1
|
El-Kattan N, Ibrahim MA, Emam AN, Metwally K, Youssef FS, Nassar NA, Mansour AS. Evaluation of the antimicrobial activity of chitosan- and curcumin-capped copper oxide nanostructures against multi-drug-resistant microorganisms. NANOSCALE ADVANCES 2025:d4na00955j. [PMID: 40182310 PMCID: PMC11962744 DOI: 10.1039/d4na00955j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 03/18/2025] [Indexed: 04/05/2025]
Abstract
The emergence of multi-drug-resistant microorganisms presents a serious threat to infection control, for which new antimicrobial strategies are urgently needed. Herein, the antimicrobial activities of copper oxide nanoparticles capped with curcumin (Cur-CuO NPs) and copper oxide nanoparticles capped with chitosan (CS-CuO NPs) were investigated. They were prepared via the co-precipitation method. A total of 180 clinical ICU patients were found to have 70% Gram-negative and 30% Gram-positive isolates. Antimicrobial susceptibility testing indicated resistance of these isolates to 14 among the 21 tested antibiotics. Physicochemical properties of the curcumin-capped (Cur-CuO NPs) and chitosan-capped (CS-CuO NPs) copper oxide nanoparticles were identified using UV-vis spectroscopy, transmission electron microscopy (TEM), dynamic light scattering (DLS), zeta-potential (ζ), and Fourier transform infrared (FT-IR) spectroscopy. Cur-CuO- and CS-CuO-NPs exhibited potent antimicrobial efficacy, wherein CS-CuO NPs were found to possess a lower minimum inhibitory concentration (MIC) (3.9-15.6 μg mL-1) than Cur-CuO NPs (14.5-31.2 μg mL-1). Biocompatibility assay showed that Cur-CuO NPs were safer with an IC50 dose of 74.17 μg mL-1 than CS-CuO NPs with an IC50 dose of 41.01 μg mL-1. Results revealed that the Cur-CuO- and CS-CuO-NPs have the potential to be safely used as effective antimicrobial agents in clinical applications at low concentrations (6.25-12.5 μg mL-1).
Collapse
Affiliation(s)
- Noura El-Kattan
- Department of Microbiology, Research Institute of Medical Entomology, General Organization for Teaching Hospitals and Institutes Giza Egypt
| | - Mostafa A Ibrahim
- Production and R&D Unit, NanoFab Technology Company 6th October City Giza Egypt
| | - Ahmed N Emam
- Refractories, Ceramics and Building Materials Department, Advanced Materials Technology & Mineral Resources Research Institute, National Research Centre (NRC) El Bohouth St., Dokki 12622 Cairo Egypt
- Nanomedicine & Tissue Engineering Research Lab, Medical Research Centre of Excellence, National Research Centre (NRC) El Bohouth St., Dokki 12622 Cairo Egypt
| | - Khaled Metwally
- Genetics Department, Faculty of Agriculture, Ain Shams University P.O. Box 68, Hadayek Shoubra 11241 Cairo Egypt
| | - Fady Sayed Youssef
- Department of Pharmacology Faculty of Veterinary Medicine, Cairo University 12211 Giza Egypt
| | | | - Ahmed S Mansour
- Department of Laser Applications in Meteorology, Chemistry and Agriculture, National Institute of Laser Enhanced Sciences (NILES), Cairo University Cairo Egypt
- Faculty of Postgraduate Studies for Nanotechnology, Cairo University Zayed City Giza Egypt
| |
Collapse
|
2
|
Yamari I, Abchir O, Nour H, Khedraoui M, Rossafi B, Errougui A, Talbi M, Samadi A, Kouali MHE, Chtita S. Unveiling Moroccan Nature's Arsenal: A Computational Molecular Docking, Density Functional Theory, and Molecular Dynamics Study of Natural Compounds against Drug-Resistant Fungal Infections. Pharmaceuticals (Basel) 2024; 17:886. [PMID: 39065737 PMCID: PMC11279552 DOI: 10.3390/ph17070886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
Candida albicans and Aspergillus fumigatus are recognized as significant fungal pathogens, responsible for various human infections. The rapid emergence of drug-resistant strains among these fungi requires the identification and development of innovative antifungal therapies. We undertook a comprehensive screening of 297 naturally occurring compounds to address this challenge. Using computational docking techniques, we systematically analyzed the binding affinity of each compound to key proteins from Candida albicans (PDB ID: 1EAG) and Aspergillus fumigatus (PDB ID: 3DJE). This rigorous in silico examination aimed to unveil compounds that could potentially inhibit the activity of these fungal infections. This was followed by an ADMET analysis of the top-ranked compound, providing valuable insights into the pharmacokinetic properties and potential toxicological profiles. To further validate our findings, the molecular reactivity and stability were computed using the DFT calculation and molecular dynamics simulation, providing a deeper understanding of the stability and behavior of the top-ranking compounds in a biological environment. The outcomes of our study identified a subset of natural compounds that, based on our analysis, demonstrate notable potential as antifungal candidates. With further experimental validation, these compounds could pave the way for new therapeutic strategies against drug-resistant fungal pathogens.
