1
|
Wang Y, Jan H, Zhong Z, Zhou L, Teng K, Chen Y, Xu J, Xie D, Chen D, Xu J, Qin L, Tuan RS, Li ZA. Multiscale metal-based nanocomposites for bone and joint disease therapies. Mater Today Bio 2025; 32:101773. [PMID: 40290898 PMCID: PMC12033929 DOI: 10.1016/j.mtbio.2025.101773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 04/30/2025] Open
Abstract
Bone and joint diseases are debilitating conditions that can result in significant functional impairment or even permanent disability. Multiscale metal-based nanocomposites, which integrate hierarchical structures ranging from the nanoscale to the macroscale, have emerged as a promising solution to this challenge. These materials combine the unique properties of metal-based nanoparticles (MNPs), such as enzyme-like activities, stimuli responsiveness, and photothermal conversion, with advanced manufacturing techniques, such as 3D printing and biohybrid systems. The integration of MNPs within polymer or ceramic matrices offers a degree of control over the mechanical strength, antimicrobial efficacy, and the manner of drug delivery, whilst concomitantly promoting the processes of osteogenesis and chondrogenesis. This review highlights breakthroughs in stimulus-responsive MNPs (e.g., photo-, magnetically-, or pH-activated systems) for on-demand therapy and their integration with biocomposite hybrids containing cells or extracellular vesicles to mimic the native tissue microenvironment. The applications of these composites are extensive, ranging from bone defects, infections, tumors, to degenerative joint diseases. The review emphasizes the enhanced load-bearing capacity, bioactivity, and tissue integration that can be achieved through hierarchical designs. Notwithstanding the potential of these applications, significant barriers to progress persist, including challenges related to long-term biocompatibility, regulatory hurdles, and scalable manufacturing. Finally, we propose future directions, including machine learning-guided design and patient-specific biomanufacturing to accelerate clinical translation. Multiscale metal-based nanocomposites, which bridge nanoscale innovations with macroscale functionality, are a revolutionary force in the field of biomedical engineering, providing personalized regenerative solutions for bone and joint diseases.
Collapse
Affiliation(s)
- Yuwen Wang
- Department of Biomedical Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China
| | - Hasnain Jan
- Department of Biomedical Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, NT, Hong Kong Special Administrative Region of China
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region of China
| | - Zheng Zhong
- Department of Biomedical Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China
- Department of Orthopedic Surgery, Center for Orthopedic Surgery, and Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China
| | - Liangbin Zhou
- Department of Biomedical Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, NT, Hong Kong Special Administrative Region of China
| | - Kexin Teng
- Department of Biomedical Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, NT, Hong Kong Special Administrative Region of China
| | - Ye Chen
- Department of Chemistry, Faculty of Science, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Jiankun Xu
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, Faculty of Medicine, and Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Denghui Xie
- Department of Orthopedic Surgery, Center for Orthopedic Surgery, and Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China
| | - Dexin Chen
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou, 510632, China
| | - Jiake Xu
- Faculty of Pharmaceutical Sciences, Shenzhen University of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Ling Qin
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, Faculty of Medicine, and Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Rocky S. Tuan
- Department of Biomedical Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, NT, Hong Kong Special Administrative Region of China
- Institute for Tissue Engineering and Regenerative Medicine, and School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China
| | - Zhong Alan Li
- Department of Biomedical Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, NT, Hong Kong Special Administrative Region of China
- Institute for Tissue Engineering and Regenerative Medicine, and School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China
- Shun Hing Institute of Advanced Engineering, The Chinese University of Hong Kong, NT, Hong Kong Special Administrative Region of China
| |
Collapse
|
2
|
