1
|
Ni Q, Miao Y, Li X, Yin Z, Huang H, Shi G, Shi W. Up-Regulation of MELK Promotes Cell Growth and Invasion by Accelerating G1/S Transition and Indicates Poor Prognosis in Lung Adenocarcinoma. Mol Biotechnol 2025; 67:1584-1596. [PMID: 38676754 DOI: 10.1007/s12033-024-01143-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/14/2024] [Indexed: 04/29/2024]
Abstract
Maternal embryonic leucine zipper kinase (MELK) is an oncogene in many tumors, although its contribution to lung adenocarcinoma (LUAD) is unclear. We examined MELK expression in patient LUAD tissue and matched healthy lung tissues. We investigated the connection between MELK expression and tumor differentiation, lymph node metastasis, and patient survival. We downregulated MELK expression using small-hairpin RNA to assess its impact on LUAD cell proliferation, clonogenicity, and invasion. We also investigated the molecular mechanism underlying these effects. MELK expression was significantly heightened in LUAD tissue as opposed to the matching healthy lung tissues. LUAD patients who had MELK overexpression had a worse prognosis. Suppression of MELK hinders proliferation, clonogenicity, and invasion of LUAD cells. The MELK suppression led to the arrest of the cell cycle's G1/S phase by reducing the cyclin E1 and cyclin D expression. Our outcomes manifest that MELK can function as a beneficial prognostic indication and a new therapy target for LUAD. MELK has an essential function in progressing LUAD, manifesting potential as a viable target for therapeutic intervention in this disease management.
Collapse
Affiliation(s)
- Qinggan Ni
- Department of Burns and Plastic Surgery, Yancheng Clinical College of Xuzhou Medical University, The First People's Hospital of Yancheng, Yancheng, 224000, People's Republic of China
| | - Yuqing Miao
- Department of Respiratory Diseases, The Sixth People's Hospital of Nantong (Affiliated Nantong Hospital of Shanghai University), Nantong, Jiangsu, 226011, People's Republic of China
| | - Xia Li
- Department of General Medicine, Affiliated Hospital of Nantong University, Yancheng Third People's Hospital, Yancheng, 224000, People's Republic of China
| | - Zhongbo Yin
- Department of Pathology, The Sixth People's Hospital of Nantong (Affiliated Nantong Hospital of Shanghai University), Nantong, Jiangsu, 226011, People's Republic of China
| | - Hua Huang
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226011, People's Republic of China
| | - Guanglin Shi
- Department of Respiratory Diseases, The Sixth People's Hospital of Nantong (Affiliated Nantong Hospital of Shanghai University), Nantong, Jiangsu, 226011, People's Republic of China.
| | - Weirong Shi
- Department of Thoracic Surgery, The Sixth People's Hospital of Nantong (Affiliated Nantong Hospital of Shanghai University), Nantong, Jiangsu, 226011, People's Republic of China.
| |
Collapse
|
2
|
Tang BF, Yan RC, Wang SW, Zeng ZC, Du SS. Maternal embryonic leucine zipper kinase in tumor cell and tumor microenvironment: Emerging player and promising therapeutic opportunities. Cancer Lett 2023; 560:216126. [PMID: 36933780 DOI: 10.1016/j.canlet.2023.216126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/02/2023] [Accepted: 03/11/2023] [Indexed: 03/18/2023]
Abstract
Maternal embryonic leucine zipper kinase (MELK) is a member of the AMPK (AMP-activated protein kinase) protein family, which is widely and highly expressed in multiple cancer types. Through direct and indirect interactions with other proteins, it mediates various cascades of signal transduction processes and plays an important role in regulating tumor cell survival, growth, invasion and migration and other biological functions. Interestingly, MELK also plays an important role in the regulation of the tumor microenvironment, which can not only predict the responsiveness of immunotherapy, but also affect the function of immune cells to regulate tumor progression. In addition, more and more small molecule inhibitors have been developed for the target of MELK, which exert important anti-tumor effects and have achieved excellent results in a number of clinical trials. In this review, we outline the structural features, molecular biological functions, potential regulatory mechanisms and important roles of MELK in tumors and tumor microenvironment, as well as substances targeting MELK. Although many molecular mechanisms of MELK in the process of tumor regulation are still unknown, it is worth affirming that MELK is a potential tumor molecular therapeutic target, and its unique superiority and important role provide clues and confidence for subsequent basic research and scientific transformation.
