1
|
Niu L, Hu G. EHMT2 Suppresses ARRB1 Transcription and Activates the Hedgehog Signaling to Promote Malignant Phenotype and Stem Cell Property in Oral Squamous Cell Carcinoma. Mol Biotechnol 2025; 67:1446-1462. [PMID: 38573544 DOI: 10.1007/s12033-024-01130-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 02/20/2024] [Indexed: 04/05/2024]
Abstract
Oral squamous cell carcinoma (OSCC) represents the primary subtype of head and neck squamous cell carcinoma (HNSCC), characterized by a high morbidity and mortality rate. Although previous studies have established specific correlations between euchromatic histone lysine methyltransferase 2 (EHMT2), a histone lysine methyltransferase, and the malignant phenotype of OSCC cells, its biological functions in OSCC remain largely unknown. This study, grounded in bioinformatics predictions, aims to clarify the influence of EHMT2 on the malignant behavior of OSCC cells and delve into the underlying mechanisms. EHMT2 exhibited high expression in OSCC tissues and demonstrated an association with poor patient outcomes. Artificial EHMT2 silencing in OSCC cells, achieved through lentiviral vector infection, significantly inhibited colony formation, migration, invasion, and cell survival. Regarding the mechanism, EHMT2 was found to bind the promoter of arrestin beta 1 (ARRB1), thereby suppressing its transcription through H3K9me2 modification. ARRB1, in turn, was identified as a negative regulator of the Hedgehog pathway, leading to a reduction in the proteins GLI1 and PTCH1. Cancer stem cells (CSCs) were enriched through repeated sphere formation assays in two OSCC cell lines. EHMT2 was found to activate the Hedgehog pathway, thus promoting sphere formation, migration and invasion, survival, and tumorigenic activity of the OSCC-CSCs. Notably, these effects were counteracted by the additional overexpression of ARRB1. In conclusion, this study provides novel evidence suggesting that EHMT2 plays specific roles in enhancing stem cell properties in OSCC by modulating the ARRB1-Hedgehog signaling cascade.
Collapse
Affiliation(s)
- Ling Niu
- Department of Stomatology, Affiliated Hospital of Beihua University, No. 3999, Binjiang East Road, Fengman District, Jilin, 132011, Jilin, People's Republic of China
| | - Guangyao Hu
- Department of Stomatology, Affiliated Hospital of Beihua University, No. 3999, Binjiang East Road, Fengman District, Jilin, 132011, Jilin, People's Republic of China.
| |
Collapse
|
2
|
Raičević V. Flavopereirine Suppresses the Progression of Human Oral Cancer by Inhibiting the JAK-STAT Signaling Pathway via Targeting LASP1 [Letter]. Drug Des Devel Ther 2024; 18:3923-3924. [PMID: 39228429 PMCID: PMC11370768 DOI: 10.2147/dddt.s491658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 08/27/2024] [Indexed: 09/05/2024] Open
Affiliation(s)
- Vidak Raičević
- Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| |
Collapse
|
3
|
Liu W, Zhou H, Lai W, Hu C, Xu R, Gu P, Luo M, Zhang R, Li G. The immunosuppressive landscape in tumor microenvironment. Immunol Res 2024; 72:566-582. [PMID: 38691319 DOI: 10.1007/s12026-024-09483-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/16/2024] [Indexed: 05/03/2024]
Abstract
Recent advances in cancer immunotherapy, especially immune checkpoint inhibitors (ICIs), have revolutionized the clinical outcome of many cancer patients. Despite the fact that impressive progress has been made in recent decades, the response rate remains unsatisfactory, and many patients do not benefit from ICIs. Herein, we summarized advanced studies and the latest insights on immune inhibitory factors in the tumor microenvironment. Our in-depth discussion and updated landscape of tumor immunosuppressive microenvironment may provide new strategies for reversing tumor immune evasion, enhancing the efficacy of ICIs therapy, and ultimately achieving a better clinical outcome.