Yang Y, Fei Q, Long GQ, Bo W, Jun FY, Rong Z, Kui H. Cardiac cement embolism and asymptomatic pulmonary embolism caused by percutaneous vertebroplasty for osteoporotic vertebral fracture: a case report. Front Surg 2024; 11:1464049. [PMID: 39654875 PMCID: PMC11625771 DOI: 10.3389/fsurg.2024.1464049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 11/05/2024] [Indexed: 12/12/2024] Open
Abstract
Background As society ages, the incidence of osteoporotic vertebral compression fractures steadily rises. Procedures like percutaneous kyphoplasty (PKP) and percutaneous vertebroplasty (PVP) have proven effective in significantly relieving pain in patients with these fractures. While PKP and PVP are minimally invasive, complications can still occur. However, most complications are not clinically significant, with cement leakage being the most common. Case presentation We present the case of a patient with an osteoporotic vertebral compression fracture who underwent percutaneous kyphoplasty (PKP) and percutaneous vertebroplasty (PVP). On the night following the procedure, the patient experienced transient discomfort in the chest, which resolved on its own. A chest CT scan the next day revealed a 5 cm arc-shaped high-density shadow near the right atrium, along with multiple high-density lung spots. After consulting with cardiothoracic surgery, interventional vascular surgery, and radiology experts, and discussing options with the patient and their family, a thoracotomy was recommended to remove the bone cement from the heart. However, the attempt was unsuccessful. Despite this, the patient made a good recovery and was successfully discharged. Conclusions Vascular leakage of bone cement is a potentially life-threatening complication of PKP/PVP, and it warrants careful attention.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Huang Kui
- Department of Orthopaedics, The First Affiliated Hospital of Yangtze University, Jingzhou, China
| |
Collapse
|
3
|
Rasool N, Negi D, Singh Y. Thiol-Functionalized, Antioxidant, and Osteogenic Mesoporous Silica Nanoparticles for Osteoporosis. ACS Biomater Sci Eng 2023. [PMID: 37172017 DOI: 10.1021/acsbiomaterials.3c00479] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Osteoporosis is a chronic bone disorder characterized by decreased bone mass, leading to brittle bones and fractures. Oxidative stress has been identified as the most profound trigger for the initiation and progression of osteoporosis. Current treatment strategies do not induce new bone formation and fail to address a high level of reactive oxygen species (ROS). Mesoporous silica nanoparticles (MSNs) have been explored in bone tissue regeneration owing to their inherent osteogenic property, but they lack antioxidant and cell adhesion properties, required in such applications. We have developed thiolated, bioactive mesoporous silica nanoparticles (MSN-SH) to address this challenge. MSNs were fabricated using the Stöber method, and 11% of the surface was functionalized post-synthesis with thiol groups using MPTMS to obtain MSN-SH. The particle size measured by the dynamic light scattering technique was found to be around 300 nm. The surface morphology was investigated using HR-TEM, and their physical and chemical properties were characterized using various spectroscopic techniques. They exhibited more than 90% antioxidant activity, neutralized ROS formed in cells, and provided protection against ROS-induced cell damage. The cell viability assay in murine osteoblast precursor cells (MC3T3) showed that MSN-SH is cell-proliferative in nature with 140% cell viability. Osteogenic potential was evaluated by measuring the ALP activities, calcium deposition, and gene expression levels of osteogenic markers, such as RUNX2, ALP, OCN, and OPN, and results revealed that MSN-SH increases calcium deposition and induces osteogenesis through upregulation of osteogenic genes and markers without the involvement of any osteogenic supplements. Besides promoting osteogenesis, MSN-SH was found to inhibit osteoclastogenesis. The nanomaterial was found to be regenerative in nature, and it stimulated migration of osteoblast cells and caused a complete wound closure within 48 h. We were able to achieve a multifunctional nanomaterial by simply modifying the surface. MSNs have been explored for bone tissue engineering/osteoporosis as a composite system incorporating metals, like gold and cerium, or as a nanocarrier loaded with growth factors or active drugs. This study offers a simple and economical method to enhance the existing properties of MSNs and impart new activities by a single-step surface modification. It can be concluded that MSN-SH holds promise as a complementary and alternate treatment for osteoporosis along with the standardized therapy.
