1
|
Krumova S, Stoichev S, Ilkov D, Strijkova V, Katrova V, Crespo A, Álvarez J, Martínez E, Martínez-Ramírez S, Tsonev T, Petrov P, Velikova V. Pea Seed Priming with Pluronic P85-Grafted Single-Walled Carbon Nanotubes Affects Photosynthetic Gas Exchange but Not Photosynthetic Light Reactions. Int J Mol Sci 2024; 25:7901. [PMID: 39063145 PMCID: PMC11276944 DOI: 10.3390/ijms25147901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Nanotechnology is rapidly advancing towards the development of applications for sustainable plant growth and photosynthesis optimization. The nanomaterial/plant interaction has been intensively investigated; however, there is still a gap in knowledge regarding their effect on crop seed development and photosynthetic performance. In the present work, we apply a priming procedure with 10 and 50 mg/L Pluronic-P85-grafted single-walled carbon nanotubes (P85-SWCNT) on garden pea seeds and examine the germination, development, and photosynthetic activity of young seedlings grown on soil substrate. The applied treatments result in a distorted topology of the seed surface and suppressed (by 10-19%) shoot emergence. No priming-induced alterations in the structural and functional features of the photosynthetic apparatus in 14-day-old plants are found. However, photosynthetic gas exchange measurements reveal reduced stomatal conductance (by up to 15%) and increased intrinsic water use efficiency (by 12-15%), as compared to hydro-primed variants, suggesting the better ability of plants to cope with drought stress-an assumption that needs further verification. Our study prompts further research on the stomatal behavior and dark reactions of photosynthesis in order to gain new insights into the effect of carbon nanotubes on plant performance.
Collapse
Affiliation(s)
- Sashka Krumova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (S.K.); (S.S.)
| | - Svetozar Stoichev
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (S.K.); (S.S.)
| | - Daniel Ilkov
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (D.I.); (T.T.)
| | - Velichka Strijkova
- Institute of Optical Materials and Technologies, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (V.S.); (V.K.)
| | - Vesela Katrova
- Institute of Optical Materials and Technologies, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (V.S.); (V.K.)
| | - Ana Crespo
- Instituto de Estructura de la Materia (IEM—CSIC), 28006 Madrid, Spain; (A.C.); (S.M.-R.)
| | - José Álvarez
- Ingeniería Agroforestal, ETSIAAB, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (J.Á.); (E.M.)
| | - Elvira Martínez
- Ingeniería Agroforestal, ETSIAAB, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (J.Á.); (E.M.)
| | | | - Tsonko Tsonev
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (D.I.); (T.T.)
| | - Petar Petrov
- Institute of Polymers, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Violeta Velikova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (S.K.); (S.S.)
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (D.I.); (T.T.)
| |
Collapse
|
2
|
Vujin J, Szabó T, Panajotovic R, Végh A, Rinyu L, Nagy L. Photosynthetic reaction center/graphene bio-hybrid for low-power optoelectronics. PHOTOSYNTHETICA 2023; 61:465-472. [PMID: 39649490 PMCID: PMC11586844 DOI: 10.32615/ps.2023.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/02/2023] [Indexed: 12/10/2024]
Abstract
Photosynthetic reaction center (pRC) purified from Rhodobacter sphaeroides 2.4.1 purple bacteria was deposited on a graphene carrier exfoliated from the liquid phase and layered on the surface of SiO2/Si substrate for optoelectronic application. Light-induced changes in the drain-source current vs. gate voltage are demonstrated. Dried photosynthetic reaction centers/graphene composite on SiO2/Si shows a photochemical/-physical activity, as a result of interaction with the current flow in the graphene carrier matrix. The current changes are sensitive to light, due to the contribution from the charge separation in the pRC, and to the applied gate and drain-source voltages.
Collapse
Affiliation(s)
- J. Vujin
- Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia
| | - T. Szabó
- Institute of Medical Physics and Informatics, University of Szeged, Korányi Fasor 9, H-6720 Szeged, Hungary
| | - R. Panajotovic
- Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia
| | - A.G. Végh
- HUN-REN Biological Research Centre, Szeged, Institute of Biophysics, Temesvári Krt. 62, Szeged, Hungary
| | - L. Rinyu
- Isotope Climatology and Environmental Research Centre (ICER), HUN-REN Institute for Nuclear Research, Bem tér 18/c, 4026 Debrecen, Hungary
| | - L. Nagy
- Institute of Medical Physics and Informatics, University of Szeged, Korányi Fasor 9, H-6720 Szeged, Hungary
- HUN-REN Biological Research Centre, Szeged, Institute of Plant Biology, Temesvári Krt. 62, Szeged, Hungary
| |
Collapse
|
3
|
Krumova S, Petrova A, Petrova N, Stoichev S, Ilkov D, Tsonev T, Petrov P, Koleva D, Velikova V. Seed Priming with Single-Walled Carbon Nanotubes Grafted with Pluronic P85 Preserves the Functional and Structural Characteristics of Pea Plants. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1332. [PMID: 37110917 PMCID: PMC10143637 DOI: 10.3390/nano13081332] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 06/19/2023]
Abstract
The engineering of carbon nanotubes in the last decades resulted in a variety of applications in electronics, electrochemistry, and biomedicine. A number of reports also evidenced their valuable application in agriculture as plant growth regulators and nanocarriers. In this work, we explored the effect of seed priming with single-walled carbon nanotubes grafted with Pluronic P85 polymer (denoted P85-SWCNT) on Pisum sativum (var. RAN-1) seed germination, early stages of plant development, leaf anatomy, and photosynthetic efficiency. We evaluated the observed effects in relation to hydro- (control) and P85-primed seeds. Our data clearly revealed that seed priming with P85-SWCNT is safe for the plant since it does not impair the seed germination, plant development, leaf anatomy, biomass, and photosynthetic activity, and even increases the amount of photochemically active photosystem II centers in a concentration-dependent manner. Only 300 mg/L concentration exerts an adverse effect on those parameters. The P85 polymer, however, was found to exhibit a number of negative effects on plant growth (i.e., root length, leaf anatomy, biomass accumulation and photoprotection capability), most probably related to the unfavorable interaction of P85 unimers with plant membranes. Our findings substantiate the future exploration and exploitation of P85-SWCNT as nanocarriers of specific substances promoting not only plant growth at optimal conditions but also better plant performance under a variety of environmental stresses.
