1
|
Iwakura H, Ensho T, Ueda Y. Desacyl-ghrelin, not just an inactive form of ghrelin?-A review of current knowledge on the biological actions of desacyl-ghrelin. Peptides 2023:171050. [PMID: 37392995 DOI: 10.1016/j.peptides.2023.171050] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/03/2023]
Abstract
Desacyl-ghrelin is a form of ghrelin which lacks acyl-modification of the third serine residue of ghrelin. Originally, desacyl-ghrelin was considered to be just an inactive form of ghrelin. More recently, however, it has been suggested to have various biological activities, including control of food intake, growth hormone, glucose metabolism, and gastric movement, and is involved in cell survival. In this review, we summarize the current knowledge of the biological actions of desacyl-ghrelin and the proposed mechanisms by which it exerts the effects.
Collapse
Affiliation(s)
- Hiroshi Iwakura
- Department of Pharmacotherapeutics, School of Pharmaceutical Science, Wakayama Medical University, 25-1 Shichibancho, Wakayama 640-8156, Japan.
| | - Takuya Ensho
- Department of Pharmacotherapeutics, School of Pharmaceutical Science, Wakayama Medical University, 25-1 Shichibancho, Wakayama 640-8156, Japan
| | - Yoko Ueda
- Department of Pharmacotherapeutics, School of Pharmaceutical Science, Wakayama Medical University, 25-1 Shichibancho, Wakayama 640-8156, Japan
| |
Collapse
|
2
|
Fritz EM, Singewald N, De Bundel D. The Good, the Bad and the Unknown Aspects of Ghrelin in Stress Coping and Stress-Related Psychiatric Disorders. Front Synaptic Neurosci 2020; 12:594484. [PMID: 33192444 PMCID: PMC7652849 DOI: 10.3389/fnsyn.2020.594484] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 09/14/2020] [Indexed: 12/16/2022] Open
Abstract
Ghrelin is a peptide hormone released by specialized X/A cells in the stomach and activated by acylation. Following its secretion, it binds to ghrelin receptors in the periphery to regulate energy balance, but it also acts on the central nervous system where it induces a potent orexigenic effect. Several types of stressors have been shown to stimulate ghrelin release in rodents, including nutritional stressors like food deprivation, but also physical and psychological stressors such as foot shocks, social defeat, forced immobilization or chronic unpredictable mild stress. The mechanism through which these stressors drive ghrelin release from the stomach lining remains unknown and, to date, the resulting consequences of ghrelin release for stress coping remain poorly understood. Indeed, ghrelin has been proposed to act as a stress hormone that reduces fear, anxiety- and depression-like behaviors in rodents but some studies suggest that ghrelin may - in contrast - promote such behaviors. In this review, we aim to provide a comprehensive overview of the literature on the role of the ghrelin system in stress coping. We discuss whether ghrelin release is more than a byproduct of disrupted energy homeostasis following stress exposure. Furthermore, we explore the notion that ghrelin receptor signaling in the brain may have effects independent of circulating ghrelin and in what way this might influence stress coping in rodents. Finally, we examine how the ghrelin system could be utilized as a therapeutic avenue in stress-related psychiatric disorders (with a focus on anxiety- and trauma-related disorders), for example to develop novel biomarkers for a better diagnosis or new interventions to tackle relapse or treatment resistance in patients.
Collapse
Affiliation(s)
- Eva Maria Fritz
- Department of Pharmacology and Toxicology, Institute of Pharmacy and CMBI, University of Innsbruck, Innsbruck, Austria
| | - Nicolas Singewald
- Department of Pharmacology and Toxicology, Institute of Pharmacy and CMBI, University of Innsbruck, Innsbruck, Austria
| | - Dimitri De Bundel
- Department of Pharmaceutical Sciences, Research Group Experimental Pharmacology, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
3
|
Gupta S, Mitra A. Heal the heart through gut (hormone) ghrelin: a potential player to combat heart failure. Heart Fail Rev 2020; 26:417-435. [PMID: 33025414 DOI: 10.1007/s10741-020-10032-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/21/2020] [Indexed: 12/17/2022]
Abstract
Ghrelin, a small peptide hormone (28 aa), secreted mainly by X/A-like cells of gastric mucosa, is also locally produced in cardiomyocytes. Being an orexigenic factor (appetite stimulant), it promotes release of growth hormone (GH) and exerts diverse physiological functions, viz. regulation of energy balance, glucose, and/or fat metabolism for body weight maintenance. Interestingly, administration of exogenous ghrelin significantly improves cardiac functions in CVD patients as well as experimental animal models of heart failure. Ghrelin ameliorates pathophysiological condition of the heart in myocardial infarction, cardiac hypertrophy, fibrosis, cachexia, and ischemia reperfusion injury. This peptide also exerts significant impact at the level of vasculature leading to lowering high blood pressure and reversal of endothelial dysfunction and atherosclerosis. However, the molecular mechanism of actions elucidating the healing effects of ghrelin on the cardiovascular system is still a matter of conjecture. Some experimental data indicate its beneficial effects via complex cellular cross talks between autonomic nervous system and cardiovascular cells, some other suggest more direct receptor-mediated molecular actions via autophagy or ionotropic regulation and interfering with apoptotic and inflammatory pathways of cardiomyocytes and vascular endothelial cells. Here, in this review, we summarise available recent data to encourage more research to find the missing links of unknown ghrelin receptor-mediated pathways as we see ghrelin as a future novel therapy in cardiovascular protection.