Collapse
Affiliation(s)
- Bu-Fu Tang
- Department of Radiation Oncology, Fudan University Zhongshan Hospital, Fenglin Road 188, 200030, Shanghai, China
| | - Ruo-Chen Yan
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Si-Wei Wang
- Department of Radiation Oncology, Fudan University Zhongshan Hospital, Fenglin Road 188, 200030, Shanghai, China
| | - Zhao-Chong Zeng
- Department of Radiation Oncology, Fudan University Zhongshan Hospital, Fenglin Road 188, 200030, Shanghai, China
| | - Shi-Suo Du
- Department of Radiation Oncology, Fudan University Zhongshan Hospital, Fenglin Road 188, 200030, Shanghai, China.
| |
Collapse
|
3
|
Shi J, Yang C, An J, Hao D, Liu C, Liu J, Sun J, Jiang J. KLF5-induced BBOX1-AS1 contributes to cell malignant phenotypes in non-small cell lung cancer via sponging miR-27a-5p to up-regulate MELK and activate FAK signaling pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:148. [PMID: 33931086 PMCID: PMC8086369 DOI: 10.1186/s13046-021-01943-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/11/2021] [Indexed: 02/06/2023]
Abstract
Background Non-small cell lung cancer (NSCLC) is a major histological subtype of lung cancer with high mortality and morbidity. A substantial amount of evidence demonstrates long non-coding RNAs (lncRNA) as critical regulators in tumorigeneis and malignant progression of human cancers. The oncogenic role of BBOX1 anti-sense RNA 1 (BBOX1-AS1) has been reported in several tumors. As yet, the potential functions and mechanisms of BBOX1-AS1 in NSCLC are obscure. Methods The gene and protein expression was detected by qRT-PCR and western blot. Cell function was determined by CCK-8, colony forming, would healing and transwell assays. Bioinformatics tools, ChIP assays, dual luciferase reporters system and RNA pull-down experiments were used to examine the interaction between molecules. Subcutaneous tumor models in nude mice were established to investigate in vivo NSCLC cell behavior. Results BBOX1-AS1 was highly expressed in NSCLC tissues and cells. High BBOX1-AS1 expression was associated with worse clinical parameters and poor prognosis. BBOX1-AS1 up-regulation was induced by transcription factor KLF5. BBOX1-AS1 deficiency resulted in an inhibition of cell proliferation, migration, invasion and EMT in vitro. Also, knockdown of BBOX1-AS1 suppressed NSCLC xenograft tumor growth in mice in vivo. Mechanistically, BBOX1-AS1 acted act as a competetive “sponge” of miR-27a-5p to promote maternal embryonic leucine zipper kinase (MELK) expression and activate FAK signaling. miR-27a-5p was confirmed as a tumor suppressor in NSCLC. Moreover, BBOX1-AS1-induced increase of cell proliferation, migration, invasion and EMT was greatly reversed due to the overexpression of miR-27a-5p. In addition, the suppressive effect of NSCLC progression owing to BBOX1-AS1 depletion was abated by the up-regulation of MELK. Consistently, BBOX1-AS1-mediated carcinogenicity was attenuated in NSCLC after treatment with a specific MELK inhibitor OTSSP167. Conclusions KLF5-induced BBOX1-AS1 exerts tumor-promotive roles in NSCLC via sponging miR-27a-5p to activate MELK/FAK signaling, providing the possibility of employing BBOX1-AS1 as a therapeutic target for NSCLC patients. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-01943-5.