Collapse
Affiliation(s)
- Sashka Krumova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, “Acad. G. Bonchev” Str., Bl. 21, 1113 Sofia, Bulgaria; (S.K.); (N.P.); (S.S.); (T.T.)
| | - Asya Petrova
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, “Acad. G. Bonchev” Str., Bl. 21, 1113 Sofia, Bulgaria; (A.P.); (D.I.)
| | - Nia Petrova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, “Acad. G. Bonchev” Str., Bl. 21, 1113 Sofia, Bulgaria; (S.K.); (N.P.); (S.S.); (T.T.)
- Institute of Plant Biology, Biological Research Centre, Temesváry krt. 62, 6726 Szeged, Hungary
| | - Svetozar Stoichev
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, “Acad. G. Bonchev” Str., Bl. 21, 1113 Sofia, Bulgaria; (S.K.); (N.P.); (S.S.); (T.T.)
| | - Daniel Ilkov
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, “Acad. G. Bonchev” Str., Bl. 21, 1113 Sofia, Bulgaria; (A.P.); (D.I.)
| | - Tsonko Tsonev
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, “Acad. G. Bonchev” Str., Bl. 21, 1113 Sofia, Bulgaria; (S.K.); (N.P.); (S.S.); (T.T.)
| | - Petar Petrov
- Institute of Polymers, Bulgarian Academy of Sciences, “Acad. G. Bonchev” Str., Bl. 103, 1113 Sofia, Bulgaria;
| | - Dimitrina Koleva
- Faculty of Biology, Sofia University, “St. Kliment Ohridsky”, 1000 Sofia, Bulgaria;
| | - Violeta Velikova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, “Acad. G. Bonchev” Str., Bl. 21, 1113 Sofia, Bulgaria; (S.K.); (N.P.); (S.S.); (T.T.)
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, “Acad. G. Bonchev” Str., Bl. 21, 1113 Sofia, Bulgaria; (A.P.); (D.I.)
| |
Collapse
|
4
|
Vitukhnovskya LA, Zaspa AA, Semenov AY, Mamedov MD. Conversion of light into electricity in a semi-synthetic system based on photosynthetic bacterial chromatophores. BIOCHIMICA ET BIOPHYSICA ACTA (BBA) - BIOENERGETICS 2023; 1864:148975. [PMID: 37001791 DOI: 10.1016/j.bbabio.2023.148975] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/02/2023] [Accepted: 03/25/2023] [Indexed: 03/31/2023]
Abstract
Chromatophores (Chr) from photosynthetic nonsulfur purple bacterium Rhodobacter sphaeroides immobilized onto a Millipore membrane filter (MF) and sandwiched between two semiconductor indium tin oxide (ITO) electrodes (termed ITO|Chr - MF|ITO) have been used to measure voltage (ΔV) induced by continuous illumination. The maximum ΔV was detected in the presence of ascorbate / N,N,N'N'-tetramethyl-p-phenylenediamine couple, coenzyme UQ0, disaccaride trehalose and antimycin A, an inhibitor of cytochrome bc1 complex. In doing so, the light-induced electron transfer in the reaction centers was the major source of photovoltages. The stability of the voltage signal upon prolonged irradiation (>1 h) may be due to the maintenance of a conformation that is optimal for the functioning of integral protein complexes and stabilization of lipid bilayer membranes in the presence of trehalose. Retaining ∼70 % of the original photovoltage performance on the 30th day of storage at 23 °C in the dark under air was achieved after re-injection of fresh buffer (∼40 μL) containing redox mediators into the ITO|Chr - MF|ITO system. The approach we use is easy and can be extended to other biological intact systems (cells, thylakoid membranes) capable of converting energy of light.
Collapse
|
5
|
Wu M, Su H, Li C, Fu Z, Wu F, Yang J, Wang L. Effects of foliar application of single-walled carbon nanotubes on carbohydrate metabolism in crabapple plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 194:214-222. [PMID: 36427383 DOI: 10.1016/j.plaphy.2022.11.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/04/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
Carbon nanotubes (CNTs) regulate growth in many plants. Carbohydrates provide energy and carbon skeleton for cell growth. However, how CNTs influence plant carbohydrate metabolism remains largely unknown. For a comprehensive understanding the response of carbohydrate metabolism and accumulation in leaves of crabapple (Malus hupehensis Rehd) to single-walled carbon nanotubes (SWCNTs), the expression of key enzymes and genes involved in apple sugar metabolism was investigated. In this report, TEM showed that SWCNTs particles were absorbed in apple leaf. Foliar application of 10 and 20 mg/L SWCNTs promoted chlorophyll content, net photosynthetic rate, stomatal conductance and transpiration rate. SWCNTs up-regulate the activity of aldose-6-phosphate reductase (A6PR), accompanied by increased concentration of photosynthetic assimilate‒sorbitol. However, the activities of sucrose phosphate synthase (SPS) and the accumulation of sucrose did not change significantly in SWCNTs-sprayed apple leaves compared with the control. In addition, the activities of photoassimilate degradation enzyme (sorbitol dehydrogenase, SDH; sucrose synthase, SUSY; neutral invertase, NINV) and hexose degradation enzyme (fructokinase, FRK; hexokinase, HK) were higher in SWCNTs-treated apple leaves than that in the control leaves. Quantitative real-time polymerase chain reaction (qRT‒PCR) results indicated that the expression of genes associated with sugar metabolism changed significantly after SWCNTs application. Taken together, we propose that spraying apple leaves with 10 and 20 mg/L SWCNTs can improve photosynthetic activity and accelerate carbohydrate metabolism in apple leaves. Our results provide insight into understanding the biological effects of CNTs in plants and are valuable for continued use of SWCNTs in agri-nanotechnology.
