1
|
D’Angelo A, Vitiello L, Gagliardi V, Salerno G, De Pascale I, Coppola A, Abbinante G, Pellegrino A, Giannaccare G. The Role of Oral Supplementation for the Management of Age-Related Macular Degeneration: A Narrative Review. J Pers Med 2024; 14:653. [PMID: 38929874 PMCID: PMC11204429 DOI: 10.3390/jpm14060653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
The majority of neurodegenerative eye disorders occur with aging and significantly impair quality of life. Age-related macular degeneration (AMD) is the third most common cause of visual impairment and blindness worldwide. One of the most important elements in the pathophysiology of neurodegenerative eye disease is certainly oxidative stress, with neuroinflammation and ocular ischemia which may also be significant factors. Antioxidants, either by food or oral supplementation, may be able to mitigate the deleterious effects of reactive oxygen species that build as a result of oxidative stress, ischemia, and inflammation. Over the past few decades, a number of research works examining the potential adjuvant impact of antioxidants in AMD have been published. In fact, there is not only more and more interest in already known molecules but also in new molecules that can help clinicians in the management of this complex multifactorial disease, such as astaxanthin and melatonin. However, while some studies showed encouraging outcomes, others were conflicting. In addition, more and more attention is also being paid to nutrition, considered a pivotal key point, especially to prevent AMD. For this reason, the purpose of this review is to analyze the main antioxidant molecules currently used as oral supplements for AMD treatment, as well as the role of diet and food intake in this ocular disease, to better understand how all these factors can improve the clinical management of AMD patients.
Collapse
Affiliation(s)
- Angela D’Angelo
- Department of Clinical Sciences and Community Health, University of Milan, 20133 Milan, MI, Italy;
| | - Livio Vitiello
- Eye Unit, “Luigi Curto” Hospital, Azienda Sanitaria Locale Salerno, 84035 Polla, SA, Italy; (L.V.); (V.G.); (G.S.); (I.D.P.); (A.C.); (G.A.); (A.P.)
| | - Vincenzo Gagliardi
- Eye Unit, “Luigi Curto” Hospital, Azienda Sanitaria Locale Salerno, 84035 Polla, SA, Italy; (L.V.); (V.G.); (G.S.); (I.D.P.); (A.C.); (G.A.); (A.P.)
| | - Giulio Salerno
- Eye Unit, “Luigi Curto” Hospital, Azienda Sanitaria Locale Salerno, 84035 Polla, SA, Italy; (L.V.); (V.G.); (G.S.); (I.D.P.); (A.C.); (G.A.); (A.P.)
| | - Ilaria De Pascale
- Eye Unit, “Luigi Curto” Hospital, Azienda Sanitaria Locale Salerno, 84035 Polla, SA, Italy; (L.V.); (V.G.); (G.S.); (I.D.P.); (A.C.); (G.A.); (A.P.)
| | - Alessia Coppola
- Eye Unit, “Luigi Curto” Hospital, Azienda Sanitaria Locale Salerno, 84035 Polla, SA, Italy; (L.V.); (V.G.); (G.S.); (I.D.P.); (A.C.); (G.A.); (A.P.)
| | - Giulia Abbinante
- Eye Unit, “Luigi Curto” Hospital, Azienda Sanitaria Locale Salerno, 84035 Polla, SA, Italy; (L.V.); (V.G.); (G.S.); (I.D.P.); (A.C.); (G.A.); (A.P.)
| | - Alfonso Pellegrino
- Eye Unit, “Luigi Curto” Hospital, Azienda Sanitaria Locale Salerno, 84035 Polla, SA, Italy; (L.V.); (V.G.); (G.S.); (I.D.P.); (A.C.); (G.A.); (A.P.)
| | - Giuseppe Giannaccare
- Eye Clinic, Department of Surgical Sciences, University of Cagliari, 09124 Cagliari, CA, Italy
| |
Collapse
|
2
|
Zhao N, Hao XN, Huang JM, Song ZM, Tao Y. Crosstalk Between Microglia and Müller Glia in the Age-Related Macular Degeneration: Role and Therapeutic Value of Neuroinflammation. Aging Dis 2024; 15:1132-1154. [PMID: 37728589 PMCID: PMC11081163 DOI: 10.14336/ad.2023.0823-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/23/2023] [Indexed: 09/21/2023] Open
Abstract
Age-related macular degeneration (AMD) is a progressive neurodegeneration disease that causes photoreceptor demise and vision impairments. In AMD pathogenesis, the primary death of retinal neurons always leads to the activation of resident microglia. The migration of activated microglia to the ongoing retinal lesion and their morphological transformation from branching to ameboid-like are recognized as hallmarks of AMD pathogenesis. Activated microglia send signals to Müller cells and promote them to react correspondingly to damaging stimulus. Müller cells are a type of neuroglia cells that maintain the normal function of retinal neurons, modulating innate inflammatory responses, and stabilize retinal structure. Activated Müller cells can accelerate the progression of AMD by damaging neurons and blood vessels. Therefore, the crosstalk between microglia and Müller cells plays a homeostatic role in maintaining the retinal environment, and this interaction is complicatedly modulated. In particular, the mechanism of mutual regulation between the two glia populations is complex under pathological conditions. This paper reviews recent findings on the crosstalk between microglia and Müller glia during AMD pathology process, with special emphasis on its therapeutic potentials.
Collapse
Affiliation(s)
- Na Zhao
- Henan Eye Institute, Henan Eye Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China.
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Xiao-Na Hao
- Henan Eye Institute, Henan Eye Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China.
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Jie-Min Huang
- Henan Eye Institute, Henan Eye Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China.
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Zong-Ming Song
- Henan Eye Institute, Henan Eye Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China.
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Ye Tao
- Henan Eye Institute, Henan Eye Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China.
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
3
|
Pérez-Fernández V, Thananjeyan AL, Ullah F, Münch G, Cameron M, Gyengesi E. The effects of a highly bioavailable curcumin Phytosome TM preparation on the retinal architecture and glial reactivity in the GFAP-IL6 mice. FRONTIERS IN OPHTHALMOLOGY 2023; 3:1205542. [PMID: 38983084 PMCID: PMC11182199 DOI: 10.3389/fopht.2023.1205542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 09/08/2023] [Indexed: 07/11/2024]
Abstract
Uncontrolled, chronic inflammation in the retina can disturb retinal structure and function leading to impaired visual function. For the first time, in a mouse model of chronic neuroinflammation (GFAP-IL6), we investigated the impact of chronic glial activation on the retinal microglia population and structure. In addition, we tested a curcumin PhytosomeTM preparation with enhanced bioavailability to investigate the effects of a cytokine-suppressing anti-inflammatory drug on retinal architecture. Curcumin PhytosomeTM was fed to 3-month old GFAP-IL6 mice for 4 weeks and compared to their untreated GFAP-IL6 counterparts as well as wild type mice on control diet. Microglial numbers and morphology together with neuronal numbers were characterized using immunohistochemistry and cell reconstruction in the retina, using retinal wholemount and slices. GFAP-IL6 mice showed a significant increase in Iba1-labelled mononuclear phagocytes, including microglia, and displayed altered glial morphology. This resulted in a reduction in cone density and a thinning of the retinal layers compared to wild type mice. Curcumin PhytosomeTM treatment contributed to decreased microglial density, significantly decreasing both soma and cell size compared to control diet, as well as preventing the thinning of the retinal layers. This study is the first to characterize the impact of chronic retinal inflammation in the GFAP-IL6 mouse and the therapeutic benefit of enhanced bioavailable curcumin PhytosomeTM to significantly reduce microglia density and prevent neuronal loss. These data suggest that curcumin could be used as a complementary therapy alongside traditional treatments to reduce associated retinal inflammation in a variety of retinal diseases.