Collapse
Affiliation(s)
- Wuyi Liu
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, Shapingba, Chongqing, China
| | - Huyue Zhou
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, Shapingba, Chongqing, China
| | - Wenjing Lai
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, Shapingba, Chongqing, China
| | - Changpeng Hu
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, Shapingba, Chongqing, China
| | - Rufu Xu
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, Shapingba, Chongqing, China
| | - Peng Gu
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, Shapingba, Chongqing, China
| | - Menglin Luo
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, Shapingba, Chongqing, China
| | - Rong Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, Shapingba, Chongqing, China.
| | - Guobing Li
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, Shapingba, Chongqing, China.
| |
Collapse
|
4
|
Wu JJ, Chen SH, Lee CH, Li YZ, Hsu YW, Hsieh MY, Lee YR. Flavopereirine exerts anti-cancer activities in various human thyroid cancer cells. Am J Cancer Res 2024; 14:3317-3334. [PMID: 39113866 PMCID: PMC11301305 DOI: 10.62347/minx1330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 06/20/2024] [Indexed: 08/10/2024] Open
Abstract
Thyroid cancer (TC) stands out as the most prevalent endocrine malignancy globally, with a steadily increasing incidence. Its clinical manifestations include enlarged thyroid nodules, dysphagia, enophthalmos, and various other symptoms. While standard treatments such as thyroidectomy and radioiodine therapy effectively manage most cases of differentiated thyroid cancers (DTC), some recurrent cases of DTC or those involving poorly differentiated thyroid cancers (PDTC) require specialized interventions. However, existing drugs primarily address symptom management without offering a curative solution. Therefore, the development of a new therapeutic agent for these challenging cases is of utmost importance. Flavopereirine, derived from Geissospermum vellosii, has demonstrated promise as a potential anti-cancer agent across various human cancers. However, its specific anti-cancer effects on human thyroid cancer (TC) have remained unclear. Therefore, this study aims to investigate the anti-cancer activity of flavopereirine in human TC. The research findings revealed that flavopereirine effectively hinders the growth of human TC cells, induces cell cycle arrest, promotes apoptosis, and modulates autophagy. Moreover, the study delved into the underlying mechanisms by which flavopereirine influenced signaling pathways. To validate these anti-cancer effects, an in vivo zebrafish model was utilized, confirming the efficacy of flavopereirine against human TC cells. In summary, this study establishes that flavopereirine exhibits notable anti-human TC activities, positioning it as a promising therapeutic candidate for the treatment of human thyroid cancer.
Collapse
Affiliation(s)
- Jung-Ju Wu
- Department of Chinese Medicine, Ditmanson Medical Foundation Chia-Yi Christian HospitalChiayi 600, Taiwan
| | - Shu-Hsin Chen
- Department of Medical Research, Ditmanson Medical Foundation Chia-Yi Christian HospitalChiayi 600, Taiwan
| | - Chien-Hsing Lee
- Department of Pharmacology, School of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical UniversityKaohsiung 807, Taiwan
| | - Yi-Zhen Li
- Bone and Joint Research Center, Chang Gung Memorial HospitalTaoyuan 333, Taiwan
| | - Yu-Wei Hsu
- Department of Pharmacy, Ditmanson Medical Foundation Chia-Yi Christian HospitalChiayi 600, Taiwan
| | - Ming-Ying Hsieh
- Department of Chinese Medicine, Ditmanson Medical Foundation Chia-Yi Christian HospitalChiayi 600, Taiwan
| | - Ying-Ray Lee
- Department of Microbiology and Immunology, College of Medicine, Kaohsiung Medical UniversityKaohsiung 807, Taiwan
- Master of Science Program in Tropical Medicine, College of Medicine, Kaohsiung Medical UniversityKaohsiung 807, Taiwan
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical UniversityKaohsiung 807, Taiwan
- Faculty of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical UniversityKaohsiung 807, Taiwan
| |
Collapse
|
5
|
Wang Y, Wang Z, Li S, Ma J, Dai X, Lu J. Deciphering JAK/STAT signaling pathway: A multifaceted approach to tumorigenesis, progression and therapeutic interventions. Int Immunopharmacol 2024; 131:111846. [PMID: 38520787 DOI: 10.1016/j.intimp.2024.111846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/29/2024] [Accepted: 03/08/2024] [Indexed: 03/25/2024]
Abstract
The Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway, essential for cellular communication, orchestrates a myriad of physiological and pathological processes. Recently, the intricate association between the pathway's dysregulation and the progression of malignant tumors has garnered increasing attention. Nevertheless, there is no systematic summary detailing the anticancer effects of molecules targeting the JAK/STAT pathway in the context of tumor progression. This review offers a comprehensive overview of pharmaceutical agents targeting the JAK/STAT pathway, encompassing phytochemicals, synthetic drugs, and biomolecules. These agents can manifest their anticancer effects through various mechanisms, including inhibiting proliferation, inducing apoptosis, suppressing tumor metastasis, and angiogenesis. Notably, we emphasize the clinical challenges of drug resistance while spotlighting the potential of integrating JAK/STAT inhibitors with other therapies as a transformative approach in cancer treatment. Moreover, this review delves into the avant-garde strategy of employing nanocarriers to enhance the solubility and bioavailability of anticancer drugs, significantly amplifying their therapeutic prowess. Through this academic exploration of the multifaceted roles of the JAK/STAT pathway in the cancer milieu, we aim to sketch a visionary trajectory for future oncological interventions.
Collapse
Affiliation(s)
- Yihui Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China; Department of Anesthesiology, School of Clinical Medicine, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Zhe Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China; Department of Clinical Medicine, School of Clinical Medicine, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Shuyu Li
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China; Department of Clinical Medicine, School of Clinical Medicine, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Juntao Ma
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China; Department of Clinical Medicine, School of Clinical Medicine, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Xiaoshuo Dai
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Jing Lu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China; Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province 450052, PR China.
| |
Collapse
|
6
|
Burcher JT, DeLiberto LK, Allen AM, Kilpatrick KL, Bishayee A. Bioactive phytocompounds for oral cancer prevention and treatment: A comprehensive and critical evaluation. Med Res Rev 2023; 43:2025-2085. [PMID: 37143373 DOI: 10.1002/med.21969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 05/06/2023]
Abstract
The high incidence of oral cancer combined with excessive treatment cost underscores the need for novel oral cancer preventive and therapeutic options. The value of natural agents, including plant secondary metabolites (phytochemicals), in preventing carcinogenesis and representing expansive source of anticancer drugs have been established. While fragmentary research data are available on antioral cancer effects of phytochemicals, a comprehensive and critical evaluation of the potential of these agents for the prevention and intervention of human oral malignancies has not been conducted according to our knowledge. This study presents a complete and critical analysis of current preclinical and clinical results on the prevention and treatment of oral cancer using phytochemicals. Our in-depth analysis highlights anticancer effects of various phytochemicals, such as phenolics, terpenoids, alkaloids, and sulfur-containing compounds, against numerous oral cancer cells and/or in vivo oral cancer models by antiproliferative, proapoptotic, cell cycle-regulatory, antiinvasive, antiangiogenic, and antimetastatic effects. Bioactive phytochemicals exert their antineoplastic effects by modulating various signaling pathways, specifically involving the epidermal growth factor receptor, cytokine receptors, toll-like receptors, and tumor necrosis factor receptor and consequently alter the expression of downstream genes and proteins. Interestingly, phytochemicals demonstrate encouraging effects in clinical trials, such as reduction of oral lesion size, cell growth, pain score, and development of new lesions. While most phytochemicals displayed minimal toxicity, concerns with bioavailability may limit their clinical application. Future directions for research include more in-depth mechanistic in vivo studies, administration of phytochemicals using novel formulations, investigation of phytocompounds as adjuvants to conventional treatment, and randomized clinical trials.