Collapse
Affiliation(s)
- Mingqi Wu
- College of life Sciences, Ludong Universtiy, Yantai, 264025, PR China
| | - Hongyan Su
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong/College of Agriculture, Ludong Universtiy, Yantai, 264025, PR China; The Institute of Ecological Garden, Ludong University, Yantai, 264025, PR China
| | - Chuanshou Li
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong/College of Agriculture, Ludong Universtiy, Yantai, 264025, PR China
| | - Zhishun Fu
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong/College of Agriculture, Ludong Universtiy, Yantai, 264025, PR China
| | - Fanlin Wu
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong/College of Agriculture, Ludong Universtiy, Yantai, 264025, PR China
| | - Jingjing Yang
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong/College of Agriculture, Ludong Universtiy, Yantai, 264025, PR China.
| | - Lei Wang
- College of life Sciences, Ludong Universtiy, Yantai, 264025, PR China.
| |
Collapse
|
6
|
Porous silicon pillar structures/photosynthetic reaction centre protein hybrid for bioelectronic applications. Photochem Photobiol Sci 2021; 21:13-22. [PMID: 34716892 DOI: 10.1007/s43630-021-00121-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/18/2021] [Indexed: 10/19/2022]
Abstract
Photosynthetic biomaterials have attracted considerable attention at different levels of the biological organisation, from molecules to the biosphere, due to a variety of artificial application possibilities. During photosynthesis, the first steps of the conversion of light energy into chemical energy take place in a pigment-protein complex, called reaction centre (RC). In our experiments photosynthetic reaction centre protein, purified from Rhodobacter sphaeroides R-26 purple bacteria, was bound to porous silicon pillars (PSiP) after the electropolymerisation of aniline onto the surface. This new type of biohybrid material showed remarkable photoactivity in terms of measured photocurrent under light excitation in an electrochemical cell. The photocurrent was found to increase considerably after the addition of ubiquinone (UQ-0), an e--acceptor mediator of the RC. The photoactivity of the complex was found to decrease by the addition of terbutryn, the chemical which inhibits the e--transport on the acceptor side of the RC. In addition to the generation of sizeable light-induced photocurrents, using the PSiP/RC photoactive hybrid nanocomposite material, the system was found to be sensitive towards RC inhibitors and herbicides. This highly ordered patterned 3D structure opens new solution for designing low-power (bio-)optoelectronic, biophotonic and biosensing devices.
Collapse
|
7
|
Agarose vs. Methacrylate as Material Supports for Enzyme Immobilization and Continuous Processing. Catalysts 2021. [DOI: 10.3390/catal11070814] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Enzyme immobilization has become a key strategy to improve the stability and recycling of biocatalysts, resulting in greener and more cost-efficient processes. The design of the immobilized catalysts is often focused only on the immobilization strategy, the binding chemistry between the enzyme and the support, while less attention has been paid to the physico-chemical properties of material supports. Selecting the best carrier for a specific application may greatly influence the performance of the biocatalytic reaction. Herein, we present a comparative study between the two most used material supports for protein immobilization, agarose and methacrylate. Hydrophilic agarose microbeads ensure higher retained enzymatic activity and better catalyst performance when hydrophobic compounds are involved in the biotransformation. Due to the high stickiness, lipophilic molecules represent a major limitation for methacrylate carriers. O2-dependent reactions, in contrast, must be carried out by immobilized enzymes on methacrylate supports due to the low mechanical stability of agarose under dehydration conditions. All these parameters were tested with a special focus on continuous-flow applications.
Collapse
|
8
|
Velikova V, Petrova N, Kovács L, Petrova A, Koleva D, Tsonev T, Taneva S, Petrov P, Krumova S. Single-Walled Carbon Nanotubes Modify Leaf Micromorphology, Chloroplast Ultrastructure and Photosynthetic Activity of Pea Plants. Int J Mol Sci 2021; 22:4878. [PMID: 34063012 PMCID: PMC8124974 DOI: 10.3390/ijms22094878] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 02/07/2023] Open
Abstract
Single-walled carbon nanotubes (SWCNTs) emerge as promising novel carbon-based nanoparticles for use in biomedicine, pharmacology and precision agriculture. They were shown to penetrate cell walls and membranes and to physically interact and exchange electrons with photosynthetic complexes in vitro. Here, for the first time, we studied the concentration-dependent effect of foliar application of copolymer-grafted SWCNTs on the structural and functional characteristics of intact pea plants. The lowest used concentration of 10 mg L-1 did not cause any harmful effects on the studied leaf characteristics, while abundant epicuticular wax generation on both leaf surfaces was observed after 300 mg L-1 treatment. Swelling of both the granal and the stromal regions of thylakoid membranes was detected after application of 100 mg L-1 and was most pronounced after 300 mg L-1. Higher SWCNT doses lead to impaired photosynthesis in terms of lower proton motive force generation, slower generation of non-photochemical quenching and reduced zeaxanthin content; however, the photosystem II function was largely preserved. Our results clearly indicate that SWCNTs affect the photosynthetic apparatus in a concentration-dependent manner. Low doses (10 mg L-1) of SWCNTs appear to be a safe suitable object for future development of nanocarriers for substances that are beneficial for plant growth.
