1
|
Ibrahim TG, Almufarij RS, Abdulkhair BY, Ramadan RS, Eltoum MS, Abd Elaziz ME. A Thorough Examination of the Solution Conditions and the Use of Carbon Nanoparticles Made from Commercial Mesquite Charcoal as a Successful Sorbent for Water Remediation. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091485. [PMID: 37177030 PMCID: PMC10180082 DOI: 10.3390/nano13091485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
Water pollution has invaded seas, rivers, and tap water worldwide. This work employed commercial Mesquite charcoal as a low-cost precursor for fabricating Mesquite carbon nanoparticles (MUCNPs) using a ball-milling process. The scanning electron energy-dispersive microscopy results for MUCNPs revealed a particle size range of 52.4-75.0 nm. The particles were composed mainly of carbon with trace amounts of aluminum, potassium, calcium, titanium, and zinc. The X-ray diffraction peaks at 26.76 and 43.28 2θ° ascribed to the (002) and (100) planes indicated a crystalized graphite phase. Furthermore, the lack of FT-IR vibrations above 3000 cm-1 showed that the MUCNPs were not functionalized. The MUCNPs' pore diameter, volume, and surface area were 114.5 Ǻ, 0.363 cm3 g-1, and 113.45 m2 g-1. The batch technique was utilized to investigate MUCNPs' effectiveness in removing chlorohexidine gluconate (CHDNG) from water, which took 90 min to achieve equilibrium and had an adsorption capacity of 65.8 mg g-1. The adsorption of CHDNG followed pseudo-second-order kinetics, with the rate-limiting step being diffusion in the liquid film. The Langmuir isotherm dominated the CHDNG adsorption on the MUCNPs with a correlation coefficient of 0.99. The thermodynamic studies revealed that CHDNG adsorption onto the MUCNPs was exothermic and favorable, and its spontaneity increased inversely with CHDNG concentration. The ball-milling-made MUCNPs demonstrated consistent efficiency through regeneration-reuse cycles.
Collapse
Affiliation(s)
- Tarig G Ibrahim
- Chemistry Department, Faculty of Science, Sudan University of Science and Technology (SUST), Khartoum P.O. Box 13311, Sudan
| | - Rasmiah S Almufarij
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Babiker Y Abdulkhair
- Chemistry Department, Faculty of Science, Sudan University of Science and Technology (SUST), Khartoum P.O. Box 13311, Sudan
- Chemistry Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11564, Saudi Arabia
| | - Rasha S Ramadan
- Central Research Laboratory, Female Campus, King Saud University, Riyadh 11495, Saudi Arabia
| | - Mohamed S Eltoum
- Chemistry Department, Faculty of Science, Sudan University of Science and Technology (SUST), Khartoum P.O. Box 13311, Sudan
| | - Mohamed E Abd Elaziz
- Chemistry Department, Faculty of Science, Sudan University of Science and Technology (SUST), Khartoum P.O. Box 13311, Sudan
| |
Collapse
|
2
|
Srivastava N, Singh R, Verma B, Rai AK, Tripathi SC, Bantun F, Faidah H, Singh RP, Jalal NA, Abdel-Razik NE, Haque S. Microbial cellulase production and stability investigations via graphene like carbon nanostructure derived from paddy straw. Int J Biol Macromol 2023; 237:124033. [PMID: 36918076 DOI: 10.1016/j.ijbiomac.2023.124033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/05/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023]
Abstract
Cellulases are among the most in-demand bioprocess enzymes, and the high cost of production, combined with their low enzymatic activity, is the main constraint, particularly in the biofuels industry. As a result, low-cost enzyme production modes with high activity and stability have emerged as the primary focus of research. Here, a method for producing a graphene like carbon nanostructure (GLCNs) has been investigated utilizing paddy straw (Ps), and its physicochemical characteristics have been examined using a variety of techniques including XRD, FT-IR, SEM and TEM. Further, the pretreatment of Ps feedstock for cellulase production was done using diluted waste KOH liquid collected during the preparation of the GLCNs. To increase the production and stability of the enzyme, newly prepared GLCNs is utilized as a nanocatalyst. Using 15 mg of GLCNs, 35 IU/gds FP activity was seen after 72 h, followed by 158 IU/gds EG and 114 IU/gds BGL activity in 96 h. This nanocatalyst supported enzyme was thermally stable at 70 °C up to 15 h and exhibited stability at pH 7.0 for 10 h by holding 66 % of its half-life.
Collapse
Affiliation(s)
- Neha Srivastava
- Department of Chemical Engineering & Technology, Indian Institute of Technology (BHU) Varanasi, Varanasi 221005, Uttar Pradesh, India.
| | - Rajeev Singh
- Department of Environmental Science, Jamia Millia Islamia, (A Central University), New Delhi 110025, India
| | - Bhawna Verma
- Department of Chemical Engineering & Technology, Indian Institute of Technology (BHU) Varanasi, Varanasi 221005, Uttar Pradesh, India.
| | - Ashutosh Kumar Rai
- Department of Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Subhash C Tripathi
- Institute of Applied Sciences & Humanities, Department of Chemistry, GLA University, Mathura 281406, Uttar Pradesh, India
| | - Farkad Bantun
- Department of Microbiology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Hani Faidah
- Department of Microbiology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | | | - Naif A Jalal
- Department of Microbiology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Noha E Abdel-Razik
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Gizan, Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia; Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| |
Collapse
|
3
|
Depolymerization of Rice Straw Lignin into Value-Added Chemicals in Sub-Supercritical Ethanol. ScientificWorldJournal 2022; 2022:7872307. [PMID: 35645630 PMCID: PMC9142282 DOI: 10.1155/2022/7872307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 04/13/2022] [Accepted: 04/25/2022] [Indexed: 11/18/2022] Open
Abstract
Depolymerization of lignin is an important step to obtain a lignin monomer for the synthesis of functional chemicals. In the context of more lignin produced from biomass and pulp industry, converting real lignin with low purity is still required more studies. In this study, the influence of solvent composition and reaction parameters such as binary solvents ratio, time, and temperature, the solvent-to-lignin ratio on the depolymerization of rice straw lignin was investigated carefully. Essential lignin-degraded products including liquid product (LP), char (solid), and gas were obtained, and their yields were directly influenced by reaction conditions. Results show that the maximum lignin conversion rate of 92% and LP yield of 66% was under the condition of 275°C, 30 min, 75 : 1 (mL solvent/1 g lignin), and ethanol 50%. Gas chromatography-mass spectroscopy (GC-MS) analysis was used for the analysis of the depolymerization products and identified 11 compounds which are mainly phenolic compounds such as 2-ethylphenol, 3-ethylphenol, phenol, methyl 2,4,6-trimethylbenzoate. The structure changes of LP and char in various conditions were analyzed using Fourier-transform infrared (FTIR).
Collapse
|
4
|
Affiliation(s)
- Hu Li
- Center for R&D of Fine Chemicals Guizhou University Guiyang 550025, Guizhou, China
| | - Shunmugavel Sarvanamurugan
- Center of Innovative and Applied Bioprocessing (CIAB) Sector-81 (Knowledge City), Mohali-140306, Punjab, India
| | - Song Yang
- Center for R&D of Fine Chemicals Guizhou University Guiyang 550025, Guizhou, China
| |
Collapse
|