Collapse
Affiliation(s)
- Imane Yamari
- Faculty of Sciences Ben M’Sik, Hassan II University of Casablanca, Sidi Othman, Casablanca P.O. Box 7955, Morocco; (I.Y.); (O.A.); (M.K.); (B.R.); (A.E.); (M.T.); (M.E.K.)
| | - Oussama Abchir
- Faculty of Sciences Ben M’Sik, Hassan II University of Casablanca, Sidi Othman, Casablanca P.O. Box 7955, Morocco; (I.Y.); (O.A.); (M.K.); (B.R.); (A.E.); (M.T.); (M.E.K.)
| | - Hassan Nour
- Faculty of Sciences Ben M’Sik, Hassan II University of Casablanca, Sidi Othman, Casablanca P.O. Box 7955, Morocco; (I.Y.); (O.A.); (M.K.); (B.R.); (A.E.); (M.T.); (M.E.K.)
| | - Meriem Khedraoui
- Faculty of Sciences Ben M’Sik, Hassan II University of Casablanca, Sidi Othman, Casablanca P.O. Box 7955, Morocco; (I.Y.); (O.A.); (M.K.); (B.R.); (A.E.); (M.T.); (M.E.K.)
| | - Bouchra Rossafi
- Faculty of Sciences Ben M’Sik, Hassan II University of Casablanca, Sidi Othman, Casablanca P.O. Box 7955, Morocco; (I.Y.); (O.A.); (M.K.); (B.R.); (A.E.); (M.T.); (M.E.K.)
| | - Abdelkbir Errougui
- Faculty of Sciences Ben M’Sik, Hassan II University of Casablanca, Sidi Othman, Casablanca P.O. Box 7955, Morocco; (I.Y.); (O.A.); (M.K.); (B.R.); (A.E.); (M.T.); (M.E.K.)
| | - Mohammed Talbi
- Faculty of Sciences Ben M’Sik, Hassan II University of Casablanca, Sidi Othman, Casablanca P.O. Box 7955, Morocco; (I.Y.); (O.A.); (M.K.); (B.R.); (A.E.); (M.T.); (M.E.K.)
| | - Abdelouahid Samadi
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - MHammed El Kouali
- Faculty of Sciences Ben M’Sik, Hassan II University of Casablanca, Sidi Othman, Casablanca P.O. Box 7955, Morocco; (I.Y.); (O.A.); (M.K.); (B.R.); (A.E.); (M.T.); (M.E.K.)
| | - Samir Chtita
- Faculty of Sciences Ben M’Sik, Hassan II University of Casablanca, Sidi Othman, Casablanca P.O. Box 7955, Morocco; (I.Y.); (O.A.); (M.K.); (B.R.); (A.E.); (M.T.); (M.E.K.)