Collapse
Affiliation(s)
- Violeta Velikova
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad Georgi Bonchev Str. Bl. 21, 1113 Sofia, Bulgaria;
| | - Nia Petrova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad Georgi Bonchev Str. Bl. 21, 1113 Sofia, Bulgaria; (N.P.); (T.T.); (S.T.)
| | - László Kovács
- Biological Research Center, Institute of Plant Biology, Temesvári krt. 62, 6726 Szeged, Hungary;
| | - Asya Petrova
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad Georgi Bonchev Str. Bl. 21, 1113 Sofia, Bulgaria;
| | - Dimitrina Koleva
- Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tsankov, 1164 Sofia, Bulgaria;
| | - Tsonko Tsonev
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad Georgi Bonchev Str. Bl. 21, 1113 Sofia, Bulgaria; (N.P.); (T.T.); (S.T.)
| | - Stefka Taneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad Georgi Bonchev Str. Bl. 21, 1113 Sofia, Bulgaria; (N.P.); (T.T.); (S.T.)
| | - Petar Petrov
- Institute of Polymers, Bulgarian Academy of Sciences, Acad Georgi Bonchev Str. Bl. 103, 1113 Sofia, Bulgaria;
| | - Sashka Krumova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad Georgi Bonchev Str. Bl. 21, 1113 Sofia, Bulgaria; (N.P.); (T.T.); (S.T.)
| |
Collapse
|
9
|
Meredith SA, Yoneda T, Hancock AM, Connell SD, Evans SD, Morigaki K, Adams PG. Model Lipid Membranes Assembled from Natural Plant Thylakoids into 2D Microarray Patterns as a Platform to Assess the Organization and Photophysics of Light-Harvesting Proteins. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006608. [PMID: 33690933 PMCID: PMC11476343 DOI: 10.1002/smll.202006608] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/14/2021] [Indexed: 06/12/2023]
Abstract
Natural photosynthetic "thylakoid" membranes found in green plants contain a large network of light-harvesting (LH) protein complexes. Rearrangement of this photosynthetic machinery, laterally within stacked membranes called "grana", alters protein-protein interactions leading to changes in the energy balance within the system. Preparation of an experimentally accessible model system that allows the detailed investigation of these complex interactions can be achieved by interfacing thylakoid membranes and synthetic lipids into a template comprised of polymerized lipids in a 2D microarray pattern on glass surfaces. This paper uses this system to interrogate the behavior of LH proteins at the micro- and nanoscale and assesses the efficacy of this model. A combination of fluorescence lifetime imaging and atomic force microscopy reveals the differences in photophysical state and lateral organization between native thylakoid and hybrid membranes, the mechanism of LH protein incorporation into the developing hybrid membranes, and the nanoscale structure of the system. The resulting model system within each corral is a high-quality supported lipid bilayer that incorporates laterally mobile LH proteins. Photosynthetic activity is assessed in the hybrid membranes versus proteoliposomes, revealing that commonly used photochemical assays to test the electron transfer activity of photosystem II may actually produce false-positive results.
Collapse
Affiliation(s)
- Sophie A. Meredith
- School of Physics and Astronomy and The Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsLS2 9JTUK
| | - Takuro Yoneda
- Graduate School of Agricultural Science and Biosignal Research CenterKobe UniversityRokkodaicho 1‐1, NadaKobe657‐8501Japan
| | - Ashley M. Hancock
- School of Physics and Astronomy and The Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsLS2 9JTUK
| | - Simon D. Connell
- School of Physics and Astronomy and The Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsLS2 9JTUK
| | - Stephen D. Evans
- School of Physics and Astronomy and The Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsLS2 9JTUK
| | - Kenichi Morigaki
- Graduate School of Agricultural Science and Biosignal Research CenterKobe UniversityRokkodaicho 1‐1, NadaKobe657‐8501Japan
| | - Peter G. Adams
- School of Physics and Astronomy and The Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsLS2 9JTUK
| |
Collapse
|
10
|
Białek R, Thakur K, Ruff A, Jones MR, Schuhmann W, Ramanan C, Gibasiewicz K. Insight into Electron Transfer from a Redox Polymer to a Photoactive Protein. J Phys Chem B 2020; 124:11123-11132. [PMID: 33236901 PMCID: PMC7735723 DOI: 10.1021/acs.jpcb.0c08714] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/10/2020] [Indexed: 11/29/2022]
Abstract
Biohybrid photoelectrochemical systems in photovoltaic or biosensor applications have gained considerable attention in recent years. While the photoactive proteins engaged in such systems usually maintain an internal charge separation quantum yield of nearly 100%, the subsequent steps of electron and hole transfer beyond the protein often limit the overall system efficiency and their kinetics remain largely uncharacterized. To reveal the dynamics of one of such charge-transfer reactions, we report on the reduction of Rhodobacter sphaeroides reaction centers (RCs) by Os-complex-modified redox polymers (P-Os) characterized using transient absorption spectroscopy. RCs and P-Os were mixed in buffered solution in different molar ratios in the presence of a water-soluble quinone as an electron acceptor. Electron transfer from P-Os to the photoexcited RCs could be described by a three-exponential function, the fastest lifetime of which was on the order of a few microseconds, which is a few orders of magnitude faster than the internal charge recombination of RCs with fully separated charge. This was similar to the lifetime for the reduction of RCs by their natural electron donor, cytochrome c2. The rate of electron donation increased with increasing ratio of polymer to protein concentrations. It is proposed that P-Os and RCs engage in electrostatic interactions to form complexes, the sizes of which depend on the polymer-to-protein ratio. Our findings throw light on the processes within hydrogel-based biophotovoltaic devices and will inform the future design of materials optimally suited for this application.
