1
|
Li J, Li S, Li Z, Zhou Y, Jin P, Zhang F, Sun Q, Le T, Jirimutu. Chromium hydroxide nanoparticles-based fluorescent aptameric sensing for sensitive patulin detection: The significance of nanocrystal and morphology modulation. Talanta 2023; 257:124296. [PMID: 36758442 DOI: 10.1016/j.talanta.2023.124296] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/14/2023] [Accepted: 01/19/2023] [Indexed: 02/01/2023]
Abstract
The widespread of patulin (PAT) and its potential hazards to human health call for alternative rapid assays to monitor it in food and the environment. Herein, we prepared chromium hydroxide [Cr(OH)3] nanoparticles via a one-pot chemical precipitation strategy and used them to fabricate a turn-on fluorescent aptasensor employing a morphological effect for sensitive PAT detection. Three Cr(OH)3 nanoparticle structures were synthesized by changing the solvent, and their structures and physicochemical properties were investigated. Then, we evaluated the effects of morphological structures on the fluorescence quenching-recovery capability of Cr(OH)3 nanoparticles before and after incubation with PAT. We found that the Cr(OH)3-3 nanoparticles efficiently absorbed the fluorescence dye 6-carboxyfluorescein labeled aptamer (FAM-Apt) and quenched the fluorophore through photoinduced electron transfer. Under optimal experimental conditions, the turn-on fluorescent aptasensor for PAT determination displayed two linear ranges (0.01-10 ng/mL and 1-200 ng/mL) with a low detection limit of 7.3 pg/mL. Moreover, the proposed aptasensor had no cross-reactivity with interferents that usually coexist with PAT and can be used to detect PAT in apple juices accurately. The results of the as-fabricated method were not significantly different from the high-performance liquid chromatography. Hence, we demonstrated that different Cr(OH)3 nanoparticles can be prepared by changing reaction conditions, and provided a novel strategy to improve the detection performance of fluorescent aptasensor by changing the morphological structure and crystalline properties of nano-quenchers.
Collapse
Affiliation(s)
- Jianmei Li
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, College of Food Science and Engineering, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010018, China
| | - Shuang Li
- College of Life Sciences, Chongqing Normal University, No.37 Chengzhong Road, Shapingba District, Chongqing, 401331, China
| | - Zhijuan Li
- College of Life Sciences, Chongqing Normal University, No.37 Chengzhong Road, Shapingba District, Chongqing, 401331, China
| | - Yuting Zhou
- College of Life Sciences, Chongqing Normal University, No.37 Chengzhong Road, Shapingba District, Chongqing, 401331, China
| | - Peng Jin
- College of Life Sciences, Chongqing Normal University, No.37 Chengzhong Road, Shapingba District, Chongqing, 401331, China
| | - Fuyan Zhang
- College of Life Sciences, Chongqing Normal University, No.37 Chengzhong Road, Shapingba District, Chongqing, 401331, China
| | - Qi Sun
- College of Life Sciences, Chongqing Normal University, No.37 Chengzhong Road, Shapingba District, Chongqing, 401331, China.
| | - Tao Le
- College of Life Sciences, Chongqing Normal University, No.37 Chengzhong Road, Shapingba District, Chongqing, 401331, China.
| | - Jirimutu
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, College of Food Science and Engineering, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010018, China; Camel Research Institute of Inner Mongolia, Alashan 737300, China.
| |
Collapse
|
2
|
Küçük N, Şahin S, Çağlayan MO. An Overview of Biosensors for the Detection of Patulin Focusing on Aptamer-Based Strategies. Crit Rev Anal Chem 2023; 54:2422-2434. [PMID: 36719654 DOI: 10.1080/10408347.2023.2172677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Patulin is a low molecular weight mycotoxin and poses a global problem, especially threatening food safety. It is also resistant to processing temperatures and is commonly found in fruits and vegetables. Studies have shown that it has toxic effects on animals and humans and the severity of patulin toxicity depends on the amount ingested. Therefore, the consumption of contaminated products, especially in infants and children, is important. The maximum daily intake of PAT that can be tolerated is found to be 0.4 µg/kg body weight to prevent chronic effects and the maximum residue limits in food samples were given as 50 ng/g (∼320 nM). Conventional methods for the detection of PAT have many disadvantages such as the use of expensive equipment, the need for trained personnel, and complicated sample preparation steps. To this extent, various numbers of research have been conducted on selective and sensitive detection of patulin using biosensor platforms in various media. This review presents an overview of the current literature dealing with the studies to develop patulin-specific aptamer-based biosensors and adapts various immobilization methods to increase the sensor response using different nanomaterials. Furthermore, a comparison of biosensors with conventional methods is presented using analytical performance parameters and their practicality for the detection of patulin.
