1
|
Teixeira SC, Melo Fernandes TAD, Souza GD, Rosini AM, Fajardo Martínez AF, Gomes AO, Alves RN, Lopes DS, Silva MVD, Beraldo-Neto E, Clissa PB, Barbosa BF, Ávila VDMR, Ferro EAV. MjTX-II, a Lys49-PLA 2 from Bothrops moojeni snake venom, restricts Toxoplasma gondii infection via ROS and VEGF regulation. Chem Biol Interact 2025; 409:111417. [PMID: 39922520 DOI: 10.1016/j.cbi.2025.111417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/04/2025] [Accepted: 02/06/2025] [Indexed: 02/10/2025]
Abstract
Owing to the lack of efficient therapy and emerging resistance strains, toxoplasmosis affects about one-third of the world's population. Also, pregnancy-related infection can cause vertical transmission and result in fetal death. Despite the global efforts to combat Toxoplasma gondii infection, conventional therapies have been associated with serious side effects. Therefore, it is relevant to search for effective and less-toxic treatments of toxoplasmosis. In this scenario, snake venoms emerged as a promising source of therapeutic molecules due to their wide variety of biological effects. The present study investigated the anti-T. gondii effects of MjTX-II, a Lys49-PLA2 isolated from Bothrops moojeni, in trophoblast cells and villous explants from the third trimester of pregnancy. We found that non-cytotoxic doses of MjTX-II impaired parasite invasion and intracellular growth in BeWo cells. Also, MjTX-II-pre-treated T. gondii tachyzoites exhibited irregular rough surfaces, papules, and dimples, suggesting a possible action directly on the parasites. Moreover, MjTX-II was able to modulate the host environment by increasing ROS and cytokine levels involved in the control of infection. In addition, we observed that MjTX-II decreased VEGF levels and the addition of rVEGF increased T. gondii growth in BeWo cells. Through molecular docking simulations, we verified that MjTX-II is able to bind VEGFR2 and ICAM-1 receptors associated with parasite proliferation and dissemination. This work contributes to the discovery of therapeutic targets against T. gondii infection and for the development of effective and low-toxic antiparasitic molecules against congenital toxoplasmosis.
Collapse
Affiliation(s)
- Samuel Cota Teixeira
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | | | - Guilherme de Souza
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Alessandra Monteiro Rosini
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Aryani Felixa Fajardo Martínez
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Angelica Oliveira Gomes
- Institute of Natural and Biological Sciences, Universidade Federal do Triângulo Mineiro, Uberaba, MG, Brazil
| | - Rosiane Nascimento Alves
- Department of Agricultural and Natural Science, Universidade do Estado de Minas Gerais, Ituiutaba, MG, Brazil
| | - Daiana Silva Lopes
- Institute Multidisciplinary in Health, Universidade Federal da Bahia, Vitória da Conquista, BA, Brazil
| | | | | | | | - Bellisa Freitas Barbosa
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Veridiana de Melo Rodrigues Ávila
- Laboratory of Biochemistry and Animal Toxins, Institute of Biotechnology, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil.
| | - Eloisa Amália Vieira Ferro
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil.