Collapse
Affiliation(s)
- Shreyasi Gupta
- Department of Zoology, Triveni Devi Bhalotia College, Raniganj, Paschim Bardhaman, 713347, India
| | - Arkadeep Mitra
- Department of Zoology, City College , 102/1, Raja Rammohan Sarani, Kolkata, 700009, India.
| |
Collapse
|
4
|
Corrêa da Silva F, Aguiar C, Pereira JAS, de Brito Monteiro L, Davanzo GG, Codo AC, Pimentel de Freitas L, Berti AS, Lopes Ferrucci D, Castelucci BG, Consonni SR, Carvalho HF, Moraes-Vieira PMM. Ghrelin effects on mitochondrial fitness modulates macrophage function. Free Radic Biol Med 2019; 145:61-66. [PMID: 31525456 DOI: 10.1016/j.freeradbiomed.2019.09.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/12/2019] [Accepted: 09/12/2019] [Indexed: 12/11/2022]
Abstract
Over the past years, systemic derived cues that regulate cellular metabolism have been implicated in the regulation of immune responses. Ghrelin is an orexigenic hormone produced by enteroendocrine cells in the gastric mucosa with known immunoregulatory roles. The mechanism behind the function of ghrelin in immune cells, such as macrophages, is still poorly understood. Here, we explored the hypothesis that ghrelin leads to alterations in macrophage metabolism thus modulating macrophage function. We demonstrated that ghrelin exerts an immunomodulatory effect over LPS-activated peritoneal macrophages, as evidenced by inhibition of TNF-α and IL-1β secretion and increased IL-12 production. Concomitantly, ghrelin increased mitochondrial membrane potential and increased respiratory rate. In agreement, ghrelin prevented LPS-induced ultrastructural damage in the mitochondria. Ghrelin also blunted LPS-induced glycolysis. In LPS-activated macrophages, glucose deprivation did not affect ghrelin-induced IL-12 secretion, whereas the inhibition of pyruvate transport and mitochondria-derived ATP abolished ghrelin-induced IL-12 secretion, indicating a dependence on mitochondrial function. Ghrelin pre-treatment of metabolic activated macrophages inhibited the secretion of TNF-α and enhanced IL-12 levels. Moreover, ghrelin effects on IL-12, and not on TNF-α, are dependent on mitochondria elongation, since ghrelin did not enhance IL-12 secretion in metabolic activated mitofusin-2 deficient macrophages. Thus, ghrelin affects macrophage mitochondrial metabolism and the subsequent macrophage function.
Collapse
Affiliation(s)
- Felipe Corrêa da Silva
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Brazil
| | - Cristhiane Aguiar
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Brazil
| | - Jéssica A S Pereira
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Brazil; Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Brazil
| | - Lauar de Brito Monteiro
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Brazil
| | - Gustavo Gastão Davanzo
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Brazil
| | - Ana Campos Codo
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Brazil
| | - Leonardo Pimentel de Freitas
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Brazil
| | - Aline Siqueira Berti
- Laboratory of Extracellular Matrix, Department of Structural and Functional Biology, University of Campinas, Brazil
| | - Danilo Lopes Ferrucci
- Laboratory of Extracellular Matrix, Department of Structural and Functional Biology, University of Campinas, Brazil
| | - Bianca Gazieri Castelucci
- Laboratory of Cytochemistry and Immunocytochemistry, Department of Biochemistry and Tissue Biology, University of Campinas, Brazil
| | - Sílvio Roberto Consonni
- Laboratory of Cytochemistry and Immunocytochemistry, Department of Biochemistry and Tissue Biology, University of Campinas, Brazil
| | - Hernandes F Carvalho
- Laboratory of Extracellular Matrix, Department of Structural and Functional Biology, University of Campinas, Brazil
| | - Pedro M M Moraes-Vieira
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Brazil; Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Brazil.
| |
Collapse
|
5
|
Unacylated Ghrelin Improves Vascular Dysfunction and Attenuates Atherosclerosis during High-Fat Diet Consumption in Rodents. Int J Mol Sci 2019; 20:ijms20030499. [PMID: 30682769 PMCID: PMC6387360 DOI: 10.3390/ijms20030499] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/10/2019] [Accepted: 01/15/2019] [Indexed: 12/13/2022] Open
Abstract
Unacylated ghrelin (UnGhr) exerts several beneficial actions on vascular function. The aim of this study was to assess the effects of UnGhr on high-fat induced endothelial dysfunction and its underlying mechanisms. Thoracic aortas from transgenic mice, which were overexpressing UnGhr and being control fed either a standard control diet (CD) or a high-fat diet (HFD) for 16 weeks, were harvested and used for the assessment of vascular reactivity, endothelial nitric oxide synthase (eNOS) expression and activity, thiobarbituric acid reactive substances (TBARS) and glutathione levels, and aortic lipid accumulation by Oil Red O staining. Relaxations due to acetylcholine and to DEA-NONOate were reduced (p < 0.05) in the HFD control aortas compared to vessels from the CD animals. Overexpression of UnGhr prevented HFD-induced vascular dysfunction, while eNOS expression and activity were similar in all vessels. HFD-induced vascular oxidative stress was demonstrated by increased (p < 0.05) aortic TBARS and glutathione in wild type (Wt) mice; however, this was not seen in UnGhr mice. Moreover, increased (p < 0.05) HFD-induced lipid accumulation in vessels from Wt mice was prevented by UnGhr overexpression. In conclusion, chronic UnGhr overexpression results in improved vascular function and reduced plaque formation through decreased vascular oxidative stress, without affecting the eNOS pathway. This research may provide new insight into the mechanisms underlying the beneficial effects of UnGhr on the vascular dysfunction associated with obesity and the metabolic syndrome.
Collapse
|
6
|
Neale JPH, Pearson JT, Katare R, Schwenke DO. Ghrelin, MicroRNAs, and Critical Limb Ischemia: Hungering for a Novel Treatment Option. Front Endocrinol (Lausanne) 2017; 8:350. [PMID: 29326658 PMCID: PMC5733488 DOI: 10.3389/fendo.2017.00350] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 11/29/2017] [Indexed: 12/15/2022] Open
Abstract
Critical limb ischemia (CLI) is the most severe manifestation of peripheral artery disease. It is characterized by chronic pain at rest, skin ulcerations, and gangrene tissue loss. CLI is a highly morbid condition, resulting in a severely diminished quality of life and a significant risk of mortality. The primary goal of therapy for CLI is to restore blood flow to the affected limb, which is only possible by surgery, but is inadvisable in up to 50% of patients. This subset of patients who are not candidates for revascularisation are referred to as "no-option" patients and are the focus of investigation for novel therapeutic strategies. Angiogenesis, arteriogenesis and vasculogenesis are the processes whereby new blood vessel networks form from the pre-existing vasculature and primordial cells, respectively. In therapeutic angiogenesis, exogenous stimulants are administered to promote angiogenesis and augment limb perfusion, offering a potential treatment option for "no option" patients. However, to date, very few clinical trials of therapeutic angiogenesis in patients with CLI have reported clinically significant results, and it remains a major challenge. Ghrelin, a 28-amino acid peptide, is emerging as a potential novel therapeutic for CLI. In pre-clinical models, exogenous ghrelin has been shown to induce therapeutic angiogenesis, promote muscle regeneration, and reduce oxidative stress via the modulation of microRNAs (miRs). miRs are endogenous, small, non-coding ribonucleic acids of ~20-22 nucleotides which regulate gene expression at the post-transcriptional level by either translational inhibition or by messenger ribonucleic acid cleavage. This review focuses on the mounting evidence for the use of ghrelin as a novel therapeutic for CLI, and highlights the miRs which orchestrate these physiological events.
