1
|
Li Y, Zhou J, Wei Z, Liang L, Xu H, Lv C, Liu G, Li W, Wu X, Xiao Y, Sunzi K. Efficacy and Safety of Acupuncture for Post-COVID-19 Insomnia: Protocol for a Systematic Review and Meta-Analysis. JMIR Res Protoc 2025; 14:e69417. [PMID: 40053784 PMCID: PMC11914848 DOI: 10.2196/69417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/03/2025] [Accepted: 02/05/2025] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND The COVID-19 pandemic has had a profound global impact, leading to a range of persistent sequelae referred to as post-COVID-19 condition or "long COVID" that continue to affect patients worldwide. Among these sequelae, post-COVID-19 insomnia (PCI) has emerged as a significant issue. Conventional treatments, including cognitive behavioral therapy and pharmacological interventions, face limitations such as variable efficacy, potential side effects, and substantial costs. Recently, acupuncture has gained traction due to its efficacy, cost-effectiveness, and safety profile. OBJECTIVE This study aims to conduct a meta-analysis and systematic review evaluating the efficacy and safety of acupuncture for the treatment of PCI to delineate the optimal modality, intervention frequency, and duration for achieving the most beneficial outcomes, thereby providing a comprehensive understanding of acupuncture's role in managing PCI, contributing to evidence-based clinical practice, and informing clinical decision-making. METHODS Electronic searches will be performed in 12 databases from inception to October 2024 without language restrictions. This includes both English databases (PubMed, Cochrane Library, Web of Science, Embase, OVID and Scopus), as well as Chinese databases (China National Knowledge Infrastructure, Wan-Fang Data, Chinese Biomedical Literature Database, Chinese Scientific Journal Database, Duxiu Database and the Chinese Clinical Trial Registry Center). Randomized controlled trials on acupuncture for PCI will be included. Primary outcomes will include the response rate and insomnia severity; secondary outcomes will include the Traditional Chinese Medicine Symptom Scale (TCMSS) and adverse event rates. Data synthesis will use risk ratios for dichotomous data and mean differences for continuous data. Study selection, data extraction, and quality assessment will be conducted independently by 2 reviewers. Methodological quality of eligible studies will be evaluated following the Cochrane Handbook for Systematic Reviews of Interventions (version 6.3). Meta-analysis will be performed with RevMan 5.3. RESULTS Based on the data on response rate, insomnia severity, TCMSS score, and adverse event rates, this study will provide an evidence-based review of the efficacy and safety of acupuncture for PCI treatment. CONCLUSIONS This systematic review will present the current evidence for acupuncture for PCI, aiming to inform clinical practices and decision-making and to enhance the understanding of acupuncture's role in managing PCI. Furthermore, it will identify research gaps and suggest potential areas for future investigation. TRIAL REGISTRATION PROSPERO CRD42024499284; https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=499284. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) DERR1-10.2196/69417.
Collapse
Affiliation(s)
- Yadi Li
- Deyang People's Hospital, Deyang, China
- Department of Neurology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jianlong Zhou
- Department of Endocrinology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zheng Wei
- Deyang People's Hospital, Deyang, China
| | | | | | | | - Gang Liu
- Deyang People's Hospital, Deyang, China
| | - Wenlin Li
- Deyang People's Hospital, Deyang, China
| | - Xin Wu
- Deyang People's Hospital, Deyang, China
| | | | | |
Collapse
|
2
|
Petrov ME, Liu L, Mudappathi R, Whisner CM. Actigraphic sleep patterns are associated with bone turnover and bone mineral density among university students. J Sleep Res 2024; 33:e14192. [PMID: 38494335 DOI: 10.1111/jsr.14192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/21/2024] [Accepted: 02/24/2024] [Indexed: 03/19/2024]
Abstract
Poorer sleep is associated with poorer bone health among older adults but the role of sleep in bone health during younger adulthood is understudied. In this observational study, the averages and variability in total sleep time (TST), sleep efficiency (SE), and sleep midpoint of university students were examined in relation to levels of bone turnover markers (BTMs) and bone mineral density (BMD) at the lumbar spine and femur. A sample of healthy, university students (N = 59, aged 18-25 years, 51.8% female, body mass index <30 kg/m2), wore a wrist actigraph for 7 days, completed a dual-energy X-ray absorptiometry scan, and underwent blood sampling to assess serum BTM concentrations of osteocalcin (OC) and N-terminal telopeptide of type 1 collagen. A sub-sample (n = 14) completed a one-year follow-up. Multiple regression models examined the associations between each sleep metric and bone health outcome at baseline and 1-year follow-up. At baseline, greater variability in sleep midpoint was cross-sectionally associated with greater OC (β = 0.21, p = 0.042). In the exploratory, follow-up sub-sample, lower average TST (β = -0.66, p = 0.013) and SE (β = -0.68, p = 0.01) at baseline were associated with greater increases in OC at follow-up. Greater delays in mean sleep midpoint over follow-up were significantly associated with decreases in lumbar spine BMD (β = -0.49, p = 0.03). In a sample of young adults, variable sleep schedules were associated with greater bone turnover suggesting the potential importance of regular sleep for optimising bone health into early adulthood.
