1
|
Gao L, Zhang Z, Wu W, Deng Y, Zhi H, Long H, Lei M, Hou J, Wu W, Guo DA. Quantitative imaging of natural products in fine brain regions using desorption electrospray ionization mass spectrometry imaging (DESI-MSI): Uncaria alkaloids as a case study. Anal Bioanal Chem 2022; 414:4999-5007. [PMID: 35639139 DOI: 10.1007/s00216-022-04130-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/28/2022] [Accepted: 05/12/2022] [Indexed: 01/21/2023]
Abstract
Uncaria species (Rubiaceae) are used as traditional Chinese medicines (TCMs) to treat central nervous system (CNS) diseases, and monoterpene indole alkaloids are the main bioactive constituents. Localization and quantification of CNS drugs in fine brain regions are important to provide insights into their pharmacodynamics, for which quantitative mass spectrometry imaging (MSI) has emerged as a powerful technique. A systematic study of the quantitative imaging of seven Uncaria alkaloids in rat brains using desorption electrospray ionization mass spectrometry imaging (DESI-MSI) was presented. The distribution of the alkaloids in thirteen brain regions was quantified successfully using the calibration curves generated by a modified on-tissue approach. The distribution trend of different Uncaria alkaloids in the rat brain was listed as monoterpene indole alkaloids > monoterpene oxindole alkaloids, R-configuration epimers > S-configuration epimers. Particularly, Uncaria alkaloids were detected directly in the pineal gland for the first time and their enrichment phenomenon in this region had an instructive significance in future pharmacodynamic studies.
Collapse
Affiliation(s)
- Lei Gao
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zijia Zhang
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Wenyong Wu
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Yanping Deng
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Haijuan Zhi
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Huali Long
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Min Lei
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jinjun Hou
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Wanying Wu
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - De-An Guo
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
2
|
Kushida H, Matsumoto T, Ikarashi Y. Properties, Pharmacology, and Pharmacokinetics of Active Indole and Oxindole Alkaloids in Uncaria Hook. Front Pharmacol 2021; 12:688670. [PMID: 34335255 PMCID: PMC8317223 DOI: 10.3389/fphar.2021.688670] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/29/2021] [Indexed: 12/13/2022] Open
Abstract
Uncaria Hook (UH) is a dry stem with hook of Ucaria plant and is contained in Traditional Japanese and Chinese medicine such as yokukansan, yokukansankachimpihange, chotosan, Gouteng-Baitouweng, and Tianma-Gouteng Yin. UH contains active indole and oxindole alkaloids and has the therapeutic effects on ailments of the cardiovascular and central nervous systems. The recent advances of analytical technology led to reports of detailed pharmacokinetics of UH alkaloids. These observations of pharmacokinetics are extremely important for understanding the treatment’s pharmacological activity, efficacy, and safety. This review describes properties, pharmacology, and the recently accumulated pharmacokinetic findings of UH alkaloids, and discusses challenges and future prospects. UH contains major indole and oxindole alkaloids such as corynoxeine, isocorynoxeine, rhynchophylline, isorhynchophylline, hirsuteine, hirsutine, and geissoschizine methyl ether (GM). These alkaloids exert neuroprotective effects against Alzheimer’s disease, Parkinson’s disease, and depression, and the mechanisms of these effects include anti-oxidant, anti-inflammatory, and neuromodulatory activities. Among the UH alkaloids, GM exhibits comparatively potent pharmacological activity (e.g., agonist activity at 5-HT1A receptors). UH alkaloids are absorbed into the blood circulation and rapidly eliminated when orally administered. UH alkaloids are predominantly metabolized by Cytochrome P450 (CYP) and converted into various metabolites, including oxidized and demethylated forms. Regarding GM metabolism by CYPs, a gender-dependent difference is observed in rats but not in humans. Several alkaloids are detected in the brain after passing through the blood–brain barrier in rats upon orally administered. GM is uniformly distributed in the brain and binds to various channels and receptors such as the 5-HT receptor. By reviewing the pharmacokinetics of UH alkaloids, challenges were found, such as differences in pharmacokinetics between pure drug and crude drug products administration, food-influenced absorption, metabolite excretion profile, and intestinal tissue metabolism of UH alkaloids. This review will provide readers with a better understanding of the pharmacokinetics of UH alkaloids and their future challenges, and will be helpful for further research on UH alkaloids and crude drug products containing UH.