| |
Collapse
|
2
|
Mahdy A, Mostafa OMS, Aboueldahab MM, Nigm AH. Antiparasitic activity of Cerastes cerastes venom on Schistosoma mansoni infected mice. Exp Parasitol 2024; 268:108866. [PMID: 39617195 DOI: 10.1016/j.exppara.2024.108866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/17/2024] [Accepted: 11/26/2024] [Indexed: 12/09/2024]
Abstract
This study investigates whether Cerastes cerastes venom (CCV) administrated at different doses (3 and 6μg/mouse) and times (a week pre-infection, the first week post-infection, and the fifth week post-infection) possesses antischistosomal activity on Schistosoma mansoni infected mice. The results showed that treatment with half lethal dose (6 μg/mouse) of CCV, at various time schedules, led to a significant decrease in the total worm burden. However, quarter lethal dose (3μg/mouse) of CCV showed a significant decrease in the total worm burden only when administered a week pre-infection. The total number of deposited eggs by females of S. mansoni was significantly decreased in the liver and the intestine of mice treated with 3μg/mouse or 6μg/mouse CCV, associated with significant alterations in the oogram pattern with significant elevation in dead eggs levels and significant decrease in the number of mature eggs. Histological examinations illustrated a significant decrease in the number and diameter of hepatic granulomas in high dose (6μg/mouse) CCV-treated groups, while it was significant only a week pre-infection in low dose (3μg/mouse) CCV-treated groups. CCV also caused several tegumental changes in treated female and male worms, including loss of the normal surface architecture, tubercular destruction, loss of tubercles' spines, oedema, erosion, membrane blebbing, and swelling. S. mansoni-infected mice groups treated with CCV (6μg/mouse) a week before infection and at fifth week post-infection had, in all individuals up to a dilution of 1:1600, higher levels of antibodies against adult worm antigen. The current investigation found that C. cerastes venom has potential antischistosomal action in a time and dose-dependent manner (more enhanced antischistosomal effects at a dose of 6 μg and in the group treated in a week before infection), in addition to its potential immunomodulatory effect against schistosomiasis infection. More studies will be required to identify the venom's active ingredients that affect the host's immunology. This information could be used in the future to develop novel antischistosomal therapies.
Collapse
Affiliation(s)
- Asmaa Mahdy
- Department of Zoology, Faculty of Science, Ain Shams University, Abbassia, 11566, Cairo, Egypt.
| | - Osama M S Mostafa
- Department of Zoology, Faculty of Science, Ain Shams University, Abbassia, 11566, Cairo, Egypt.
| | - Marwa M Aboueldahab
- Department of Zoology, Faculty of Science, Ain Shams University, Abbassia, 11566, Cairo, Egypt.
| | - Ahmed H Nigm
- Department of Zoology, Faculty of Science, Ain Shams University, Abbassia, 11566, Cairo, Egypt.
| |
Collapse
|
3
|
Lomonte B. Lys49 myotoxins, secreted phospholipase A 2-like proteins of viperid venoms: A comprehensive review. Toxicon 2023; 224:107024. [PMID: 36632869 DOI: 10.1016/j.toxicon.2023.107024] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/06/2023] [Accepted: 01/06/2023] [Indexed: 01/11/2023]
Abstract
Muscle necrosis is a potential clinical complication of snakebite envenomings, which in severe cases can lead to functional or physical sequelae such as disability or amputation. Snake venom proteins with the ability to directly damage skeletal muscle fibers are collectively referred to as myotoxins, and include three main types: cytolysins of the "three-finger toxin" protein family expressed in many elapid venoms, the so-called "small" myotoxins found in a number of rattlesnake venoms, and the widespread secreted phospholipase A2 (sPLA2) molecules. Among the latter, protein variants that conserve the sPLA2 structure, but lack such enzymatic activity, have been increasingly found in the venoms of many viperid species. Intriguingly, these sPLA2-like proteins are able to induce muscle necrosis by a mechanism independent of phospholipid hydrolysis. They are commonly referred to as "Lys49 myotoxins" since they most often present, among other substitutions, the replacement of the otherwise invariant residue Asp49 of sPLA2s by Lys. This work comprehensively reviews the historical developments and current knowledge towards deciphering the mechanism of action of Lys49 sPLA2-like myotoxins, and points out main gaps to be filled for a better understanding of these multifaceted snake venom proteins, to hopefully lead to improved treatments for snakebites.