Collapse
Affiliation(s)
- Rafał Białek
- Faculty
of Physics, Adam Mickiewicz University, Poznań, ul. Uniwersytetu
Poznańskiego 2, 61-614 Poznań, Poland
| | - Kalyani Thakur
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Adrian Ruff
- Analytical
Chemistry—Center for Electrochemical Sciences, Faculty of Biochemistry
and Chemistry, Faculty of Biochemistry and Chemistry, Ruhr-University Bochum, Universitätsstrasse 150, D-44780 Bochum, Germany
| | - Michael R. Jones
- School
of Biochemistry, Biomedical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, U.K.
| | - Wolfgang Schuhmann
- Analytical
Chemistry—Center for Electrochemical Sciences, Faculty of Biochemistry
and Chemistry, Faculty of Biochemistry and Chemistry, Ruhr-University Bochum, Universitätsstrasse 150, D-44780 Bochum, Germany
| | - Charusheela Ramanan
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Krzysztof Gibasiewicz
- Faculty
of Physics, Adam Mickiewicz University, Poznań, ul. Uniwersytetu
Poznańskiego 2, 61-614 Poznań, Poland
| |
Collapse
|
11
|
|
12
|
Design and modelling of a photo-electrochemical transduction system based on solubilized photosynthetic reaction centres. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.09.198] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
13
|
Mimicry and functions of photosynthetic reaction centers. Biochem Soc Trans 2018; 46:1279-1288. [DOI: 10.1042/bst20170298] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 06/24/2018] [Accepted: 07/02/2018] [Indexed: 12/18/2022]
Abstract
The structure and function of photosynthetic reaction centers (PRCs) have been modeled by designing and synthesizing electron donor–acceptor ensembles including electron mediators, which can mimic multi-step photoinduced charge separation occurring in PRCs to obtain long-lived charge-separated states. PRCs in photosystem I (PSI) or/and photosystem II (PSII) have been utilized as components of solar cells to convert solar energy to electric energy. Biohybrid photoelectrochemical cells composed of PSII have also been developed for solar-driven water splitting into H2 and O2. Such a strategy to bridge natural photosynthesis with artificial photosynthesis is discussed in this minireview.
Collapse
|
14
|
Kowalska D, Szalkowski M, Ashraf K, Grzelak J, Lokstein H, Niedziolka-Jonsson J, Cogdell R, Mackowski S. Spectrally selective fluorescence imaging of Chlorobaculum tepidum reaction centers conjugated to chelator-modified silver nanowires. PHOTOSYNTHESIS RESEARCH 2018; 135:329-336. [PMID: 29090426 PMCID: PMC5784008 DOI: 10.1007/s11120-017-0455-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 10/04/2017] [Indexed: 06/07/2023]
Abstract
A polyhistidine tag (His-tag) present on Chlorobaculum tepidum reaction centers (RCs) was used to immobilize photosynthetic complexes on a silver nanowire (AgNW) modified with nickel-chelating nitrilo-triacetic acid (Ni-NTA). The optical properties of conjugated nanostructures were studied using wide-field and confocal fluorescence microscopy. Plasmonic enhancement of RCs conjugated to AgNWs was observed as their fluorescence intensity dependence on the excitation wavelength does not follow the excitation spectrum of RC complexes in solution. The strongest effect of plasmonic interactions on the emission intensity of RCs coincides with the absorption spectrum of AgNWs and is observed for excitation into the carotenoid absorption. From the absence of fluorescence decay shortening, we attribute the emission enhancement to increase of absorption in RC complexes.
Collapse
Affiliation(s)
- Dorota Kowalska
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, Torun, Poland.
| | - Marcin Szalkowski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, Torun, Poland
| | - Khuram Ashraf
- Institute of Molecular, Cell & Systems Biology, Glasgow Biomedical Research Centre, University of Glasgow, 120 University Place, Glasgow, G12 8TA, Scotland, UK
- Department of Physiology and Cellular Biophysics, Columbia University, Russ Berrie Pavilion, 1150 St. Nicholas Avenue, New York, NY, 10025, USA
| | - Justyna Grzelak
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, Torun, Poland
| | - Heiko Lokstein
- Institute of Molecular, Cell & Systems Biology, Glasgow Biomedical Research Centre, University of Glasgow, 120 University Place, Glasgow, G12 8TA, Scotland, UK
- Department of Chemical Physics and Optics, Charles University, Ke Karlovu 3, Prague, Czech Republic
| | - Joanna Niedziolka-Jonsson
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw, Poland
- Baltic Institute of Technology, Al. Zwycięstwa 96/98, Gdynia, Poland
| | - Richard Cogdell
- Institute of Molecular, Cell & Systems Biology, Glasgow Biomedical Research Centre, University of Glasgow, 120 University Place, Glasgow, G12 8TA, Scotland, UK
| | - Sebastian Mackowski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, Torun, Poland.