Collapse
Affiliation(s)
- Netice Küçük
- Department of Biotechnology, Bilecik Seyh Edebali University, Bilecik, Turkey
| | - Samet Şahin
- Department of Bioengineering, Bilecik Seyh Edebali University, Bilecik, Turkey
| | | |
Collapse
|
3
|
Tang X, Zhang Q, Isabel Pividori M, Zhang Z, Marty JL, Catanante G. A Sensitive Aptasensor Using Biotin-Streptavidin System for Patulin Detection in Apple Juice. BIOSENSORS 2022; 12:59. [PMID: 35200320 PMCID: PMC8869234 DOI: 10.3390/bios12020059] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/13/2022] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Patulin contamination in fruits, vegetables, and their products is considered a serious health risk factor for food safety and human health. Thus, a rapid, simple detection method for patulin is becoming important, which could provide a tool for routine screening and food surveys. The objective of this study was to develop a sensitive aptamer-based lateral flow assay (FLA) using Streptavidin functionalized gold nanoparticles for sensitive patulin detection. An excellent dynamic range for patulin detection was obtained (2.7~139.8 ng/mL in the buffer and 7.07~359.5 ng/mL in the sample) with no affinity for other mycotoxins such as zearalenone (ZEN), ochratoxin A (OTA), aflatoxin B1 (AFB1), citrinin or tenuazonic acid (TEA). The limit of detection was 0.19 ng/mL in the buffer and 0.36 ng/mL in the real sample. The recoveries were 83.3% to 107.1%, with a satisfactory RSD value from 6.5% to 7.5%. Hence the established LFA could be used as a rapid, simple, on-site screening tool for PAT determination in apple juice.
Collapse
Affiliation(s)
- Xiaoqian Tang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (X.T.); (Z.Z.)
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Laboratory of Risk Assessment for Oilseeds Products, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Laboratoire BAE-LBBM USR 3579, Université de Perpignan Via Domitia, 52 Avenue Paul Alduy, CEDEX, 66860 Perpignan, France
| | - Qi Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (X.T.); (Z.Z.)
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Laboratory of Risk Assessment for Oilseeds Products, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Maria Isabel Pividori
- Grup de Sensors i Biosensors, Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain;
| | - Zhaowei Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (X.T.); (Z.Z.)
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Laboratory of Risk Assessment for Oilseeds Products, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | | | - Gaëlle Catanante
- Laboratoire BAE-LBBM USR 3579, Université de Perpignan Via Domitia, 52 Avenue Paul Alduy, CEDEX, 66860 Perpignan, France
| |
Collapse
|
4
|
Mahato DK, Kamle M, Sharma B, Pandhi S, Devi S, Dhawan K, Selvakumar R, Mishra D, Kumar A, Arora S, Singh NA, Kumar P. Patulin in food: A mycotoxin concern for human health and its management strategies. Toxicon 2021; 198:12-23. [PMID: 33933519 DOI: 10.1016/j.toxicon.2021.04.027] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/30/2021] [Accepted: 04/27/2021] [Indexed: 01/09/2023]
Abstract
The mycotoxin patulin is primarily produced as a secondary metabolite by numerous fungal species and predominantly by Aspergillus, Byssochlamys, and Penicillium species. It is generally associated with fungal infected food materials. Penicillium expansum is considered the only fungal species liable for patulin contamination in pome fruits, especially in apples and apple-based products. This toxin in food poses serious health concerns and economic threat, which has aroused the need to adopt effective detection and mitigation strategies. Understanding its origin sources and biosynthetic mechanism stands essential for efficiently designing a management strategy against this fungal contamination. This review aims to present an updated outline of the sources of patulin occurrence in different foods and their biosynthetic mechanisms. It further provides information regarding the detrimental effects of patulin on human and agriculture as well as its effective detection, management, and control strategies.