Collapse
Affiliation(s)
- Nahida Rasool
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India
| | - Deepa Negi
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India
| | - Yashveer Singh
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India
| |
Collapse
|
4
|
Hassanzadeh P, Atyabi F, Dinarvand R. Nanobionics: From plant empowering to the infectious disease treatment. J Control Release 2022; 349:890-901. [PMID: 35901860 DOI: 10.1016/j.jconrel.2022.07.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 10/16/2022]
Abstract
Infectious diseases (ID) are serious threats against the global health and socio-economic conditions. Vaccination usually plays a key role in disease prevention, however, insufficient efficiency or immunogenicity may be quite challenging. Using the advanced vectors for delivery of vaccines with suitable efficiency, safety, and immune-modulatory activity, and tunable characteristics could be helpful, but there are no systematic reviews confirming the capabilities of the vaccine delivery systems for covering various types of pathogens. Furthermore, high rates of the infections, transmission, and fatal ratio and diversity of the pathogens and infection mechanisms may negatively influence vaccine effectiveness. The absence of highly-effective antibiotics against the resistant strains of bacteria and longevity of antibiotic testing have provoked increasing needs towards the application of more accurate and specific theranostic strategies including the nanotechnology-based ones. Nanobionics which is based on the charge storage and transport in the molecular structures, could be of key value in the molecular diagnostic tests and highly-specific electro-analytical methods or devices. Such devices based on the early disease diagnostics might be of critical significance against various types of diseases. This article highlights the significance of nanobionics against ID.
Collapse
Affiliation(s)
- Parichehr Hassanzadeh
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 13169-43551, Iran; Sasan Hospital, Tehran 14159-83391, Iran.
| | - Fatemeh Atyabi
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 13169-43551, Iran
| | - Rassoul Dinarvand
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 13169-43551, Iran
| |
Collapse
|
5
|
Cheng X, Li D, Xu J, Wei B, Fang Q, Yang L, Xue Y, Wang X, Tang R. Self-assembled ternary hybrid nanodrugs for overcoming tumor resistance and metastasis. Acta Pharm Sin B 2021; 11:3595-3607. [PMID: 34900539 PMCID: PMC8642601 DOI: 10.1016/j.apsb.2021.03.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023] Open
Abstract
Traditional chemotherapy exhibits a certain therapeutic effect toward malignant cancer, but easily induce tumor multidrug resistance (MDR), thereby resulting in the progress of tumor recurrence or metastasis. In this work, we deigned ternary hybrid nanodrugs (PEI/DOX@CXB-NPs) to simultaneously combat against tumor MDR and metastasis. In vitro results demonstrate this hybrid nanodrugs could efficiently increase cellular uptake at pH 6.8 by the charge reversal, break lysosomal sequestration by the proton sponge effect and trigger drugs release by intracellular GSH, eventually leading to higher drugs accumulation and cell-killing in drug-sensitive/resistant cells. In vivo evaluation revealed that this nanodrugs could significantly inhibit MDR tumor growth and simultaneously prevent A549 tumor liver/lung metastasis owing to the specifically drugs accumulation. Mechanism studies further verified that hybrid nanodrugs were capable of down-regulating the expression of MDR or metastasis-associated proteins, lead to the enhanced anti-MDR and anti-metastasis effect. As a result, the multiple combination strategy provided an option for effective cancer treatment, which could be potentially extended to other therapeutic agents or further use in clinical test.
Collapse
|
6
|
Li Z, Du T, Ruan C, Niu X. Bioinspired mineralized collagen scaffolds for bone tissue engineering. Bioact Mater 2021; 6:1491-1511. [PMID: 33294729 PMCID: PMC7680706 DOI: 10.1016/j.bioactmat.2020.11.004] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/20/2020] [Accepted: 11/02/2020] [Indexed: 12/13/2022] Open
Abstract
Successful regeneration of large segmental bone defects remains a major challenge in clinical orthopedics, thus it is of important significance to fabricate a suitable alternative material to stimulate bone regeneration. Due to their excellent biocompatibility, sufficient mechanical strength, and similar structure and composition of natural bone, the mineralized collagen scaffolds (MCSs) have been increasingly used as bone substitutes via tissue engineering approaches. Herein, we thoroughly summarize the state of the art of MCSs as tissue-engineered scaffolds for acceleration of bone repair, including their fabrication methods, critical factors for osteogenesis regulation, current opportunities and challenges in the future. First, the current fabrication methods for MCSs, mainly including direct mineral composite, in-situ mineralization and 3D printing techniques, have been proposed to improve their biomimetic physical structures in this review. Meanwhile, three aspects of physical (mechanics and morphology), biological (cells and growth factors) and chemical (composition and cross-linking) cues are described as the critical factors for regulating the osteogenic feature of MCSs. Finally, the opportunities and challenges associated with MCSs as bone tissue-engineered scaffolds are also discussed to point out the future directions for building the next generation of MCSs that should be endowed with satisfactorily mimetic structures and appropriately biological characters for bone regeneration.