| |
Collapse
|
3
|
Inchingolo F, Inchingolo AD, Latini G, Trilli I, Ferrante L, Nardelli P, Malcangi G, Inchingolo AM, Mancini A, Palermo A, Dipalma G. The Role of Curcumin in Oral Health and Diseases: A Systematic Review. Antioxidants (Basel) 2024; 13:660. [PMID: 38929099 PMCID: PMC11200638 DOI: 10.3390/antiox13060660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Curcumin (Curcumin) belongs to the polyphenol family. It is extracted by drying the root of a plant of Asian origin, belonging to the Zingiberaceae family. The best-known species is Curcumincuma Longa. Curcumin has been recognized as having great therapeutic powers since ancient times. Studies on curcumin have since confirmed its powerful antioxidant properties, preventing both the formation of free radicals and their neutralization, having anti-inflammatory, antibacterial, immunological, and neuroprotective properties, as well as being a regulator of the intestinal microbiota with beneficial effects on the clinical manifestations of metabolic syndrome. Our study aimed to highlight how all these therapeutic aspects could benefit oral health, both preventing and improving the course of pathological processes. The effect of mouthwashes, and curcumin-based gels on the regulation of bacterial plaque and in the control of gingivitis, was largely comparable to that of using 0.20% chlorhexidine, with fewer side effects. Being a highly hydrophobic substance, it has a high permeability to cross the cell membrane. Bioavailability increases when combined with liposoluble substances (e.g., olive oil) and piperine, which improves absorption. Curcumin also has a negligible degree of toxicity, making it an excellent alternative to the use of gold standard products for oral disinfection.
Collapse
Affiliation(s)
- Francesco Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy or (A.D.I.); or (G.L.); or (I.T.); or (L.F.); (P.N.); or (A.M.I.); or (A.M.); or (G.D.)
| | - Alessio Danilo Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy or (A.D.I.); or (G.L.); or (I.T.); or (L.F.); (P.N.); or (A.M.I.); or (A.M.); or (G.D.)
| | - Giulia Latini
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy or (A.D.I.); or (G.L.); or (I.T.); or (L.F.); (P.N.); or (A.M.I.); or (A.M.); or (G.D.)
| | - Irma Trilli
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy or (A.D.I.); or (G.L.); or (I.T.); or (L.F.); (P.N.); or (A.M.I.); or (A.M.); or (G.D.)
| | - Laura Ferrante
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy or (A.D.I.); or (G.L.); or (I.T.); or (L.F.); (P.N.); or (A.M.I.); or (A.M.); or (G.D.)
| | - Paola Nardelli
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy or (A.D.I.); or (G.L.); or (I.T.); or (L.F.); (P.N.); or (A.M.I.); or (A.M.); or (G.D.)
| | - Giuseppina Malcangi
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy or (A.D.I.); or (G.L.); or (I.T.); or (L.F.); (P.N.); or (A.M.I.); or (A.M.); or (G.D.)
| | - Angelo Michele Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy or (A.D.I.); or (G.L.); or (I.T.); or (L.F.); (P.N.); or (A.M.I.); or (A.M.); or (G.D.)
| | - Antonio Mancini
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy or (A.D.I.); or (G.L.); or (I.T.); or (L.F.); (P.N.); or (A.M.I.); or (A.M.); or (G.D.)
| | - Andrea Palermo
- College of Medicine and Dentistry, Birmingham B4 6BN, UK;
| | - Gianna Dipalma
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy or (A.D.I.); or (G.L.); or (I.T.); or (L.F.); (P.N.); or (A.M.I.); or (A.M.); or (G.D.)