Collapse
Affiliation(s)
- Víctor Pérez-Fernández
- Department of Anatomy and Cell Biology, Western Sydney University, Campbelltown, NSW, Australia
| | | | - Faheem Ullah
- Department of Pharmacology, Western Sydney University, Campbelltown, NSW, Australia
- Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States
| | - Gerald Münch
- Department of Pharmacology, Western Sydney University, Campbelltown, NSW, Australia
| | - Morven Cameron
- Department of Anatomy and Cell Biology, Western Sydney University, Campbelltown, NSW, Australia
| | - Erika Gyengesi
- Department of Pharmacology, Western Sydney University, Campbelltown, NSW, Australia
| |
Collapse
|
4
|
Sun T, Huang K, Niu K, Lin C, Liu W, Yeh C, Kuo S, Chang C. Hyperbaric oxygen therapy suppresses hypoxia and reoxygenation injury to retinal pigment epithelial cells through activating peroxisome proliferator activator receptor-alpha signalling. J Cell Mol Med 2023; 27:3189-3201. [PMID: 37731202 PMCID: PMC10568664 DOI: 10.1111/jcmm.17963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/22/2023] Open
Abstract
Retinal ischemia followed by reperfusion (IR) is a common cause of many ocular disorders, such as age-related macular degeneration (AMD), which leads to blindness in the elderly population, and proper therapies remain unavailable. Retinal pigment epithelial (RPE) cell death is a hallmark of AMD. Hyperbaric oxygen (HBO) therapy can improve IR tissue survival by inducing ischemic preconditioning responses. We conducted an in vitro study to examine the effects of HBO preconditioning on oxygen-glucose deprivation (OGD)-induced IR-injured RPE cells. RPE cells were treated with HBO (100% O2 at 3 atmospheres absolute for 90 min) once a day for three consecutive days before retinal IR onset. Compared with normal cells, the IR-injured RPE cells had lower cell viability, lower peroxisome proliferator activator receptor-alpha (PPAR-α) expression, more severe oxidation status, higher blood-retinal barrier disruption and more elevated apoptosis and autophagy rates. HBO preconditioning increased PPAR-α expression, improved cell viability, decreased oxidative stress, blood-retinal barrier disruption and cellular apoptosis and autophagy. A specific PPAR-α antagonist, GW6471, antagonized all the protective effects of HBO preconditioning in IR-injured RPE cells. Combining these observations, HBO therapy can reverse OGD-induced RPE cell injury by activating PPAR-α signalling.
Collapse
Affiliation(s)
- Tzong‐Bor Sun
- Department of Hyperbaric Oxygen MedicineChi Mei Medical CenterTainanTaiwan
- Division of Plastic Surgery, Department of SurgeryChi Mei Medical CenterTainanTaiwan
- Department of Biotechnology and Food TechnologySouthern Taiwan University of Science and TechnologyTainanTaiwan
| | - Kuo‐Feng Huang
- Division of Plastic Surgery, Department of SurgeryChi Mei Medical CenterTainanTaiwan
| | - Ko‐Chi Niu
- Department of Hyperbaric Oxygen MedicineChi Mei Medical CenterTainanTaiwan
| | - Cheng‐Hsien Lin
- Department of MedicineMackay Medical CollegeNew Taipei CityTaiwan
- Department of Medical ResearchChi Mei Medical CenterTainanTaiwan
| | - Wen‐Pin Liu
- Department of Medical ResearchChi Mei Medical CenterTainanTaiwan
| | - Chao‐Hung Yeh
- Division of Neurosurgery, Department of SurgeryChi Mei Medical CenterTainanTaiwan
- Department of OptometryChung Hwa University of Medical TechnologyTainanTaiwan
| | - Shu‐Chun Kuo
- Department of OptometryChung Hwa University of Medical TechnologyTainanTaiwan
- Department of OphthalmologyChi Mei Medical CenterTainanTaiwan
| | - Ching‐Ping Chang
- Department of Medical ResearchChi Mei Medical CenterTainanTaiwan
| |
Collapse
|
5
|
Xiao J, Shang W, Zhao Z, Jiang J, Chen J, Cai H, He J, Cai Z, Zhao Z. Pharmacodynamic Material Basis and Potential Mechanism Study of Spatholobi Caulis in Reversing Osteoporosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:3071147. [PMID: 37089711 PMCID: PMC10121353 DOI: 10.1155/2023/3071147] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 09/03/2022] [Indexed: 04/25/2023]
Abstract
Objective To elucidate the mechanism of Spatholobi Caulis (SC) in treating osteoporosis (OP) integrated zebrafish model and bioinformatics. Methods Skeleton staining coupled with image quantification was performed to evaluate the effects of SC on skeleton mineralization area (SSA) and total optical density (TOD). Zebrafish locomotor activity was monitored using the EthoVision XT. Bioactive compounds of SC and their corresponding protein targets were acquired from Traditional Chinese Medicine Systems Pharmacology (TCMSP) database. Potential therapeutic targets for OP were summarized through retrieving 5 databases, and then, the overlapping genes between SC and OP were acquired. The core genes were selected by CytoHubba. Subsequently, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Ontology (GO) functional analysis of the intersection target genes were carried out by R software. Finally, the molecular docking simulation was manipulated between the ingredients and the hub genes. Results Compared with the model group, SC significantly increased the SSA and TOD at 10 mg/mL and improved the locomotor activity in a dose-dependent manner (p < 0.001). 33 components of SC were associated with 72 OP-related genes including 10 core genes (MAPK1, VEGFA, MMP9, AKT1, AR, IL6, CALM3, TP53, EGFR, and CAT). Advanced Glycation End Product (AGE) Receptor for AGE (RAGE) signaling pathway was screened out as the principal pathway of SC in anti-OP. The bioactive components (Aloe-emodin, Emodin, Formononetin, Licochalcone A, Luteolin, and Lopac-I-3766) have excellent affinity to core genes (MAPK1, VEGFA, MMP9, AKT1, and IL6). Conclusion SC had the hierarchical network characteristics of "multicomponents/multitargets/multifunctions/multipathways" in reversing OP, but AGE-RAGE signaling pathway may be the main regulatory mechanism.
Collapse
Affiliation(s)
- Jianpeng Xiao
- Department of TCM, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Wei Shang
- Department of TCM, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Zhiming Zhao
- Department of TCM, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Jun Jiang
- Department of TCM, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Jianping Chen
- School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China
| | - Hui Cai
- Department of TCM, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Jinjin He
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Zhihui Cai
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Zihan Zhao
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| |
Collapse
|
6
|
Fabre M, Mateo L, Lamaa D, Baillif S, Pagès G, Demange L, Ronco C, Benhida R. Recent Advances in Age-Related Macular Degeneration Therapies. Molecules 2022; 27:molecules27165089. [PMID: 36014339 PMCID: PMC9414333 DOI: 10.3390/molecules27165089] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Age-related macular degeneration (AMD) was described for the first time in the 1840s and is currently the leading cause of blindness for patients over 65 years in Western Countries. This disease impacts the eye’s posterior segment and damages the macula, a retina section with high levels of photoreceptor cells and responsible for the central vision. Advanced AMD stages are divided into the atrophic (dry) form and the exudative (wet) form. Atrophic AMD consists in the progressive atrophy of the retinal pigment epithelium (RPE) and the outer retinal layers, while the exudative form results in the anarchic invasion by choroidal neo-vessels of RPE and the retina. This invasion is responsible for fluid accumulation in the intra/sub-retinal spaces and for a progressive dysfunction of the photoreceptor cells. To date, the few existing anti-AMD therapies may only delay or suspend its progression, without providing cure to patients. However, in the last decade, an outstanding number of research programs targeting its different aspects have been initiated by academics and industrials. This review aims to bring together the most recent advances and insights into the mechanisms underlying AMD pathogenicity and disease evolution, and to highlight the current hypotheses towards the development of new treatments, i.e., symptomatic vs. curative. The therapeutic options and drugs proposed to tackle these mechanisms are analyzed and critically compared. A particular emphasis has been given to the therapeutic agents currently tested in clinical trials, whose results have been carefully collected and discussed whenever possible.
Collapse
Affiliation(s)
- Marie Fabre
- Institut de Chimie de Nice UMR 7272, Université Côte d’Azur, CNRS, 06108 Nice, France
| | - Lou Mateo
- Institut de Chimie de Nice UMR 7272, Université Côte d’Azur, CNRS, 06108 Nice, France
| | - Diana Lamaa
- CiTCoM, UMR 8038 CNRS, Faculté de Pharmacie, Université de Paris Cité, 4, Avenue de l’Observatoire, 75006 Paris, France
| | - Stéphanie Baillif
- Ophthalmology Department, University Hospital of Nice, 30 Avenue De La Voie Romaine, 06000 Nice, France
| | - Gilles Pagès
- Institute for Research on Cancer and Aging (IRCAN), UMR 7284 and INSERM U 1081, Université Côte d’Azur, CNRS 28 Avenue de Valombrose, 06107 Nice, France
| | - Luc Demange
- Institut de Chimie de Nice UMR 7272, Université Côte d’Azur, CNRS, 06108 Nice, France
- CiTCoM, UMR 8038 CNRS, Faculté de Pharmacie, Université de Paris Cité, 4, Avenue de l’Observatoire, 75006 Paris, France
- Correspondence: (L.D.); (C.R.); (R.B.)
| | - Cyril Ronco
- Institut de Chimie de Nice UMR 7272, Université Côte d’Azur, CNRS, 06108 Nice, France
- Correspondence: (L.D.); (C.R.); (R.B.)
