1
|
Xu J, Wang B, Liu Q, Guo S, Chen C, Wu J, Zhao X, Li M, Ma Z, Zhou S, Qian Y, Huang Y, Wang Z, Shu C, Xu Q, Ben J, Wang Q, Wang S. MVP-LCN2 axis triggers evasion of ferroptosis to drive hepatocarcinogenesis and sorafenib resistance. Drug Resist Updat 2025; 81:101246. [PMID: 40262414 DOI: 10.1016/j.drup.2025.101246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 04/13/2025] [Accepted: 04/16/2025] [Indexed: 04/24/2025]
Abstract
RNA-binding proteins (RBPs) are critical regulators in tumorigenesis and therapy resistance by modulating RNA metabolism. However, the role of RBPs in hepatocarcinogenesis and progression remains elusive. Here, RBPs screening and integrating analyses identify major vault protein (MVP) as an oncogenic RBP in the occurrence of hepatocellular carcinoma (HCC) and sorafenib resistance via suppressing ferroptosis. Mechanistically, reactive oxygen species (ROS) induces STAT3-mediated MVP transcription activation and high expression in HCC cells. Subsequently, phosphoglycerate mutase family member 5 (PGAM5) directly dephosphorylates MVP at S873, facilitating its binding to the mRNA of iron-sequestering cytokine LCN2 and maintains its stability, thereby attenuating ferroptosis by reducing lipid peroxidation and intracellular Fe2+ content following sorafenib treatment. Notably, tenapanor, a potent pharmacological inhibitor of MVP, effectively disrupts the interaction between MVP and LCN2 mRNA and enhances ferroptosis and sorafenib sensitivity. Collectively, these findings underscore the central role of MVP in hepatocarcinogenesis and offer promising avenues to improve HCC treatment.
Collapse
Affiliation(s)
- Jiawen Xu
- Nanjing University Medical School, Nanjing, China
| | - Bo Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University; MOE Innovation Center for Basic Research in Tumor Immunotherapy; Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, China
| | - Qiaoyu Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University; MOE Innovation Center for Basic Research in Tumor Immunotherapy; Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, China
| | | | - Chen Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University; MOE Innovation Center for Basic Research in Tumor Immunotherapy; Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, China
| | - Jun Wu
- Medical College, Yangzhou University, Yangzhou, China
| | - Xiaoya Zhao
- Nanjing University Medical School, Nanjing, China
| | - Mengmeng Li
- Nanjing University Medical School, Nanjing, China
| | - Zhuang Ma
- Nanjing University Medical School, Nanjing, China
| | - Shimeng Zhou
- Nanjing University Medical School, Nanjing, China
| | - Yun Qian
- Nanjing University Medical School, Nanjing, China
| | - Yijin Huang
- School of Medicine, University of Missouri, Columbia, USA
| | - Zhangding Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University; MOE Innovation Center for Basic Research in Tumor Immunotherapy; Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, China
| | - Chuanjun Shu
- Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Qingxiang Xu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University; MOE Innovation Center for Basic Research in Tumor Immunotherapy; Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, China.
| | - Jingjing Ben
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China.
| | - Qiang Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University; MOE Innovation Center for Basic Research in Tumor Immunotherapy; Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, China.
| | - Shouyu Wang
- Nanjing University Medical School, Nanjing, China; Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University; MOE Innovation Center for Basic Research in Tumor Immunotherapy; Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, China; Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.
| |
Collapse
|
2
|
Routsias JG, Marinou D, Mavrouli M, Tsakris A, Pitiriga VC. Major Vault Protein/Lung Resistance-Related Protein: A Novel Biomarker for Inflammation and Acute Infections. Microorganisms 2024; 12:1762. [PMID: 39338437 PMCID: PMC11434279 DOI: 10.3390/microorganisms12091762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/19/2024] [Accepted: 08/19/2024] [Indexed: 09/30/2024] Open
Abstract
INTRODUCTION Vault particles are large cytoplasmic ribonucleoprotein particles that participate in inflammation. The aim of this study was to assess the diagnostic and prognostic value of major vault protein (MVP) in patients with inflammation, in order to determine whether MVP could be used as a biomarker for infection or inflammation. We also aimed to compare the diagnostic impact of MVP compared to other conventional measurements, such as CRP or white blood cell (WBC) counts. METHODS CRP and MVP levels were measured in 111 sera samples from 85 patients with inflammation admitted to a tertiary-care hospital and 26 healthy individuals during an 18-month period (2019-2020), using nephelometry and a custom MVP sandwich ELISA assay, respectively. In addition, WBC counts were measured using a commercial assay. RESULTS MVP levels were found to be elevated in patients with inflammation compared to healthy individuals (p < 0.0001). Moreover, MVP levels were higher in patients with inflammation due to an infectious etiology compared to those with non-infectious etiology (p = 0.0006). MVP levels significantly decreased during the first four days of infection in response to antibiotic treatment, while CRP levels showed a less-sensitive decline. An ROC curve analysis demonstrated that MVP and CRP have similarly high diagnostic accuracy, with AUCs of 0.955 and 0.995, respectively, followed by WBCs with an AUC of 0.805. CONCLUSIONS The ROC curves demonstrated that MVP has the potential to serve as a diagnostic biomarker for inflammation and infection. Additionally, MVP levels may reflect the efficacy of antibiotic treatment.
Collapse
Affiliation(s)
- John G. Routsias
- Department of Microbiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | | | | | | | | |
Collapse
|
3
|
Slinning MS, Nthiga TM, Eichner C, Khadija S, Rome LH, Nilsen F, Dondrup M. Major vault protein is part of an extracellular cement material in the Atlantic salmon louse (Lepeophtheirus salmonis). Sci Rep 2024; 14:15240. [PMID: 38956386 PMCID: PMC11219742 DOI: 10.1038/s41598-024-65683-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024] Open
Abstract
Major vault protein (MVP) is the main component of the vault complex, which is a highly conserved ribonucleoprotein complex found in most eukaryotic organisms. MVP or vaults have previously been found to be overexpressed in multidrug-resistant cancer cells and implicated in various cellular processes such as cell signaling and innate immunity. The precise function of MVP is, however, poorly understood and its expression and probable function in lower eukaryotes are not well characterized. In this study, we report that the Atlantic salmon louse expresses three full-length MVP paralogues (LsMVP1-3). Furthermore, we extended our search and identified MVP orthologues in several other ecdysozoan species. LsMVPs were shown to be expressed in various tissues at both transcript and protein levels. In addition, evidence for LsMVP to assemble into vaults was demonstrated by performing differential centrifugation. LsMVP was found to be highly expressed in cement, an extracellular material produced by a pair of cement glands in the adult female salmon louse. Cement is important for the formation of egg strings that serve as protective coats for developing embryos. Our results imply a possible novel function of LsMVP as a secretory cement protein. LsMVP may play a role in structural or reproductive functions, although this has to be further investigated.