| |
Collapse
|
4
|
Balakrishnan D, Lee CI. Photodynamic impact of curcumin enhanced silver functionalized graphene nanocomposites on Candida virulence. DISCOVER NANO 2024; 19:71. [PMID: 38683264 PMCID: PMC11058173 DOI: 10.1186/s11671-024-04017-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/18/2024] [Indexed: 05/01/2024]
Abstract
Candida species are escalating resistance to conventional antifungal treatments, intensifying their virulence, and obstructing the effectiveness of antifungal medications. Addressing this challenge is essential for effectively managing Candida infections. The overarching objective is to advance the development of more efficient and precise therapies tailored to counter Candida infections. This study focuses on developing antifungal combined drugs using curcumin-enhanced silver-functionalized graphene nanocomposites (Cur-AgrGO) to effectively target key virulence factors of C. albicans, C. tropicalis, and C. glabrata (Candida spp.). The green reduction of graphene oxide (GO) using bioentities and active molecules makes this approach cost-effective and environmentally friendly. The nanocomposites were characterized using various techniques. Combining Cur-AgrGO with photodynamic therapy (PDT) demonstrated effective antifungal and antibiofilm activity with delayed growth and metabolism. The nanocomposites effectively suppressed hyphal transition and reduced key virulence factors, including proteinases, phospholipases, ergosterol levels, and cell membrane integrity. The findings suggest that Cur-AgrGO + PDT has potential as a treatment option for Candida infections. This innovative approach holds promise for treating Candida infections.
Collapse
Affiliation(s)
| | - Cheng-I Lee
- Department of Biomedical Sciences, National Chung Cheng University, Min-Hsiung, Chiayi, 62102, Taiwan, ROC.
- Center for Nano Bio-Detections, National Chung Cheng University, Min-Hsiung, Chiayi, 62102, Taiwan, ROC.
- Center for Innovative Research On Aging Society (CIRAS), National Chung Cheng University, Min-Hsiung, Chiayi, 62102, Taiwan, ROC.
- Advanced Institute of Manufacturing With High-Tech Innovations, National Chung Cheng University, Chiayi, 62102, Taiwan, ROC.
| |
Collapse
|
5
|
Photothermally Controlled Drug Release of Poly(d,l-lactide) Nanofibers Loaded with Indocyanine Green and Curcumin for Efficient Antimicrobial Photodynamic Therapy. Pharmaceutics 2023; 15:pharmaceutics15020327. [PMID: 36839649 PMCID: PMC9963466 DOI: 10.3390/pharmaceutics15020327] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Chronic wound infections with antibiotic-resistant bacteria have become a significant problem for modern healthcare systems since they are often associated with high costs and require profound topical wound management. Successful wound healing is achieved by reducing the bacterial load of the wound and providing an environment that enhances cell growth. In this context, nanofibers show remarkable success because their structure offers a promising drug delivery platform that can mimic the native extracellular matrix and accelerate cell proliferation. In our study, single-needle electrospinning, a versatile and cost-efficient technique, was used to shape polymers into an applicable and homogeneous fleece capable of a photothermally triggered drug release. It was combined with antimicrobial photodynamic therapy, a promising procedure against resistant bacteria. Therefore, poly(d,l-lactide) nanofibers loaded with curcumin and indocyanine green (ICG) were produced for local antimicrobial treatment. The mesh had a homogeneous structure, and the nanofibers showed a smooth surface. Recordings with a thermal camera showed that near-infrared light irradiation of ICG increased the temperature (>44 °C) in the surrounding medium. Release studies confirmed more than 29% enhanced curcumin release triggered by elevated temperature. The antimicrobial activity was tested against the gram-positive strain Staphylococcus saprophyticus subsp. bovis and the gram-negative strain Escherichia coli DH5 alpha. The nanofibers loaded with both photosensitizers and irradiated with both wavelengths reduced the bacterial viability (~4.4 log10, 99.996%) significantly more than the nanofibers loaded with only one photosensitizer (<1.7 log10, 97.828%) or irradiated with only one wavelength (<2.0 log10, 98.952%). In addition, our formulation efficiently eradicated persistent adhered bacteria by >4.3 log10 (99.995%), which was also confirmed visually. Finally, the produced nanofibers showed good biocompatibility, proven by the cellular viability of mouse fibroblasts (L929). The data demonstrate that we have developed a new economic nanofiber formulation, which offers a triggered drug release, excellent antimicrobial properties, and good biocompatibility.