| | - Rachid Benhida
- Institut de Chimie de Nice UMR 7272, Université Côte d’Azur, CNRS, 06108 Nice, France
- Department of Chemical and Biochemical Sciences-Green Process Engineering (CBS-GPE), Mohamed VI Polytechnic University (UM6P), Benguerir 43150, Morocco
- Correspondence: (L.D.); (C.R.); (R.B.)
| |
Collapse
|
7
|
Vallée A. Curcumin and Wnt/β‑catenin signaling in exudative age‑related macular degeneration (Review). Int J Mol Med 2022; 49:79. [PMID: 35445729 PMCID: PMC9083851 DOI: 10.3892/ijmm.2022.5135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/11/2022] [Indexed: 11/06/2022] Open
Abstract
Curcumin is a natural product widely used due to its pharmacological effects. Nevertheless, only a limited number of studies concerning the effects of curcumin on exudative age‑related macular degeneration (AMD) is currently available. Since ophthalmic diseases, including exudative AMD, have a marked impact on public health, the prevention and therapy of ophthalmic disorders remain of increasing concern. Exudative AMD is characterized by choroidal neovascularization (CNV) invading the subretinal space, ultimately enhancing exudation and hemorrhaging. The exudative AMD subtype corresponds to 10 to 15% of cases of macular degeneration; however, the occurrence of this subtype has been reported as the major cause of vision loss and blindness, with the occurrence of CNV being responsible for 80% of the cases with vision loss. In CNV increased expression of VEGF has been observed, stimulated by the overactivation of Wnt/β‑catenin signaling pathway. The stimulation of the Wnt/β‑catenin signaling pathway is responsible for the activation of several cellular mechanisms, simultaneously enhancing inflammation, oxidative stress and angiogenesis in numerous diseases, including ophthalmic disorders. Some studies have previously demonstrated the possible advantage of the use of curcumin for the inhibition of Wnt/β‑catenin signaling. In the present review article, the different mechanisms of curcumin are described concerning its effects on oxidative stress, inflammation and angiogenesis in exudative AMD, by interacting with Wnt/β‑catenin signaling.
Collapse
Affiliation(s)
- Alexandre Vallée
- Department of Epidemiology-Data-Biostatistics, Delegation of Clinical Research and Innovation (DRCI), Foch Hospital, 92150 Suresnes, France
| |
Collapse
|
8
|
Allegrini D, Raimondi R, Borgia A, Sorrentino T, Montesano G, Tsoutsanis P, Cancian G, Verma Y, De Rosa FP, Romano MR. Curcumin in Retinal Diseases: A Comprehensive Review from Bench to Bedside. Int J Mol Sci 2022; 23:ijms23073557. [PMID: 35408920 PMCID: PMC8998602 DOI: 10.3390/ijms23073557] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/20/2022] [Accepted: 03/22/2022] [Indexed: 02/04/2023] Open
Abstract
Recent evidence in basic science is leading to a growing interest in the possible role of curcumin in treating retinal diseases. Curcumin has been demonstrated to be able to modulate gene transcription and reduce ganglion cell apoptosis, downgrade VEGF, modulate glucose levels and decrease vascular dysfunction. So far, the use of curcumin has been limited by poor bioavailability; to overcome this issue, different types of carriers have been used. Multiple recent studies disclosed the efficacy of using curcumin in treating different retinal conditions. The aim of this review is to comprehensively review and discuss the role of curcumin in retinal diseases from bench to bedside.
Collapse
Affiliation(s)
- Davide Allegrini
- Eye Center, Humanitas Gavazzeni-Castelli, 24128 Bergamo, Italy; (D.A.); (P.T.); (M.R.R.)
- Department of Biomedical Sciences, Humanitas University, 20100 Milano, Italy; (A.B.); (T.S.); (G.C.); (Y.V.); (F.P.D.R.)
| | - Raffaele Raimondi
- Department of Biomedical Sciences, Humanitas University, 20100 Milano, Italy; (A.B.); (T.S.); (G.C.); (Y.V.); (F.P.D.R.)
- Correspondence:
| | - Alfredo Borgia
- Department of Biomedical Sciences, Humanitas University, 20100 Milano, Italy; (A.B.); (T.S.); (G.C.); (Y.V.); (F.P.D.R.)
| | - Tania Sorrentino
- Department of Biomedical Sciences, Humanitas University, 20100 Milano, Italy; (A.B.); (T.S.); (G.C.); (Y.V.); (F.P.D.R.)
| | - Giovanni Montesano
- Optometry and Visual Sciences Department, University of London, London WC1E 7HU, UK;
| | - Panos Tsoutsanis
- Eye Center, Humanitas Gavazzeni-Castelli, 24128 Bergamo, Italy; (D.A.); (P.T.); (M.R.R.)
| | - Giuseppe Cancian
- Department of Biomedical Sciences, Humanitas University, 20100 Milano, Italy; (A.B.); (T.S.); (G.C.); (Y.V.); (F.P.D.R.)
| | - Yash Verma
- Department of Biomedical Sciences, Humanitas University, 20100 Milano, Italy; (A.B.); (T.S.); (G.C.); (Y.V.); (F.P.D.R.)
| | - Francesco Paolo De Rosa
- Department of Biomedical Sciences, Humanitas University, 20100 Milano, Italy; (A.B.); (T.S.); (G.C.); (Y.V.); (F.P.D.R.)
| | - Mario R. Romano
- Eye Center, Humanitas Gavazzeni-Castelli, 24128 Bergamo, Italy; (D.A.); (P.T.); (M.R.R.)
- Department of Biomedical Sciences, Humanitas University, 20100 Milano, Italy; (A.B.); (T.S.); (G.C.); (Y.V.); (F.P.D.R.)
| |
Collapse
|
9
|
Discovering the Potential of Natural Antioxidants in Age-Related Macular Degeneration: A Review. Pharmaceuticals (Basel) 2022; 15:ph15010101. [PMID: 35056157 PMCID: PMC8777838 DOI: 10.3390/ph15010101] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 01/27/2023] Open
Abstract
Age-related macular degeneration (AMD) is a multifactorial disease associated with anatomical changes in the inner retina. Despite tremendous advances in clinical care, there is currently no cure for AMD. This review aims to evaluate the published literature on the therapeutic roles of natural antioxidants in AMD. A literature search of PubMed, Web of Science and Google Scholar for peer-reviewed articles published between 1 January 2011 and 31 October 2021 was undertaken. A total of 82 preclinical and 18 clinical studies were eligible for inclusion in this review. We identified active compounds, carotenoids, extracts and polysaccharides, flavonoids, formulations, vitamins and whole foods with potential therapeutic roles in AMD. We evaluated the integral cellular signaling pathways including the activation of antioxidant pathways and angiogenesis pathways orchestrating their mode of action. In conclusion, we examined the therapeutic roles of natural antioxidants in AMD which warrant further study for application in clinical practice. Our current understanding is that natural antioxidants have the potential to improve or halt the progression of AMD, and tailoring therapeutics to the specific disease stages may be the key to preventing irreversible vision loss.
Collapse
|
10
|
Role of Curcumin in Retinal Diseases-A review. Graefes Arch Clin Exp Ophthalmol 2022; 260:1457-1473. [PMID: 35015114 PMCID: PMC8748528 DOI: 10.1007/s00417-021-05542-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/21/2021] [Accepted: 12/27/2021] [Indexed: 02/08/2023] Open
Abstract
PURPOSE To review the role of curcumin in retinal diseases, COVID era, modification of the molecule to improve bioavailability and its future scope. METHODS PubMed and MEDLINE searches were pertaining to curcumin, properties of curcumin, curcumin in retinal diseases, curcumin in diabetic retinopathy, curcumin in age-related macular degeneration, curcumin in retinal and choroidal diseases, curcumin in retinitis pigmentosa, curcumin in retinal ischemia reperfusion injury, curcumin in proliferative vitreoretinopathy and curcumin in current COVID era. RESULTS In experimental models, curcumin showed its pleiotropic effects in retinal diseases like diabetic retinopathy by increasing anti-oxidant enzymes, upregulating HO-1, nrf2 and reducing or inhibiting inflammatory mediators, growth factors and by inhibiting proliferation and migration of retinal endothelial cells in a dose-dependent manner in HRPC, HREC and ARPE-19 cells. In age-related macular degeneration, curcumin acts by reducing ROS and inhibiting apoptosis inducing proteins and cellular inflammatory genes and upregulating HO-1, thioredoxin and NQO1. In retinitis pigmentosa, curcumin has been shown to delay structural defects of P23H gene in P23H-rhodopsin transgenic rats. In proliferative vitreoretinopathy, curcumin inhibited the action of EGF in a dose- and time-dependent manner. In retinal ischemia reperfusion injury, curcumin downregulates IL-17, IL-23, NFKB, STAT-3, MCP-1 and JNK. In retinoblastoma, curcumin inhibits proliferation, migration and apoptosis of RBY79 and SO-RB50. Curcumin has already proven its efficacy in inhibiting viral replication, coagulation and cytokine storm in COVID era. CONCLUSION Curcumin is an easily available spice used traditionally in Indian cooking. The benefits of curcumin are manifold, and large randomized controlled trials are required to study its effects not only in treating retinal diseases in humans but in their prevention too.