Collapse
Affiliation(s)
- Malene Skuseth Slinning
- Sea Lice Research Centre (SLRC), Department of Biological Sciences, University of Bergen, Pb. 7803, 5020, Bergen, Norway
| | - Thaddaeus Mutugi Nthiga
- Sea Lice Research Centre (SLRC), Department of Biological Sciences, University of Bergen, Pb. 7803, 5020, Bergen, Norway
| | - Christiane Eichner
- Sea Lice Research Centre (SLRC), Department of Biological Sciences, University of Bergen, Pb. 7803, 5020, Bergen, Norway
| | - Syeda Khadija
- Department of Biological Chemistry, David Geffen School of Medicine and the California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Leonard H Rome
- Department of Biological Chemistry, David Geffen School of Medicine and the California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Frank Nilsen
- Sea Lice Research Centre (SLRC), Department of Biological Sciences, University of Bergen, Pb. 7803, 5020, Bergen, Norway
| | - Michael Dondrup
- SLRC, Computational Biology Unit (CBU), Department of Informatics, University of Bergen, Pb. 7803, 5020, Bergen, Norway.
| |
Collapse
|
4
|
Fernández R, Carreño A, Mendoza R, Benito A, Ferrer-Miralles N, Céspedes MV, Corchero JL. Escherichia coli as a New Platform for the Fast Production of Vault-like Nanoparticles: An Optimized Protocol. Int J Mol Sci 2022; 23:ijms232415543. [PMID: 36555185 PMCID: PMC9778704 DOI: 10.3390/ijms232415543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/30/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022] Open
Abstract
Vaults are protein nanoparticles that are found in almost all eukaryotic cells but are absent in prokaryotic ones. Due to their properties (nanometric size, biodegradability, biocompatibility, and lack of immunogenicity), vaults show enormous potential as a bio-inspired, self-assembled drug-delivery system (DDS). Vault architecture is directed by self-assembly of the "major vault protein" (MVP), the main component of this nanoparticle. Recombinant expression (in different eukaryotic systems) of the MVP resulted in the formation of nanoparticles that were indistinguishable from native vaults. Nowadays, recombinant vaults for different applications are routinely produced in insect cells and purified by successive ultracentrifugations, which are both tedious and time-consuming strategies. To offer cost-efficient and faster protocols for nanoparticle production, we propose the production of vault-like nanoparticles in Escherichia coli cells, which are still one of the most widely used prokaryotic cell factories for recombinant protein production. The strategy proposed allowed for the spontaneous encapsulation of the engineered cargo protein within the self-assembled vault-like nanoparticles by simply mixing the clarified lysates of the producing cells. Combined with well-established affinity chromatography purification methods, our approach contains faster, cost-efficient procedures for biofabrication in a well-known microbial cell factory and the purification of "ready-to-use" loaded protein nanoparticles, thereby opening the way to faster and easier engineering and production of vault-based DDSs.
Collapse
Affiliation(s)
- Roger Fernández
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Aida Carreño
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Rosa Mendoza
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Bellaterra, 08193 Barcelona, Spain
| | - Antoni Benito
- Laboratori d’Enginyeria de Proteïnes, Departament de Biologia, Universitat de Girona, 17003 Girona, Spain
- Institut d’Investigació Biomèdica de Girona Josep Trueta, (IdIBGi), 17190 Salt, Spain
| | - Neus Ferrer-Miralles
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Bellaterra, 08193 Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - María Virtudes Céspedes
- Grup d’Oncologia Ginecològica i Peritoneal, Institut d’Investigacions Biomédiques Sant Pau, Hospital de Santa Creu i Sant Pau, 08041 Barcelona, Spain
- Correspondence: (M.V.C.); (J.L.C.); Tel.: +34-93-2919000 (ext. 1427) (M.V.C.); +34-93-5812148 (J.L.C.)
| | - José Luis Corchero
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Bellaterra, 08193 Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- Correspondence: (M.V.C.); (J.L.C.); Tel.: +34-93-2919000 (ext. 1427) (M.V.C.); +34-93-5812148 (J.L.C.)
| |
Collapse
|
5
|
Aljabali AAA, Rezigue M, Alsharedeh RH, Obeid MA, Mishra V, Serrano-Aroca Á, Tambuwala MM. Protein-Based Drug Delivery Nanomedicine Platforms: Recent Developments. Pharm Nanotechnol 2022; 10:257-267. [PMID: 35980061 DOI: 10.2174/2211738510666220817120307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/08/2022] [Accepted: 04/26/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND Naturally occurring protein cages, both viral and non-viral assemblies, have been developed for various pharmaceutical applications. Protein cages are ideal platforms as they are compatible, biodegradable, bioavailable, and amenable to chemical and genetic modification to impart new functionalities for selective targeting or tracking of proteins. The ferritin/ apoferritin protein cage, plant-derived viral capsids, the small Heat shock protein, albumin, soy and whey protein, collagen, and gelatin have all been exploited and characterized as drugdelivery vehicles. Protein cages come in many shapes and types with unique features such as unmatched uniformity, size, and conjugations. OBJECTIVES The recent strategic development of drug delivery will be covered in this review, emphasizing polymer-based, specifically protein-based, drug delivery nanomedicine platforms. The potential and drawbacks of each kind of protein-based drug-delivery system will also be highlighted. METHODS Research examining the usability of nanomaterials in the pharmaceutical and medical sectors were identified by employing bibliographic databases and web search engines. RESULTS Rings, tubes, and cages are unique protein structures that occur in the biological environment and might serve as building blocks for nanomachines. Furthermore, numerous virions can undergo reversible structural conformational changes that open or close gated pores, allowing customizable accessibility to their core and ideal delivery vehicles. CONCLUSION Protein cages' biocompatibility and their ability to be precisely engineered indicate they have significant potential in drug delivery and intracellular administration.
Collapse
Affiliation(s)
- Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid 21163 - P.O. BOX 566, Jordan
| | - Meriem Rezigue
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid 21163 - P.O. BOX 566, Jordan
| | - Rawan H Alsharedeh
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid 21163 - P.O. BOX 566, Jordan
| | - Mohammad A Obeid
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid 21163 - P.O. BOX 566, Jordan
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia, San Vicente Mártir, 46001 Valencia, Spain
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, England, UK
| |
Collapse
|
6
|
Martín F, Carreño A, Mendoza R, Caruana P, Rodríguez F, Bravo M, Benito A, Ferrer-Miralles N, Céspedes MV, Corchero JL. All-in-one biofabrication and loading of recombinant vaults in human cells. Biofabrication 2022; 14. [PMID: 35203066 DOI: 10.1088/1758-5090/ac584d] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 02/24/2022] [Indexed: 11/12/2022]
Abstract
One of the most promising approaches in the drug delivery field is the use of naturally occurring self-assembling protein nanoparticles, such as virus-like particles, bacterial microcompartments or vault ribonucleoprotein particles as drug delivery systems (DDS). Among them, eukaryotic vaults show a promising future due to their structural features, in vitro stability and non-immunogenicity. Recombinant vaults are routinely produced in insect cells and purified through several ultracentrifugations, both tedious and time-consuming processes. As an alternative, this work proposes a new approach and protocols for the production of recombinant vaults in human cells by transient gene expression of a His-tagged version of the Major Vault Protein (MVP-H6), the development of new affinity-based purification processes for such recombinant vaults, and the all-in-one biofabrication and encapsulation of a cargo recombinant protein within such vaults by their co-expression in human cells. Protocols proposed here allow the easy and straightforward biofabrication and purification of engineered vaults loaded with virtually any INT-tagged cargo protein, in very short times, paving the way to faster and easier engineering and production of better and more efficient DDS.