Collapse
Affiliation(s)
- Joshua P. H. Neale
- Department of Physiology-HeartOtago, University of Otago, Dunedin, New Zealand
| | - James T. Pearson
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
- Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, VIC, Australia
| | - Rajesh Katare
- Department of Physiology-HeartOtago, University of Otago, Dunedin, New Zealand
| | - Daryl O. Schwenke
- Department of Physiology-HeartOtago, University of Otago, Dunedin, New Zealand
| |
Collapse
|
7
|
Unacylated ghrelin prevents mitochondrial dysfunction in a model of ischemia/reperfusion liver injury. Cell Death Discov 2017; 3:17077. [PMID: 29354291 PMCID: PMC5712633 DOI: 10.1038/cddiscovery.2017.77] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/02/2017] [Accepted: 09/13/2017] [Indexed: 01/01/2023] Open
Abstract
Ischemia/reperfusion (I/R) injury is a common cause of liver dysfunction during hepatectomy, liver transplantation procedures and in generalized shock. Although effort has been dedicated to rescuing tissue damage in these clinical settings, there is still an urgent need for an effective treatment to protect the liver from the burden of I/R injury. In this study, we have investigated the potential clinical impact of unacylated-ghrelin (UnAG) in a liver I/R rat model. Particular attention has been paid to mitochondria. We demonstrate that UnAG was able to reduce the lag-phase time in response to ADP administration and increase oxygen consumption in ex vivo experiments using liver mitochondria recovered from rats subjected to I/R. Moreover, we found that UnAG rescued the expression of a key regulator of mitochondrial morphology and electron transport chain function; the optic atrophy 1 (Opa1) protein. Cytochrome c oxidase (COX), ATP synthase (complex V) activity and mitochondrial permeability transition pore (mPTP) opening were also affected by UnAG administration in vivo. An in vitro, hepatic I/R model was used to validate these data. We demonstrate that UnAG upregulates the expression of Cox subunit IV (CoxIV) and increases cellular ATP content. This results in Bcl-2 upregulation and protection against apoptosis. Opa1 silencing shows that Opa1 is crucial for a UnAG-induced increase in cellular ATP content, apoptosis resistance, Bcl-2 and CoxIV expression. Finally, we show that UnAG improves Opa1's interaction with MIC60 in the I/R setting, hinting at its role in cristae shape regulation. Our results demonstrate that UnAG administration rescues the intrinsic mitochondrial pathway triggered by I/R damage. Opa1's contribution in mediating this effect is also reported. This suggests that UnAG can interfere with mitochondrial dysfunction, via Opa1, in a preclinical liver I/R model. We therefore provide the rationale for exploiting UnAG as an alternative means to rescuing mitochondrial damage and organ dysfunction.
Collapse
|
8
|
Acylated and unacylated ghrelin confer neuroprotection to mesencephalic neurons. Neuroscience 2017; 365:137-145. [DOI: 10.1016/j.neuroscience.2017.09.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/24/2017] [Accepted: 09/25/2017] [Indexed: 11/18/2022]
|
9
|
Zanetti M, Gortan Cappellari G, Semolic A, Burekovic I, Fonda M, Cattin L, Barazzoni R. Gender-Specific Association of Desacylated Ghrelin with Subclinical Atherosclerosis in the Metabolic Syndrome. Arch Med Res 2017; 48:441-448. [PMID: 29031563 DOI: 10.1016/j.arcmed.2017.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 09/18/2017] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Ghrelin, a gastric hormone with pleiotropic effects modulates vascular function and may influence atherosclerosis. Plasma ghrelin is reduced in the metabolic syndrome (MS), which is also characterized by early atherosclerosis. Ghrelin circulates in acylated (AG) and desacylated (DAG) forms. Their relative impact and that of gender on subclinical atherosclerosis in MS is unknown. AIM OF THE STUDY To investigate potential associations of total, AG and DAG with carotid atherosclerosis and with gender in the MS. METHODS Plasma total ghrelin, AG, DAG and carotid artery IMT (cIMT) were measured in 46 MS patients (NCEP-ATP III criteria, 22M/24F). RESULTS Compared with males, females had higher (p <0.05) total and DAG. In the association analysis, age and plasma glucose were positively (p <0.05) correlated with cIMT in all MS patients. The positive (p <0.05) association between cIMT and age was also confirmed in males, while that between cIMT and glucose was significant in women. In contrast, neither total ghrelin nor AG and DAG were associated with cIMT in all MS patients nor in the male subgroup. In females, a negative (p <0.05) association between carotid artery IMT, DAG and glucose was detected, but not between cIMT, total ghrelin and AG. In multivariate modeling, DAG remained negatively (p <0.05) associated with cIMT after adjusting for plasma glucose and cardiovascular risk factors. CONCLUSIONS These data indicate a negative independent association between DAG and cIMT in middle-aged women with the MS and suggest a gender-specific modulatory function of DAG in the development of atherosclerosis.