Collapse
Affiliation(s)
- Hirotaka Kushida
- Tsumura Kampo Research Laboratories, Kampo Research & Development Division, Tsumura & Co., Ibaraki, Japan
| | - Takashi Matsumoto
- Tsumura Kampo Research Laboratories, Kampo Research & Development Division, Tsumura & Co., Ibaraki, Japan
| | - Yasushi Ikarashi
- Tsumura Kampo Research Laboratories, Kampo Research & Development Division, Tsumura & Co., Ibaraki, Japan
| |
Collapse
|
3
|
Xu X, Luo S, Li M, Song J, Wang W. Rhynchophylline was exported to cerebral spinal fluid and systemic circulation after intracerebroventricular administration to rats detected by ultra‐high performance liquid chromatography coupled with mass spectrometry. SEPARATION SCIENCE PLUS 2020. [DOI: 10.1002/sscp.201900106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xiangting Xu
- School of Pharmaceutical Sciences and Yunnan Provincial Key Laboratory of Pharmacology for Natural ProductsKunming Medical University Chenggong Kunming Yunnan 650500 P. R. China
| | - Shaozhong Luo
- School of Pharmaceutical Sciences and Yunnan Provincial Key Laboratory of Pharmacology for Natural ProductsKunming Medical University Chenggong Kunming Yunnan 650500 P. R. China
| | - Meihong Li
- School of Pharmaceutical Sciences and Yunnan Provincial Key Laboratory of Pharmacology for Natural ProductsKunming Medical University Chenggong Kunming Yunnan 650500 P. R. China
| | - Jingfeng Song
- School of Pharmaceutical Sciences and Yunnan Provincial Key Laboratory of Pharmacology for Natural ProductsKunming Medical University Chenggong Kunming Yunnan 650500 P. R. China
| | - Wei Wang
- School of Pharmaceutical Sciences and Yunnan Provincial Key Laboratory of Pharmacology for Natural ProductsKunming Medical University Chenggong Kunming Yunnan 650500 P. R. China
| |
Collapse
|
4
|
Han A, Lin G, Cai J, Wu Q, Geng P, Ma J, Wang X, Lin C. Pharmacokinetic study on hirsutine and hirsuteine in rats using UPLC–MS/MS. ACTA CHROMATOGR 2019. [DOI: 10.1556/1326.2017.00365] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Aixia Han
- Department of Pharmacy, The People's Hospital of Lishui, Lishui 323000, China
| | - Guanyang Lin
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Jinzhang Cai
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Qing Wu
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Peiwu Geng
- Department of Pharmacy, The People's Hospital of Lishui, Lishui 323000, China
| | - Jianshe Ma
- Analytical and Testing Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Xianqin Wang
- Analytical and Testing Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Chongliang Lin
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
5
|
Simultaneous determination of eight bioactive compounds by LC-MS/MS and its application to the pharmacokinetics, liver first-pass effect, liver and brain distribution of orally administrated Gouteng-Baitouweng (GB) in rats. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1084:122-131. [PMID: 29597038 DOI: 10.1016/j.jchromb.2018.03.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 02/09/2018] [Accepted: 03/09/2018] [Indexed: 02/02/2023]
Abstract
Only focusing on the circulating levels is insufficient for the comprehensive understanding of the physiological disposition of herbal medicine in vivo. Therefore, we conducted the comprehensive investigation on the in vivo dynamic process of orally administrated Gouteng-Baitouweng (GB), a classical herb pair with anti-Parkinson potentials. Serving as the technical base, a sensitive and selective liquid chromatography-tandem mass spectrometry method was established and validated in the plasma, liver and brain, for simultaneous determination of five alkaloids (rhynchophylline, isorhynchophylline, corynoxeine, isocorynoxeine and geissoschizine methyl ether) and three saponins (anemoside B4, anemoside A3 and 23-hydroxybetulinic acid). Following liquid-liquid extraction, favorable chromatographic behaviors of eight analytes were obtained on Waters Xbrigde C18 column within 13 min. This method elicited good linearity for the analytes at the concentration range of 0.3-1000 or 1.8-6000 ng/mL with favorable precision, accuracy and stability. Following oral administration of GB (25 g/kg) in rats, this method was applied to the quantitative analysis in the portal vein plasma, liver, systemic plasma, and brain. Consequently, anemoside B4 was of the highest exposure, followed by 23-hydroxybetulinic acid, anemoside A3, rhynchophylline and isocorynoxeine in vivo. Notably, three saponins were all observed with certain exposure in the brain, along with rhynchophylline at low levels. Besides, five alkaloids and 23-hydroxybetulinic acid underwent serious liver first-pass effect. Hence, the pharmacokinetics, liver first-pass effect, liver and brain distribution of ingredients in GB were clarified, which laid a solid foundation for interpreting its efficacy and safety.
Collapse
|
6
|
The Blood-Brain Barrier Permeability of Six Indole Alkaloids from Uncariae Ramulus Cum Uncis in the MDCK-pHaMDR Cell Monolayer Model. Molecules 2017; 22:molecules22111944. [PMID: 29125571 PMCID: PMC6150385 DOI: 10.3390/molecules22111944] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 11/08/2017] [Accepted: 11/09/2017] [Indexed: 01/21/2023] Open
Abstract
Uncariae Ramulus Cum Uncis (URCU) is a widely used traditional Chinese medicine, and is reported to have various central nervous system effects. Alkaloids have been demonstrated to be the predominant pharmacological active components of URCU. In order to evaluate the blood-brain barrier (BBB) permeability and transport mechanism of six typical indole alkaloids from URCU, the MDCK-pHaMDR cell monolayer model was used as an in vitro surrogate model for BBB. The samples were analyzed by high-performance liquid chromatography, and the apparent permeability coefficients (Papp) were calculated. Among the six alkaloids, isorhynchophylline (2), isocorynoxeine (4), hirsutine (5) and hirsuteine (6) showed high permeability, with Papp values at 10−5 cm/s level in bidirectional transport. For rhynchophylline (1) and corynoxeine (3), they showed moderate permeability, with Papp values from the apical (AP) side to the basolateral (BL) side at 10−6 cm/s level and efflux ratio (Papp BL→AP/Papp AP→BL) above 2. The time- and concentration-dependency experiments indicated that the main mechanism for 2, 4, 5 and 6 through BBB was passive diffusion. The efflux mechanism involved in the transports of compounds 1 and 3 could be reduced significantly by verapamil, and molecular docking screening also showed that 1 and 3 had strong bindings to P-glycoprotein. This study provides useful information for predicting the BBB permeability for 1–6, as well as better understanding of their central nervous system pharmacological activities.
Collapse
|