Collapse
|
6
|
Lee YS, Chen X, Widiyanto TW, Orihara K, Shibata H, Kajiwara S. Curcumin affects function of Hsp90 and drug efflux pump of Candida albicans. Front Cell Infect Microbiol 2022; 12:944611. [PMID: 36237434 PMCID: PMC9551236 DOI: 10.3389/fcimb.2022.944611] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 09/07/2022] [Indexed: 11/13/2022] Open
Abstract
Candida albicans is a pathogenic yeast that causes candidiasis in immunocompromised patients. The overuse of antifungal drugs has led to the development of resistance to such drugs by this fungus, which is a major challenge in antifungal chemotherapy. One approach to this problem involves the utilization of new natural products as an alternative source of antifungals. Curcumin, one such natural product, has been widely studied as a drug candidate and is reported to exhibit antifungal activity against C. albicans. Although studies of the mechanism of curcumin against human cancer cells have shown that it inhibits heat shock protein 90 (Hsp90), little is known about its function against C. albicans. In this paper, using a doxycycline-mediated HSP90 strain and an HSP90-overexpressing strain of C. albicans, we demonstrated that the curcumin triggered a decrease in Hsp90 by affecting it at the post-transcriptional level. This also led to the downregulation of HOG1 and CDR1, resulting in a reduction of the stress response and efflux pump activity of C. albicans. However, the inhibition of HSP90 by curcumin was not due to the inhibition of transcription factors HSF1 or AHR1. We also found that curcumin can not only decrease the transcriptional expression of CDR1, but also inhibit the efflux pump activity of Cdr1. Hence, we conclude that disruption of HSP90 by curcumin could impair cell growth, stress responses and efflux pump activity of C. albicans.
Collapse
Affiliation(s)
- Yean Sheng Lee
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Xinyue Chen
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | | | - Kanami Orihara
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | | | - Susumu Kajiwara
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
7
|
Shakib P, Kalani H, Ho J, Dolatshah M, Amiri S, Cheraghipour K. A Systematic Review on Curcumin and Anti-Plasmodium berghei Effects. Curr Drug Discov Technol 2022; 19:e150322202249. [PMID: 35293297 DOI: 10.2174/1570163819666220315140736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/07/2021] [Accepted: 01/03/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Turmeric (Curcuma longa L.) is a popular spice, containing curcumin that is responsible for its therapeutic effects. Curcumin with anti-inflammatory, antioxidant, anti-cancer, and antimicrobial activities has led to a lot of research focusing on it over the years. This systematic review aimed to evaluate researches on anti-Plasmodium berghei activity of curcumin and its derivatives. METHODS Our study was performed according to PRISMA guidelines and was recorded in the database of systematic review and preclinical meta-analysis of CAMARADESNC3Rs (SyRF). The search was performed in five databases, namely Scopus, PubMed, Web of Science, EMBASE, and Google Scholar from 2010 to 2020. The following keywords were searched: "Plasmodium berghei", "Medicinal Plants", "Curcumin", "Concentration", Animals kind", "Treatment Durations", "Routes of Administration" and "in vivo". RESULTS Of the 3,500 papers initially obtained, 14 articles were reliable and were thus scrutinized. Animal models were included in all studies. The most commonly used animal strain were Albino (43%) followed by C57BL/6 (22%). The other studies used various murine strains, including BALB/c (14%) and ICR (7%). Two (14%) studies did not mention the strain of animal model used. Curcumin alone or in combination with other compounds depending on the dose used, route of administration, and animal model showed a moderate to strong anti-Plasmodium berghei effect. CONCLUSION According to the studies, curcumin has anti-malarial effects on Plasmodium berghei and, however, its effect on human Plasmodium is unclear. Due to the side effects and drug resistance of current drugs in the treatment of human malaria, the use of new compounds with few or no side effects such as curcumin is recommended as an alternative or complementary treatment.