Collapse
Affiliation(s)
- Michela Zanetti
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy.
| | | | - Annamaria Semolic
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Ismet Burekovic
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Maurizio Fonda
- Service for Diabetes and Metabolic Diseases, Azienda Sanitaria Universitaria Integrata di Trieste, Trieste, Italy
| | - Luigi Cattin
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy; Service for Diabetes and Metabolic Diseases, Azienda Sanitaria Universitaria Integrata di Trieste, Trieste, Italy
| | - Rocco Barazzoni
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
10
|
Togliatto G, Lombardo G, Brizzi MF. The Future Challenge of Reactive Oxygen Species (ROS) in Hypertension: From Bench to Bed Side. Int J Mol Sci 2017; 18:ijms18091988. [PMID: 28914782 PMCID: PMC5618637 DOI: 10.3390/ijms18091988] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/07/2017] [Accepted: 09/13/2017] [Indexed: 02/07/2023] Open
Abstract
Reactive oxygen species (ROS) act as signaling molecules that control physiological processes, including cell adaptation to stress. Redox signaling via ROS has quite recently become the focus of much attention in numerous pathological contexts, including neurodegenerative diseases, kidney and cardiovascular disease. Imbalance in ROS formation and degradation has also been implicated in essential hypertension. Essential hypertension is characterized by multiple genetic and environmental factors which do not completely explain its associated risk factors. Thereby, even if advances in therapy have led to a significant reduction in hypertension-associated complications, to interfere with the unbalance of redox signals might represent an additional therapeutic challenge. The decrease of nitric oxide (NO) levels, the antioxidant activity commonly found in preclinical models of hypertension and the ability of antioxidant approaches to reduce ROS levels have spurred clinicians to investigate the contribution of ROS in humans. Indeed, particular effort has recently been devoted to understanding how redox signaling may contribute to vascular pathobiology in human hypertension. However, although biomarkers of oxidative stress have been found to positively correlate with blood pressure in preclinical model of hypertension, human data are less convincing. We herein provide an overview of the most relevant mechanisms via which oxidative stress might contribute to the pathophysiology of essential hypertension. Moreover, alternative approaches, which are directed towards improving antioxidant machinery and/or interfering with ROS production, are also discussed.
Collapse
Affiliation(s)
- Gabriele Togliatto
- Department of Medical Sciences, University of Torino, 10126 Torino, Italy.
| | - Giusy Lombardo
- Department of Medical Sciences, University of Torino, 10126 Torino, Italy.
| | | |
Collapse
|
11
|
Pereira JADS, da Silva FC, de Moraes-Vieira PMM. The Impact of Ghrelin in Metabolic Diseases: An Immune Perspective. J Diabetes Res 2017; 2017:4527980. [PMID: 29082258 PMCID: PMC5610818 DOI: 10.1155/2017/4527980] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 07/07/2017] [Accepted: 07/31/2017] [Indexed: 01/22/2023] Open
Abstract
Obesity and insulin resistance have reached epidemic proportions. Obesogenic conditions are associated with increased risk for the development of other comorbidities and obesity-related diseases. In metabolic disorders, there is chronic low-grade inflammation induced by the activation of immune cells, especially in metabolic relevant organs such as white adipose tissue (WAT). These immune cells are regulated by environmental and systemic cues. Ghrelin is a peptide secreted mainly by X/A-like gastric cells and acts through the growth hormone secretagogue receptor (GHS-R). This receptor is broadly expressed in the central nervous system (CNS) and in several cell types, including immune cells. Studies show that ghrelin induces an orexigenic state, and there is increasing evidence implicating an immunoregulatory role for ghrelin. Ghrelin mainly acts on the innate and adaptive immune systems to suppress inflammation and induce an anti-inflammatory profile. In this review, we discuss the immunoregulatory roles of ghrelin, the mechanisms by which ghrelin acts and potential pharmacological applications for ghrelin in the treatment of obesity-associated inflammatory diseases, such as type 2 diabetes (T2D).
Collapse
Affiliation(s)
- Jéssica Aparecida da Silva Pereira
- Laboratory of Immunometabolism, Department of Genetics, Evolution and Bioagents, Institute of Biology, University of Campinas, São Paulo, SP, Brazil
- Department of Immunology, Institute of Biomedical Science, University of São Paulo, São Paulo, SP, Brazil
| | - Felipe Corrêa da Silva
- Laboratory of Immunometabolism, Department of Genetics, Evolution and Bioagents, Institute of Biology, University of Campinas, São Paulo, SP, Brazil
| | - Pedro Manoel Mendes de Moraes-Vieira
- Laboratory of Immunometabolism, Department of Genetics, Evolution and Bioagents, Institute of Biology, University of Campinas, São Paulo, SP, Brazil
- Department of Immunology, Institute of Biomedical Science, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
12
|
Özcan B, Leenen PJM, Delhanty PJD, Baldéon-Rojas LY, Neggers SJ, van der Lely AJ. Unacylated ghrelin modulates circulating angiogenic cell number in insulin-resistant states. Diabetol Metab Syndr 2017; 9:43. [PMID: 28572856 PMCID: PMC5452348 DOI: 10.1186/s13098-017-0239-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 05/17/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Type 2 diabetes (T2D) is associated with reduced numbers and impaired function of circulating angiogenic cells (CAC) which contributes to the progression of atherosclerosis and microvascular disease. Previous studies suggest that short-term infusion of unacylated ghrelin (UAG) normalizes CAC number in patients with T2D. To determine dose-dependent effects of short-term infusion of UAG in T2D patients using a cross-over model, and of long-term infusion of UAG in obese mice, on differentiation of monocyte progenitors into CAC. METHODS Eight overweight T2D patients were infused overnight with 3 and 10 µg/kg/h of UAG in a double-blind, placebo-controlled cross-over study. To assess the effects of long-term UAG treatment, obese mice were infused with UAG for 4 weeks. Monocyte progenitors were assessed for their ability to differentiate into CAC in vitro. RESULTS In T2D patients, UAG treatment caused a reduction in differentiation of CAC, dependent on UAG dose and differentiation method. However, mice treated with UAG showed a significant increase in differentiation of bone marrow progenitors into CAC. CONCLUSION UAG causes a minor suppressive effect on CAC development after short-term treatment in humans, but experiments in mice suggest that long-term treatment has beneficial effects on CAC formation. The Netherlands Trial Register: TC=2487.