Collapse
Affiliation(s)
- Fernando Martín
- Universitat Autonoma de Barcelona, Institut de Biotecnologia i de Biomedicina, Campus Universitari Bellaterra, Bellaterra, Bellaterra, Catalunya, 08193, SPAIN
| | - Aida Carreño
- Universitat Autonoma de Barcelona, Institut de Biotecnologia i de Biomedicina, Campus Universitari Bellaterra, Bellaterra, Bellaterra, Catalunya, 08193, SPAIN
| | - Rosa Mendoza
- CIBER-BBN, Institut de Biotecnologia i de Biomedicina, Campus Universitari Bellaterra, Bellaterra, Bellaterra, 08193, SPAIN
| | - Pablo Caruana
- Hospital de la Santa Creu i Sant Pau, Sant Pau Biomedical Research Institute (IIB Sant Pau) Carrer Sant Quintí, 77-79, Barcelona, Catalunya, 08041, SPAIN
| | - Francisco Rodríguez
- Hospital de la Santa Creu i Sant Pau, Sant Pau Biomedical Research Institute (IIB Sant Pau) Carrer Sant Quintí, 77-79 08041. Barcelona, Spain, Barcelona, Catalunya, 08041, SPAIN
| | - Marlon Bravo
- Universitat de Girona, Laboratori Enginyeria Proteines, Dept biologia, Universitat de Girona, Girona, Catalunya, 17003, SPAIN
| | - Antoni Benito
- Universitat de Girona, Facultat de Ciències, Universitat de Girona, Campus de Montilivi, Carrer Maria Aurèlia Capmany, 40,, Girona, Catalunya, 17003, SPAIN
| | - Neus Ferrer-Miralles
- Universitat Autonoma de Barcelona, Institut de Biotecnologia i de Biomedicina, Campus Universitari Bellaterra, Bellaterra, Bellaterra, Catalunya, 08193, SPAIN
| | - Mª Virtudes Céspedes
- Hospital de la Santa Creu i Sant Pau, Sant Pau Biomedical Research Institute (IIB Sant Pau) Carrer Sant Quintí, 77-79, Barcelona, Catalunya, 08041, SPAIN
| | - Jose Luis Corchero
- CIBER-BBN, Institut de Biotecnologia i de Biomedicina, Campus Universitari Bellaterra, Bellaterra, 08193, SPAIN
| |
Collapse
|
7
|
Guerra P, González-Alamos M, Llauró A, Casañas A, Querol-Audí J, de Pablo PJ, Verdaguer N. Symmetry disruption commits vault particles to disassembly. SCIENCE ADVANCES 2022; 8:eabj7795. [PMID: 35138889 PMCID: PMC8827651 DOI: 10.1126/sciadv.abj7795] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Vaults are ubiquitous ribonucleoprotein particles involved in a diversity of cellular processes, with promising applications as nanodevices for delivery of multiple cargos. The vault shell is assembled by the symmetrical association of multiple copies of the major vault protein that, initially, generates half vaults. The pairwise, anti-parallel association of two half vaults produces whole vaults. Here, using a combination of vault recombinant reconstitution and structural techniques, we characterized the molecular determinants for the vault opening process. This process commences with a relaxation of the vault waist, causing the expansion of the inner cavity. Then, local disengagement of amino-terminal domains at the vault midsection seeds a conformational change that leads to the aperture, facilitating access to the inner cavity where cargo is hosted. These results inform a hitherto uncharacterized step of the vault cycle and will aid current engineering efforts leveraging vault for tailored cargo delivery.
Collapse
Affiliation(s)
- Pablo Guerra
- Structural Biology Department, Instituto de Biología Molecular de Barcelona (IBMB-CSIC), Parc Científic de Barcelona, Baldiri i Reixac 15, E-08028 Barcelona, Spain
| | - María González-Alamos
- Structural Biology Department, Instituto de Biología Molecular de Barcelona (IBMB-CSIC), Parc Científic de Barcelona, Baldiri i Reixac 15, E-08028 Barcelona, Spain
| | - Aida Llauró
- Department of Condensed Matter Physics, Autonomous University of Madrid, Madrid 28049, Spain
| | - Arnau Casañas
- Structural Biology Department, Instituto de Biología Molecular de Barcelona (IBMB-CSIC), Parc Científic de Barcelona, Baldiri i Reixac 15, E-08028 Barcelona, Spain
| | - Jordi Querol-Audí
- Structural Biology Department, Instituto de Biología Molecular de Barcelona (IBMB-CSIC), Parc Científic de Barcelona, Baldiri i Reixac 15, E-08028 Barcelona, Spain
| | - Pedro J. de Pablo
- Department of Condensed Matter Physics, Autonomous University of Madrid, Madrid 28049, Spain
| | - Núria Verdaguer
- Structural Biology Department, Instituto de Biología Molecular de Barcelona (IBMB-CSIC), Parc Científic de Barcelona, Baldiri i Reixac 15, E-08028 Barcelona, Spain
- Corresponding author.
| |
Collapse
|
8
|
Wang W, Yan T, Guo W, Niu J, Zhao Z, Sun K, Zhang H, Yu Y, Ren T. Constitutive GLI1 expression in chondrosarcoma is regulated by major vault protein via mTOR/S6K1 signaling cascade. Cell Death Differ 2021; 28:2221-2237. [PMID: 33637972 PMCID: PMC8257592 DOI: 10.1038/s41418-021-00749-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 01/31/2023] Open
Abstract
Hedgehog signaling plays a pivotal role in embryonic pattern formation and diverse aspects of the postnatal biological process. Perturbation of the hedgehog pathway and overexpression of GLI1, a downstream transcription factor in the hedgehog pathway, are highly relevant to several malignancies including chondrosarcoma (CS). We previously found that knocking down expression of GLI1 attenuates the disrupted Indian hedgehog (IHH) signal pathway and suppresses cell survival in human CS cells. However, the underlying mechanisms regulating the expression of GLI1 are still unknown. Here, we demonstrated the implication of GLI1 in SMO-independent pathways in CS cells. A GLI1 binding protein, major vault protein (MVP), was identified using the affinity purification method. MVP promoted the nuclear transport and stabilization of GLI1 by compromising the binding affinity of GLI1 with suppressor of fused homolog (SUFU) and increased GLI1 expression via mTOR/S6K1 signaling cascade. Functionally, knockdown of MVP suppressed cell growth and induced apoptosis. Simultaneous inhibition of MVP and GLI1 strongly inhibits the growth of CS in vitro and in vivo. Moreover, IHC results showed that MVP, GLI1, and P-p70S6K1 were highly expressed and positively correlated with each other in 71 human CS tissues. Overall, our findings revealed a novel regulating mechanism for HH-independent GLI1 expression and provide a rationale for combination therapy in patients with advanced CS.
Collapse
Affiliation(s)
- Wei Wang
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, China
| | - Taiqiang Yan
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China.
- Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, China.
| | - Wei Guo
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China.
- Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, China.
| | - Jianfang Niu
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, China
| | - Zhiqing Zhao
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, China
| | - Kunkun Sun
- Department of Pathology, Peking University People's Hospital, Beijing, China
| | - Hongliang Zhang
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, China
| | - Yiyang Yu
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, China
| | - Tingting Ren
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, China
| |
Collapse
|
9
|
Yuan L, Zhao N, Wang J, Liu Y, Meng L, Guo S, Wiemer EA, Chen Q, Mao Y, Ben J, Ma J. Major vault protein (MVP) negatively regulates osteoclastogenesis via calcineurin-NFATc1 pathway inhibition. Theranostics 2021; 11:7247-7261. [PMID: 34158848 PMCID: PMC8210610 DOI: 10.7150/thno.58468] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/10/2021] [Indexed: 02/06/2023] Open
Abstract
Rationale: Bone homeostasis is maintained by a balanced interplay of osteoblasts and osteoclasts. Osteoclasts are derived from monocyte/macrophage lineage. Major vault protein (MVP) is known to promote apoptosis and prevent metabolic diseases in macrophage. However, whether MVP is involved in osteoclastogenesis is unknown. Here, we identified an important function of MVP as a negative regulator of osteoclastogenesis and its therapeutic potential in preventing bone loss. Methods: Expression of MVP in osteoclasts was investigated in human tumor tissues with immunohistochemical staining. Next, we generated total body (Mvp-/- ) and monocyte-specific (Mvpf/fLyz2-Cre) MVP gene knockout mice to observe bone phenotype and osteoclastogenesis using micro-CT and bone histomorphometry. Moreover, we examined the effects of MVP on osteoclast differentiation, bone resorption, NFATc1 activation and calcium oscillations in vitro. Finally, we explored the clinical potential of targeting MVP in two osteoporosis mouse models and used an adeno-associated virus (AAV) gene to overexpress MVP locally in mice. Results: We found that Mvp-/- and Mvpf/fLyz2-Cre mice both exhibited osteoporosis-like phenotypes. MVP-deficiency also enhanced calcineurin-NFATc1 signaling and promoted NFATc1 activity, which led to enhanced osteoclastogenesis and bone resorption. Calcineurin inhibition using the small molecule inhibitor FK506 corrected the enhanced osteoclastogenesis in Mvpf/fLyz2-Cre group. Additionally, MVP reexpression in Mvpf/fLyz2-Cre group rescued calcineurin expression. MVP overexpression in wild-type mice prevented pathologic bone loss in mouse models of ovariectomized (OVX) and calvaria-adjacent lipopolysaccharide (LPS)-injected. Conclusions: Our data suggested that MVP negatively regulates osteoclast differentiation and bone resorption via inhibition of calcineurin-NFATc1 signaling. In osteoclast-related bone diseases such as osteoporosis, manipulation of MVP activity may be an attractive therapeutic target.