Collapse
Affiliation(s)
- Jack T Burcher
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Lindsay K DeLiberto
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Andrea M Allen
- School of Dental Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Kaitlyn L Kilpatrick
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| |
Collapse
|
7
|
Tan Y, Wang Z, Xu M, Li B, Huang Z, Qin S, Nice EC, Tang J, Huang C. Oral squamous cell carcinomas: state of the field and emerging directions. Int J Oral Sci 2023; 15:44. [PMID: 37736748 PMCID: PMC10517027 DOI: 10.1038/s41368-023-00249-w] [Citation(s) in RCA: 171] [Impact Index Per Article: 85.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/25/2023] [Accepted: 09/04/2023] [Indexed: 09/23/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) develops on the mucosal epithelium of the oral cavity. It accounts for approximately 90% of oral malignancies and impairs appearance, pronunciation, swallowing, and flavor perception. In 2020, 377,713 OSCC cases were reported globally. According to the Global Cancer Observatory (GCO), the incidence of OSCC will rise by approximately 40% by 2040, accompanied by a growth in mortality. Persistent exposure to various risk factors, including tobacco, alcohol, betel quid (BQ), and human papillomavirus (HPV), will lead to the development of oral potentially malignant disorders (OPMDs), which are oral mucosal lesions with an increased risk of developing into OSCC. Complex and multifactorial, the oncogenesis process involves genetic alteration, epigenetic modification, and a dysregulated tumor microenvironment. Although various therapeutic interventions, such as chemotherapy, radiation, immunotherapy, and nanomedicine, have been proposed to prevent or treat OSCC and OPMDs, understanding the mechanism of malignancies will facilitate the identification of therapeutic and prognostic factors, thereby improving the efficacy of treatment for OSCC patients. This review summarizes the mechanisms involved in OSCC. Moreover, the current therapeutic interventions and prognostic methods for OSCC and OPMDs are discussed to facilitate comprehension and provide several prospective outlooks for the fields.
Collapse
Affiliation(s)
- Yunhan Tan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
- West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhihan Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Mengtong Xu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Bowen Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Zhao Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Siyuan Qin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Jing Tang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China.
| |
Collapse
|
8
|
Thiruvengadam R, Kim JH. Therapeutic strategy for oncovirus-mediated oral cancer: A comprehensive review. Biomed Pharmacother 2023; 165:115035. [PMID: 37364477 DOI: 10.1016/j.biopha.2023.115035] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/02/2023] [Accepted: 06/20/2023] [Indexed: 06/28/2023] Open
Abstract
Oral cancer is a neoplastic disorder of the oral cavities, including the lips, tongue, buccal mucosa, and lower and upper gums. Oral cancer assessment entails a multistep process that requires deep knowledge of the molecular networks involved in its progression and development. Preventive measures including public awareness of risk factors and improving public behaviors are necessary, and screening techniques should be encouraged to enable early detection of malignant lesions. Herpes simplex virus (HSV), human papillomavirus (HPV), Epstein-Barr virus (EBV), and Kaposi sarcoma-associated herpesvirus (KSHV) are associated with other premalignant and carcinogenic conditions leading to oral cancer. Oncogenic viruses induce chromosomal rearrangements; activate signal transduction pathways via growth factor receptors, cytoplasmic protein kinases, and DNA binding transcription factors; modulate cell cycle proteins, and inhibit apoptotic pathways. In this review, we present an up-to-date overview on the use of nanomaterials for regulating viral proteins and oral cancer as well as the role of phytocompounds on oral cancer. The targets linking oncoviral proteins and oral carcinogenesis were also discussed.
Collapse
Affiliation(s)
- Rekha Thiruvengadam
- Department of Integrative Bioscience & Biotechnology, Sejong University, Seoul 05006, Republic of Korea
| | - Jin Hee Kim
- Department of Integrative Bioscience & Biotechnology, Sejong University, Seoul 05006, Republic of Korea.