Collapse
Affiliation(s)
- Behiye Özcan
- Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
13
|
Unacylated ghrelin analog prevents myocardial reperfusion injury independently of permeability transition pore. Basic Res Cardiol 2016; 112:4. [PMID: 27995363 DOI: 10.1007/s00395-016-0595-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 12/09/2016] [Indexed: 02/06/2023]
Abstract
Reperfusion injury is responsible for an important part of myocardial infarct establishment due notably to triggering cardiomyocytes death at the first minutes of reperfusion. AZP-531 is an optimized analog of unacylated ghrelin currently in clinical development in several metabolic diseases. We investigated a potential cardioprotective effect of AZP-531 in ischemia/reperfusion (IR) and the molecular underlying mechanism(s) involved in this protection. In vivo postconditioning with AZP-531 in C57BL6 mouse IR model decreased infarct size. Western blot analysis on areas at risk from the different mouse groups showed that AZP-531 activates Akt, ERK1-2 as well as S6 and 4EBP1, mTORC1 effectors. We also showed an inhibition of caspase 3 cleavage and Bax translocation to the mitochondria. AZP-531 also stimulated the expression of antioxidants and was capable of decreasing mitochondrial H2O2 production, contributing to the reduction of ROS accumulation. AZP-531 exhibits cardioprotective effect when administrated for postconditioning in C57BL6 mouse IR model. Treatment with AZP-531 rescued the myocardium from cell death at early reperfusion by stimulating protein synthesis, inhibiting Bax/caspase 3-induced apoptosis as well as ROS accumulation and oxidative stress-induced necrosis. AZP-531 may prove useful in the treatment of IR injury.
Collapse
|
14
|
Gallo S, Gili M, Lombardo G, Rossetti A, Rosso A, Dentelli P, Togliatto G, Deregibus MC, Taverna D, Camussi G, Brizzi MF. Stem Cell-Derived, microRNA-Carrying Extracellular Vesicles: A Novel Approach to Interfering with Mesangial Cell Collagen Production in a Hyperglycaemic Setting. PLoS One 2016; 11:e0162417. [PMID: 27611075 PMCID: PMC5017750 DOI: 10.1371/journal.pone.0162417] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 08/22/2016] [Indexed: 12/20/2022] Open
Abstract
Extracellular vesicles (EVs) that are derived from stem cells are proving to be promising therapeutic options. We herein investigate the therapeutic potential of EVs that have been derived from different stem cell sources, bone-marrow (MSC) and human liver (HLSC), on mesangial cells (MCs) exposed to hyperglycaemia. By expressing a dominant negative STAT5 construct (ΔNSTAT5) in HG-cultured MCs, we have demonstrated that miR-21 expression is under the control of STAT5, which translates into Transforming Growth Factor beta (TGFβ) expression and collagen production. A number of approaches have been used to show that both MSC- and HLSC-derived EVs protect MCs from HG-induced damage via the transfer of miR-222. This resulted in STAT5 down-regulation and a decrease in miR-21 content, TGFβ expression and matrix protein synthesis within MCs. Moreover, we demonstrate that changes in the balance between miR-21 and miR-100 in the recipient cell, which are caused by the transfer of EV cargo, further contribute to providing beneficial effects. Interestingly, these effects were only detected in HG-cultured cells. Finally, it was found that HG reduced the expression of the nuclear encoded mitochondrial electron transport chain (ETC) components, CoxIV. It is worth noting that EV administration can rescue CoxIV expression in HG-cultured MCs. These results thus demonstrate that both MSC- and HLSC-derived EVs transfer the machinery needed to preserve MCs from HG-mediated damage. This occurs via the horizontal transfer of functional miR-222 which directly interferes with damaging cues. Moreover, our data indicate that the release of EV cargo into recipient cells provides additional therapeutic advantages against harmful mitochondrial signals.
Collapse
Affiliation(s)
- Sara Gallo
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Maddalena Gili
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Giusy Lombardo
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Alberto Rossetti
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Arturo Rosso
- Department of Medical Sciences, University of Turin, Turin, Italy
| | | | | | | | - Daniela Taverna
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Giovanni Camussi
- Department of Medical Sciences, University of Turin, Turin, Italy
| | | |
Collapse
|
15
|
Allas S, Delale T, Ngo N, Julien M, Sahakian P, Ritter J, Abribat T, van der Lely AJ. Safety, tolerability, pharmacokinetics and pharmacodynamics of AZP-531, a first-in-class analogue of unacylated ghrelin, in healthy and overweight/obese subjects and subjects with type 2 diabetes. Diabetes Obes Metab 2016; 18:868-74. [PMID: 27063928 DOI: 10.1111/dom.12675] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 04/05/2016] [Accepted: 02/24/2016] [Indexed: 01/05/2023]
Abstract
AIM To explore the safety, pharmacokinetics and pharmacodynamics in humans of the unacylated ghrelin analogue AZP-531, designed to improve glycaemic control and reduce weight. METHODS Assessments, including glucose measurements, were performed in a three-part randomized study. In Part A, healthy subjects [n = 44, age 18-50 years, body mass index (BMI) 20-28 kg/m(2) ] received a single subcutaneous dose of 0.3, 3, 15, 30, 60 or 120 µg/kg AZP-531 or placebo. In Part B, overweight/obese subjects (n = 32, age 18-65 years, BMI 28-38 kg/m(2) ) and in Part C, patients with type 2 diabetes [T2D; n = 36, age 18-65 years, BMI 20-40 kg/m(2) , glycated haemoglobin (HbA1c) 7-10%] received AZP-531 or placebo for 14 days (daily doses of 3, 15, 30 or 60 µg/kg and 15, 2 × 30 or 60 µg/kg, respectively). RESULTS AZP-531 was well tolerated. Single- and multiple-dose pharmokinetic variables were similar. Maximum AZP-531 concentrations were typically reached at 1 h post-dose. Observed maximum concentration (Cmax ) and area under the curve were dose-proportional. The mean terminal half-life (t1/2 ) was 2-3 h. In Part B, AZP-531 doses of ≥15 µg/kg significantly improved glucose concentrations, without increasing insulin levels, suggesting an insulin-sensitizing effect. AZP-531 decreased mean body weight by 2.6 kg (vs 0.8 kg for placebo). In Part C, glucose variables improved in all groups, including placebo, suggesting a study effect in uncontrolled patients at baseline. Notwithstanding, AZP-531 60 µg/kg reduced HbA1c by 0.4% (vs 0.2% for placebo) and body weight by 2.1 kg (vs 1.3 kg for placebo). CONCLUSIONS AZP-531 was well tolerated in this first-in-human study. Its pharmacokinetic profile, suitable for once-daily dosing, and metabolic effects support further clinical development for T2D.