Collapse
Affiliation(s)
- Jiang Shi
- Department of Geriatric Respiratory Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Chao Yang
- Department of Geriatric Respiratory Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jinlu An
- Department of Geriatric Respiratory Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Dexun Hao
- Department of Geriatric Respiratory Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Cong Liu
- Department of Geriatric Respiratory Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jumin Liu
- Department of Geriatric Respiratory Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jing Sun
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Junguang Jiang
- Department of Geriatric Respiratory Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
4
|
Jiao Z, Yu A, He X, Xuan Y, Zhang H, Wang G, Shi M, Wang T. Bioinformatics analysis to determine the prognostic value and prospective pathway signaling of miR-126 in non-small cell lung cancer. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1639. [PMID: 33490151 PMCID: PMC7812220 DOI: 10.21037/atm-20-7520] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background MicroRNAs (miRNAs) have been demonstrated to play crucial roles in the initiation and development of non-small cell lung cancer (NSCLC). However, further investigation of the specific role of miR-126 in NSCLC is still required. Methods An analysis of miR-126 expression in NSCLC was carried out using the Gene Expression Omnibus (GEO) database, and a literature review was also performed. The differentially expressed genes (DEGs) in three mRNA datasets, GSE18842, GSE19804, and GSE101929, from GEO were identified. Following the prediction of hsa-miR-126-5p target genes by TargetScan, the overlap of miR-126 target genes with DEGs in NSCLC was examined. After that, Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analyses were performed. Finally, an analysis to identify the impact of hub genes on the prognosis of NSCLC was carried out on the basis of a protein-protein interaction (PPI) network constructed using STRING and Cytoscape. Results The data in the literature review revealed a trend that miR126 was downregulated in NSCLC. The number of both NSCLC-related and miR-126-related DEGs was 187. Dozens of DEGs were significantly enriched in biological regulation, cell membrane binding, and signal receptor binding. In the PPI network analysis, 3 of 10 identified hub genes, namely NCAPG, MELK, and KIAA0101, were obviously related to poor prognosis in NSCLC; the survival rate was low among patients with high expression levels of these genes. Furthermore, through network analysis, TPX2, HMMR, and ANLN were identified as recessive miR-126-related genes that may be involved in NSCLC. Conclusions MiR-126 plays an essential role in the biological processes of NSCLC through binding to target genes and influences the prognosis of patients with the disease.
Collapse
Affiliation(s)
- Zichen Jiao
- Department of Thoracic Surgery, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,Department of Thoracic Surgery, Nanjing Drum Tower Hospital, Nanjing Medical University, Nanjing, China
| | - Ao Yu
- Department of Thoracic Surgery, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,Department of Thoracic Surgery, Nanjing Drum Tower Hospital, Nanjing Medical University, Nanjing, China
| | - Xiaofeng He
- Department of Thoracic Surgery, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,Department of Thoracic Surgery, Nanjing Drum Tower Hospital, Nanjing Medical University, Nanjing, China
| | - Yulong Xuan
- Department of Thoracic Surgery, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,Department of Thoracic Surgery, Nanjing Drum Tower Hospital, Nanjing Medical University, Nanjing, China
| | - He Zhang
- Department of Thoracic Surgery, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Guojun Wang
- Department of Thoracic Surgery, Jintan People's Hospital, Changzhou, China
| | - Minke Shi
- Department of Thoracic Surgery, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,Department of Thoracic Surgery, Nanjing Drum Tower Hospital, Nanjing Medical University, Nanjing, China
| | - Tao Wang
- Department of Thoracic Surgery, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,Department of Thoracic Surgery, Nanjing Drum Tower Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
5
|
Miao YD, Wang JT, Yang Y, Ma XP, Mi DH. Identification of prognosis-associated immune genes and exploration of immune cell infiltration in colorectal cancer. Biomark Med 2020; 14:1353-1369. [PMID: 33064017 DOI: 10.2217/bmm-2020-0024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 07/30/2020] [Indexed: 12/14/2022] Open
Abstract
Aim: To identify prognosis-related immune genes (PRIGs) and construct a prognosis model of colorectal cancer (CRC) patients for clinical use. Materials & methods: Expression profiles were obtained from The Cancer Genome Atlas database and identified differentially expressed PRIGs of CRC. Results: A prognostic model was conducted based on nine PRIGs. The risk score, based on prognosis model, was an independent prognostic predictor. Five PRIGs and risk score were significantly associated with the clinical stage of CRC and five immune cells related to the risk score. Conclusion: The risk score was an independent prognostic biomarker for CRC patients. The research excavated immune genes that were associated with survival and that could be potential biomarkers for prognosis and treatment for CRC patients.