Collapse
Affiliation(s)
- Pegah Shakib
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Hamed Kalani
- Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Jeffery Ho
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR, China
| | | | - Sana Amiri
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Kourosh Cheraghipour
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
8
|
Niculescu AG, Grumezescu AM. Natural Compounds for Preventing Ear, Nose, and Throat-Related Oral Infections. PLANTS 2021; 10:plants10091847. [PMID: 34579380 PMCID: PMC8468404 DOI: 10.3390/plants10091847] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 12/18/2022]
Abstract
Oral health is an essential element in maintaining general well-being. By preserving the complex equilibrium within the oral microbial community, commensal microorganisms can protect against extrinsic pathogenic threats. However, when an imbalance occurs, the organism is susceptible to a broad range of infections. Synthetic drugs can be administered to help the body fight against the fungal, bacterial, or viral burden. Nonetheless, they may produce undesirable consequences such as toxicity, adverse effects, and drug resistance. In this respect, research has focused on finding safer and more efficient alternatives. Particularly, increasing attention has been drawn towards developing novel formulations based on natural compounds. This paper reviews the plant-based, algae-based, and beehive products investigated for their antimicrobial properties, aiming to thoroughly present the state of the art on oral infection prevention in the ear, nose, and throat (ENT) field.
Collapse
Affiliation(s)
- Adelina-Gabriela Niculescu
- Faculty of Engineering in Foreign Languages, University Politehnica of Bucharest, 060042 Bucharest, Romania;
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Academy of Romanian Scientists, 3 Ilfov Street, 50044 Bucharest, Romania
- Correspondence: ; Tel.: +40-21-402-3997
| |
Collapse
|
9
|
Albalawi AE, Alanazi AD, Sharifi I, Ezzatkhah F. A Systematic Review of Curcumin and its Derivatives as Valuable Sources of Antileishmanial Agents. Acta Parasitol 2021; 66:797-811. [PMID: 33770343 DOI: 10.1007/s11686-021-00351-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 02/10/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND In recent years, antimonial agents and other synthetic antileishmanial drugs, such as amphotericin B, paromomycin, and many other drugs, have restrictions in use due to the toxicity risk, high cost, and emerging resistance to these drugs. The present study aimed to review the antileishmanial effects of curcumin, its derivatives, and other relevant pharmaceutical formulations on leishmaniasis. METHODS The present study was carried out according to the 06-preferred reporting items for systematic reviews and meta-analyses (PRISMA) guideline and registered in the CAMARADES-NC3Rs Preclinical Systematic Review and Meta-Analysis Facility (SyRF) database. Some English-language databases including PubMed, Google Scholar, Web of Science, EBSCO, Science Direct, and Scopus were searched for publications worldwide related to antileishmanial effects of curcumin, its derivatives, and other relevant pharmaceutical formulations, without date limitation, to identify all the published articles (in vitro, in vivo, and clinical studies). Keywords included "curcumin", "Curcuma longa", "antileishmanial", "Leishmania", "leishmaniasis", "cutaneous leishmaniasis", "visceral leishmaniasis", "in vitro", and "in vivo". RESULTS Out of 5492 papers, 29 papers including 20 in vitro (69.0%), 1 in vivo (3.4%), and 8 in vitro/in vivo (27.6%) studies conducted up to 2020, met the inclusion criteria for discussion in this systematic review. The most common species of the Leishmania parasite used in these studies were L. donovani (n = 13, 44.8%), L. major (n = 10, 34.5%), and L. amazonensis (n = 6, 20.7%), respectively. The most used derivatives in these studies were curcumin (n = 15, 33.3%) and curcuminoids (n = 5, 16.7%), respectively. CONCLUSION In the present review, according to the studies in the literature, various forms of drugs based on curcumin and their derivatives exhibited significant in vitro and in vivo antileishmanial activity against different Leishmania spp. The results revealed that curcumin and its derivatives could be considered as an alternative and complementary source of valuable antileishmanial components against leishmaniasis, which had no significant toxicity. However, further studies are required to elucidate this concluding remark, especially in clinical settings.