Collapse
Affiliation(s)
- S Allas
- Alizé Pharma, Ecully, France
| | | | - N Ngo
- Quintiles Early Clinical Development PK Department, Overland Park, KS, USA
| | | | | | - J Ritter
- Phase 1 Quintiles Unit, London, UK
| | | | - A J van der Lely
- Department of Medicine, Erasmus University Medical Centre, Rotterdam, The Netherlands
| |
Collapse
|
16
|
Zhao Y, Zhang X, Chen J, Lin C, Shao R, Yan C, Chen C. Hexarelin Protects Rodent Pancreatic Β-Cells Function from Cytotoxic Effects of Streptozotocin Involving Mitochondrial Signalling Pathways In Vivo and In Vitro. PLoS One 2016; 11:e0149730. [PMID: 26918825 PMCID: PMC4769129 DOI: 10.1371/journal.pone.0149730] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 02/04/2016] [Indexed: 01/25/2023] Open
Abstract
Mitochondrial functions are crucial for pancreatic β-cell survival and glucose-induced insulin secretion. Hexarelin (Hex) is a synthetic small peptide ghrelin analogue, which has been shown to protect cardiomyocytes from the ischemia-reperfusion process. In this study, we used in vitro and in vivo models of streptozotocin (STZ)-induced β-cell damage to study the protective effect of Hex and the associated mechanisms. We found that STZ produced a cytotoxic effect in a dose- and time-dependent manner in MIN6 cells (a mouse β-cell line). Hex (1.0 μM) decreased the STZ-induced damage in β-cells. Rhodamine 123 assay and superoxide DHE production assay revealed that Hex ameliorated STZ-induced mitochondrial damage and excessive superoxide activity in β-cells. In addition, Hex significantly reduced STZ-induced expression of cleaved Caspases-3, Caspases-9 and the ratio of pro-apoptotic protein Bax to anti-apoptotic protein Bcl-2 in MIN6 cells. We further examined the in vivo effect of Hex in a rat model of type 1 diabetes induced by STZ injection. Hex ameliorated STZ-induced decrease in plasma insulin and protected the structure of islets from STZ-induced disruption. Hex also ameliorated STZ-induced expression of cleaved Caspase-9 and the Bax in β-cells. In conclusion, our data indicate that Hex is able to protects β-cell mass from STZ-caused cytotoxic effects involving mitochondrial pathways in vitro and in vivo. Hex may serve as a potential protective agent for the management of diabetes.
Collapse
Affiliation(s)
- Yan Zhao
- Institute of Basic Medicine Science, Xi'an Medical University, Xi'an, China
- Department of Forensic Science, School of Medicine, Xi’an Jiaotong University, Xi’an, China
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - Xinli Zhang
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - Jiezhong Chen
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - Chao Lin
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - Renfu Shao
- Gene Cology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore, QLD, Australia
| | - Chunxia Yan
- Department of Forensic Science, School of Medicine, Xi’an Jiaotong University, Xi’an, China
| | - Chen Chen
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, Australia
- * E-mail:
| |
Collapse
|
17
|
Fernandez G, Cabral A, Cornejo MP, De Francesco PN, Garcia-Romero G, Reynaldo M, Perello M. Des-Acyl Ghrelin Directly Targets the Arcuate Nucleus in a Ghrelin-Receptor Independent Manner and Impairs the Orexigenic Effect of Ghrelin. J Neuroendocrinol 2016; 28:12349. [PMID: 26661382 DOI: 10.1111/jne.12349] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 11/12/2015] [Accepted: 12/06/2015] [Indexed: 12/16/2022]
Abstract
Ghrelin is a stomach-derived octanoylated peptide hormone that plays a variety of well-established biological roles acting via its specific receptor known as growth hormone secretagogue receptor (GHSR). In plasma, a des-octanoylated form of ghrelin, named des-acyl ghrelin (DAG), also exists. DAG is suggested to be a signalling molecule that has specific targets, including the brain, and regulates some physiological functions. However, no specific receptor for DAG has been reported until now, and, consequently, the potential role of DAG as a hormone has remained a matter of debate. In the present study, we show that DAG specifically binds to and acts on a subset of arcuate nucleus (ARC) cells in a GHSR-independent manner. ARC cells labelled by a DAG fluorescent tracer include the neuropeptide Y (NPY) and non-NPY neurones. Given the well-established role of the ARC in appetite regulation, we tested the effect of centrally administered DAG on food intake. We found that DAG failed to affect dark phase feeding, as well as food intake, after a starvation period; however, it impaired the orexigenic actions of peripherally administered ghrelin. Thus, we conclude that DAG directly targets ARC neurones and antagonises the orexigenic effects of peripherally administered ghrelin.
Collapse
Affiliation(s)
- G Fernandez
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology, [IMBICE dependent on the Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA)], La Plata, Buenos Aires, Argentina
| | - A Cabral
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology, [IMBICE dependent on the Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA)], La Plata, Buenos Aires, Argentina
| | - M P Cornejo
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology, [IMBICE dependent on the Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA)], La Plata, Buenos Aires, Argentina
| | - P N De Francesco
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology, [IMBICE dependent on the Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA)], La Plata, Buenos Aires, Argentina
| | - G Garcia-Romero
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology, [IMBICE dependent on the Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA)], La Plata, Buenos Aires, Argentina
| | - M Reynaldo
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology, [IMBICE dependent on the Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA)], La Plata, Buenos Aires, Argentina
| | - M Perello
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology, [IMBICE dependent on the Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA)], La Plata, Buenos Aires, Argentina
| |
Collapse
|
18
|
Ghrelin Actions on Somatotropic and Gonadotropic Function in Humans. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 138:3-25. [PMID: 26940384 DOI: 10.1016/bs.pmbts.2015.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ghrelin, a 28 amino-acid octanoylated peptide predominantly produced by the stomach, was discovered to be the natural ligand of the type 1a GH secretagogue receptor (GHS-R1a). It was thus considered as a natural GHS additional to GHRH, although later on ghrelin has mostly been considered a major orexigenic factor. The GH-releasing action of ghrelin takes place both directly on pituitary cells and through modulation of GHRH from the hypothalamus; some functional antisomatostatin action has also been shown. However, ghrelin is much more than a natural GH secretagogue. In fact, it also modulates lactotroph and corticotroph secretion in humans as well as in animals and plays a relevant role in the modulation of the hypothalamic-pituitary-gonadal function. Several studies have indicated that ghrelin plays an inhibitory effect on gonadotropin pulsatility, is involved in the regulation of puberty onset in animals, and may regulate spermatogenesis, follicular development and ovarian cell functions in humans. In this chapter ghrelin actions on the GH/IGF-I and the gonadal axes will be revised. The potential therapeutic role of ghrelin as a treatment of catabolic conditions will also be discussed.