Collapse
Affiliation(s)
- Yan-Dong Miao
- The First Clinical Medical College of Lanzhou University, Lanzhou City, Gansu Province, PR China
| | - Jiang-Tao Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou City, Gansu Province, PR China
| | - Yuan Yang
- The First Clinical Medical College of Lanzhou University, Lanzhou City, Gansu Province, PR China
| | - Xue-Ping Ma
- Second People's Hospital of Gansu Province, Lanzhou City, Gansu Province, PR China
| | - Deng-Hai Mi
- The First Clinical Medical College of Lanzhou University, Lanzhou City, Gansu Province, PR China
- Gansu Academy of Traditional Chinese medicine, Lanzhou City, Gansu Province, PR China
| |
Collapse
|
6
|
Chen S, Lu Z, Chen X, Wu X, Tu H, Yu L, Xiao Z. Maternal embryonic leucine zipper kinase: A novel biomarker and a potential therapeutic target in lung adenocarcinoma. Oncol Lett 2020; 20:147. [PMID: 32934715 PMCID: PMC7471708 DOI: 10.3892/ol.2020.12010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 06/19/2020] [Indexed: 12/24/2022] Open
Abstract
Maternal embryonic leucine zipper kinase (MELK), is an adenosine monophosphate-activated protein kinase-related kinase that serves important roles in tumourigenesis in multiple malignant tumours. However, to the best of our knowledge, the effect of MELK in lung adenocarcinoma (LUAD) has not been elucidated. The present study aimed to explore the clinical significance of MELK in the prognosis of LUAD. Data from Oncomine, Gene Expression Profiling Interactive Analysis (GEPIA) and The Cancer Genome Atlas (TCGA) were selected to predict the differential mRNA expression levels of MELK mRNA in LUAD and normal tissues. Subsequently, LUAD and adjacent normal tissue samples were collected from 75 patients with the disease, and immunohistochemistry was used to detect the protein expression of MELK. In addition, the Kaplan-Meier Plotter database, GEPIA and TCGA were used to verify the effect of MELK expression on clinical prognosis in patients with LUAD. MELK was significantly upregulated in LUAD tissues compared with that in normal tissues based on Oncomine, GEPIA and TCGA data (P<0.05). In addition, the results from immunohistochemistry demonstrated that the MELK protein level in LUAD tissues was significantly higher compared with that in matched normal tissues (P<0.05). Prognostic analysis performed using the Kaplan-Meier plotter, GEPIA and TCGA suggested that the expression of MELK was negatively associated with the overall survival time of patients with LUAD (P<0.05). In conclusion, MELK was highly expressed in LUAD based on bioinformatics and immunohistochemistry analysis, and increased expression of MELK was associated with a poor patient prognosis. MELK may serve as a potential diagnostic marker and therapeutic target for LUAD.
Collapse
Affiliation(s)
- Shengsong Chen
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China.,Department of Pulmonary and Critical Care Medicine, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhanpeng Lu
- Department of Critical Care Medicine, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong 518033, P.R. China
| | - Xiaoyong Chen
- Department of Pulmonary and Critical Care Medicine, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xiya Wu
- Department of Pulmonary and Critical Care Medicine, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Hongying Tu
- Department of Pulmonary and Critical Care Medicine, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Lingling Yu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zuke Xiao
- Department of Pulmonary and Critical Care Medicine, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|