Collapse
|
10
|
Immunoediting role for major vault protein in apoptotic signaling induced by bacterial N-acyl homoserine lactones. Proc Natl Acad Sci U S A 2021; 118:2012529118. [PMID: 33723037 PMCID: PMC8000436 DOI: 10.1073/pnas.2012529118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The major vault protein (MVP) mediates diverse cellular responses, including cancer cell resistance to chemotherapy and protection against inflammatory responses to Pseudomonas aeruginosa Here, we report the use of photoactive probes to identify MVP as a target of the N-(3-oxo-dodecanoyl) homoserine lactone (C12), a quorum sensing signal of certain proteobacteria including P. aeruginosa. A treatment of normal and cancer cells with C12 or other N-acyl homoserine lactones (AHLs) results in rapid translocation of MVP into lipid raft (LR) membrane fractions. Like AHLs, inflammatory stimuli also induce LR-localization of MVP, but the C12 stimulation reprograms (functionalizes) bioactivity of the plasma membrane by recruiting death receptors, their apoptotic adaptors, and caspase-8 into LR. These functionalized membranes control AHL-induced signaling processes, in that MVP adjusts the protein kinase p38 pathway to attenuate programmed cell death. Since MVP is the structural core of large particles termed vaults, our findings suggest a mechanism in which MVP vaults act as sentinels that fine-tune inflammation-activated processes such as apoptotic signaling mediated by immunosurveillance cytokines including tumor necrosis factor-related apoptosis inducing ligand (TRAIL).
Collapse
|
11
|
Zhang X, Yang Y, Bu X, Wei Y, Lou X. The major vault protein is dispensable for zebrafish organ regeneration. Heliyon 2020; 6:e05422. [PMID: 33195847 PMCID: PMC7644919 DOI: 10.1016/j.heliyon.2020.e05422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/08/2020] [Accepted: 10/29/2020] [Indexed: 01/11/2023] Open
Abstract
As the main constituent of the largest cellular ribonucleoprotein complex, the evolutionary highly conserved major vault protein (MVP) has been proposed play vital roles in the regeneration of multiple organs. In current study, we use a mvp knockout zebrafish line recently generated to characterize the function of MVP during organ regeneration. We found the regenerative capacity of heart, spinal cord and fin is preserved in mvp knockout zebrafish. Further experiments demonstrated in injured mvp knockout zebrafish, the cell death is enhanced while the transcriptome landscape is largely unchanged. These data showed MVP acts as an anti-apoptotic factor at early phase of injury response while plays a dispensable role in the regenerative programs in zebrafish.
Collapse
Affiliation(s)
- Xue Zhang
- Medical School, Nanjing University, China
| | - Yuxi Yang
- Medical School, Nanjing University, China
| | - Xiaoxue Bu
- Medical School, Nanjing University, China
| | | | - Xin Lou
- Medical School, Nanjing University, China
| |
Collapse
|
12
|
Demchuk AM, Patel TR. The biomedical and bioengineering potential of protein nanocompartments. Biotechnol Adv 2020; 41:107547. [PMID: 32294494 DOI: 10.1016/j.biotechadv.2020.107547] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 03/21/2020] [Accepted: 04/03/2020] [Indexed: 12/18/2022]
Abstract
Protein nanocompartments (PNCs) are self-assembling biological nanocages that can be harnessed as platforms for a wide range of nanobiotechnology applications. The most widely studied examples of PNCs include virus-like particles, bacterial microcompartments, encapsulin nanocompartments, enzyme-derived nanocages (such as lumazine synthase and the E2 component of the pyruvate dehydrogenase complex), ferritins and ferritin homologues, small heat shock proteins, and vault ribonucleoproteins. Structural PNC shell proteins are stable, biocompatible, and tolerant of both interior and exterior chemical or genetic functionalization for use as vaccines, therapeutic delivery vehicles, medical imaging aids, bioreactors, biological control agents, emulsion stabilizers, or scaffolds for biomimetic materials synthesis. This review provides an overview of the recent biomedical and bioengineering advances achieved with PNCs with a particular focus on recombinant PNC derivatives.
Collapse
Affiliation(s)
- Aubrey M Demchuk
- Department of Neuroscience, University of Lethbridge, 4401 University Drive West, Lethbridge, AB, Canada.
| | - Trushar R Patel
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, AB, Canada; Department of Microbiology, Immunology and Infectious Diseases, Cumming, School of Medicine, University of Calgary, 2500 University Dr. N.W., Calgary, AB T2N 1N4, Canada; Li Ka Shing Institute of Virology and Discovery Lab, Faculty of Medicine & Dentistry, University of Alberta, 6-010 Katz Center for Health Research, Edmonton, AB T6G 2E1, Canada.
| |
Collapse
|
13
|
Ma Z, Mutashar Alhameed AM, Kaminga AC, Lu B, Li X, Zhang J, Wu X. Bioinformatics of excretory/secretory proteins of Toxoplasma gondii strain ME49. Microb Pathog 2019; 140:103951. [PMID: 31883450 DOI: 10.1016/j.micpath.2019.103951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 12/23/2019] [Accepted: 12/23/2019] [Indexed: 11/16/2022]
Abstract
Toxoplasma gondii is an obligate intracellular parasite that is globally distributed and can infect almost all warm-blooded animals, including humans. While vaccines are not available for prophylaxis, there are limited therapeutic options which often do not result in eradication of parasites from patients. ME49 is a cystogenic strain of T. gondii with a potential as a vaccine candidate. Excretory and secretory (ES) proteins are thought to play crucial roles in host-parasite interactions. Hence, we predicted and functionally annotated the ES proteins in T. gondii ME49 using public databases. ES proteins were further examined for the characteristics and possible functions through gene ontology (GO) term enrichment and analyses of metabolic pathways, enzyme code distribution (EC distributing) and protein domains. The potential antigenicity of T. gondii ME49 ES proteins was evaluated for the first time using Abundance of Antigenic Regions (AAR) value to predict the antigenic potential by measuring sequence length and number of antigenic regions. The results showed that the ES proteins have different AAR values at RNA and microarray level. Our studies provide valuable information for future experimental studies, including the identification of novel ES proteins of therapeutic, diagnostic and immunoprophylactic interests.