| |
Collapse
|
9
|
Rizwi FA, Abubakar M, Puppala ER, Goyal A, Bhadrawamy CV, Naidu VGM, Roshan S, Tazneem B, Almalki WH, Subramaniyan V, Rawat S, Gupta G. Janus Kinase-Signal Transducer and Activator of Transcription Inhibitors for the Treatment and Management of Cancer. J Environ Pathol Toxicol Oncol 2023; 42:15-29. [PMID: 37522565 DOI: 10.1615/jenvironpatholtoxicoloncol.2023045403] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
According to the World Health Organization (WHO), cancer is the second-highest cause of mortality worldwide, killing nearly 9.6 million people annually. Despite the advances in diagnosis and treatment during the last couple of decades, it remains a serious concern due to the limitations of currently available cancer management strategies. Therefore, alternative strategies are highly required to overcome these glitches. In addition, many etiological factors such as environmental and genetic factors initiate the activation of the Janus kinase (JAK)-signal transducer and activator of the transcription (STAT) pathway. This aberrant activation of the JAK-STAT pathway has been reported in various disease states, including inflammatory conditions, hematologic malignancies, and cancer. For instance, many patients with myeloproliferative neoplasms carry the acquired gain-of-function JAK2 V617F somatic mutation. This knowledge has dramatically improved our understanding of pathogenesis and has facilitated the development of therapeutics capable of suppressing the constitutive activation of the JAK-STAT pathway. Our aim is not to be expansive but to highlight emerging ideas towards preventive therapy in a modern view of JAK-STAT inhibitors. A series of agents with different specificities against different members of the JAK family of proteins is currently undergoing evaluation in clinical trials. Here we give a summary of how JAK-STAT inhibitors function and a detailed review of current clinical drugs for managing cancer as a new therapeutic approach.
Collapse
Affiliation(s)
- Fahim Anwar Rizwi
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Guwahati, Sila Katamur, Halugurisuk P.O-Changsari, Kamrup, Assam, India-781101
| | - Md Abubakar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Guwahati, Sila Katamur, Halugurisuk P.O-Changsari, Kamrup, Assam, India-781101
| | - Eswara Rao Puppala
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Guwahati, Sila Katamur, Halugurisuk P.O-Changsari, Kamrup, Assam, India-781101
| | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, U.P., India
| | - Ch Veera Bhadrawamy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Guwahati, Sila Katamur, Halugurisuk P.O-Changsari, Kamrup, Assam, India-781101
| | - V G M Naidu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Guwahati, Sila Katamur, Halugurisuk P.O-Changsari, Kamrup, Assam, India-781101
| | - S Roshan
- Deccan School of Pharmacy, Hyderabad, India
| | - B Tazneem
- Deccan School of Pharmacy, Hyderabad, India
| | - Waleed Hassan Almalki
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health Sciences, MONASH University, Malaysia
| | - Sushama Rawat
- Nirma University, Institute of Pharmacy, Ahmedabad, Gujarat 382481, India; School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura 302017, Jaipur, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura 302017, Jaipur, India; Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| |
Collapse
|
10
|
Singh A, Khan DUZ, Singh P, Singh AK, Agarwal P. Prognostic utility of microRNA-145 and CD 133 in oral squamous cell carcinoma: A pilot study from Northern India. J Oral Biol Craniofac Res 2022; 13:92-95. [DOI: 10.1016/j.jobcr.2022.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022] Open
|
11
|
Khatoon E, Hegde M, Kumar A, Daimary UD, Sethi G, Bishayee A, Kunnumakkara AB. The multifaceted role of STAT3 pathway and its implication as a potential therapeutic target in oral cancer. Arch Pharm Res 2022; 45:507-534. [PMID: 35987863 DOI: 10.1007/s12272-022-01398-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 07/20/2022] [Indexed: 12/20/2022]
Abstract
Oral cancer is one of the leading causes of cancer-related deaths, and it has become a matter of serious concern due to the alarming rise in its incidence rate worldwide. Despite recent advancements in oral cancer treatment strategies, there are no significant improvements in patient's survival rate. Among the numerous cell signaling pathways involved in oral cancer development and progression, STAT3 is known to play a multifaceted oncogenic role in shaping the tumor pathophysiology. STAT3 hyperactivation in oral cancer contributes to survival, proliferation, invasion, epithelial to mesenchymal transition, metastasis, immunosuppression, chemoresistance, and poor prognosis. A plethora of pre-clinical and clinical studies have documented the role of STAT3 in the initiation and development of oral cancer and showed that STAT3 inhibition holds significant potential in the prevention and treatment of this cancer. However, to date, targeting STAT3 activation mainly involves inhibiting the upstream signaling molecules such as JAK and IL-6 receptors. The major challenge in targeting STAT3 lies in the complexity of its phosphorylation- and dimerization-independent functions, which are not affected by disrupting the upstream regulators. The present review delineates the significance of the STAT3 pathway in regulating various hallmarks of oral cancer. In addition, it highlights the STAT3 inhibitors identified to date through various preclinical and clinical studies that can be employed for the therapeutic intervention in oral cancer treatment.