Collapse
Affiliation(s)
- Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, 11501, Costa Rica.
| |
Collapse
|
4
|
Salama WH, Shaheen MNF, Shahein YE. Egyptian cobra (Naja haje haje) venom phospholipase A2: a promising antiviral agent with potent virucidal activity against simian rotavirus and bovine coronavirus. Arch Microbiol 2022; 204:526. [PMID: 35895237 PMCID: PMC9326960 DOI: 10.1007/s00203-022-03139-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/06/2022] [Accepted: 07/12/2022] [Indexed: 11/17/2022]
Abstract
Viral infections are linked to a variety of human diseases. Despite the achievements made in drug and vaccine development, several viruses still lack preventive vaccines and efficient antiviral compounds. Thus, developing novel antiviral agents is of great concern, particularly the natural products that are promising candidates for such discoveries. In this study, we have purified an approximately 15 kDa basic phospholipase A2 (PLA2) enzyme from the Egyptian cobra Naja haje haje venom. The purified N. haje PLA2 showed a specific activity of 22 units/mg protein against 6 units/mg protein for the whole crude venom with 3.67-fold purification. The antiviral activity of purified N. haje PLA2 has been investigated in vitro against bovine coronavirus (BCoV) and simian rotavirus (RV SA-11). Our results showed that the CC50 of PLA2 were 33.6 and 29 µg/ml against MDBK and MA104 cell lines, respectively. Antiviral analysis of N. haje PLA2 showed an inhibition of BCoV and RV SA-11 infections with a therapeutic index equal to 33.6 and 16, respectively. Moreover, N. haje PLA2 decreased the BCoV and RV SA-11 titers by 4.25 log10 TCID50 and 2.5 log10 TCID50, respectively. Thus, this research suggests the potential antiviral activity of purified N. haje PLA2 against BCoV and RV SA-11 infections in vitro.
Collapse
Affiliation(s)
- Walaa H Salama
- Molecular Biology Department, Biotechnology Research Institute, National Research Centre, Dokki, Cairo, 12622, Egypt.
| | - Mohamed N F Shaheen
- Environmental Virology Laboratory, Water Pollution Research Department, Environment and Climate Change Research Institute, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - Yasser E Shahein
- Molecular Biology Department, Biotechnology Research Institute, National Research Centre, Dokki, Cairo, 12622, Egypt
| |
Collapse
|
5
|
Teixeira SC, da Silva MS, Gomes AAS, Moretti NS, Lopes DS, Ferro EAV, Rodrigues VDM. Panacea within a Pandora's box: the antiparasitic effects of phospholipases A 2 (PLA 2s) from snake venoms. Trends Parasitol 2021; 38:80-94. [PMID: 34364805 DOI: 10.1016/j.pt.2021.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 10/20/2022]
Abstract
Parasitic diseases affect millions of individuals worldwide, mainly in low-income regions. There is no cure for most of these diseases, and the treatment relies on drugs that have side effects and lead to drug resistance, emphasizing the urgency to find new treatments. Snake venom has been gaining prominence as a rich source of molecules with antiparasitic potentials, such as phospholipases A2 (PLA2s). Here, we compile the findings involving PLA2s with antiparasitic activities against helminths, Plasmodium, Toxoplasma, and trypanosomatids. We indicate their molecular features, highlighting the possible antiparasitic mechanisms of action of these proteins. We also demonstrate interactions between PLA2s and some parasite membrane components, shedding light on potential targets for drug design that may provide better treatment for the illnesses caused by parasites.
Collapse
Affiliation(s)
- Samuel Cota Teixeira
- Department of Immunology, Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia (UFU), MG, Brazil.
| | - Marcelo Santos da Silva
- DNA Replication and Repair Laboratory (DRRL), Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | | | - Nilmar Silvio Moretti
- Laboratório de Biologia Molecular de Patógenos (LBMP), Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Daiana Silva Lopes
- Multidisciplinary Institute of Health, Anísio Teixeira Campus, Federal University of Bahia (UFBA), Vitória da Conquista, BA, Brazil
| | - Eloisa Amália Vieira Ferro
- Department of Immunology, Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia (UFU), MG, Brazil
| | - Veridiana de Melo Rodrigues
- Laboratory of Biochemistry and Animal Toxins, Institute of Biotechnology, Federal University of Uberlândia (UFU), Uberlândia, MG, Brazil.