- Baltic Institute of Technology, Al. Zwycięstwa 96/98, Gdynia, Poland.
| |
Collapse
|
15
|
Detection of Singlet Oxygen Formation inside Photoactive Biohybrid Composite Material. MATERIALS 2017; 11:ma11010028. [PMID: 29278357 PMCID: PMC5793526 DOI: 10.3390/ma11010028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 11/27/2017] [Accepted: 12/21/2017] [Indexed: 11/16/2022]
Abstract
Photosynthetic reaction center proteins (RCs) are the most efficient light energy converter systems in nature. The first steps of the primary charge separation in photosynthesis take place in these proteins. Due to their unique properties, combining RCs with nano-structures promising applications can be predicted in optoelectronic systems. In the present work RCs purified from Rhodobacter sphaeroides purple bacteria were immobilized on multiwalled carbon nanotubes (CNTs). Carboxyl—and amine-functionalised CNTs were used, so different binding procedures, physical sorption and chemical sorption as well, could be applied as immobilization techniques. Light-induced singlet oxygen production was measured in the prepared photoactive biocomposites in water-based suspension by histidine mediated chemical trapping. Carbon nanotubes were applied under different conditions in order to understand their role in the equilibration of singlet oxygen concentration in the suspension. CNTs acted as effective quenchers of 1O2 either by physical (resonance) energy transfer or by chemical (oxidation) reaction and their efficiency showed dependence on the diffusion distance of 1O2.
Collapse
|
16
|
Szabó T, Csekő R, Hajdu K, Nagy K, Sipos O, Galajda P, Garab G, Nagy L. Sensing photosynthetic herbicides in an electrochemical flow cell. PHOTOSYNTHESIS RESEARCH 2017; 132:127-134. [PMID: 27709414 DOI: 10.1007/s11120-016-0314-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 09/26/2016] [Indexed: 06/06/2023]
Abstract
Specific inhibitory reactions of herbicides with photosynthetic reaction centers bound to working electrodes were monitored in a conventional electrochemical cell and a newly designed microfluidic electrochemical flow cell. In both cases, the bacterial reaction centers were bound to a transparent conductive metal oxide, indium-tin-oxide, electrode through carbon nanotubes. In the conventional cell, photocurrent densities of up to a few μA/cm2 could be measured routinely. The photocurrent could be blocked by the photosynthetic inhibitor terbutryn (I 50 = 0.38 ± 0.14 μM) and o-phenanthroline (I 50 = 63.9 ± 12.2 μM). The microfluidic flow cell device enabled us to reduce the sample volume and to simplify the electrode arrangement. The useful area of the electrodes remained the same (ca. 2 cm2), similar to the classical electrochemical cell; however, the size of the cell was reduced considerably. The microfluidic flow control enabled us monitoring in real time the binding/unbinding of the inhibitor and cofactor molecules at the secondary quinone site.
Collapse
Affiliation(s)
- Tibor Szabó
- Department of Medical Physics and Informatics, University of Szeged, H-6720, Rerrich B. tér 1, Szeged, Hungary
| | - Richárd Csekő
- Department of Medical Physics and Informatics, University of Szeged, H-6720, Rerrich B. tér 1, Szeged, Hungary
| | - Kata Hajdu
- Department of Medical Physics and Informatics, University of Szeged, H-6720, Rerrich B. tér 1, Szeged, Hungary
| | - Krisztina Nagy
- Biological Research Centre, Institue of Biophysics, Hungarian Academy of Sciences, Szeged, Hungary
| | - Orsolya Sipos
- Biological Research Centre, Institue of Biophysics, Hungarian Academy of Sciences, Szeged, Hungary
| | - Péter Galajda
- Biological Research Centre, Institue of Biophysics, Hungarian Academy of Sciences, Szeged, Hungary
| | - Győző Garab
- Biological Research Centre, Institue of Plant Biology, Hungarian Academy of Sciences, Szeged, Hungary
- Biofotonika R&D Ltd., Szeged, Hungary
| | - László Nagy
- Department of Medical Physics and Informatics, University of Szeged, H-6720, Rerrich B. tér 1, Szeged, Hungary.
| |
Collapse
|
17
|
Kerry RG, Gouda S, Das G, Vishnuprasad CN, Patra JK. Agricultural Nanotechnologies: Current Applications and Future Prospects. Microb Biotechnol 2017. [DOI: 10.1007/978-981-10-6847-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
18
|
Kasuno M, Kimura H, Yasutomo H, Torimura M, Murakami D, Tsukatani Y, Hanada S, Matsushita T, Tao H. An Evaluation of Sensor Performance for Harmful Compounds by Using Photo-Induced Electron Transfer from Photosynthetic Membranes to Electrodes. SENSORS 2016; 16:438. [PMID: 27023553 PMCID: PMC4850952 DOI: 10.3390/s16040438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/18/2016] [Accepted: 03/22/2016] [Indexed: 11/16/2022]
Abstract
Rapid, simple, and low-cost screening procedures are necessary for the detection of harmful compounds in the effluent that flows out of point sources such as industrial outfall. The present study investigated the effects on a novel sensor of harmful compounds such as KCN, phenol, and herbicides such as 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), 2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine (atrazine), and 2-N-tert-butyl-4-N-ethyl-6-methylsulfanyl-1,3,5-triazine-2,4-diamine (terbutryn). The sensor employed an electrode system that incorporated the photocurrent of intra-cytoplasmic membranes (so-called chromatophores) prepared from photosynthetic bacteria and linked using carbon paste electrodes. The amperometric curve (photocurrent-time curve) of photo-induced electron transfer from chromatophores of the purple photosynthetic bacterium Rhodobacter sphaeroides to the electrode via an exogenous electron acceptor was composed of two characteristic phases: an abrupt increase in current immediately after illumination (I₀), and constant current over time (Ic). Compared with other redox compounds, 2,5-dichloro-1,4-benzoquinone (DCBQ) was the most useful exogenous electron acceptor in this system. Photo-reduction of DCBQ exhibited Michaelis-Menten-like kinetics, and reduction rates were dependent on the amount of DCBQ and the photon flux intensity. The Ic decreased in the presence of KCN at concentrations over 0.05 μM (=μmol·dm(-3)). The I₀ decreased following the addition of phenol at concentrations over 20 μM. The Ic was affected by terbutryn at concentrations over 10 μM. In contrast, DCMU and atrazine had no effect on either I₀ or Ic. The utility of this electrode system for the detection of harmful compounds is discussed.