Collapse
Affiliation(s)
- Elina Khatoon
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, 781 039, Assam, India.,DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Indian Institute of Technology (IIT) Guwahati, Guwahati, 781 039, Assam, India
| | - Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, 781 039, Assam, India.,DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Indian Institute of Technology (IIT) Guwahati, Guwahati, 781 039, Assam, India
| | - Aviral Kumar
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, 781 039, Assam, India.,DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Indian Institute of Technology (IIT) Guwahati, Guwahati, 781 039, Assam, India
| | - Uzini Devi Daimary
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, 781 039, Assam, India.,DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Indian Institute of Technology (IIT) Guwahati, Guwahati, 781 039, Assam, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore. .,NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, 781 039, Assam, India. .,DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Indian Institute of Technology (IIT) Guwahati, Guwahati, 781 039, Assam, India.
| |
Collapse
|
12
|
Shi SC, Zhang Y, Wang T. High RRM2 expression has poor prognosis in specific types of breast cancer. PLoS One 2022; 17:e0265195. [PMID: 35290409 PMCID: PMC8923511 DOI: 10.1371/journal.pone.0265195] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 02/24/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND RRM2 plays an important role in different malignant tumors, but there are few studies in breast cancer. Public databases were used to analyze the expression of RRM2 in breast cancer and its prognostic value. MATERIALS AND METHODS A total of 2,509 breast cancer samples were downloaded from the METABRIC database. The relationship between RRM2 expression and clinical pathology was evaluated. Using the BCIP database and real-time-PCR, and western blotting, RRM2 mRNA and protein expression of RRM2 in breast cancer tissues and cell lines were evaluated. Univariate and multivariate analysis defined independent prognostic factors that affected the overall survival of patients with breast cancer. The Kaplan-Meier method was used to study the relationship between the high expression of RRM2 and overall survival and distant metastasis-free survival (DMFS) of breast cancer patients. Finally, We performed Gene Set Enrichment Analysis (GSEA) and obtained the relevant pathways associated with high expression of RRM2 potentially influencing breast cancer progression. RESULTS RRM2 expression was significantly correlated with age, tumor size, grade, menopausal status, molecular typing, ER, PR, and Her-2 of patients with breast cancer(P<0.05). Univariate and multivariate regression analysis showed that RRM2, the number of positive lymph nodes, ER, Her-2, tumor size, and tumor stage can be used as independent prognostic factors for overall survival of patients with breast cancer. Kaplan-Meier analysis showed that in patients with Luminal A and Normal like breast cancers and Stage1 and stage2 breast cancers, patients with high expression of RRM2 had worse overall survival and DMFS. The analysis of the GSEA pathway showed that RRM2 is mainly enriched in the ERBB signaling pathway and other pathways. CONCLUSION The high expression of RRM2 has a worse prognosis in patients with breast cancer with specific features. It can be used as a biomarker for the prognosis of breast cancer.