| |
Collapse
|
6
|
Teixeira SC, Borges BC, Oliveira VQ, Carregosa LS, Bastos LA, Santos IA, Jardim ACG, Melo FF, Freitas LM, Rodrigues VM, Lopes DS. Insights into the antiviral activity of phospholipases A 2 (PLA 2s) from snake venoms. Int J Biol Macromol 2020; 164:616-625. [PMID: 32698062 PMCID: PMC7368918 DOI: 10.1016/j.ijbiomac.2020.07.178] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/08/2020] [Accepted: 07/14/2020] [Indexed: 12/18/2022]
Abstract
Viruses are associated with several human diseases that infect a large number of individuals, hence directly affecting global health and economy. Owing to the lack of efficient vaccines, antiviral therapy and emerging resistance strains, many viruses are considered as a potential threat to public health. Therefore, researches have been developed to identify new drug candidates for future treatments. Among them, antiviral research based on natural molecules is a promising approach. Phospholipases A2 (PLA2s) isolated from snake venom have shown significant antiviral activity against some viruses such as Dengue virus, Human Immunodeficiency virus, Hepatitis C virus and Yellow fever virus, and have emerged as an attractive alternative strategy for the development of novel antiviral therapy. Thus, this review provides an overview of remarkable findings involving PLA2s from snake venom that possess antiviral activity, and discusses the mechanisms of action mediated by PLA2s against different stages of virus replication cycle. Additionally, molecular docking simulations were performed by interacting between phospholipids from Dengue virus envelope and PLA2s from Bothrops asper snake venom. Studies on snake venom PLA2s highlight the potential use of these proteins for the development of broad-spectrum antiviral drugs.
Collapse
Affiliation(s)
- S C Teixeira
- Department of Immunology, Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - B C Borges
- Department of Immunology, Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - V Q Oliveira
- Multidisciplinary Institute of Health, Anísio Teixeira Campus, Federal University of Bahia, Vitória da Conquista, BA, Brazil
| | - L S Carregosa
- Multidisciplinary Institute of Health, Anísio Teixeira Campus, Federal University of Bahia, Vitória da Conquista, BA, Brazil
| | - L A Bastos
- Multidisciplinary Institute of Health, Anísio Teixeira Campus, Federal University of Bahia, Vitória da Conquista, BA, Brazil
| | - I A Santos
- Laboratory of Virology, Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - A C G Jardim
- Laboratory of Virology, Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - F F Melo
- Multidisciplinary Institute of Health, Anísio Teixeira Campus, Federal University of Bahia, Vitória da Conquista, BA, Brazil
| | - L M Freitas
- Multidisciplinary Institute of Health, Anísio Teixeira Campus, Federal University of Bahia, Vitória da Conquista, BA, Brazil
| | - V M Rodrigues
- Laboratory of Biochemistry and Animal Toxins, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG, Brazil.
| | - D S Lopes
- Multidisciplinary Institute of Health, Anísio Teixeira Campus, Federal University of Bahia, Vitória da Conquista, BA, Brazil; Institute of Health Sciences, Department of Bio-Function, Federal University of Bahia, Salvador, BA, Brazil.
| |
Collapse
|
7
|
Zuliani JP, Soares AM. Toxins of Animal Venoms and Inhibitors. Curr Top Med Chem 2019; 19:1950-1951. [DOI: 10.2174/156802661922191024125315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Juliana Pavan Zuliani
- Lab. Imunologia Celular Aplicada à Saúde FIOCRUZ-RO Fundação Oswaldo Cruz, FIOCRUZ Unidade Rondônia, Porto Velho-RO, Brazil
| | - Andreimar Martins Soares
- Centro de Estudos de Biomoléculas Aplicadas à Saúde FIOCRUZ-RO CEBio, Fundação Oswaldo Cruz, FIOCRUZ, Unidade Rondônia Porto Velho-RO, Brazil
| |
Collapse
|