Collapse
Affiliation(s)
- Zhenrong Ma
- Department of Parasitology, Xiangya School of Basic Medicine, Central South University, Changsha, China.
| | - Alaa Majeed Mutashar Alhameed
- Department of Parasitology, Xiangya School of Basic Medicine, Central South University, Changsha, China; Laboratory Department, Thi Qar Refai Health Office, Iraqi Ministry of Health, Refai, Iraq.
| | - Atipatsa Chiwanda Kaminga
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China; Department of Mathematics, Mzuzu University, Mzuzu, Malawi.
| | - Bin Lu
- Department of Parasitology, Xiangya School of Basic Medicine, Central South University, Changsha, China.
| | - Xuanwu Li
- Department of Parasitology, Xiangya School of Basic Medicine, Central South University, Changsha, China.
| | - Jie Zhang
- Department of Parasitology, Xiangya School of Basic Medicine, Central South University, Changsha, China.
| | - Xiang Wu
- Department of Parasitology, Xiangya School of Basic Medicine, Central South University, Changsha, China.
| |
Collapse
|
14
|
Muñoz-Juan A, Carreño A, Mendoza R, Corchero JL. Latest Advances in the Development of Eukaryotic Vaults as Targeted Drug Delivery Systems. Pharmaceutics 2019; 11:E300. [PMID: 31261673 PMCID: PMC6680493 DOI: 10.3390/pharmaceutics11070300] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/21/2019] [Accepted: 06/26/2019] [Indexed: 12/04/2022] Open
Abstract
The use of smart drug delivery systems (DDSs) is one of the most promising approaches to overcome some of the drawbacks of drug-based therapies, such as improper biodistribution and lack of specific targeting. Some of the most attractive candidates as DDSs are naturally occurring, self-assembling protein nanoparticles, such as viruses, virus-like particles, ferritin cages, bacterial microcompartments, or eukaryotic vaults. Vaults are large ribonucleoprotein nanoparticles present in almost all eukaryotic cells. Expression in different cell factories of recombinant versions of the "major vault protein" (MVP) results in the production of recombinant vaults indistinguishable from native counterparts. Such recombinant vaults can encapsulate virtually any cargo protein, and they can be specifically targeted by engineering the C-terminus of MVP monomer. These properties, together with nanometric size, a lumen large enough to accommodate cargo molecules, biodegradability, biocompatibility and no immunogenicity, has raised the interest in vaults as smart DDSs. In this work we provide an overview of eukaryotic vaults as a new, self-assembling protein-based DDS, focusing in the latest advances in the production and purification of this platform, its application in nanomedicine, and the current preclinical and clinical assays going on based on this nanovehicle.
Collapse
Affiliation(s)
- Amanda Muñoz-Juan
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Aida Carreño
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Rosa Mendoza
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - José L Corchero
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
- Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain.
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| |
Collapse
|
15
|
Padilla-Vaca F, Vargas-Maya NI, Elizarrarás-Vargas NU, Rangel-Serrano Á, Cardoso-Reyes LR, Razo-Soria T, Membrillo-Hernández J, Franco B. Flotillin homologue is involved in the swimming behavior of Escherichia coli. Arch Microbiol 2019; 201:999-1008. [PMID: 31062059 DOI: 10.1007/s00203-019-01670-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 04/22/2019] [Accepted: 04/24/2019] [Indexed: 01/22/2023]
Abstract
Cellular membrane is a key component for maintaining cell shape and integrity. The classical membrane structure and function by Singer and Nicolson groundbreaking model has depicted the membrane as a homogeneous fluid structure. This view has changed by the discovery of discrete domains containing different lipid compositions, called lipid rafts, which play a key role in signal transduction in eukaryotic cells. In the past few years, lipid raft-like structures have been found in bacteria also, constituted by cardiolipin and other modified lipids, perhaps involved in generating a specific site for protein clustering. Here, we report the analysis of a protein termed YqiK from Escherichia coli, a prohibitin homolog that has been implicated in stress sensing by the formation of membrane-associated microdomains. The E. coli yqiK-deficient mutant strain showed an enhanced swimming behavior and was resistant to ampicillin but its response to other stressing conditions was similar to that of the wild-type strain. The abnormal swimming behavior is reversed when the protein is expressed in trans from a plasmid. Also, we demonstrate that YqiK is not redundant with QmcA, another flotillin homolog found in E. coli. Our results, along with the data available in the literature, suggest that YqiK may be involved in the formation of discrete membrane-associated signaling complexes that regulate and agglomerate signaling proteins to generate cell response to chemotaxis.
Collapse
Affiliation(s)
- Felipe Padilla-Vaca
- División de Ciencias Naturales y Exactas, Departamento de Biología, Universidad de Guanajuato, Noria Alta s/n, Guanajuato, Gto, 36050, Mexico
| | - Naurú Idalia Vargas-Maya
- División de Ciencias Naturales y Exactas, Departamento de Biología, Universidad de Guanajuato, Noria Alta s/n, Guanajuato, Gto, 36050, Mexico
| | - Narciso Ulises Elizarrarás-Vargas
- División de Ciencias Naturales y Exactas, Departamento de Biología, Universidad de Guanajuato, Noria Alta s/n, Guanajuato, Gto, 36050, Mexico
| | - Ángeles Rangel-Serrano
- División de Ciencias Naturales y Exactas, Departamento de Biología, Universidad de Guanajuato, Noria Alta s/n, Guanajuato, Gto, 36050, Mexico
| | - Luis Rafael Cardoso-Reyes
- División de Ciencias Naturales y Exactas, Departamento de Biología, Universidad de Guanajuato, Noria Alta s/n, Guanajuato, Gto, 36050, Mexico
| | - Tannia Razo-Soria
- División de Ciencias Naturales y Exactas, Departamento de Biología, Universidad de Guanajuato, Noria Alta s/n, Guanajuato, Gto, 36050, Mexico
| | - Jorge Membrillo-Hernández
- Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey, Mexico
| | - Bernardo Franco
- División de Ciencias Naturales y Exactas, Departamento de Biología, Universidad de Guanajuato, Noria Alta s/n, Guanajuato, Gto, 36050, Mexico.
| |
Collapse
|
16
|
Kulsoom B, Shamsi TS, Afsar NA. Lung resistance-related protein (LRP) predicts favorable therapeutic outcome in Acute Myeloid Leukemia. Sci Rep 2019; 9:378. [PMID: 30674943 PMCID: PMC6344578 DOI: 10.1038/s41598-018-36780-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/27/2018] [Indexed: 11/09/2022] Open
Abstract
There is conflicting evidence that MDR1, MRP2 and LRP expression is responsible for chemotherapy resistance. We conducted this study to explore their role in AML therapy outcomes. Bone marrow and peripheral blood samples of 90 AML patients, receiving chemotherapy, were analyzed by real time PCR. Gene expression was calculated by the 2-ΔΔCt method. The patients who had a persistent remission were labelled 'Good Responder' (GRes) whereas, those with relapse or drug resistance were labelled 'Poor Responders' (PRes). Higher LRP expression in bone marrow, but not in peripheral blood, was positively associated with persistent remission (p = 0.001), GRes (p = 0.002), 1-year overall as well as disease-free survival (p = 0.02 and p = 0.007, respectively). Marrow and blood MDR1 and MRP2 expression did not differ significantly between the above groups. Logistic regression analysis showed that only a diagnosis of acute promyelocytic leukemia (APL; M3) or high marrow LRP expression significantly predicted a favorable therapeutic outcome. This is the first report showing that high bone marrow LRP expression predicts significant favorable therapeutic outcome. Peripheral blood LRP expression as well as marrow and blood MDR1 and MRP2 expression have no predictive value in AML patients treated with standard dose cytarabine and daunorubicin 3+7 regimen.
Collapse
Affiliation(s)
- Bibi Kulsoom
- National Institute of Blood Diseases and Bone Marrow Transplantation, Karachi, Pakistan.