Collapse
Affiliation(s)
- Shen-chao Shi
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Zhang
- Department of Endocrinology, Hubei No. 3 People’s Hospital of Jianghan University, Wuhan, China
| | - Tao Wang
- Department of Thyroid and Breast Surgery, Hubei No. 3 People’s Hospital of Jianghan University, Wuhan, China
| |
Collapse
|
13
|
Zhou XY, Dai HY, Zhang H, Zhu JL, Hu H. Signal transducer and activator of transcription family is a prognostic marker associated with immune infiltration in endometrial cancer. J Clin Lab Anal 2022; 36:e24315. [PMID: 35244291 PMCID: PMC8993664 DOI: 10.1002/jcla.24315] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/31/2022] [Accepted: 02/10/2022] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Signal transducer and activator of transcription (STAT) is a unique protein family that binds to DNA and plays a vital role in regulating major physiological cellular processes. Seven STAT genes have been identified in the human genome. Several studies suggest STAT family members to be involved in cancer development, progression, and metastasis. However, the predictive relationship between STAT family expression and immune cell infiltration in endometrial cancer remains unknown. METHODS We explored STAT family expression and prognosis in endometrial cancer using various databases. The STRING, GeneMANIA, and DAVID databases, along with GO and KEGG analyses, were used to construct a protein interaction network of related genes. Finally, the TIMER database and ssGSEA immune infiltration algorithm were used to investigate the correlation of STAT family expression with the immune infiltration level in uterine corpus endometrial carcinoma (UCEC). RESULTS Our study showed that different STAT family members are differentially expressed in UCEC. STAT1 and STAT2 expression increased at various stages of UCEC, and STAT5A, STAT5B, and STAT6 levels were decreased. STAT3 and STAT4 expression was not significantly different between UCEC and normal tissues. High STAT1 expression may be a prognostic disadvantage of UCEC, and high STAT6 expression may improve UCEC patient prognosis. The STAT family-associated genes were significantly enriched in signal transduction, protein binding, DNA binding, and ATP binding upon GO analysis. Related genes in the KEGG analysis were mainly enriched in pathways in cancer, viral carcinogenesis, chemokine signaling pathway, JAK/STAT signaling pathway, and regulation of the actin cytoskeleton. In terms of immune infiltration, STAT1 and STAT2 were positively correlated with B, CD8+ T, CD4+ T, and dendritic cells, and neutrophils (p < 0.05). All STAT family members were positively correlated with neutrophils and dendritic cells (p < 0.05). STAT1 and STAT2 showed similar correlations with all immune cell types, whereas STAT1 and STAT6 showed opposite correlations. CONCLUSION These findings suggest that the STAT family is a prognostic marker, and the immune infiltration level, a therapeutic target, for endometrial cancer.
Collapse
Affiliation(s)
- Xin-Ying Zhou
- Department of Obstetrics and Gynecology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Pudong, Shanghai, China
| | - Hai-Yan Dai
- Department of Obstetrics and Gynecology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Pudong, Shanghai, China
| | - Hu Zhang
- Department of Obstetrics and Gynecology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Pudong, Shanghai, China
| | - Jian-Long Zhu
- Department of Obstetrics and Gynecology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Pudong, Shanghai, China
| | - Hua Hu
- Department of Obstetrics and Gynecology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Pudong, Shanghai, China
| |
Collapse
|
14
|
Xie J, Li X, Zhang L, Liu C, Leung JWH, Liu P, Yu Z, Liu R, Li L, Huang C, Huang Z. Genistein-3'-sodium sulfonate ameliorates cerebral ischemia injuries by blocking neuroinflammation through the α7nAChR-JAK2/STAT3 signaling pathway in rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 93:153745. [PMID: 34634743 DOI: 10.1016/j.phymed.2021.153745] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/28/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Neuroinflammation plays a pivotal role in the acute progression of cerebral ischemia/reperfusion injury (I/RI). We previously reported that genistein-3'-sodium sulfonate (GSS), a derivative from the extract of the phytoestrogen genistein (Gen), protects cortical neurons against focal cerebral ischemia. However, the molecular mechanism underlying the neuroprotective effects exerted by GSS remains unclear. PURPOSE The present study focused on the anti-inflammatory effects of GSS following I/RI in rats. STUDY DESIGN Randomized controlled trial. METHODS The tMCAO rat model and LPS-stimulated BV2 in vitro model were used. Longa's scare was used to observe neurological function. TTC staining and Nissl staining were used to evaluate brain injury. ELISA, qRT-PCR, Western blotting and immunofluorescent staining methods were used to detect cytokine concentration, mRNA level, protein expression and location. RESULTS GSS treatment improves neurological function, reduces the volume of cerebral infarction, attenuates proinflammatory cytokines and inactivates the phosphorylation of JAK2 and STAT3 in I/RI rats. Furthermore, GSS increased the expression of α7nAChR. More importantly, the neuroprotective, anti-inflammatory and inhibiting JAK2/STAT3 signaling pathway effects of GSS were counteracted in the presence of alpha-bungarotoxin (α-BTX), an α7nAChR inhibitor, suggesting that α7nAChR is a potential target associated with the anti-inflammatory effects of GSS in the I/RI rats. GSS also inhibited BV2 cells from releasing IL-1β via the α7nAChR pathway after LPS stimulation. CONCLUSION GSS protects against cerebral I/RI through the expression of α7nAChR and inhibition of the JAK2/STAT3 pathway. Our findings provide evidence for the role of the cholinergic anti-inflammatory pathway in neuroinflammation and uncover a potential novel mechanism for GSS treatment in ischemic stroke. The downstream signals of GSS, α7nAChR- JAK2/STAT3 could also be potential targets for the treatment of I/RI.