Collapse
|
11
|
Bahrami A, Montecucco F, Carbone F, Sahebkar A. Effects of Curcumin on Aging: Molecular Mechanisms and Experimental Evidence. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8972074. [PMID: 34692844 PMCID: PMC8528582 DOI: 10.1155/2021/8972074] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/21/2021] [Accepted: 09/30/2021] [Indexed: 01/01/2023]
Abstract
Aging is characterized by a progressive inability to maintain homeostasis, self-repair, renewal, performance, and fitness of different tissues throughout the lifespan. Senescence is occurring following enormous intracellular or extracellular stress stimuli. Cellular senescence serves as an antiproliferative process that causes permanent cell cycle arrest and restricts the lifespan. Senescent cells are characterized by terminal cell cycle arrest, enlarged lysosome, and DNA double-strand breaks as well as lipofuscin granularity, senescence-associated heterochromatin foci, and activation of DNA damage response. Curcumin, a hydrophobic polyphenol, is a bioactive chemical constituent of the rhizomes of Curcuma longa Linn (turmeric), which has been extensively used for the alleviation of various human disorders. In addition to its pleiotropic effects, curcumin has been suggested to have antiaging features. In this review, we summarized the therapeutic potential of curcumin in the prevention and delaying of the aging process.
Collapse
Affiliation(s)
- Afsane Bahrami
- Clinical Research Development Unit of Akbar Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
- Clinical Research Unit, Imam Reza Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fabrizio Montecucco
- IRCCS Ospedale Policlinico San Martino Genoa-Italian Cardiovascular Network, 10 Largo Benzi, 16132 Genoa, Italy
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
| | - Federico Carbone
- IRCCS Ospedale Policlinico San Martino Genoa-Italian Cardiovascular Network, 10 Largo Benzi, 16132 Genoa, Italy
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
12
|
Azam M, Ghufran H, Butt H, Mehmood A, Ashfaq R, Ilyas AM, Ahmad MR, Riazuddin S. Curcumin preconditioning enhances the efficacy of adipose-derived mesenchymal stem cells to accelerate healing of burn wounds. BURNS & TRAUMA 2021; 9:tkab021. [PMID: 34514007 PMCID: PMC8430278 DOI: 10.1093/burnst/tkab021] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/26/2021] [Indexed: 01/09/2023]
Abstract
Background Following recent findings from our group that curcumin preconditioning augments the therapeutic efficacy of adipose-derived stem cells in the healing of diabetic wounds in rats, we aimed to investigate the regenerative effects of curcumin preconditioned adipose-derived mesenchymal stem cells (ASCs) for better recovery of acid inflicted burns in this study. Methods ASCs were preconditioned with 5 μM curcumin for 24 hours and assessed for proliferation, migration, paracrine release potential and gene expression comparative to naïve ASCs. Subsequently, the healing capacity of curcumin preconditioned ASCs (Cur-ASCs) versus naïve ASCs was examined using acidic wounds in rats. For this, acid inflicted burns of 20 mm in diameter were made on the back of male Wistar rats. Then, 2 × 106 cells of Cur-ASCs and naïve ASCs were intradermally injected in the wound periphery (n = 6) for comparison with an untreated saline control. Post-transplantation, wounds were macroscopically analysed and photographed to evaluate the percentage of wound closure and period of re-epithelization. Healed wound biopsies were excised and used for histological evaluation and expression analysis of wound healing markers at molecular level by quantitative PCR and western blotting. Results We found that Cur-ASCs exhibited greater proliferation, migration and paracrine potential in vitro. Further, Cur-ASCs showed more effective recovery than naïve ASCs as exhibited by gross morphology, faster wound closure and earlier re-epithelialization. Masson’s trichrome and hematoxylin and eosin staining demonstrated the improved architecture of the healing burns, as evidenced by reduced infiltration of inflammatory cells, compact collagen and marked granulation in Cur-ASC treated rats. Corroborating these findings, molecular assessment showed significantly reduced expressions of pro-inflammatory factors (interleukin-1 beta, interleukin-6, tumor necrosis factor alpha) a with striking upsurge of an oxidative marker (superoxide dismutase 1), pro-angiogenic factors (vascular endothelial growth factor, hepatocyte growth factor, hypoxia-inducible factor-1 alpha) and collagen markers (transforming growth factor beta 1, fibroblast growth factor-2, collagen type 1 alpha 1), verifying that Cur-ASCs modulate the regulation of pro-inflammatory and healing markers at burn sites. Conclusions Treatment with Cur-ASCs resulted in faster re-epithelization of acid inflicted burns compared to the treatment with naïve ASCs. Based on observed findings, we suggest the transplantation of Cur-ASCs is a valuable therapy for the potent clinical management of acidic burns.
Collapse
Affiliation(s)
- Maryam Azam
- National Centre of Excellence in Molecular Biology, 87-West Canal Bank Road, University of the Punjab, Lahore, Pakistan
| | - Hafiz Ghufran
- National Centre of Excellence in Molecular Biology, 87-West Canal Bank Road, University of the Punjab, Lahore, Pakistan
| | - Hira Butt
- National Centre of Excellence in Molecular Biology, 87-West Canal Bank Road, University of the Punjab, Lahore, Pakistan
| | - Azra Mehmood
- National Centre of Excellence in Molecular Biology, 87-West Canal Bank Road, University of the Punjab, Lahore, Pakistan
| | - Ramla Ashfaq
- National Centre of Excellence in Molecular Biology, 87-West Canal Bank Road, University of the Punjab, Lahore, Pakistan
| | - Asad M Ilyas
- National Centre of Excellence in Molecular Biology, 87-West Canal Bank Road, University of the Punjab, Lahore, Pakistan
| | - Muhammad R Ahmad
- National Centre of Excellence in Molecular Biology, 87-West Canal Bank Road, University of the Punjab, Lahore, Pakistan
| | - Sheikh Riazuddin
- National Centre of Excellence in Molecular Biology, 87-West Canal Bank Road, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
13
|
Wan W, Zhu W, Wu Y, Long Y, Liu H, Wan W, Wan G, Yu J. Grape Seed Proanthocyanidin Extract Moderated Retinal Pigment Epithelium Cellular Senescence Through NAMPT/SIRT1/NLRP3 Pathway. J Inflamm Res 2021; 14:3129-3143. [PMID: 34285539 PMCID: PMC8286255 DOI: 10.2147/jir.s306456] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/24/2021] [Indexed: 12/12/2022] Open
Abstract
Background Retinal pigment epithelium (RPE) cellular senescence is an important process in degenerative retinal disorders. Grape seed proanthocyanidin extract (GSPE) alleviates senescence-related degenerative disorders; however, the potential effects of GSPE intake on RPE cellular senescence through regulating NAMPT/SIRT1/NLRP3 pathway remain unclear. Methods The effects of GSPE on NAMPT expression and NAD+ contents were detected with Western blot and assay kit in both in-vivo and in-vitro AMD models. Senescence-related biomarkers, including p16, p21 expressions and β-gal staining, were conducted in different groups. The protective effects of GSPE treatment on the mitochondrial homeostasis and barrier function of RPE cells were detected using mtDNA lesions analyses, JC-1 staining, ZO1 staining and trans-epithelial cell resistance (TEER) detection. The expression of senescence-associated secretory phenotype (SASP) in different groups would be conducted with qPCR. To demonstrate the potential effects of NAMPT/SIRT1/NLRP3 pathway after GSPE treatment, the protein levels of relevant key regulators after applications of NAMPT inhibitor, Fk866, and SIRT1 inhibitor, EX-527. Results GSPE significantly improves the NAMPT expression and NAD+ content in aging mice, and thus alleviates the RPE cellular senescence. In advanced in-vitro studies, GSPE significantly up-regulated NAMPT content and thus relieved H2O2 induced NAD+ depression through analyzing the NAD+ contents in different groups. In advanced analyses, it was reported that GSPE could alleviate mitochondrial permeability, mtDNA damage, ZO1 expression and SASP levels in aging RPE cells. Thus, GSPE treatment significantly decreased senescence-related protein p16 and p21, as well as SASP levels in in-vitro aging model, and it was demonstrated that GSPE could illustrate a significant anti-aging effect. The Western blot data in GSPE treatment of aging RPE cells demonstrated that GSPE could significantly improve NAMPT and SIRT1 levels, and thus depressed NLRP3 expression. Conclusion This study indicated that GSPE alleviated RPE cellular senescence through NAMPT/SIRT1/NLRP3 pathway. This study highlighted the potential effects of GSPE on degenerative retinopathy through the crosstalk of NAD+ metabolism, SIRT1 function and NLRP3 activation.