Collapse
Affiliation(s)
- Zhengwei Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, PR China
- Research Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
| | - Tianming Du
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, PR China
| | - Changshun Ruan
- Research Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
| | - Xufeng Niu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, PR China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100083, PR China
- Research Institute of Beihang University in Shenzhen, Shenzhen, 518057, PR China
| |
Collapse
|
7
|
Zhang Y, Hu J, Zhao X, Xie R, Qin T, Ji F. Mechanically Robust Shape Memory Polyurethane Nanocomposites for Minimally Invasive Bone Repair. ACS APPLIED BIO MATERIALS 2019; 2:1056-1065. [PMID: 35021395 DOI: 10.1021/acsabm.8b00655] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Yuanchi Zhang
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, China
| | - Jinlian Hu
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, China
- Smart Biomaterial Research Center, The Hong Kong Polytechnic University, Shen Zhen Base, Hong Kong 999077, China
| | - Xin Zhao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China
| | - Ruiqi Xie
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, China
| | - Tingwu Qin
- Institute of Stem Cell and Tissue Engineering, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Fenglong Ji
- School of Textiles Materials and Engineering, Wuyi University, Jiangmen 529020, China
| |
Collapse
|
8
|
Li C, Lin J, Wu P, Zhao R, Zou J, Zhou M, Jia L, Shao J. Small Molecule Nanodrug Assembled of Dual-Anticancer Drug Conjugate for Synergetic Cancer Metastasis Therapy. Bioconjug Chem 2018; 29:3495-3502. [DOI: 10.1021/acs.bioconjchem.8b00657] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Chao Li
- Cancer Metastasis Alert and Prevention Center, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Juanfang Lin
- Cancer Metastasis Alert and Prevention Center, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Pengyu Wu
- Cancer Metastasis Alert and Prevention Center, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Ruirui Zhao
- Cancer Metastasis Alert and Prevention Center, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Junjie Zou
- Cancer Metastasis Alert and Prevention Center, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Min Zhou
- Cancer Metastasis Alert and Prevention Center, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Lee Jia
- Cancer Metastasis Alert and Prevention Center, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Jingwei Shao
- Cancer Metastasis Alert and Prevention Center, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| |
Collapse
|
9
|
Dhand C, Balakrishnan Y, Ong ST, Dwivedi N, Venugopal JR, Harini S, Leung CM, Low KZW, Loh XJ, Beuerman RW, Ramakrishna S, Verma NK, Lakshminarayanan R. Antimicrobial quaternary ammonium organosilane cross-linked nanofibrous collagen scaffolds for tissue engineering. Int J Nanomedicine 2018; 13:4473-4492. [PMID: 30122921 PMCID: PMC6080871 DOI: 10.2147/ijn.s159770] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Introduction In search for cross-linkers with multifunctional characteristics, the present work investigated the utility of quaternary ammonium organosilane (QOS) as a potential cross-linker for electrospun collagen nanofibers. We hypothesized that the quaternary ammonium ions improve the electrospinnability by reducing the surface tension and confer antimicrobial properties, while the formation of siloxane after alkaline hydrolysis could cross-link collagen and stimulate cell proliferation. Materials and methods QOS collagen nanofibers were electrospun by incorporating various concentrations of QOS (0.1%–10% w/w) and were cross-linked in situ after exposure to ammonium carbonate. The QOS cross-linked scaffolds were characterized and their biological properties were evaluated in terms of their biocompatibility, cellular adhesion and metabolic activity for primary human dermal fibroblasts and human fetal osteoblasts. Results and discussion The study revealed that 1) QOS cross-linking increased the flexibility of otherwise rigid collagen nanofibers and improved the thermal stability; 2) QOS cross-linked mats displayed potent antibacterial activity and 3) the biocompatibility of the composite mats depended on the amount of QOS present in dope solution – at low QOS concentrations (0.1% w/w), the mats promoted mammalian cell proliferation and growth, whereas at higher QOS concentrations, cytotoxic effect was observed. Conclusion This study demonstrates that QOS cross-linked mats possess anti-infective properties and confer niches for cellular growth and proliferation, thus offering a useful approach, which is important for hard and soft tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Chetna Dhand
