6-phosphate does not exist in this enzyme. The enzyme was also inhibited by inorganic pyrophosphate, the inhibition being higher than that observed for T. cruzi enzyme. As expected, the enzyme was localized, by immunofluorescence analysis, in glycosomes and is present in both promastigotes and true amastigotes obtained from hamster lesion. Hexokinase specific activity increased with the aging of promastigote culture, and this increment was related to glucose consumption. However, the level of the hexokinase protein remains constant as determined by Western blotting. Several hypotheses are discussed to explain this result.
Collapse
Affiliation(s)
- Miguel A Pabón
- Laboratorio de Enzimología de Parásitos, Centro de Ingeniería Genética, Facultad de Ciencias, Universidad de Los Andes, La Hechicera, Mérida, 5101, Venezuela
| | | | | | | | | | | |
Collapse
|