Collapse
Affiliation(s)
- Wencui Wan
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Wei Zhu
- Department of Ophthalmology, Changshu No. 2 People's Hospital, Changshu, People's Republic of China
| | - Yan Wu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, People's Republic of China.,Mois Biotech Company, Shanghai, People's Republic of China
| | - Yang Long
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Hongzhuo Liu
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Weiwei Wan
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Guangming Wan
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Jing Yu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, People's Republic of China
| |
Collapse
|
14
|
Yu C, Xiao JH. The Keap1-Nrf2 System: A Mediator between Oxidative Stress and Aging. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6635460. [PMID: 34012501 PMCID: PMC8106771 DOI: 10.1155/2021/6635460] [Citation(s) in RCA: 242] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 04/05/2021] [Accepted: 04/11/2021] [Indexed: 02/06/2023]
Abstract
Oxidative stress, a term that describes the imbalance between oxidants and antioxidants, leads to the disruption of redox signals and causes molecular damage. Increased oxidative stress from diverse sources has been implicated in most senescence-related diseases and in aging itself. The Kelch-like ECH-associated protein 1- (Keap1-) nuclear factor-erythroid 2-related factor 2 (Nrf2) system can be used to monitor oxidative stress; Keap1-Nrf2 is closely associated with aging and controls the transcription of multiple antioxidant enzymes. Simultaneously, Keap1-Nrf2 signaling is also modulated by a more complex regulatory network, including phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt), protein kinase C, and mitogen-activated protein kinase. This review presents more information on aging-related molecular mechanisms involving Keap1-Nrf2. Furthermore, we highlight several major signals involved in Nrf2 unbinding from Keap1, including cysteine modification of Keap1 and phosphorylation of Nrf2, PI3K/Akt/glycogen synthase kinase 3β, sequestosome 1, Bach1, and c-Myc. Additionally, we discuss the direct interaction between Keap1-Nrf2 and the mammalian target of rapamycin pathway. In summary, we focus on recent progress in research on the Keap1-Nrf2 system involving oxidative stress and aging, providing an empirical basis for the development of antiaging drugs.
Collapse
Affiliation(s)
- Chao Yu
- Zunyi Municipal Key Laboratory of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi 563003, China
| | - Jian-Hui Xiao
- Zunyi Municipal Key Laboratory of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi 563003, China
- Guizhou Provincial Research Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi 563003, China
| |
Collapse
|
15
|
Hassanzadeh K, Buccarello L, Dragotto J, Mohammadi A, Corbo M, Feligioni M. Obstacles against the Marketing of Curcumin as a Drug. Int J Mol Sci 2020; 21:E6619. [PMID: 32927725 PMCID: PMC7554750 DOI: 10.3390/ijms21186619] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/07/2020] [Accepted: 09/09/2020] [Indexed: 12/12/2022] Open
Abstract
Among the extensive public and scientific interest in the use of phytochemicals to prevent or treat human diseases in recent years, natural compounds have been highly investigated to elucidate their therapeutic effect on chronic human diseases including cancer, cardiovascular disease, and neurodegenerative disease. Curcumin, an active principle of the perennial herb Curcuma longa, has attracted an increasing research interest over the last half-century due to its diversity of molecular targets, including transcription factors, enzymes, protein kinases, growth factors, inflammatory cytokines, receptors, and it's interesting pharmacological activities. Despite that, the clinical effectiveness of the native curcumin is weak, owing to its low bioavailability and rapid metabolism. Preclinical data obtained from animal models and phase I clinical studies done in human volunteers confirmed a small amount of intestinal absorption, hepatic first pass effect, and some degree of intestinal metabolism, might explain its poor systemic availability when it is given via the oral route. During the last decade, researchers have attempted with new pharmaceutical methods such as nanoparticles, liposomes, micelles, solid dispersions, emulsions, and microspheres to improve the bioavailability of curcumin. As a result, a significant number of bioavailable curcumin-based formulations were introduced with a varying range of enhanced bioavailability. This manuscript critically reviews the available scientific evidence on the basic and clinical effects and molecular targets of curcumin. We also discuss its pharmacokinetic and problems for marketing curcumin as a drug.
Collapse
Affiliation(s)
- Kambiz Hassanzadeh
- European Brain Research Institute (EBRI) Rita Levi Montalcini Foundation, Viale Regina Elena 295, 00161 Rome, Italy; (K.H.); (L.B.); (J.D.)
- Department of Biotechnology and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj 66177-15175, Iran;
| | - Lucia Buccarello
- European Brain Research Institute (EBRI) Rita Levi Montalcini Foundation, Viale Regina Elena 295, 00161 Rome, Italy; (K.H.); (L.B.); (J.D.)
| | - Jessica Dragotto
- European Brain Research Institute (EBRI) Rita Levi Montalcini Foundation, Viale Regina Elena 295, 00161 Rome, Italy; (K.H.); (L.B.); (J.D.)
| | - Asadollah Mohammadi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj 66177-15175, Iran;
| | - Massimo Corbo
- Department of Neurorehabilitation Sciences, Casa Cura Policlinico, 20144 Milano, Italy;
| | - Marco Feligioni
- European Brain Research Institute (EBRI) Rita Levi Montalcini Foundation, Viale Regina Elena 295, 00161 Rome, Italy; (K.H.); (L.B.); (J.D.)
- Department of Neurorehabilitation Sciences, Casa Cura Policlinico, 20144 Milano, Italy;
| |
Collapse
|
16
|
Tian Y, Bao Z, Ji Y, Mei X, Yang H. Epigallocatechin-3-Gallate Protects H 2O 2-Induced Nucleus Pulposus Cell Apoptosis and Inflammation by Inhibiting cGAS/Sting/NLRP3 Activation. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:2113-2122. [PMID: 32546974 PMCID: PMC7266312 DOI: 10.2147/dddt.s251623] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background Intervertebral disc degeneration (IDD) is the most common diagnosis of patients with lower back pain. IDD is the underlying lesion of many spinal degenerative diseases; however, the role of cGAS/Sting/NLRP3 pathway and epigallocatechin gallate (EGCG) in the development of IDD remained unclear. Methods The expressions of cGAS, Sting and NLRP3 mRNA of intervertebral disc (IVD) samples from IDD patients and controls were detected by RT-PCR. The nucleus pulposus cells (NPCs) were induced by hydrogen peroxide (H2O2) and used as an in-vitro model. Both 5 μM and 25 μM EGCG treatment were used to detect the effect of EGCG on the in-vitro model. Cell viability was detected by the MTT method, and cell apoptosis and cell cycle would be detected by flow cytometry. Western blot was used in the detection of the expression of cGAS/Sting/NLRP3 as well as apoptosis-related protein level. ELISA was used in the detection of pro-inflammatory factors, including IL-1β, TNF-α, IL-6 and IL-10. Results The expressions of cGAS, Sting and NLRP3 mRNA were significantly increased in the IVD samples from IDD patients and NLRP3 was associated with cGAS and Sting. Advanced in-vitro study showed that H2O2 significantly increased the expression of cGAS, Sting and NLRP3 protein levels. Advanced experiments showed that EGCG treatment demonstrated significant protective effects in cell viability, apoptosis, cell cycle arrest and inflammatory status through down-regulation of cGAS/Sting/NLRP3 pathway. Conclusion It was shown that the cGAS, Sting and NLRP3 up-regulation was associated with the incidence of IDD. Our findings also suggest that EGCG treatment would provide anti-apoptosis, anti-inflammation and promote cell viability in H2O2 treatment-incubated NPCs through inhibiting cGAS/Sting/NLRP3 pathway.