Collapse
Affiliation(s)
- Dipendra Kumar Mahato
- CASS Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, Burwood, VIC, 3125, Australia.
| | - Madhu Kamle
- Applied Microbiology Lab., Department of Forestry, North Eastern Regional Institute of Science and Technology, Nirjuli, 791109, Arunachal Pradesh, India.
| | - Bharti Sharma
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| | - Shikha Pandhi
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| | - Sheetal Devi
- National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Sonipat, Haryana, 131028, India.
| | - Kajal Dhawan
- Department of Food Technology and Nutrition, School of Agriculture Lovely Professional University, Phagwara, 144411, Punjab, India.
| | - Raman Selvakumar
- ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi, 110012, India.
| | - Diwakar Mishra
- Department of Dairy Technology, Birsa Agricultural University, Dumka, 814145, Jharkhand, India.
| | - Arvind Kumar
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| | - Shalini Arora
- Department of Dairy Technology, College of Dairy Science and Technology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, 125004, Haryana, India.
| | - Namita Ashish Singh
- Department of Microbiology, Mohanlal Sukhadia University, Udaipur, 313001, Rajasthan, India.
| | - Pradeep Kumar
- Applied Microbiology Lab., Department of Forestry, North Eastern Regional Institute of Science and Technology, Nirjuli, 791109, Arunachal Pradesh, India.
| |
Collapse
|
5
|
Buglak AA, Samokhvalov AV, Zherdev AV, Dzantiev BB. Methods and Applications of In Silico Aptamer Design and Modeling. Int J Mol Sci 2020; 21:E8420. [PMID: 33182550 PMCID: PMC7698023 DOI: 10.3390/ijms21228420] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/04/2020] [Accepted: 11/08/2020] [Indexed: 02/07/2023] Open
Abstract
Aptamers are nucleic acid analogues of antibodies with high affinity to different targets, such as cells, viruses, proteins, inorganic materials, and coenzymes. Empirical approaches allow the design of in vitro aptamers that bind particularly to a target molecule with high affinity and selectivity. Theoretical methods allow significant expansion of the possibilities of aptamer design. In this study, we review theoretical and joint theoretical-experimental studies dedicated to aptamer design and modeling. We consider aptamers with different targets, such as proteins, antibiotics, organophosphates, nucleobases, amino acids, and drugs. During nucleic acid modeling and in silico design, a full set of in silico methods can be applied, such as docking, molecular dynamics (MD), and statistical analysis. The typical modeling workflow starts with structure prediction. Then, docking of target and aptamer is performed. Next, MD simulations are performed, which allows for an evaluation of the stability of aptamer/ligand complexes and determination of the binding energies with higher accuracy. Then, aptamer/ligand interactions are analyzed, and mutations of studied aptamers made. Subsequently, the whole procedure of molecular modeling can be reiterated. Thus, the interactions between aptamers and their ligands are complex and difficult to understand using only experimental approaches. Docking and MD are irreplaceable when aptamers are studied in silico.
Collapse
Affiliation(s)
- Andrey A. Buglak
- A. N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Leninsky prospect 33, 119071 Moscow, Russia; (A.V.S.); (A.V.Z.); (B.B.D.)
- Physical Faculty, St. Petersburg State University, 7/9 Universitetskaya naberezhnaya, 199034 St. Petersburg, Russia
| | - Alexey V. Samokhvalov
- A. N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Leninsky prospect 33, 119071 Moscow, Russia; (A.V.S.); (A.V.Z.); (B.B.D.)
| | - Anatoly V. Zherdev
- A. N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Leninsky prospect 33, 119071 Moscow, Russia; (A.V.S.); (A.V.Z.); (B.B.D.)
| | - Boris B. Dzantiev
- A. N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Leninsky prospect 33, 119071 Moscow, Russia; (A.V.S.); (A.V.Z.); (B.B.D.)