Collapse
Affiliation(s)
- Megan E Petrov
- Edson College of Nursing and Health Innovation, Arizona State University, Phoenix, Arizona, USA
| | - Li Liu
- College of Health Solutions, Arizona State University, Phoenix, Arizona, USA
| | - Rekha Mudappathi
- College of Health Solutions, Arizona State University, Phoenix, Arizona, USA
| | - Corrie M Whisner
- College of Health Solutions, Arizona State University, Phoenix, Arizona, USA
| |
Collapse
|
3
|
Zhao H, Jia H, Jiang Y, Suo C, Liu Z, Chen X, Xu K. Associations of sleep behaviors and genetic risk with risk of incident osteoporosis: A prospective cohort study of 293,164 participants. Bone 2024; 186:117168. [PMID: 38878990 DOI: 10.1016/j.bone.2024.117168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/28/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND Unhealthy sleep behaviors are associated with higher risks of osteoporosis (OP), while prospective evidence is limited. This study aimed to prospectively investigate this association, quantify the attributable burden of OP incidence reduction due to unhealthy sleep behaviors, and explore potential modifications by genetic risk factors. METHODS This longitudinal cohort study was conducted utilizing data from the UK Biobank, comprising 293,164 participants initially free of OP and with requisite sleep behaviors data at baseline. We followed the participants after recruitment until November 30, 2022, to ascertain incident OP. We assessed the associations of five sleep behaviors including sleep duration, chronotype, insomnia, daytime napping, and morning wake-up difficulties, as well as sleep behavior patterns identified based on the above sleep behaviors, with the risk of OP, using Cox models adjusted for multiple confounders. The analyses were then performed separately among individuals with different OP susceptibility, indexed by standard polygenetic risk scores(PRS) for OP. Our secondary outcome was OP with pathologic fracture. Subgroup and sensitivity analyses were performed. Additionally, attributable risk percent in the exposed population (AR%) and population attributable fraction (PAF) of sleep behaviors were calculated. RESULTS Over a median follow-up of 13.7 years, 8253 new-onset OP cases were documented. Unhealthy sleep behaviors, such as long or short sleep duration, insomnia, daytime napping, morning wake-up difficulties, and unhealthy sleep patterns, were associated with elevated risks of OP (HRs ranging from 1.14 to 1.46, all P-value <0.001) compared to healthy sleep behaviors. Similar associations were observed for OP with pathologic fractures. Insomnia exhibited the largest AR% of 39.98 % (95%CI: 36.46, 43.31) and PAF of 33.25 % (95%CI: 30.00, 36.34) among healthy sleep patterns and components. A statistically significant multiplicative interaction was noted between sleep behaviors and OP PRS on OP risk (all P-interaction <0.001). CONCLUSIONS Four unhealthy sleep behaviors and sleep behavior patterns were associated to increased OP risk, with insomnia contributing the most to OP incidence, while genetic risk for OP modified this association. These findings underscore the crucial role of adhering to healthy sleep behaviors for effective OP prevention.
Collapse
Affiliation(s)
- Hanhan Zhao
- School of Public Health, the Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
| | - Hongyu Jia
- Wuyang Disease Control and Prevention Center, Luohe, Henan, China
| | - Yanfeng Jiang
- Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China; State Key Laboratory of Genetic Engineering, Zhangjiang Fudan International Innovation Center, Human Phenome Institute, Fudan University, Shanghai, China
| | - Chen Suo
- School of Public Health, the Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China; Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
| | - Zhenqiu Liu
- Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China; State Key Laboratory of Genetic Engineering, Zhangjiang Fudan International Innovation Center, Human Phenome Institute, Fudan University, Shanghai, China
| | - Xingdong Chen
- Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China; State Key Laboratory of Genetic Engineering, Zhangjiang Fudan International Innovation Center, Human Phenome Institute, Fudan University, Shanghai, China; National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China; Yiwu Research Institute of Fudan University, Yiwu, Zhejiang, China.