Collapse
Affiliation(s)
- Yixing Tian
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Zhaohua Bao
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Yiming Ji
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Xin Mei
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Huilin Yang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| |
Collapse
|
17
|
Wang Y, Jiang F, Cheng H, Tan X, Liu Y, Wei C, Song E. Astragaloside IV Protects Against Oxidative Stress in Calf Small Intestine Epithelial Cells via NFE2L2-Antioxidant Response Element Signaling. Int J Mol Sci 2019; 20:ijms20246131. [PMID: 31817362 PMCID: PMC6941087 DOI: 10.3390/ijms20246131] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/25/2019] [Accepted: 12/03/2019] [Indexed: 12/26/2022] Open
Abstract
Oxidative stress can damage intestinal epithelial cell integrity and function, causing gastrointestinal disorders. Astragaloside IV (ASIV) exhibits a variety of biological and pharmacological properties, including anti-inflammatory and antioxidant effects. The purpose of this research was to investigate the cytoprotective action of ASIV and its mechanisms in calf small intestine epithelial cells with hydrogen peroxide (H2O2)-induced oxidative stress. ASIV pretreatment not only increased cell survival, but it also decreased reactive oxygen species generation and apoptosis, enhanced superoxide dismutase, catalase, and glutathione peroxidase levels, and it reduced malondialdehyde formation. Furthermore, pretreatment with ASIV elevated the mRNA and protein levels of nuclear factor erythroid 2-related factor 2 (NFE2L2), heme oxygenase-1 (HMOX1), and NAD(P)H quinone dehydrogenase 1 (NQO1). The NFE2L2 inhibitor ML385 inhibited NFE2L2 expression and then blocked HMOX1 and NQO1 expression. These results demonstrate that ASIV treatment effectively protects against H2O2-induced oxidative damage in calf small intestine epithelial cells through the activation of the NFE2L2-antioxidant response element signaling pathway.
Collapse
Affiliation(s)
- Yafang Wang
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Sangyuan Road, Number 8, Jinan 250100, China; (Y.W.); (F.J.); (H.C.); (C.W.)
- Shandong Key Laboratory of Animal Disease Control and Breeding, Sangyuan Road, Number 8, Jinan 250100, China
- College of Life Sciences, Shandong Normal University, East Wenhua Road Number 88, Jinan 250014, China
| | - Fugui Jiang
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Sangyuan Road, Number 8, Jinan 250100, China; (Y.W.); (F.J.); (H.C.); (C.W.)
- Shandong Key Laboratory of Animal Disease Control and Breeding, Sangyuan Road, Number 8, Jinan 250100, China
| | - Haijian Cheng
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Sangyuan Road, Number 8, Jinan 250100, China; (Y.W.); (F.J.); (H.C.); (C.W.)
- Shandong Key Laboratory of Animal Disease Control and Breeding, Sangyuan Road, Number 8, Jinan 250100, China
| | - Xiuwen Tan
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Sangyuan Road, Number 8, Jinan 250100, China; (Y.W.); (F.J.); (H.C.); (C.W.)
- Shandong Key Laboratory of Animal Disease Control and Breeding, Sangyuan Road, Number 8, Jinan 250100, China
| | - Yifan Liu
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Sangyuan Road, Number 8, Jinan 250100, China; (Y.W.); (F.J.); (H.C.); (C.W.)
- Shandong Key Laboratory of Animal Disease Control and Breeding, Sangyuan Road, Number 8, Jinan 250100, China
| | - Chen Wei
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Sangyuan Road, Number 8, Jinan 250100, China; (Y.W.); (F.J.); (H.C.); (C.W.)
- Shandong Key Laboratory of Animal Disease Control and Breeding, Sangyuan Road, Number 8, Jinan 250100, China
| | - Enliang Song
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Sangyuan Road, Number 8, Jinan 250100, China; (Y.W.); (F.J.); (H.C.); (C.W.)
- Shandong Key Laboratory of Animal Disease Control and Breeding, Sangyuan Road, Number 8, Jinan 250100, China
- College of Life Sciences, Shandong Normal University, East Wenhua Road Number 88, Jinan 250014, China
- Correspondence:
| |
Collapse
|
18
|
Meshkibaf MH, Maleknia M, Noroozi S. Effect of curcumin on gene expression and protein level of methionine sulfoxide reductase A (MSRA), SOD, CAT and GPx in Freund's adjuvant inflammation-induced male rats. J Inflamm Res 2019; 12:241-249. [PMID: 31564949 PMCID: PMC6732743 DOI: 10.2147/jir.s212577] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 07/11/2019] [Indexed: 01/20/2023] Open
Abstract
Objective Curcumin is the well-known compound which is extracted from turmeric powder, the dried rhizome of the Curcuma longa Linn. This have been used for the treatment of various disorders including inflammation. In this study we have analyzed the effect of curcumin on arthritis induced by adjuvant in rats, considering changes in methionine sulfoxide reductase A (MSRA) expression and antioxidant enzymes levels. Methods Five groups of adult male Wistar rats (n=10), were randomly selected as control, placebo, experimental 1, 2 and 3. The induction of arthritis was carried out by injection of 0.1 ml adjuvant in plantar region. The first experimental group received no curcumin treatment, whereas the experimental two and three received curcumin (1 and 2 g/kg daily) respectively, for fourteen days. MSRA gene expression was assessed by real-time PCR and protein levels of MSRA, SOD, CAT and GPx were analyzed via ELISA method. Results The results showed no significant weight changes among the groups during the experimental period and the paw swelling caused by adjuvant was recovered within fourteen days of treatment with curcumin. However, the levels of enzymes such as superoxide dismutase, catalase and glutathione peroxidase were increased by a dose dependent manner. These results also illustrated that the gene expression and protein level of MSRA in groups treated with curcumin increased significantly (p≤0.05). Conclusion We concluded that the curcumin can be used against inflammation. The increasing level of MSRA can be due to the antioxidant effect of curcumin. The enzymatic level changes (MSRA, SOD, CAT and GPx) may interfere with the aging process and delay it.
Collapse
Affiliation(s)
- M H Meshkibaf
- Department of Clinical Biochemistry, Fasa University of Medical Sciences, Fasa, Iran
| | - M Maleknia
- Department of Clinical Biochemistry, Fasa University of Medical Sciences, Fasa, Iran
| | - S Noroozi
- Department of Clinical Biochemistry, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
19
|
Radomska-Leśniewska DM, Osiecka-Iwan A, Hyc A, Góźdź A, Dąbrowska AM, Skopiński P. Therapeutic potential of curcumin in eye diseases. Cent Eur J Immunol 2019; 44:181-189. [PMID: 31530988 PMCID: PMC6745545 DOI: 10.5114/ceji.2019.87070] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/09/2019] [Indexed: 01/09/2023] Open
Abstract
Curcumin (diferuloylmethane) derived from the rhizome of Curcuma longa L. has been used for thousands of years in traditional Chinese medicine and Ayurvedic medicine in Asian countries to treat liver diseases, rheumatoid diseases, diabetes, atherosclerosis, infectious diseases and cancer. It exhibits a wide range of pharmacological properties, which include antioxidant, anti-inflammatory, antimutagenic, antimicrobial and anticancer activity. Herein the mechanisms of curcumin impact on oxidative stress, angiogenesis and inflammatory processes are described indicating that curcumin use may inhibit those pathological conditions and restore body homeostasis. Its effectiveness was also proved for major eye diseases. In this review, the influence of curcumin on eye diseases, such as glaucoma, cataract, age-related macular degeneration, diabetic retinopathy, corneal neovascularization, corneal wound healing, dry eye disease, conjunctivitis, pterygium, anterior uveitis are reported. The analysis of a number of clinical and preclinical investigations indicates that curcumin may be used as a therapeutic agent in the treatment of various eye disorders.