| |
Collapse
|
6
|
Tran PHL, Xiang D, Nguyen TNG, Tran TTD, Chen Q, Yin W, Zhang Y, Kong L, Duan A, Chen K, Sun M, Li Y, Hou Y, Zhu Y, Ma Y, Jiang G, Duan W. Aptamer-guided extracellular vesicle theranostics in oncology. Theranostics 2020; 10:3849-3866. [PMID: 32226524 PMCID: PMC7086349 DOI: 10.7150/thno.39706] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/20/2019] [Indexed: 12/14/2022] Open
Abstract
In the past decade, the study of exosomes, nanosized vesicles (50-150 nm) released into the extracellular space via the fusion of multivesicular bodies with the plasma membrane, has burgeoned with impressive achievements in theranostics applications. These nanosized vesicles have emerged as key players in homeostasis and in the pathogenesis of diseases owing to the variety of the cargos they can carry, the nature of the molecules packaged inside the vesicles, and the robust interactions between exosomes and target cells or tissues. Accordingly, the development of exosome-based liquid biopsy techniques for early disease detection and for monitoring disease progression marks a new era of precision medicine in the 21st century. Moreover, exosomes possess intrinsic properties - a nanosized structure and unique "homing effects" - that make them outstanding drug delivery vehicles. In addition, targeted exosome-based drug delivery systems can be further optimized using active targeting ligands such as nucleic acid aptamers. Indeed, the aptamers themselves can function as therapeutic and/or diagnostic tools based on their attributes of unique target-binding and non-immunogenicity. This review aims to provide readers with a current picture of the research on exosomes and aptamers and their applications in cancer theranostics, highlighting recent advances in their transition from the bench to the clinic.
Collapse
Affiliation(s)
- Phuong H-L Tran
- School of Medicine and Centre for Molecular and Medical Research, Deakin University, Waurn Ponds, Victoria, Australia
| | - Dongxi Xiang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital/Harvard Medical School, 77 Avenue Louise Pasteur, Boston, MA 02115, USA
| | - Tuong N-G Nguyen
- School of Medicine and Centre for Molecular and Medical Research, Deakin University, Waurn Ponds, Victoria, Australia
| | - Thao T-D Tran
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Qian Chen
- Translational Medical Center, The Chinese People's Liberation Army General Hospital, 28 Fuxing Road, Haidian District, Beijing, China, 100853
| | - Wang Yin
- School of Medicine and Centre for Molecular and Medical Research, Deakin University, Waurn Ponds, Victoria, Australia
| | - Yumei Zhang
- School of Medicine and Centre for Molecular and Medical Research, Deakin University, Waurn Ponds, Victoria, Australia
| | - Lingxue Kong
- Institute for Frontier Materials, Deakin University, Waurn Ponds, Victoria, 3216, Australia
| | - Andrew Duan
- School of Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, 27 Rainforest Walk, Clayton VIC 3800, Australia
| | - Kuisheng Chen
- Department of Pathology, The First Affiliated Hospital, Zhengzhou University, He'nan Key Laboratory of Tumor Pathology, Zhengzhou 450052, China
| | - Miomio Sun
- Department of Pathology, The First Affiliated Hospital, Zhengzhou University, He'nan Key Laboratory of Tumor Pathology, Zhengzhou 450052, China
| | - Yong Li
- Cancer Care Centre, St George Hospital, Kogarah, and St George and Sutherland Clinical School, University of New South Wales, Kensington, NSW, Australia
| | - Yingchun Hou
- Laboratory of Tumor Molecular and Cellular Biology, College of Life Sciences, Shaanxi Normal University, 620 West Chang'an Avenue, Xi'an, Shaanxi 710119, China
| | - Yimin Zhu
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Yongchao Ma
- Clinical School, Luohe Medical College, 148, Daxue Road, Luohe City, Henan Province, 462000, China
| | - Guoqin Jiang
- Department of General Surgery, Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, P.R. China, 215004
| | - Wei Duan
- School of Medicine and Centre for Molecular and Medical Research, Deakin University, Waurn Ponds, Victoria, Australia
- GenePharma-Deakin Joint Laboratory of Aptamer Medicine, Suzhou 215123, China and Waurn Ponds, Victoria 3216, Australia
| |
Collapse
|
7
|
Khan R, Sherazi TA, Catanante G, Rasheed S, Marty JL, Hayat A. Switchable fluorescence sensor toward PAT via CA-MWCNTs quenched aptamer-tagged carboxyfluorescein. Food Chem 2019; 312:126048. [PMID: 31918363 DOI: 10.1016/j.foodchem.2019.126048] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 12/05/2019] [Accepted: 12/10/2019] [Indexed: 01/26/2023]
Abstract
A quenching based apta-sensing platform was developed for the detection of Patulin. Three different aptamer sequences were studied to screen the aptamer with the maximum affinity towards Patulin. Carboxyfluorescein (CFL) was used as a fluorescent dye while -COOH functionalized multiwall carbon nanotubes (MWCNTs) were applied as novel nanoquenchers. Aptamer tagged at the 3' end with 40 nucleotide bases exhibited the maximum affinity towards Patulin and caused substantial fluorescence recovery. Interestingly, the limit of detection (LOD) and limit of quantification (LOQ) were calculated as 0.13 μg L-1and 0.41 μg L-1 respectively. Commonly occurring mycotoxins in food were also tested to confirm the selectivity of apta-assay. The developed apta-assay was applied to a spiked apple juice sample and toxin recoveries were observed ranging from 96% to 98% (n = 3). These results demonstrated the potential of the developed apta-assay for the selective detection and quantification of Patulin in food samples.