Collapse
Affiliation(s)
- Megumi Kasuno
- Department of Materials Chemistry, Faculty of Science and Technology, Ryukoku University, Otsu, Shiga 520-2194, Japan.
| | - Hiroki Kimura
- Department of Materials Chemistry, Faculty of Science and Technology, Ryukoku University, Otsu, Shiga 520-2194, Japan.
| | - Hisataka Yasutomo
- Department of Materials Chemistry, Faculty of Science and Technology, Ryukoku University, Otsu, Shiga 520-2194, Japan.
| | - Masaki Torimura
- Research Institute for Environmental Management Technology, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8569, Japan.
| | - Daisuke Murakami
- Research Institute for Environmental Management Technology, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8569, Japan.
| | - Yusuke Tsukatani
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo 152-8550, Japan.
| | - Satoshi Hanada
- Institute for Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan.
| | - Takayuki Matsushita
- Department of Materials Chemistry, Faculty of Science and Technology, Ryukoku University, Otsu, Shiga 520-2194, Japan.
| | - Hiroaki Tao
- Research Institute for Environmental Management Technology, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8569, Japan.
| |
Collapse
|
19
|
Chatzipetrou M, Milano F, Giotta L, Chirizzi D, Trotta M, Massaouti M, Guascito M, Zergioti I. Functionalization of gold screen printed electrodes with bacterial photosynthetic reaction centers by laser printing technology for mediatorless herbicide biosensing. Electrochem commun 2016. [DOI: 10.1016/j.elecom.2016.01.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
20
|
la Gatta S, Omar OH, Agostiano A, Milano F, Tangorra RR, Operamolla A, Chiorboli C, Argazzi R, Natali M, Trotta M, Farinola GM, Ragni R. A far-red emitting aryleneethynylene fluorophore used as light harvesting antenna in hybrid assembly with the photosynthetic reaction center. ACTA ACUST UNITED AC 2015. [DOI: 10.1557/adv.2015.33] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
21
|
Szabó T, Magyar M, Hajdu K, Dorogi M, Nyerki E, Tóth T, Lingvay M, Garab G, Hernádi K, Nagy L. Structural and Functional Hierarchy in Photosynthetic Energy Conversion-from Molecules to Nanostructures. NANOSCALE RESEARCH LETTERS 2015; 10:458. [PMID: 26619890 PMCID: PMC4666181 DOI: 10.1186/s11671-015-1173-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 11/23/2015] [Indexed: 06/05/2023]
Abstract
Basic principles of structural and functional requirements of photosynthetic energy conversion in hierarchically organized machineries are reviewed. Blueprints of photosynthesis, the energetic basis of virtually all life on Earth, can serve the basis for constructing artificial light energy-converting molecular devices. In photosynthetic organisms, the conversion of light energy into chemical energy takes places in highly organized fine-tunable systems with structural and functional hierarchy. The incident photons are absorbed by light-harvesting complexes, which funnel the excitation energy into reaction centre (RC) protein complexes containing redox-active chlorophyll molecules; the primary charge separations in the RCs are followed by vectorial transport of charges (electrons and protons) in the photosynthetic membrane. RCs possess properties that make their use in solar energy-converting and integrated optoelectronic systems feasible. Therefore, there is a large interest in many laboratories and in the industry toward their use in molecular devices. RCs have been bound to different carrier matrices, with their photophysical and photochemical activities largely retained in the nano-systems and with electronic connection to conducting surfaces. We show examples of RCs bound to carbon-based materials (functionalized and non-functionalized single- and multiwalled carbon nanotubes), transitional metal oxides (ITO) and conducting polymers and porous silicon and characterize their photochemical activities. Recently, we adapted several physical and chemical methods for binding RCs to different nanomaterials. It is generally found that the P(+)(QAQB)(-) charge pair, which is formed after single saturating light excitation is stabilized after the attachment of the RCs to the nanostructures, which is followed by slow reorganization of the protein structure. Measuring the electric conductivity in a direct contact mode or in electrochemical cell indicates that there is an electronic interaction between the protein and the inorganic carrier matrices. This can be a basis of sensing element of bio-hybrid device for biosensor and/or optoelectronic applications.
Collapse
Affiliation(s)
- Tibor Szabó
- Department of Medical Physics and Informatics, University of Szeged, Rerrich B. tér 1., H-6721, Szeged, Hungary.
| | - Melinda Magyar
- Department of Medical Physics and Informatics, University of Szeged, Rerrich B. tér 1., H-6721, Szeged, Hungary.
| | - Kata Hajdu
- Department of Medical Physics and Informatics, University of Szeged, Rerrich B. tér 1., H-6721, Szeged, Hungary.
| | - Márta Dorogi
- Biological Research Center, Hungarian Academy of Sciences, Temesvari krt.62, H-6726, Szeged, Hungary.