- Jinnah Medical and Dental College, Karachi, Pakistan.
| | - Tahir Sultan Shamsi
- National Institute of Blood Diseases and Bone Marrow Transplantation, Karachi, Pakistan
| | | |
Collapse
|
17
|
Sigmund F, Massner C, Erdmann P, Stelzl A, Rolbieski H, Desai M, Bricault S, Wörner TP, Snijder J, Geerlof A, Fuchs H, Hrabĕ de Angelis M, Heck AJR, Jasanoff A, Ntziachristos V, Plitzko J, Westmeyer GG. Bacterial encapsulins as orthogonal compartments for mammalian cell engineering. Nat Commun 2018; 9:1990. [PMID: 29777103 PMCID: PMC5959871 DOI: 10.1038/s41467-018-04227-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 04/16/2018] [Indexed: 01/06/2023] Open
Abstract
We genetically controlled compartmentalization in eukaryotic cells by heterologous expression of bacterial encapsulin shell and cargo proteins to engineer enclosed enzymatic reactions and size-constrained metal biomineralization. The shell protein (EncA) from Myxococcus xanthus auto-assembles into nanocompartments inside mammalian cells to which sets of native (EncB,C,D) and engineered cargo proteins self-target enabling localized bimolecular fluorescence and enzyme complementation. Encapsulation of the enzyme tyrosinase leads to the confinement of toxic melanin production for robust detection via multispectral optoacoustic tomography (MSOT). Co-expression of ferritin-like native cargo (EncB,C) results in efficient iron sequestration producing substantial contrast by magnetic resonance imaging (MRI) and allowing for magnetic cell sorting. The monodisperse, spherical, and iron-loading nanoshells are also excellent genetically encoded reporters for electron microscopy (EM). In general, eukaryotically expressed encapsulins enable cellular engineering of spatially confined multicomponent processes with versatile applications in multiscale molecular imaging, as well as intriguing implications for metabolic engineering and cellular therapy. Artificial compartments have been expressed in prokaryotes and yeast, but similar capabilities have been missing for mammalian cell engineering. Here the authors use bacterial encapsulins to engineer genetically controlled multifunctional orthogonal compartments in mammalian cells.
Collapse
Affiliation(s)
- Felix Sigmund
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Ingolstädter Landstraße 1, Neuherberg, 85764, Germany.,Institute of Developmental Genetics, Helmholtz Zentrum München, Ingolstädter Landstraße 1, Neuherberg, 85764, Germany.,Department of Nuclear Medicine, Technical University of Munich, Ismaninger Straße 22, Munich, 81675, Germany
| | - Christoph Massner
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Ingolstädter Landstraße 1, Neuherberg, 85764, Germany.,Institute of Developmental Genetics, Helmholtz Zentrum München, Ingolstädter Landstraße 1, Neuherberg, 85764, Germany.,Department of Nuclear Medicine, Technical University of Munich, Ismaninger Straße 22, Munich, 81675, Germany
| | - Philipp Erdmann
- Department of Structural Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, 82152, Germany
| | - Anja Stelzl
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Ingolstädter Landstraße 1, Neuherberg, 85764, Germany.,Institute of Developmental Genetics, Helmholtz Zentrum München, Ingolstädter Landstraße 1, Neuherberg, 85764, Germany
| | - Hannes Rolbieski
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Ingolstädter Landstraße 1, Neuherberg, 85764, Germany.,Institute of Developmental Genetics, Helmholtz Zentrum München, Ingolstädter Landstraße 1, Neuherberg, 85764, Germany
| | - Mitul Desai
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, 02139, Massachusetts, USA
| | - Sarah Bricault
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, 02139, Massachusetts, USA
| | - Tobias P Wörner
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, Utrecht, 3584CH, The Netherlands
| | - Joost Snijder
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, Utrecht, 3584CH, The Netherlands.,Snijder Bioscience, Spijkerstraat 114-4, Arnhem, 6828 DN, The Netherlands
| | - Arie Geerlof
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, Neuherberg, 85764, Germany
| | - Helmut Fuchs
- Institute of Experimental Genetics, Helmholtz Zentrum München, Ingolstädter Landstraße 1, Neuherberg, 85764, Germany
| | - Martin Hrabĕ de Angelis
- Institute of Experimental Genetics, Helmholtz Zentrum München, Ingolstädter Landstraße 1, Neuherberg, 85764, Germany
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, Utrecht, 3584CH, The Netherlands
| | - Alan Jasanoff
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, 02139, Massachusetts, USA.,Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, 02139, Massachusetts, USA.,Department of Nuclear Science & Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, 02139, Massachusetts, USA
| | - Vasilis Ntziachristos
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Ingolstädter Landstraße 1, Neuherberg, 85764, Germany.,Chair for Biological Imaging, Technical University of Munich, Ismaninger Straße 22, Munich, 81675, Germany
| | - Jürgen Plitzko
- Department of Structural Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, 82152, Germany
| | - Gil G Westmeyer
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Ingolstädter Landstraße 1, Neuherberg, 85764, Germany. .,Institute of Developmental Genetics, Helmholtz Zentrum München, Ingolstädter Landstraße 1, Neuherberg, 85764, Germany. .,Department of Nuclear Medicine, Technical University of Munich, Ismaninger Straße 22, Munich, 81675, Germany.
| |
Collapse
|
18
|
Ding K, Zhang X, Mrazek J, Kickhoefer VA, Lai M, Ng HL, Yang OO, Rome LH, Zhou ZH. Solution Structures of Engineered Vault Particles. Structure 2018; 26:619-626.e3. [PMID: 29551289 DOI: 10.1016/j.str.2018.02.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 10/31/2017] [Accepted: 02/12/2018] [Indexed: 12/16/2022]
Abstract
Prior crystal structures of the vault have provided clues of its structural variability but are non-conclusive due to crystal packing. Here, we obtained vaults by engineering at the N terminus of rat major vault protein (MVP) an HIV-1 Gag protein segment and determined their near-atomic resolution (∼4.8 Å) structures in a solution/non-crystalline environment. The barrel-shaped vaults in solution adopt two conformations, 1 and 2, both with D39 symmetry. From the N to C termini, each MVP monomer has three regions: body, shoulder, and cap. While conformation 1 is identical to one of the crystal structures, the shoulder in conformation 2 is translocated longitudinally up to 10 Å, resulting in an outward-projected cap. Our structures clarify the structural discrepancies in the body region in the prior crystallography models. The vault's drug-delivery potential is highlighted by the internal disposition and structural flexibility of its Gag-loaded N-terminal extension at the barrel waist of the engineered vault.
Collapse
Affiliation(s)
- Ke Ding
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xing Zhang
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jan Mrazek
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Valerie A Kickhoefer
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Mason Lai
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Hwee L Ng
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Otto O Yang
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; AIDS Healthcare Foundation, Los Angeles, CA 90028, USA
| | - Leonard H Rome
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Z Hong Zhou
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
19
|
Benner NL, Zang X, Buehler DC, Kickhoefer VA, Rome ME, Rome LH, Wender PA. Vault Nanoparticles: Chemical Modifications for Imaging and Enhanced Delivery. ACS NANO 2017; 11:872-881. [PMID: 28029784 PMCID: PMC5372831 DOI: 10.1021/acsnano.6b07440] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Vault nanoparticles represent promising vehicles for drug and probe delivery. Innately found within human cells, vaults are stable, biocompatible nanocapsules possessing an internal volume that can encapsulate hundreds to thousands of molecules. They can also be targeted. Unlike most nanoparticles, vaults are nonimmunogenic and monodispersed and can be rapidly produced in insect cells. Efforts to create vaults with modified properties have been, to date, almost entirely limited to recombinant bioengineering approaches. Here we report a systematic chemical study of covalent vault modifications, directed at tuning vault properties for research and clinical applications, such as imaging, targeted delivery, and enhanced cellular uptake. As supra-macromolecular structures, vaults contain thousands of derivatizable amino acid side chains. This study is focused on establishing the comparative selectivity and efficiency of chemically modifying vault lysine and cysteine residues, using Michael additions, nucleophilic substitutions, and disulfide exchange reactions. We also report a strategy that converts the more abundant vault lysine residues to readily functionalizable thiol terminated side chains through treatment with 2-iminothiolane (Traut's reagent). These studies provide a method to doubly modify vaults with cell penetrating peptides and imaging agents, allowing for in vitro studies on their enhanced uptake into cells.