Collapse
Affiliation(s)
- Reem Khan
- BAE: Biocapteurs-Analyses-Environnement, Universite de Perpignan Via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan CEDEX, France; Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, 22060, Pakistan.
| | - Tauqir A Sherazi
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, 22060, Pakistan.
| | - Gaelle Catanante
- BAE: Biocapteurs-Analyses-Environnement, Universite de Perpignan Via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan CEDEX, France.
| | - Sidra Rasheed
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, 54000, Pakistan.
| | - Jean Louis Marty
- BAE: Biocapteurs-Analyses-Environnement, Universite de Perpignan Via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan CEDEX, France; Sensbiotech, 21rue de Nogarede, 66400 Ceret, France.
| | - Akhtar Hayat
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, 54000, Pakistan.
| |
Collapse
|
8
|
Development and optimization of a group-specific loop-mediated isothermal amplification (LAMP) assay for the detection of patulin-producing Penicillium species. Int J Food Microbiol 2019; 298:20-30. [PMID: 30903915 DOI: 10.1016/j.ijfoodmicro.2019.03.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/11/2019] [Accepted: 03/14/2019] [Indexed: 11/22/2022]
Abstract
The mycotoxin patulin is a toxic fungal secondary metabolite occurring in food worldwide. Methods for rapid, simple and specific detection of patulin-producing fungi in food and feed are therefore urgently needed. In the current study, a loop-mediated isothermal amplification (LAMP) assay based on the isoepoxydon dehydrogenase (idh) gene of the patulin biosynthetic pathway was developed and optimized for the group-specific detection of patulin-producing Penicillium species. By testing purified DNA of 174 fungal strains representing 31 genera, the assay was demonstrated to be highly specific for the detection of patulin-producing species in Penicillium, Byssochlamys and Paecilomyces. The assay had a detection limit of 2.5 pg of purified genomic DNA of P. expansum per reaction. Moreover, the assay was demonstrated to detect patulin-producers when conidia were directly added to the master mix as template without any sample preparation. The applicability of the assay in food analyses was successfully tested on artificially contaminated grapes and apples requiring minimal sample preparation. A screening of grapes from the 2018 harvest from different locations in Germany revealed no presence of patulin-producers. The developed LAMP assay is a promising tool for rapid diagnosis in quality control applications in the food and beverage industry.
Collapse
|
9
|
Abstract
This review is mainly centered on beverages obtained from tropical crops, including tea, nut milk, coffee, cocoa, and those prepared from fruits. After considering the epidemiological data found on the matrices above, the focus was given to recent methodological approaches to assess the most relevant mycotoxins. Aspects such as singularities among the mycotoxin and the beverage in which their were found, and the economic effects and repercussions that the mycotoxin-tainted ingredients have on the beverage industry were pointed out. Finally, the burden of their consumption through beverages, including risk and health effects on humans, was addressed as well.