Collapse
Affiliation(s)
- Jiali Xie
- Key Laboratory of Prevention and treatment of cardiovascular and cerebrovascular diseases of Ministry of Education, Department of Physiology, Institute for Medical Sciences of Pain, Gannan Medical University, Ganzhou 341000, China; Department of Basic Medicine, Gannan Health Vocational College, Ganzhou, 341000, China
| | - Xiao Li
- Key Laboratory of Prevention and treatment of cardiovascular and cerebrovascular diseases of Ministry of Education, Department of Physiology, Institute for Medical Sciences of Pain, Gannan Medical University, Ganzhou 341000, China; Department of Physiology, Basic Medicine School of Gannan Medical University, Ganzhou 341000, China
| | - Limei Zhang
- Key Laboratory of Prevention and treatment of cardiovascular and cerebrovascular diseases of Ministry of Education, Department of Physiology, Institute for Medical Sciences of Pain, Gannan Medical University, Ganzhou 341000, China; Department of Physiology, Basic Medicine School of Gannan Medical University, Ganzhou 341000, China
| | - Chaoming Liu
- Key Laboratory of Prevention and treatment of cardiovascular and cerebrovascular diseases of Ministry of Education, Department of Physiology, Institute for Medical Sciences of Pain, Gannan Medical University, Ganzhou 341000, China
| | - Joseph Wai-Hin Leung
- Department of Biology, University of Ottawa, Ottawa, K1N 6N5, Canada; Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, K1H 8L6, Canada
| | - Peiwen Liu
- The first clinical college of Lanzhou University, Nanzhou, 73000, China
| | - Zining Yu
- Graduate School, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Ruizhen Liu
- Key Laboratory of Prevention and treatment of cardiovascular and cerebrovascular diseases of Ministry of Education, Department of Physiology, Institute for Medical Sciences of Pain, Gannan Medical University, Ganzhou 341000, China; Department of Physiology, Basic Medicine School of Gannan Medical University, Ganzhou 341000, China
| | - Liangdong Li
- Key Laboratory of Prevention and treatment of cardiovascular and cerebrovascular diseases of Ministry of Education, Department of Physiology, Institute for Medical Sciences of Pain, Gannan Medical University, Ganzhou 341000, China; Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Cheng Huang
- Key Laboratory of Prevention and treatment of cardiovascular and cerebrovascular diseases of Ministry of Education, Department of Physiology, Institute for Medical Sciences of Pain, Gannan Medical University, Ganzhou 341000, China; Department of Physiology, Basic Medicine School of Gannan Medical University, Ganzhou 341000, China
| | - Zhihua Huang
- Key Laboratory of Prevention and treatment of cardiovascular and cerebrovascular diseases of Ministry of Education, Department of Physiology, Institute for Medical Sciences of Pain, Gannan Medical University, Ganzhou 341000, China; Department of Physiology, Basic Medicine School of Gannan Medical University, Ganzhou 341000, China.
| |
Collapse
|