Collapse
Affiliation(s)
- Nancy L. Benner
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Xiaoyu Zang
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Daniel C. Buehler
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Valerie A. Kickhoefer
- Department of Biological Chemistry, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California 90095, United States
| | - Michael E. Rome
- Department of Biological Chemistry, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California 90095, United States
| | - Leonard H. Rome
- Department of Biological Chemistry, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California 90095, United States
| | - Paul A. Wender
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Department of Chemical and Systems Biology, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
20
|
Weiss V, Bereszcazk JZ, Havlik M, Kallinger P, Gösler I, Kumar M, Blaas D, Marchetti-Deschmann M, Heck AJR, Szymanski WW, Allmaier G. Analysis of a common cold virus and its subviral particles by gas-phase electrophoretic mobility molecular analysis and native mass spectrometry. Anal Chem 2015; 87:8709-17. [PMID: 26221912 PMCID: PMC4558612 DOI: 10.1021/acs.analchem.5b01450] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 07/25/2015] [Indexed: 01/02/2023]
Abstract
Gas-phase electrophoretic mobility molecular analysis (GEMMA) separates nanometer-sized, single-charged particles according to their electrophoretic mobility (EM) diameter after transition to the gas-phase via a nano electrospray process. Electrospraying as a soft desorption/ionization technique preserves noncovalent biospecific interactions. GEMMA is therefore well suited for the analysis of intact viruses and subviral particles targeting questions related to particle size, bioaffinity, and purity of preparations. By correlating the EM diameter to the molecular mass (Mr) of standards, the Mr of analytes can be determined. Here, we demonstrate (i) the use of GEMMA in purity assessment of a preparation of a common cold virus (human rhinovirus serotype 2, HRV-A2) and (ii) the analysis of subviral HRV-A2 particles derived from such a preparation. (iii) Likewise, native mass spectrometry was employed to obtain spectra of intact HRV-A2 virions and empty viral capsids (B-particles). Charge state resolution for the latter allowed its Mr determination. (iv) Cumulatively, the data measured and published earlier were used to establish a correlation between the Mr and EM diameter for a range of globular proteins and the intact virions. Although a good correlation resulted from this analysis, we noticed a discrepancy especially for the empty and subviral particles. This demonstrates the influence of genome encapsulation (preventing analytes from shrinking upon transition into the gas-phase) on the measured analyte EM diameter. To conclude, GEMMA is useful for the determination of the Mr of intact viruses but needs to be employed with caution when subviral particles or even empty viral capsids are targeted. The latter could be analyzed by native MS.
Collapse
Affiliation(s)
- Victor
U. Weiss
- Institute
of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9/164, A-1060 Vienna, Austria
| | - Jessica Z. Bereszcazk
- Bijvoet
Centre for Biomolecular Research and Utrecht Institute of Pharmaceutical
Sciences, Utrecht University, NL-3584 CH Utrecht, The Netherlands
| | - Marlene Havlik
- Institute
of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9/164, A-1060 Vienna, Austria
| | - Peter Kallinger
- Faculty
of Physics, University of Vienna, A-1090 Vienna, Austria
| | - Irene Gösler
- Department
of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna Biocenter (VBC), A-1030 Vienna, Austria
| | - Mohit Kumar
- Department
of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna Biocenter (VBC), A-1030 Vienna, Austria
| | - Dieter Blaas
- Department
of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna Biocenter (VBC), A-1030 Vienna, Austria
| | | | - Albert J. R. Heck
- Bijvoet
Centre for Biomolecular Research and Utrecht Institute of Pharmaceutical
Sciences, Utrecht University, NL-3584 CH Utrecht, The Netherlands
| | | | - Günter Allmaier
- Institute
of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9/164, A-1060 Vienna, Austria
| |
Collapse
|
21
|
Tsolis KC, Bei ES, Papathanasiou I, Kostopoulou F, Gkretsi V, Kalantzaki K, Malizos K, Zervakis M, Tsezou A, Economou A. Comparative proteomic analysis of hypertrophic chondrocytes in osteoarthritis. Clin Proteomics 2015; 12:12. [PMID: 25945082 PMCID: PMC4415313 DOI: 10.1186/s12014-015-9085-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 04/15/2015] [Indexed: 02/07/2023] Open
Abstract
Background Osteoarthritis (OA) is a multi-factorial disease leading progressively to loss of articular cartilage and subsequently to loss of joint function. While hypertrophy of chondrocytes is a physiological process implicated in the longitudinal growth of long bones, hypertrophy-like alterations in chondrocytes play a major role in OA. We performed a quantitative proteomic analysis in osteoarthritic and normal chondrocytes followed by functional analyses to investigate proteome changes and molecular pathways involved in OA pathogenesis. Methods Chondrocytes were isolated from articular cartilage of ten patients with primary OA undergoing knee replacement surgery and six normal donors undergoing fracture repair surgery without history of joint disease and no OA clinical manifestations. We analyzed the proteome of chondrocytes using high resolution mass spectrometry and quantified it by label-free quantification and western blot analysis. We also used WebGestalt, a web-based enrichment tool for the functional annotation and pathway analysis of the differentially synthesized proteins, using the Wikipathways database. ClueGO, a Cytoscape plug-in, is also used to compare groups of proteins and to visualize the functionally organized Gene Ontology (GO) terms and pathways in the form of dynamical network structures. Results The proteomic analysis led to the identification of a total of ~2400 proteins. 269 of them showed differential synthesis levels between the two groups. Using functional annotation, we found that proteins belonging to pathways associated with regulation of the actin cytoskeleton, EGF/EGFR, TGF-β, MAPK signaling, integrin-mediated cell adhesion, and lipid metabolism were significantly enriched in the OA samples (p ≤10−5). We also observed that the proteins GSTP1, PLS3, MYOF, HSD17B12, PRDX2, APCS, PLA2G2A SERPINH1/HSP47 and MVP, show distinct synthesis levels, characteristic for OA or control chondrocytes. Conclusion In this study we compared the quantitative changes in proteins synthesized in osteoarthritic compared to normal chondrocytes. We identified several pathways and proteins to be associated with OA chondrocytes. This study provides evidence for further testing on the molecular mechanism of the disease and also propose proteins as candidate markers of OA chondrocyte phenotype. Electronic supplementary material The online version of this article (doi:10.1186/s12014-015-9085-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Konstantinos C Tsolis
- Institute of Molecular Biology and Biotechnology - FoRTH, Iraklio, Greece ; Department of Microbiology and Immunology, Rega Institute for Medical Research, KULeuven, Leuven, Belgium
| | - Ekaterini S Bei
- School of Electronic and Computer Engineering, Technical Univ. of Crete, Chania, Greece
| | - Ioanna Papathanasiou
- Department of Biology, University of Thessaly, Faculty of Medicine, Larissa, Greece ; Institute for Research & Technology-Thessaly/Centre for Research & Technology-Hellas (CE.R.T.H), Larissa, Greece
| | - Fotini Kostopoulou
- Department of Biology, University of Thessaly, Faculty of Medicine, Larissa, Greece ; Institute for Research & Technology-Thessaly/Centre for Research & Technology-Hellas (CE.R.T.H), Larissa, Greece
| | - Vassiliki Gkretsi
- Institute for Research & Technology-Thessaly/Centre for Research & Technology-Hellas (CE.R.T.H), Larissa, Greece
| | - Kalliopi Kalantzaki
- School of Electronic and Computer Engineering, Technical Univ. of Crete, Chania, Greece
| | - Konstantinos Malizos
- Department of Orthopedics, University of Thessaly, Faculty of Medicine, Larissa, Greece
| | - Michalis Zervakis
- School of Electronic and Computer Engineering, Technical Univ. of Crete, Chania, Greece
| | - Aspasia Tsezou
- Department of Biology, University of Thessaly, Faculty of Medicine, Larissa, Greece ; Institute for Research & Technology-Thessaly/Centre for Research & Technology-Hellas (CE.R.T.H), Larissa, Greece
| | - Anastassios Economou
- Institute of Molecular Biology and Biotechnology - FoRTH, Iraklio, Greece ; Department of Microbiology and Immunology, Rega Institute for Medical Research, KULeuven, Leuven, Belgium
| |
Collapse
|
22
|
Woodward CL, Mendonça LM, Jensen GJ. Direct visualization of vaults within intact cells by electron cryo-tomography. Cell Mol Life Sci 2015; 72:3401-9. [PMID: 25864047 DOI: 10.1007/s00018-015-1898-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 03/13/2015] [Accepted: 04/02/2015] [Indexed: 02/04/2023]
Abstract
The vault complex is the largest cellular ribonucleoprotein complex ever characterized and is present across diverse Eukarya. Despite significant information regarding the structure, composition and evolutionary conservation of the vault, little is know about the complex's actual biological function. To determine if intracellular vaults are morphologically similar to previously studied purified and recombinant vaults, we have used electron cryo-tomography to characterize the vault complexes found in the thin edges of primary human cells growing in tissue culture. Our studies confirm that intracellular vaults are similar in overall size and shape to purified and recombinant vaults previously analyzed. Results from subtomogram averaging indicate that densities within the vault lumen are not ordered, but randomly distributed. We also observe that vaults located in the extreme periphery of the cytoplasm predominately associate with granule-like structures and actin. Our ultrastructure studies augment existing biochemical, structural and genetic information on the vault, and provide important intracellular context for the ongoing efforts to understand the biological function of the native cytoplasmic vault.