- Biophotonics R&D Ltd., Temesvari krt.62, H-6726, Szeged, Hungary.
| | - Emil Nyerki
- Department of Medical Physics and Informatics, University of Szeged, Rerrich B. tér 1., H-6721, Szeged, Hungary.
| | - Tünde Tóth
- Department of Medical Physics and Informatics, University of Szeged, Rerrich B. tér 1., H-6721, Szeged, Hungary.
| | - Mónika Lingvay
- Department of Medical Physics and Informatics, University of Szeged, Rerrich B. tér 1., H-6721, Szeged, Hungary.
| | - Győző Garab
- Biological Research Center, Hungarian Academy of Sciences, Temesvari krt.62, H-6726, Szeged, Hungary.
- Biophotonics R&D Ltd., Temesvari krt.62, H-6726, Szeged, Hungary.
| | - Klára Hernádi
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary.
| | - László Nagy
- Department of Medical Physics and Informatics, University of Szeged, Rerrich B. tér 1., H-6721, Szeged, Hungary.
| |
Collapse
|
22
|
Gartzia-Rivero L, Bañuelos J, López-Arbeloa I. Excitation energy transfer in artificial antennas: from photoactive materials to molecular assemblies. INT REV PHYS CHEM 2015. [DOI: 10.1080/0144235x.2015.1075279] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- L. Gartzia-Rivero
- Dpto. Química Física, Universidad del País Vasco (UPV-EHU), Aptdo. 644, Bilbao 48080, Spain
| | - J. Bañuelos
- Dpto. Química Física, Universidad del País Vasco (UPV-EHU), Aptdo. 644, Bilbao 48080, Spain
| | - I. López-Arbeloa
- Dpto. Química Física, Universidad del País Vasco (UPV-EHU), Aptdo. 644, Bilbao 48080, Spain
| |
Collapse
|
23
|
Beam JC, LeBlanc G, Gizzie EA, Ivanov BL, Needell DR, Shearer MJ, Jennings GK, Lukehart CM, Cliffel DE. Construction of a Semiconductor-Biological Interface for Solar Energy Conversion: p-Doped Silicon/Photosystem I/Zinc Oxide. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:10002-10007. [PMID: 26318861 DOI: 10.1021/acs.langmuir.5b02334] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The interface between photoactive biological materials with two distinct semiconducting electrodes is challenging both to develop and analyze. Building off of our previous work using films of photosystem I (PSI) on p-doped silicon, we have deposited a crystalline zinc oxide (ZnO) anode using confined-plume chemical deposition (CPCD). We demonstrate the ability of CPCD to deposit crystalline ZnO without damage to the PSI biomaterial. Using electrochemical techniques, we were able to probe this complex semiconductor-biological interface. Finally, as a proof of concept, a solid-state photovoltaic device consisting of p-doped silicon, PSI, ZnO, and ITO was constructed and evaluated.
Collapse
Affiliation(s)
- Jeremiah C Beam
- Department of Chemistry, ‡Department of Physics and Astronomy, and §Department of Chemical and Biomolecular Engineering, Vanderbilt University , Nashville, Tennessee 37235, United States
| | - Gabriel LeBlanc
- Department of Chemistry, ‡Department of Physics and Astronomy, and §Department of Chemical and Biomolecular Engineering, Vanderbilt University , Nashville, Tennessee 37235, United States
| | - Evan A Gizzie
- Department of Chemistry, ‡Department of Physics and Astronomy, and §Department of Chemical and Biomolecular Engineering, Vanderbilt University , Nashville, Tennessee 37235, United States
| | - Borislav L Ivanov
- Department of Chemistry, ‡Department of Physics and Astronomy, and §Department of Chemical and Biomolecular Engineering, Vanderbilt University , Nashville, Tennessee 37235, United States
| | - David R Needell
- Department of Chemistry, ‡Department of Physics and Astronomy, and §Department of Chemical and Biomolecular Engineering, Vanderbilt University , Nashville, Tennessee 37235, United States
| | - Melinda J Shearer
- Department of Chemistry, ‡Department of Physics and Astronomy, and §Department of Chemical and Biomolecular Engineering, Vanderbilt University , Nashville, Tennessee 37235, United States
| | - G Kane Jennings
- Department of Chemistry, ‡Department of Physics and Astronomy, and §Department of Chemical and Biomolecular Engineering, Vanderbilt University , Nashville, Tennessee 37235, United States
| | - Charles M Lukehart
- Department of Chemistry, ‡Department of Physics and Astronomy, and §Department of Chemical and Biomolecular Engineering, Vanderbilt University , Nashville, Tennessee 37235, United States
| | - David E Cliffel
- Department of Chemistry, ‡Department of Physics and Astronomy, and §Department of Chemical and Biomolecular Engineering, Vanderbilt University , Nashville, Tennessee 37235, United States
| |
Collapse
|
24
|
Use of biomolecular scaffolds for assembling multistep light harvesting and energy transfer devices. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2015. [DOI: 10.1016/j.jphotochemrev.2014.12.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
25
|
Tangorra RR, Operamolla A, Milano F, Omar OH, Henrard J, Comparelli R, Italiano F, Agostiano A, De Leo V, Marotta R, Falqui A, Farinola GM, Trotta M. Assembly of a photosynthetic reaction center with ABA tri-block polymersomes: highlights on protein localization. Photochem Photobiol Sci 2015. [DOI: 10.1039/c5pp00189g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The micelle-to-vesicle transition technique was used to reconstitute the integral membrane protein photosynthetic reaction center (RC) and the position of the RC in the polymersome vesicle was investigated.
Collapse
|