Collapse
|
10
|
An Aptamer-Based Biosensor for Direct, Label-Free Detection of Melamine in Raw Milk. SENSORS 2018; 18:s18103227. [PMID: 30257498 PMCID: PMC6210019 DOI: 10.3390/s18103227] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 09/19/2018] [Accepted: 09/20/2018] [Indexed: 01/19/2023]
Abstract
Melamine, a nitrogen-rich compound, has been used as a food and milk additive to falsely increase the protein content. However, melamine is toxic, and high melamine levels in food or in milk can cause kidney and urinary problems, or even death. Hence, the detection of melamine in food and milk is desirable, for which numerous detection methods have been developed. Several methods have successfully detected melamine in raw milk; however, they require a sample preparation before the analyses. This study aimed to develop an aptamer-DNAzyme conjugated biosensor for label-free detection of melamine, in raw milk, without any sample preparation. An aptamer-DNAzyme conjugated biosensor was developed via screening using microarray analysis to identify the candidate aptamers followed by an optimization, to reduce the background noise and improve the aptamer properties, thereby, enhancing the signal-to-noise (S/N) ratio of the screened biosensor. The developed biosensor was evaluated via colorimetric detection and tested with raw milk without any sample preparation, using N-methylmesoporphyrin IX for fluorescence detection. The biosensor displayed significantly higher signal intensity at 2 mM melamine (S/N ratio, 20.2), which was sufficient to detect melamine at high concentrations, in raw milk.
Collapse
|
11
|
Berthiller F, Cramer B, Iha M, Krska R, Lattanzio V, MacDonald S, Malone R, Maragos C, Solfrizzo M, Stranska-Zachariasova M, Stroka J, Tittlemier S. Developments in mycotoxin analysis: an update for 2016-2017. WORLD MYCOTOXIN J 2018. [DOI: 10.3920/wmj2017.2250] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This review summarises developments in the determination of mycotoxins over a period between mid-2016 and mid-2017. Analytical methods to determine aflatoxins, Alternaria toxins, ergot alkaloids, fumonisins, ochratoxins, patulin, trichothecenes and zearalenone are covered in individual sections. Advances in proper sampling strategies are discussed in a dedicated section, as are methods used to analyse botanicals and spices and newly developed LC-MS based multi-mycotoxin methods. This critical review aims to briefly discuss the most important recent developments and trends in mycotoxin determination as well as to address limitations of the presented methodologies.
Collapse
Affiliation(s)
- F. Berthiller
- Department of Agrobiotechnology (IFA-Tulln), Christian Doppler Laboratory for Mycotoxin Metabolism and Center for Analytical Chemistry, University of Natural Resources and Life Sciences, Konrad Lorenz Str. 20, 3430 Tulln, Austria
| | - B. Cramer
- Institute of Food Chemistry, University of Münster, Corrensstr. 45, 48149 Münster, Germany
| | - M.H. Iha
- Nucleous of Chemistry and Bromatology Science, Adolfo Lutz Institute of Ribeirão Preto, Rua Minas 866, CEP 14085-410, Ribeirão Preto, SP, Brazil
| | - R. Krska
- Department of Agrobiotechnology (IFA-Tulln), Christian Doppler Laboratory for Mycotoxin Metabolism and Center for Analytical Chemistry, University of Natural Resources and Life Sciences, Konrad Lorenz Str. 20, 3430 Tulln, Austria
| | - V.M.T. Lattanzio
- National Research Council of Italy, Institute of Sciences of Food Production, via amendola 122/O, 70126 Bari, Italy
| | - S. MacDonald
- Department of Contaminants and Authenticity, Fera Science Ltd., Sand Hutton, York YO41 1LZ, United Kingdom
| | - R.J. Malone
- Trilogy Analytical Laboratory, 870 Vossbrink Dr, Washington, MO 63090, USA
| | - C. Maragos
- Mycotoxin Prevention and Applied Microbiology Research Unit, USDA, ARS National Center for Agricultural Utilization Research, 1815 N. University St., Peoria, IL 61604, USA
| | - M. Solfrizzo
- National Research Council of Italy, Institute of Sciences of Food Production, via amendola 122/O, 70126 Bari, Italy
| | - M. Stranska-Zachariasova
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technická 5, 166 28 Prague 6 – Dejvice, Czech Republic
| | - J. Stroka
- European Commission, Joint Research Centre, Retieseweg 111, 2440 Geel, Belgium
| | - S.A. Tittlemier
- Canadian Grain Commission, Grain Research Laboratory, 1404-303 Main Street, Winnipeg, MB R3C 3G8, Canada
| |
Collapse
|