| | - Kelin Xu
- School of Public Health, the Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China; Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China.
| |
Collapse
|
4
|
Zhao FY, Spencer SJ, Kennedy GA, Zheng Z, Conduit R, Zhang WJ, Xu P, Yue LP, Wang YM, Xu Y, Fu QQ, Ho YS. Acupuncture for primary insomnia: Effectiveness, safety, mechanisms and recommendations for clinical practice. Sleep Med Rev 2024; 74:101892. [PMID: 38232645 DOI: 10.1016/j.smrv.2023.101892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/07/2023] [Accepted: 12/06/2023] [Indexed: 01/19/2024]
Abstract
Primary insomnia (PI) is an increasing concern in modern society. Cognitive-behavioral therapy for insomnia is the first-line recommendation, yet limited availability and cost impede its widespread use. While hypnotics are frequently used, balancing their benefits against the risk of adverse events poses challenges. This review summarizes the clinical and preclinical evidence of acupuncture as a treatment for PI, discussing its potential mechanisms and role in reliving insomnia. Clinical trials show that acupuncture improves subjective sleep quality, fatigue, cognitive impairments, and emotional symptoms with minimal adverse events. It also positively impacts objective sleep processes, including prolonging total sleep time, improving sleep efficiency, reducing sleep onset latency and wake after sleep onset, and enhancing sleep architecture/structure, including increasing N3% and REM%, and decreasing N1%. However, methodological shortcomings in some trials diminish the overall quality of evidence. Animal studies suggest that acupuncture restores circadian rhythms in sleep-deprived rodents and improves their performance in behavioral tests, possibly mediated by various clinical variables and pathways. These may involve neurotransmitters, brain-derived neurotrophic factors, inflammatory cytokines, the hypothalamic-pituitary-adrenal axis, gut microbiota, and other cellular events. While the existing findings support acupuncture as a promising therapeutic strategy for PI, additional high-quality trials are required to validate its benefits.
Collapse
Affiliation(s)
- Fei-Yi Zhao
- Department of Nursing, School of International Medical Technology, Shanghai Sanda University, Shanghai, 201209, China; Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Sarah J Spencer
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, 3083, Australia
| | - Gerard A Kennedy
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, 3083, Australia; Institute of Health and Wellbeing, Federation University, Mount Helen, Victoria, Australia; Institute for Breathing and Sleep, Austin Health, Heidelberg, Victoria, 3084, Australia
| | - Zhen Zheng
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, 3083, Australia
| | - Russell Conduit
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, 3083, Australia
| | - Wen-Jing Zhang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Peijie Xu
- School of Computing Technologies, RMIT University, Melbourne, VIC, 3000, Australia
| | - Li-Ping Yue
- Department of Nursing, School of International Medical Technology, Shanghai Sanda University, Shanghai, 201209, China
| | - Yan-Mei Wang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Yan Xu
- Department of Nursing, School of International Medical Technology, Shanghai Sanda University, Shanghai, 201209, China.
| | - Qiang-Qiang Fu
- Yangpu Hospital, School of Medicine, Tongji University, Shanghai, 200090, China.
| | - Yuen-Shan Ho
- School of Nursing, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China.
| |
Collapse
|
5
|
Si Q, Sun W, Liang B, Chen B, Meng J, Xie D, Feng L, Jiang P. Systematic Metabolic Profiling of Mice with Sleep-Deprivation. Adv Biol (Weinh) 2024; 8:e2300413. [PMID: 37880935 DOI: 10.1002/adbi.202300413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/05/2023] [Indexed: 10/27/2023]
Abstract
Adequate sleep is essential for the biological maintenance of physical energy. Lack of sleep can affect thinking, lead to emotional anxiety, reduce immunity, and interfere with endocrine and metabolic processes, leading to disease. Previous studies have focused on long-term sleep deprivation and the risk of cancer, heart disease, diabetes, and obesity. However, systematic metabolomics analyses of blood, heart, liver, spleen, kidney, brown adipose tissue, and fecal granules have not been performed. This study aims to systematically assess the metabolic changes in the target organs caused by sleep deprivation in vivo, to search for differential metabolites and the involved metabolic pathways, to further understand the impact of sleep deprivation on health, and to provide strong evidence for the need for early intervention.