Collapse
|
19
|
Saad MI, Abdelkhalek TM, Saleh MM, Kamel MA, Youssef M, Tawfik SH, Dominguez H. Insights into the molecular mechanisms of diabetes-induced endothelial dysfunction: focus on oxidative stress and endothelial progenitor cells. Endocrine 2015; 50:537-67. [PMID: 26271514 DOI: 10.1007/s12020-015-0709-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 07/25/2015] [Indexed: 12/13/2022]
Abstract
Diabetes mellitus is a heterogeneous, multifactorial, chronic disease characterized by hyperglycemia owing to insulin insufficiency and insulin resistance (IR). Recent epidemiological studies showed that the diabetes epidemic affects 382 million people worldwide in 2013, and this figure is expected to be 600 million people by 2035. Diabetes is associated with microvascular and macrovascular complications resulting in accelerated endothelial dysfunction (ED), atherosclerosis, and cardiovascular disease (CVD). Unfortunately, the complex pathophysiology of diabetic cardiovascular damage is not fully understood. Therefore, there is a clear need to better understand the molecular pathophysiology of ED in diabetes, and consequently, better treatment options and novel efficacious therapies could be identified. In the light of recent extensive research, we re-investigate the association between diabetes-associated metabolic disturbances (IR, subclinical inflammation, dyslipidemia, hyperglycemia, dysregulated production of adipokines, defective incretin and gut hormones production/action, and oxidative stress) and ED, focusing on oxidative stress and endothelial progenitor cells (EPCs). In addition, we re-emphasize that oxidative stress is the final common pathway that transduces signals from other conditions-either directly or indirectly-leading to ED and CVD.
Collapse
Affiliation(s)
- Mohamed I Saad
- Department of Biochemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt.
- Hudson Institute of Medical Research, School of Clinical Sciences, Monash University, Melbourne, VIC, Australia.
| | - Taha M Abdelkhalek
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Moustafa M Saleh
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Maher A Kamel
- Department of Biochemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Mina Youssef
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Shady H Tawfik
- Department of Molecular Medicine, University of Padova, Padua, Italy
| | - Helena Dominguez
- Department of Biomedical Sciences, Copenhagen University, Copenhagen, Denmark
| |
Collapse
|
20
|
Unacylated ghrelin restores insulin and autophagic signaling in skeletal muscle of diabetic mice. Pflugers Arch 2015; 467:2555-69. [PMID: 26228926 DOI: 10.1007/s00424-015-1721-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 06/21/2015] [Accepted: 07/13/2015] [Indexed: 01/04/2023]
Abstract
Impairment of insulin signaling in skeletal muscle detrimentally affects insulin-stimulated disposal of glucose. Restoration of insulin signaling in skeletal muscle is important as muscle is one of the major sites for disposal of blood glucose. Recently, unacylated ghrelin (UnAG) has received attention in diabetic research due to its favorable actions on improving glucose tolerance, glycemic control, and insulin sensitivity. The investigation of UnAG has entered phase Ib clinical trial in type 2 diabetes and phase II clinical trial in hyperphagia in Prader-Willi syndrome. Nonetheless, the precise mechanisms responsible for the anti-diabetic actions of UnAG remain incompletely understood. In this study, we examined the effects of UnAG on restoring the impaired insulin signaling in skeletal muscle of db/db diabetic mice. Our results demonstrated that UnAG effectively restored the impaired insulin signaling in diabetic muscle. UnAG decreased insulin receptor substrate (IRS) phosphorylation, increased protein kinase B (Akt) phosphorylation, and, hence, suppressed mTOR signaling. Consequently, UnAG enhanced Glut4 localization and increased PDH activity in the diabetic skeletal muscle. Intriguingly, our data indicated that UnAG normalized the suppressed autophagic signaling in diabetic muscle. In conclusion, our findings illustrated that UnAG restored the impaired insulin and autophagic signaling in skeletal muscle of diabetic mice, which are valuable to understand the underlying mechanisms of the anti-diabetic action of UnAG at peripheral skeletal muscle level.
Collapse
|
21
|
Affiliation(s)
- Subrata Chakrabarti
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
22
|
Togliatto G, Trombetta A, Dentelli P, Gallo S, Rosso A, Cotogni P, Granata R, Falcioni R, Delale T, Ghigo E, Brizzi MF. Unacylated ghrelin induces oxidative stress resistance in a glucose intolerance and peripheral artery disease mouse model by restoring endothelial cell miR-126 expression. Diabetes 2015; 64:1370-82. [PMID: 25368096 DOI: 10.2337/db14-0991] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Reactive oxygen species (ROS) are crucial in long-term diabetes complications, including peripheral artery disease (PAD). In this study, we have investigated the potential clinical impact of unacylated ghrelin (UnAG) in a glucose intolerance and PAD mouse model. We demonstrate that UnAG is able to protect skeletal muscle and endothelial cells (ECs) from ROS imbalance in hind limb ischemia-subjected ob/ob mice. This effect translates into reductions in hind limb functional impairment. We show that UnAG rescues sirtuin 1 (SIRT1) activity and superoxide dismutase-2 (SOD-2) expression in ECs. This leads to SIRT1-mediated p53 and histone 3 lysate 56 deacetylation and results in reduced EC senescence in vivo. We demonstrate, using small interfering RNA technology, that SIRT1 is also crucial for SOD-2 expression. UnAG also renews micro-RNA (miR)-126 expression, resulting in the posttranscriptional regulation of vascular cell adhesion molecule 1 expression and a reduced number of infiltrating inflammatory cells in vivo. Loss-of-function experiments that target miR-126 demonstrate that miR-126 also controls SIRT1 and SOD-2 expression, thus confirming its role in driving UnAG-mediated EC protection against ROS imbalance. These results indicate that UnAG protects vessels from ROS imbalance in ob/ob mice by rescuing miR-126 expression, thus emphasizing its potential clinical impact in avoiding limb loss in PAD.