Collapse
Affiliation(s)
| | - Abdullah D Alanazi
- Department of Biological Science, Faculty of Science and Humanities, Shaqra University, Ad-Dawadimi 11911, Saudi Arabia
- Alghad International Colleges for Applied Medical Science, Tabuk 47913, Saudi Arabia
| | - Iraj Sharifi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Ezzatkhah
- Department of Laboratory Sciences, Sirjan School of Medical Sciences, Sirjan, Iran.
| |
Collapse
|
10
|
Trigo-Gutierrez JK, Vega-Chacón Y, Soares AB, Mima EGDO. Antimicrobial Activity of Curcumin in Nanoformulations: A Comprehensive Review. Int J Mol Sci 2021; 22:7130. [PMID: 34281181 PMCID: PMC8267827 DOI: 10.3390/ijms22137130] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/21/2021] [Accepted: 06/28/2021] [Indexed: 01/10/2023] Open
Abstract
Curcumin (CUR) is a natural substance extracted from turmeric that has antimicrobial properties. Due to its ability to absorb light in the blue spectrum, CUR is also used as a photosensitizer (PS) in antimicrobial Photodynamic Therapy (aPDT). However, CUR is hydrophobic, unstable in solutions, and has low bioavailability, which hinders its clinical use. To circumvent these drawbacks, drug delivery systems (DDSs) have been used. In this review, we summarize the DDSs used to carry CUR and their antimicrobial effect against viruses, bacteria, and fungi, including drug-resistant strains and emergent pathogens such as SARS-CoV-2. The reviewed DDSs include colloidal (micelles, liposomes, nanoemulsions, cyclodextrins, chitosan, and other polymeric nanoparticles), metallic, and mesoporous particles, as well as graphene, quantum dots, and hybrid nanosystems such as films and hydrogels. Free (non-encapsulated) CUR and CUR loaded in DDSs have a broad-spectrum antimicrobial action when used alone or as a PS in aPDT. They also show low cytotoxicity, in vivo biocompatibility, and improved wound healing. Although there are several in vitro and some in vivo investigations describing the nanotechnological aspects and the potential antimicrobial application of CUR-loaded DDSs, clinical trials are not reported and further studies should translate this evidence to the clinical scenarios of infections.
Collapse
Affiliation(s)
| | | | | | - Ewerton Garcia de Oliveira Mima
- Laboratory of Applied Microbiology, Department of Dental Materials and Prosthodontics, School of Dentistry, São Paulo State University (Unesp), Araraquara 14800-000, Brazil; (J.K.T.-G.); (Y.V.-C.); (A.B.S.)
| |
Collapse
|
11
|
Biomaterials for the Prevention of Oral Candidiasis Development. Pharmaceutics 2021; 13:pharmaceutics13060803. [PMID: 34072188 PMCID: PMC8229946 DOI: 10.3390/pharmaceutics13060803] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/18/2021] [Accepted: 05/25/2021] [Indexed: 12/19/2022] Open
Abstract
Thousands of microorganisms coexist within the human microbiota. However, certain conditions can predispose the organism to the overgrowth of specific pathogens that further lead to opportunistic infections. One of the most common such imbalances in the normal oral flora is the excessive growth of Candida spp., which produces oral candidiasis. In immunocompromised individuals, this fungal infection can reach the systemic level and become life-threatening. Hence, prompt and efficient treatment must be administered. Traditional antifungal agents, such as polyenes, azoles, and echinocandins, may often result in severe adverse effects, regardless of the administration form. Therefore, novel treatments have to be developed and implemented in clinical practice. In this regard, the present paper focuses on the newest therapeutic options against oral Candida infections, reviewing compounds and biomaterials with inherent antifungal properties, improved materials for dental prostheses and denture adhesives, drug delivery systems, and combined approaches towards developing the optimum treatment.
Collapse
|