Collapse
Affiliation(s)
- Cora L Woodward
- Division of Biology, California Institute of Technology, 1200 E California Blvd, Pasadena, CA, 91125, USA
| | | | | |
Collapse
|
23
|
Zhang W, Neo SP, Gunaratne J, Poulsen A, Boping L, Ong EH, Sangthongpitag K, Pendharkar V, Hill J, Cohen SM. Feedback regulation on PTEN/AKT pathway by the ER stress kinase PERK mediated by interaction with the Vault complex. Cell Signal 2014; 27:436-42. [PMID: 25530215 DOI: 10.1016/j.cellsig.2014.12.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 12/01/2014] [Accepted: 12/15/2014] [Indexed: 01/06/2023]
Abstract
The high proliferation rate of cancer cells, together with environmental factors such as hypoxia and nutrient deprivation can cause Endoplasmic Reticulum (ER) stress. The protein kinase PERK is an essential mediator in one of the three ER stress response pathways. Genetic and pharmacological inhibition of PERK has been reported to limit tumor growth in xenograft models. Here we provide evidence that inactive PERK interacts with the nuclear pore-associated Vault complex protein and that this compromises Vault-mediated nuclear transport of PTEN. Pharmacological inhibition of PERK under ER stress results is abnormal sequestration of the Vault complex, leading to increased cytoplasmic PTEN activity and lower AKT activation. As the PI3K/PTEN/AKT pathway is crucial for many aspects of cell growth and survival, this unexpected effect of PERK inhibitors on AKT activity may have implications for their potential use as therapeutic agents.
Collapse
Affiliation(s)
- Wei Zhang
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Suat Peng Neo
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Jayantha Gunaratne
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Anders Poulsen
- Experimental Therapeutics Center, 31 Biopolis Way, Singapore 138669, Singapore
| | - Liu Boping
- Experimental Therapeutics Center, 31 Biopolis Way, Singapore 138669, Singapore
| | - Esther Hongqian Ong
- Experimental Therapeutics Center, 31 Biopolis Way, Singapore 138669, Singapore
| | | | - Vishal Pendharkar
- Experimental Therapeutics Center, 31 Biopolis Way, Singapore 138669, Singapore
| | - Jeffrey Hill
- Experimental Therapeutics Center, 31 Biopolis Way, Singapore 138669, Singapore
| | - Stephen M Cohen
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673, Singapore; Department of Biological Sciences, National University of Singapore, 117543, Singapore.
| |
Collapse
|
24
|
Llauró A, Guerra P, Irigoyen N, Rodríguez JF, Verdaguer N, de Pablo PJ. Mechanical stability and reversible fracture of vault particles. Biophys J 2014; 106:687-95. [PMID: 24507609 DOI: 10.1016/j.bpj.2013.12.035] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 11/18/2013] [Accepted: 12/23/2013] [Indexed: 11/16/2022] Open
Abstract
Vaults are the largest ribonucleoprotein particles found in eukaryotic cells, with an unclear cellular function and promising applications as vehicles for drug delivery. In this article, we examine the local stiffness of individual vaults and probe their structural stability with atomic force microscopy under physiological conditions. Our data show that the barrel, the central part of the vault, governs both the stiffness and mechanical strength of these particles. In addition, we induce single-protein fractures in the barrel shell and monitor their temporal evolution. Our high-resolution atomic force microscopy topographies show that these fractures occur along the contacts between two major vault proteins and disappear over time. This unprecedented systematic self-healing mechanism, which enables these particles to reversibly adapt to certain geometric constraints, might help vaults safely pass through the nuclear pore complex and potentiate their role as self-reparable nanocontainers.
Collapse
Affiliation(s)
- Aida Llauró
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Madrid, Spain
| | - Pablo Guerra
- Institut de Biologia Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Barcelona, Spain
| | - Nerea Irigoyen
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - José F Rodríguez
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Núria Verdaguer
- Institut de Biologia Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Barcelona, Spain
| | - Pedro J de Pablo
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
25
|
Mouse monoclonal antibodies against estrogen receptor. Methods Mol Biol 2014. [PMID: 25182770 DOI: 10.1007/978-1-4939-1346-6_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The production of monoclonal antibodies, by cloning hybridoma derived from the fusion of myeloma cells and spleen lymphocytes, has allowed to obtain great advances in many fields of biological knowledge. The use of specific antibodies to the estrogen receptor, in fact, has been an invaluable method to bring out its mechanisms of action and its effects, both genomic and extra-genomic. Here we describe, step by step, the production of monoclonal antibodies, starting from protocol for antigen preparation to the selection of antibody-secreting hybridoma.
Collapse
|
26
|
Chistiakov DA, Chekhonin VP. Extracellular vesicles shed by glioma cells: pathogenic role and clinical value. Tumour Biol 2014; 35:8425-38. [DOI: 10.1007/s13277-014-2262-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 06/18/2014] [Indexed: 02/03/2023] Open
|
27
|
Casañas A, Querol-Audí J, Guerra P, Pous J, Tanaka H, Tsukihara T, Verdaguer N, Fita I. New features of vault architecture and dynamics revealed by novel refinement using the deformable elastic network approach. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:1054-61. [PMID: 23695250 DOI: 10.1107/s0907444913004472] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 02/14/2013] [Indexed: 01/27/2023]
Abstract
The vault particle, with a molecular weight of about 10 MDa, is the largest ribonucleoprotein that has been described. The X-ray structure of intact rat vault has been solved at a resolution of 3.5 Å [Tanaka et al. (2009), Science, 323, 384-388], showing an overall barrel-shaped architecture organized into two identical moieties, each consisting of 39 copies of the major vault protein (MVP). The model deposited in the PDB includes 39 MVP copies (half a vault) in the crystal asymmetric unit. A 2.1 Å resolution structure of the seven N-terminal repeats (R1-7) of MVP has also been determined [Querol-Audí et al. (2009), EMBO J. 28, 3450-3457], revealing important discrepancies with respect to the MVP models for repeats R1 and R2. Here, the re-refinement of the vault structure by incorporating the high-resolution information available for the R1-7 domains, using the deformable elastic network (DEN) approach and maintaining strict 39-fold noncrystallographic symmetry is reported. The new refinement indicates that at the resolution presently available the MVP shell can be described well as only one independent subunit organized with perfect D39 molecular symmetry. This refinement reveals that significant rearrangements occur in the N-terminus of MVP during the closing of the two vault halves and that the 39-fold symmetry breaks in the cap region. These results reflect the highly dynamic nature of the vault structure and represent a necessary step towards a better understanding of the biology and regulation of this particle.
Collapse
Affiliation(s)
- Arnau Casañas
- Institut de Biologia Molecular de Barcelona (CSIC), Parc Científic de Barcelona, Baldiri i Reixac 10, 08028 Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|