Collapse
Affiliation(s)
| | - Anna Osiecka-Iwan
- Department of Histology and Embryology, Medical University of Warsaw, Poland
| | - Anna Hyc
- Department of Histology and Embryology, Medical University of Warsaw, Poland
| | - Agata Góźdź
- Department of Histology and Embryology, Medical University of Warsaw, Poland
| | - Anna M. Dąbrowska
- Department of Ophthalmology, Second Faculty of Medicine, Medical University of Warsaw, Poland
| | - Piotr Skopiński
- Department of Histology and Embryology, Medical University of Warsaw, Poland
| |
Collapse
|
20
|
Muangnoi C, Sharif U, Ratnatilaka Na Bhuket P, Rojsitthisak P, Paraoan L. Protective Effects of Curcumin Ester Prodrug, Curcumin Diethyl Disuccinate against H 2O 2-Induced Oxidative Stress in Human Retinal Pigment Epithelial Cells: Potential Therapeutic Avenues for Age-Related Macular Degeneration. Int J Mol Sci 2019; 20:E3367. [PMID: 31323999 PMCID: PMC6651864 DOI: 10.3390/ijms20133367] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/03/2019] [Accepted: 07/05/2019] [Indexed: 12/21/2022] Open
Abstract
Oxidative stress-induced damage to the retinal pigmented epithelium (RPE), a specialised post-mitotic monolayer that maintains retinal homeostasis, contributes to the development of age-related macular degeneration (AMD). Curcumin (Cur), a naturally occurring antioxidant, was previously shown to have the ability to protect RPE cells from oxidative stress. However, poor solubility and bioavailability makes Cur a poor therapeutic agent. As prodrug approaches can mitigate these limitations, we compared the protective properties of the Cur prodrug curcumin diethyl disuccinate (CurDD) against Cur in relation to oxidative stress induced in human ARPE-19 cells. Both CurDD and Cur significantly decreased H2O2-induced reactive oxygen species (ROS) production and protected RPE cells from oxidative stress-induced death. Both drugs exerted their protective effects through the modulation of p44/42 (ERK) and the involvement of downstream molecules Bax and Bcl-2. Additionally, the expression of antioxidant enzymes HO-1 and NQO1 was also enhanced in cells treated with CurDD and Cur. In all cases, CurDD was more effective than its parent drug against oxidative stress-induced damage to ARPE-19 cells. These findings highlight CurDD as a more potent drug compared to Cur against oxidative stress and indicate that its protective effects are exerted through modulation of key apoptotic and antioxidant molecular pathways.
Collapse
Affiliation(s)
- Chawanphat Muangnoi
- Pharmaceutical Chemistry and Natural Products Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Natural Products for Ageing and Chronic Diseases Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
| | - Umar Sharif
- Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, UK
| | | | - Pornchai Rojsitthisak
- Natural Products for Ageing and Chronic Diseases Research Unit, Chulalongkorn University, Bangkok 10330, Thailand.
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Luminita Paraoan
- Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, UK.
| |
Collapse
|
21
|
Lin X, Bai D, Wei Z, Zhang Y, Huang Y, Deng H, Huang X. Curcumin attenuates oxidative stress in RAW264.7 cells by increasing the activity of antioxidant enzymes and activating the Nrf2-Keap1 pathway. PLoS One 2019; 14:e0216711. [PMID: 31112588 PMCID: PMC6528975 DOI: 10.1371/journal.pone.0216711] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 04/26/2019] [Indexed: 01/20/2023] Open
Abstract
Large-scale breeding environments often lead to oxidative stress. Macrophages play an important role in the immune system and are vulnerable to reactive oxygen species (ROS), which result in macrophage death. Curcumin is the main active component of turmeric and exerts antioxidant effects. Here, we measured the activity of some antioxidant enzymes and chose the Nrf2-Keap1 signaling pathway to study the protective effects of curcumin on macrophages under oxidative stress in vitro. We used RAW264.7 cells as a research model, and oxidative damage was induced by hydrogen peroxide (H2O2). Cell viability was measured by an MTT assay. Flow cytometry was used to measure cellular ROS and apoptosis. The effect of curcumin on Nrf2-Keap1 signaling pathway-related genes was analyzed by qRT-PCR. Furthermore, the translocation of Nrf2 protein was also investigated by Western blot analysis of total and nuclear proteins. All curcumin-treated groups exhibited increased activity of catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX). Low- and middle-dose curcumin decreased malondialdehyde (MDA) and ROS levels, but high-dose curcumin increased MDA and ROS production. We found that low-dose curcumin protected cells from apoptosis, while apoptosis in the middle- and high-dose curcumin-treated groups were stagnant in the early stage. Furthermore, middle-dose curcumin upregulated Nrf2 expression after H2O2 treatment for 4 h. Low- and middle-dose curcumin could activate Nrf2 and promote it to migrate into nuclei. The translocation of Nrf2 to the nucleus to upregulate the expression of haemoxygenase-1 (HO-1) was promoted in the low- and middle-dose curcumin-treated groups. The middle-dose curcumin-treated group also exhibited enhanced expression of glutamate-cysteine ligase, a modifier subunit (GLCM), but inhibited transcription of glutamate-cysteine ligase, a catalytic subunit (GCLC). Curcumin resisted oxidants by increasing the activity of antioxidant enzymes and activating the Nrf2-Keap1 pathway, which could potentially promote cell survival.
Collapse
Affiliation(s)
- Xinyu Lin
- Department of Zoology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, P.R. China
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, P.R. China
| | - Dingping Bai
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, P.R. China
| | - Zixi Wei
- College of Food Science and Technology, Nanjing Agriculture University, Nanjing, P.R. China
| | - Ying Zhang
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, P.R. China
| | - Yifan Huang
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, P.R. China
| | - Hui Deng
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, P.R. China
| | - Xiaohong Huang
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, P.R. China
- * E-mail:
| |
Collapse
|
22
|
Pawlowska E, Szczepanska J, Koskela A, Kaarniranta K, Blasiak J. Dietary Polyphenols in Age-Related Macular Degeneration: Protection against Oxidative Stress and Beyond. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9682318. [PMID: 31019656 PMCID: PMC6451822 DOI: 10.1155/2019/9682318] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 02/12/2019] [Indexed: 12/16/2022]
Abstract
Age-related macular degeneration (AMD) is a multifactorial disease of the retina featured by degeneration and loss of photoreceptors and retinal pigment epithelium (RPE) cells with oxidative stress playing a role in its pathology. Although systematic reviews do not support the protective role of diet rich in antioxidants against AMD, dietary polyphenols (DPs) have been reported to have beneficial effects on vision. Some of them, such as quercetin and cyanidin-3-glucoside, can directly scavenge reactive oxygen species (ROS) due to the presence of two hydroxyl groups in their B ring structure. Apart from direct ROS scavenging, DPs can lower oxidative stress in several other pathways. Many DPs induce NRF2 (nuclear factor, erythroid 2-like 2) activation and expression of phase II enzymes that are under transcriptional control of this factor. DPs can inhibit A2E photooxidation in RPE cells, which is a source of oxidative stress. Anti-inflammatory action of DPs in RPE cells is associated with regulation of various interleukins and signaling pathways, including IL-6/JAK2 (Janus kinase 2)/STAT3. Some DPs can improve impaired cellular waste clearance, including AMD-specific deficient phagocytosis of the Aβ42 peptide and autophagy.
Collapse
Affiliation(s)
- Elzbieta Pawlowska
- Department of Orthodontics, Medical University of Lodz, Pomorska 251, 92-216 Lodz, Poland
| | - Joanna Szczepanska
- Department of Pediatric Dentistry, Medical University of Lodz, Pomorska 251, 92-216 Lodz, Poland
| | - Ali Koskela
- Department of Ophthalmology, University of Eastern Finland, Kuopio 70211, Finland
- Department of Ophthalmology, Kuopio University Hospital, Kuopio 70029, Finland
| | - Kai Kaarniranta
- Department of Ophthalmology, University of Eastern Finland, Kuopio 70211, Finland
- Department of Ophthalmology, Kuopio University Hospital, Kuopio 70029, Finland
| | - Janusz Blasiak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| |
Collapse
|
23
|
McCubrey JA, Lertpiriyapong K, Steelman LS, Abrams SL, Yang LV, Murata RM, Rosalen PL, Scalisi A, Neri LM, Cocco L, Ratti S, Martelli AM, Laidler P, Dulińska-Litewka J, Rakus D, Gizak A, Lombardi P, Nicoletti F, Candido S, Libra M, Montalto G, Cervello M. Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAs. Aging (Albany NY) 2018; 9:1477-1536. [PMID: 28611316 PMCID: PMC5509453 DOI: 10.18632/aging.101250] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 06/04/2017] [Indexed: 02/07/2023]
Abstract
Natural products or nutraceuticals have been shown to elicit anti-aging, anti-cancer and other health-enhancing effects. A key target of the effects of natural products may be the regulation of microRNA (miR) expression which results in cell death or prevents aging, diabetes, cardiovascular and other diseases. This review will focus on a few natural products, especially on resveratrol (RES), curcumin (CUR) and berberine (BBR). RES is obtained from the skins of grapes and other fruits and berries. RES may extend human lifespan by activating the sirtuins and SIRT1 molecules. CUR is isolated from the root of turmeric (Curcuma longa). CUR is currently used in the treatment of many disorders, especially in those involving an inflammatory process. CUR and modified derivatives have been shown to have potent anti-cancer effects, especially on cancer stem cells (CSC). BBR is also isolated from various plants (e.g., Coptis chinensis) and has been used for centuries in traditional medicine to treat diseases such as adult- onset diabetes. Understanding the benefits of these and other nutraceuticals may result in approaches to improve human health.