- Anti-Infectives Research Group, Singapore Eye Research Institute, The Academia, Discovery Tower, Singapore, , .,Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Graduate Medical School, Singapore,
| | | | - Seow Theng Ong
- Dermatology and Skin Biology, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore,
| | - Neeraj Dwivedi
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
| | - Jayarama R Venugopal
- Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, Gambang, Malaysia
| | - Sriram Harini
- Anti-Infectives Research Group, Singapore Eye Research Institute, The Academia, Discovery Tower, Singapore, ,
| | - Chak Ming Leung
- Department of Bioengineering, National University of Singapore, Singapore
| | - Kenny Zhi Wei Low
- Department of Mechanical Engineering, Faculty of Engineering, Center for Nanofibers and Nanotechnology, National University of Singapore, Singapore
| | - Xian Jun Loh
- Department of Mechanical Engineering, Faculty of Engineering, Center for Nanofibers and Nanotechnology, National University of Singapore, Singapore
| | - Roger W Beuerman
- Anti-Infectives Research Group, Singapore Eye Research Institute, The Academia, Discovery Tower, Singapore, , .,Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Graduate Medical School, Singapore,
| | - Seeram Ramakrishna
- Soft Materials Department, Institute of Materials Research and Engineering, ASTAR (Agency for Science, Technology and Research, Singapore
| | - Navin Kumar Verma
- Anti-Infectives Research Group, Singapore Eye Research Institute, The Academia, Discovery Tower, Singapore, , .,Dermatology and Skin Biology, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore,
| | - Rajamani Lakshminarayanan
- Anti-Infectives Research Group, Singapore Eye Research Institute, The Academia, Discovery Tower, Singapore, , .,Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Graduate Medical School, Singapore,
| |
Collapse
|
10
|
Yu J, Xu L, Li K, Xie N, Xi Y, Wang Y, Zheng X, Chen X, Wang M, Ye X. Zinc-modified Calcium Silicate Coatings Promote Osteogenic Differentiation through TGF-β/Smad Pathway and Osseointegration in Osteopenic Rabbits. Sci Rep 2017; 7:3440. [PMID: 28611362 PMCID: PMC5469779 DOI: 10.1038/s41598-017-03661-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 05/03/2017] [Indexed: 12/19/2022] Open
Abstract
Surface-modified metal implants incorporating different ions have been employed in the biomedical field as bioactive dental implants with good osseointegration properties. However, the molecular mechanism through which surface coatings exert the biological activity is not fully understood, and the effects have been difficult to achieve, especially in the osteopenic bone. In this study, We examined the effect of zinc-modified calcium silicate coatings with two different Zn contents to induce osteogenic differentiation of rat bone marrow-derived pericytes (BM-PCs) and osteogenetic efficiency in ovariectomised rabbits. Ti-6Al-4V with zinc-modified calcium silicate coatings not only enhanced proliferation but also promoted osteogenic differentiation and mineralized matrix deposition of rat BM-PCs as the zinc content and culture time increased in vitro. The associated molecular mechanisms were investigated by Q-PCR and Western blotting, revealing that TGF-β/Smad signaling pathway plays a direct and significant role in regulating BM-PCs osteoblastic differentiation on Zn-modified coatings. Furthermore, in vivo results that revealed Zn-modified calcium silicate coatings significantly promoted new bone formation around the implant surface in osteopenic rabbits as the Zn content and exposure time increased. Therefore, Zn-modified calcium silicate coatings can improve implant osseointegration in the condition of osteopenia, which may be beneficial for patients suffering from osteoporosis-related fractures.
Collapse
Affiliation(s)
- Jiangming Yu
- Department of Orthopaedics, Changzheng Hospital of Second Military Medical University, Shanghai, 200003, China.
- National Engineering Research Center for Nanotechnology, Shanghai, 200241, China.
| | - Lizhang Xu
- Department of Orthopaedics, Changzheng Hospital of Second Military Medical University, Shanghai, 200003, China
| | - Kai Li
- Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Ning Xie
- Department of Orthopaedics, Changzheng Hospital of Second Military Medical University, Shanghai, 200003, China
| | - Yanhai Xi
- Department of Orthopaedics, Changzheng Hospital of Second Military Medical University, Shanghai, 200003, China
| | - Yang Wang
- Department of Orthopaedics, Changzheng Hospital of Second Military Medical University, Shanghai, 200003, China
| | - Xuebin Zheng
- Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Xiongsheng Chen
- Department of Orthopaedics, Changzheng Hospital of Second Military Medical University, Shanghai, 200003, China
| | - Meiyan Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Xiaojian Ye
- Department of Orthopaedics, Changzheng Hospital of Second Military Medical University, Shanghai, 200003, China.