Collapse
Affiliation(s)
- Qingying Si
- Department of Endocrinology, Tengzhou Central People's Hospital, Tengzhou, 277599, People's Republic of China
| | - Wenxue Sun
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, People's Republic of China
- Institute of Translational Pharmacy, Jining Medical Research Academy, Jining, 272000, People's Republic of China
| | - Benhui Liang
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, 410000, People's Republic of China
| | - Beibei Chen
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, People's Republic of China
- Institute of Translational Pharmacy, Jining Medical Research Academy, Jining, 272000, People's Republic of China
| | - Junjun Meng
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, People's Republic of China
- Institute of Translational Pharmacy, Jining Medical Research Academy, Jining, 272000, People's Republic of China
| | - Dadi Xie
- Department of Endocrinology, Tengzhou Central People's Hospital, Tengzhou, 277599, People's Republic of China
| | - Lei Feng
- Department of Neurosurgery, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, People's Republic of China
| | - Pei Jiang
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, People's Republic of China
- Institute of Translational Pharmacy, Jining Medical Research Academy, Jining, 272000, People's Republic of China
| |
Collapse
|
6
|
Al-Ansari N, Samuel SM, Büsselberg D. Unveiling the Protective Role of Melatonin in Osteosarcoma: Current Knowledge and Limitations. Biomolecules 2024; 14:145. [PMID: 38397382 PMCID: PMC10886489 DOI: 10.3390/biom14020145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/18/2024] [Accepted: 01/21/2024] [Indexed: 02/25/2024] Open
Abstract
Melatonin, an endogenous neurohormone produced by the pineal gland, has received increased interest due to its potential anti-cancer properties. Apart from its well-known role in the sleep-wake cycle, extensive scientific evidence has shown its role in various physiological and pathological processes, such as inflammation. Additionally, melatonin has demonstrated promising potential as an anti-cancer agent as its function includes inhibition of tumorigenesis, induction of apoptosis, and regulation of anti-tumor immune response. Although a precise pathophysiological mechanism is yet to be established, several pathways related to the regulation of cell cycle progression, DNA repair mechanisms, and antioxidant activity have been implicated in the anti-neoplastic potential of melatonin. In the current manuscript, we focus on the potential anti-cancer properties of melatonin and its use in treating and managing pediatric osteosarcoma. This aggressive bone tumor primarily affects children and adolescents and is treated mainly by surgical and radio-oncological interventions, which has improved survival rates among affected individuals. Significant disadvantages to these interventions include disease recurrence, therapy-related toxicity, and severe/debilitating side effects that the patients have to endure, significantly affecting their quality of life. Melatonin has therapeutic effects when used for treating osteosarcoma, attributed to its ability to halt cancer cell proliferation and trigger apoptotic cell death, thereby enhancing chemotherapeutic efficacy. Furthermore, the antioxidative function of melatonin alleviates harmful side effects of chemotherapy-induced oxidative damage, aiding in decreasing therapeutic toxicities. The review concisely explains the many mechanisms by which melatonin targets osteosarcoma, as evidenced by significant results from several in vitro and animal models. Nevertheless, if further explored, human trials remain a challenge that could shed light and support its utility as an adjunctive therapeutic modality for treating osteosarcoma.
Collapse
Affiliation(s)
- Nojoud Al-Ansari
- Department of Medical Education, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha P.O. Box 24144, Qatar;
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha P.O. Box 24144, Qatar
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha P.O. Box 24144, Qatar
| |
Collapse
|
7
|
Ramasubbu K, Ramanathan G, Venkatraman G, Rajeswari VD. Sleep-associated insulin resistance promotes neurodegeneration. Mol Biol Rep 2023; 50:8665-8681. [PMID: 37580496 DOI: 10.1007/s11033-023-08710-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/25/2023] [Indexed: 08/16/2023]
Abstract
Lifestyle modification can lead to numerous health issues closely associated with sleep. Sleep deprivation and disturbances significantly affect inflammation, immunity, neurodegeneration, cognitive depletion, memory impairment, neuroplasticity, and insulin resistance. Sleep significantly impacts brain and memory formation, toxin excretion, hormonal function, metabolism, and motor and cognitive functions. Sleep restriction associated with insulin resistance affects these functions by interfering with the insulin signalling pathway, neurotransmission, inflammatory pathways, and plasticity of neurons. So, in this review, We discuss the evidence that suggests that neurodegeneration occurs via sleep and is associated with insulin resistance, along with the insulin signalling pathways involved in neurodegeneration and neuroplasticity, while exploring the role of hormones in these conditions.
Collapse
Affiliation(s)
- Kanagavalli Ramasubbu
- Department of Bio-Medical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Gnanasambandan Ramanathan
- Department of Bio-Medical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Ganesh Venkatraman
- Department of Bio-Medical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - V Devi Rajeswari
- Department of Bio-Medical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|