Collapse
Affiliation(s)
- James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Kvin Lertpiriyapong
- Department of Comparative Medicine, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Linda S Steelman
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Steve L Abrams
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Li V Yang
- Department of Internal Medicine, Hematology/Oncology Section, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Ramiro M Murata
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA.,Department of Foundational Sciences, School of Dental Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Pedro L Rosalen
- Department of Physiological Sciences, Piracicaba Dental School, State University of Campinas, Piracicaba, Brazil
| | - Aurora Scalisi
- Unit of Oncologic Diseases, ASP-Catania, Catania 95100, Italy
| | - Luca M Neri
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Lucio Cocco
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Stefano Ratti
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Alberto M Martelli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Piotr Laidler
- Chair of Medical Biochemistry, Jagiellonian University Medical College, Kraków, Poland
| | | | - Dariusz Rakus
- Department of Animal Molecular Physiology and Neurobiology, Wroclaw University, Wroclaw, Poland
| | - Agnieszka Gizak
- Department of Animal Molecular Physiology and Neurobiology, Wroclaw University, Wroclaw, Poland
| | | | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, Oncological, Clinical and General Pathology Section, University of Catania, Catania, Italy
| | - Saverio Candido
- Department of Biomedical and Biotechnological Sciences, Oncological, Clinical and General Pathology Section, University of Catania, Catania, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, Oncological, Clinical and General Pathology Section, University of Catania, Catania, Italy
| | - Giuseppe Montalto
- Biomedical Department of Internal Medicine and Specialties, University of Palermo, Palermo, Italy.,Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Melchiorre Cervello
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| |
Collapse
|
24
|
Zhu W, Meng YF, Xing Q, Tao JJ, Lu J, Wu Y. Identification of lncRNAs involved in biological regulation in early age-related macular degeneration. Int J Nanomedicine 2017; 12:7589-7602. [PMID: 29089757 PMCID: PMC5655033 DOI: 10.2147/ijn.s140275] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Age-related macular degeneration (AMD) is one of the most common causes of adult blindness in developed countries. However, the role of long noncoding RNAs (lncRNAs) in the development and progression of early AMD is unclear. Methods We established the lncRNA profile of early AMD by reannotation of microarrays from the gene expression omnibus database. Quantitative real-time polymerase chain reaction was used to determine the expression of selected lncRNAs. Results The expression profiles of 9 cases of AMD and 7 controls were studied. A total of 266 differentially expressed genes (DEGs) were detected (94 upregulated and 172 downregulated). Among all the DEGs, 64 were lncRNAs. Advanced bioinformatics analyses demonstrated that differentially expressed lncRNAs could play significant roles in visual perception, sensory perception of light stimulus, and cognition. The pathway analyses showed that the two most significantly influenced Kyoto Encyclopedia of Genes and Genomes pathways were those of phototransduction and purine metabolism. By the analyses of the key lncRNAs, it was found that RP11-234O6.2 was downregulated in the aging retinal pigment epithelium (RPE) cellular model. Exogenous RP11-234O6.2 treatment led to increased cell viability and improved apoptosis but it did not affect the cell migration ability of aging RPE cells. Conclusion This study indicated that lncRNAs are differentially expressed in early AMD and may produce important regulative effects. An lncRNA, RP11-234O6.2, might be involved in the biological regulation of early AMD and have therapeutic potential.
Collapse
Affiliation(s)
- Wei Zhu
- Department of Ophthalmology, Changshu No. 2 People's Hospital, Changshu, China
| | - Yi-Fang Meng
- Department of Ophthalmology, Changshu No. 2 People's Hospital, Changshu, China
| | - Qian Xing
- Department of Ophthalmology, Changshu No. 2 People's Hospital, Changshu, China
| | - Jian-Jun Tao
- Department of Ophthalmology, Changshu No. 2 People's Hospital, Changshu, China
| | - Jiong Lu
- Department of Ophthalmology, Changshu No. 2 People's Hospital, Changshu, China
| | - Yan Wu
- Department of Ophthalmology, First Hospital Affiliated to Soochow University, Suzhou, China
| |
Collapse
|
25
|
Involvement of Nrf2 in Ocular Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:1703810. [PMID: 28473877 PMCID: PMC5394909 DOI: 10.1155/2017/1703810] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/14/2017] [Indexed: 12/15/2022]
Abstract
The human body harbors within it an intricate and delicate balance between oxidants and antioxidants. Any disruption in this checks-and-balances system can lead to harmful consequences in various organs and tissues, such as the eye. This review focuses on the effects of oxidative stress and the role of a particular antioxidant system—the Keap1-Nrf2-ARE pathway—on ocular diseases, specifically age-related macular degeneration, cataracts, diabetic retinopathy, and glaucoma. Together, they are the major causes of blindness in the world.
Collapse
|
26
|
Taskintuna I, Elsayed MEAA, Schatz P. Update on Clinical Trials in Dry Age-related Macular Degeneration. Middle East Afr J Ophthalmol 2016; 23:13-26. [PMID: 26957835 PMCID: PMC4759891 DOI: 10.4103/0974-9233.173134] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
This review article summarizes the most recent clinical trials for dry age-related macular degeneration (AMD), the most common cause of vision loss in the elderly in developed countries. A literature search through websites https://www.pubmed.org and https://www.clinicaltrials.gov/, both accessed no later than November 04, 2015, was performed. We identified three Phase III clinical trials that were completed over the recent 5 years Age-Related Eye Disease Study 2 (AREDS2), implantable miniature telescope and tandospirone, and several other trials targeting a variety of mechanisms including, oxidative stress, complement inhibition, visual cycle inhibition, retinal and choroidal blood flow, stem cells, gene therapy, and visual rehabilitation. To date, none of the biologically oriented therapies have resulted in improved vision. Vision improvement was reported with an implantable mini telescope. Stem cells therapy holds a potential for vision improvement. The AREDS2 formulas did not add any further reduced risk of progression to advanced AMD, compared to the original AREDS formula. Several recently discovered pathogenetic mechanisms in dry AMD have enabled development of new treatment strategies, and several of these have been tested in recent clinical trials and are currently being tested in ongoing trials. The rapid development and understanding of pathogenesis holds promise for the future.
Collapse
Affiliation(s)
- Ibrahim Taskintuna
- Division of Vitreoretinal, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| | | | - Patrik Schatz
- Division of Vitreoretinal, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia; Department of Ophthalmology, Clinical Sciences, Scane County University Hospital, University of Lund, Sweden
| |
Collapse
|
27
|
Khatri R, Krishnan S, Roy S, Chattopadhyay S, Kumar V, Mukhopadhyay A. Reactive Oxygen Species Limit the Ability of Bone Marrow Stromal Cells to Support Hematopoietic Reconstitution in Aging Mice. Stem Cells Dev 2016; 25:948-58. [PMID: 27140293 PMCID: PMC4928131 DOI: 10.1089/scd.2015.0391] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Aging of organ and abnormal tissue regeneration are recurrent problems in physiological and pathophysiological conditions. This is most crucial in case of high-turnover tissues, like bone marrow (BM). Using reciprocal transplantation experiments in mouse, we have shown that self-renewal potential of hematopoietic stem and progenitor cells (HSPCs) and BM cellularity are markedly influenced with the age of the recipient mice rather than donor mice. Moreover, accumulation of excessive reactive oxygen species (ROS) in BM stromal cells compared to HSPC compartment, in time-dependent manner, suggests that oxidative stress is involved in suppression of BM cellularity by affecting microenvironment in aged mice. Treatment of these mice with a polyphenolic antioxidant curcumin is found to partially quench ROS, thereby rescues stromal cells from oxidative stress-dependent cellular injury. This rejuvenation of stromal cells significantly improves hematopoietic reconstitution in 18-month-old mice compared to age control mice. In conclusion, this study implicates the role of ROS in perturbation of stromal cell function upon aging, which in turn affects BM's reconstitution ability in aged mice. Thus, a rejuvenation therapy using curcumin, before HSPC transplantation, is found to be an efficient strategy for successful marrow reconstitution in older mice.
Collapse
Affiliation(s)
- Rahul Khatri
- Stem Cell Biology Laboratory, National Institute of Immunology , New Delhi, India
| | - Shyam Krishnan
- Stem Cell Biology Laboratory, National Institute of Immunology , New Delhi, India
| | - Sushmita Roy
- Stem Cell Biology Laboratory, National Institute of Immunology , New Delhi, India
| | | | - Vikash Kumar
- Stem Cell Biology Laboratory, National Institute of Immunology , New Delhi, India
| | - Asok Mukhopadhyay
- Stem Cell Biology Laboratory, National Institute of Immunology , New Delhi, India
| |
Collapse
|