| |
Collapse
|
11
|
Zhao Y, Xue R, Shi N, Xue Y, Zong Y, Lin W, Pei B, Sun C, Fan R, Jiang Y. Aggravation of spinal cord compromise following new osteoporotic vertebral compression fracture prevented by teriparatide in patients with surgical contraindications. Osteoporos Int 2016; 27:3309-3317. [PMID: 27245056 DOI: 10.1007/s00198-016-3651-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 05/24/2016] [Indexed: 02/07/2023]
Abstract
UNLABELLED Patients with spinal cord deficits following new unstable osteoporotic compression fracture and surgical contraindications were considered to receive conservative treatment. Teriparatide was better than alendronate at improving bone mineral density and bone turnover parameters, as well as preventing aggravation of spinal cord compromise. INTRODUCTION This study compared the preventive effects of teriparatide and alendronate on aggravation of spinal cord compromise following new unstable osteoporotic vertebral compression fracture (OVCF) in patients with surgical contraindications. METHODS This was a 12-month, randomized, open-label study of teriparatide versus alendronate in 49 patients with new unstable OVCF and surgical contraindications. Neurological function was evaluated using modified Japanese Orthopedic Association (mJOA) score (11-point scale, the maximum score of 11 implies normalcy). Visual analog scale (VAS) scores, kyphotic angles, anterior-border heights and diameters of the spinal canal of the fractured vertebrae, any incident of new OVCFs (onset of OVCF during follow-up), spine bone mineral density (BMD), and serum markers of bone resorption and bone formation were also examined at baseline and 1, 3, 6, and 12 months after initiation of the medication regimen. RESULTS At 12 months, mean mJOA score had improved in the teriparatide group and decreased in the alendronate group. Mean concentrations of bone formation and bone resorption biomarkers, mean spine BMD, and mean anterior-border height and spinal canal diameter of the fractured vertebrae were significantly greater in the teriparatide group than in the alendronate group. Mean VAS score, mean kyphotic angle of the fractured vertebrae, and incidence of new OVCFs were significantly smaller in the teriparatide group than in the alendronate group. CONCLUSIONS In patients with neurological deficits following new unstable OVCF and with surgical contraindications, teriparatide was better than alendronate at improving the BMD and the bone turnover parameters, as well as preventing aggravation of spinal cord compromise.
Collapse
Affiliation(s)
- Y Zhao
- Department of Orthopaedics, General Hospital of Tianjin Medical University, No. 154 Anshan Road, Heping District, Tianjin, China
- Department of Radiology, The Secondary Affiliated Hospital of Baotou Medical College, No. 22 Hudemulin Road, Qingshan District, Inner Mongolia, China
| | - R Xue
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, General Hospital of Tianjin Medical University, No. 154 Anshan Road, Heping District, Tianjin, China
- School of Medical Imaging, Tianjin Medical University, No. 1 Guandong Road, Hexi District, Tianjin, China
| | - N Shi
- Department of Operative Surgery, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin, China
| | - Y Xue
- Department of Orthopaedics, General Hospital of Tianjin Medical University, No. 154 Anshan Road, Heping District, Tianjin, China.
| | - Y Zong
- Department of Orthopaedics, General Hospital of Tianjin Medical University, No. 154 Anshan Road, Heping District, Tianjin, China
| | - W Lin
- Department of Orthopaedics, General Hospital of Tianjin Medical University, No. 154 Anshan Road, Heping District, Tianjin, China
| | - B Pei
- Department of Orthopaedics, General Hospital of Tianjin Medical University, No. 154 Anshan Road, Heping District, Tianjin, China
| | - C Sun
- Department of Orthopaedics, General Hospital of Tianjin Medical University, No. 154 Anshan Road, Heping District, Tianjin, China
| | - R Fan
- Department of Orthopaedics, General Hospital of Tianjin Medical University, No. 154 Anshan Road, Heping District, Tianjin, China
| | - Y Jiang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, General Hospital of Tianjin Medical University, No. 154 Anshan Road, Heping District, Tianjin, China
| |
Collapse
|