Collapse
Affiliation(s)
| | | | | | - Sara Gallo
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Arturo Rosso
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Paolo Cotogni
- Department of Anesthesiology and Intensive Care, University of Turin, Turin, Italy
| | - Riccarda Granata
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Rita Falcioni
- Department of Experimental Oncology, Regina Elena National Cancer Institute, Rome, Italy
| | | | - Ezio Ghigo
- Department of Medical Sciences, University of Turin, Turin, Italy
| | | |
Collapse
|
23
|
Inverse association of des-acyl ghrelin with worksite blood pressure in overweight/obese male workers. Environ Health Prev Med 2015; 20:224-31. [PMID: 25753602 DOI: 10.1007/s12199-015-0454-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/23/2015] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Job strain, defined as a combination of high job demands and low job control, has been reported to elevate blood pressure (BP) during work. Meanwhile, a recent experimental study showed that ghrelin blunted the BP response to such mental stress. In the present study, we examined the hypothesis that des-acyl ghrelin may have some beneficial effects on worksite BP through modulating the BP response to work-related mental stress, i.e., job strain. METHODS Subjects were 34 overweight/obese male day-shift workers (mean age 41.7 ± 6.7 years). No subjects had received any anti-hypertensive medication. A 24-h ambulatory BP monitoring was recorded every 30 min on a regular working day. The average BP was calculated for Work BP, Morning BP, and Home BP. Job strain was assessed using the short version of the Japanese Job Content Questionnaire. RESULTS Des-acyl ghrelin showed significant inverse correlations with almost all BPs except Morning SBP, Morning DBP, and Home DBP. In multiple regression analysis, des-acyl ghrelin inversely correlated with Work SBP after adjusting for confounding factors. Des-acyl ghrelin was also negatively associated with BP changes from Sleep to Morning, Sleep to Work, and Sleep to Home. CONCLUSIONS Des-acyl ghrelin was inversely associated with Worksite BP, suggesting a unique beneficial effect of des-acyl ghrelin on Worksite BP in overweight/obese male day-shift workers.
Collapse
|
24
|
Angelino E, Reano S, Ferrara M, Agosti E, Graziani A, Filigheddu N. Antifibrotic activity of acylated and unacylated ghrelin. Int J Endocrinol 2015; 2015:385682. [PMID: 25960743 PMCID: PMC4415458 DOI: 10.1155/2015/385682] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 04/01/2015] [Indexed: 12/15/2022] Open
Abstract
Fibrosis can affect almost all tissues and organs, it often represents the terminal stage of chronic diseases, and it is regarded as a major health issue for which efficient therapies are needed. Tissue injury, by inducing necrosis/apoptosis, triggers inflammatory response that, in turn, promotes fibroblast activation and pathological deposition of extracellular matrix. Acylated and unacylated ghrelin are the main products of the ghrelin gene. The acylated form, through its receptor GHSR-1a, stimulates appetite and growth hormone (GH) release. Although unacylated ghrelin does not bind or activate GHSR-1a, it shares with the acylated form several biological activities. Ghrelin peptides exhibit anti-inflammatory, antioxidative, and antiapoptotic activities, suggesting that they might represent an efficient approach to prevent or reduce fibrosis. The aim of this review is to summarize the available evidence regarding the effects of acylated and unacylated ghrelin on different pathologies and experimental models in which fibrosis is a predominant characteristic.
Collapse
Affiliation(s)
- Elia Angelino
- Department of Translational Medicine, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Simone Reano
- Department of Translational Medicine, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Michele Ferrara
- Department of Translational Medicine, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Emanuela Agosti
- Department of Translational Medicine, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Andrea Graziani
- Department of Translational Medicine, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Nicoletta Filigheddu
- Department of Translational Medicine, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
- *Nicoletta Filigheddu:
| |
Collapse
|
25
|
Walker AM, Cubbon RM, Kearney MT. Contemporary treatment strategies for Type 2 diabetes-related macrovascular disease. Expert Rev Endocrinol Metab 2014; 9:641-658. [PMID: 30736201 DOI: 10.1586/17446651.2014.941356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Type 2 diabetes mellitus poses a major challenge to healthcare providers in the coming years as its prevalence increases across the globe. The disease doubles the risk of cardiovascular morbidity and mortality, with 70% of sufferers dying from a cardiac cause. Large clinical trials of current glucose-lowering therapies for Type 2 diabetes have shown no benefit in reducing the risk of macrovascular events. Blood pressure control, angiotensin-converting enzyme inhibitor therapy and improvement of dyslipidemia with statins have proven benefit in reducing cardiovascular risk in Type 2 diabetes. A growing understanding of the importance of pathological processes including endothelial dysfunction, abnormal growth factor biology, oxidative stress, dysregulation of adipokines and deficient vascular repair and regeneration in insulin-resistant states promises new treatments to combat the problem.
Collapse
Affiliation(s)
- Andrew Mn Walker
- a Leeds Multidisciplinary Cardiovascular Research Centre, LIGHT laboratories, The University of Leeds, Clarendon Way, Leeds, LS2 9JT, UK
| | - Richard M Cubbon
- a Leeds Multidisciplinary Cardiovascular Research Centre, LIGHT laboratories, The University of Leeds, Clarendon Way, Leeds, LS2 9JT, UK
| | | |
Collapse
|
26
|
Callaghan B, Furness JB. Novel and conventional receptors for ghrelin, desacyl-ghrelin, and pharmacologically related compounds. Pharmacol Rev 2014; 66:984-1001. [PMID: 25107984 DOI: 10.1124/pr.113.008433] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
The only molecularly identified ghrelin receptor is the growth hormone secretagogue receptor GHSR1a. Its natural ligand, ghrelin, is an acylated peptide whose unacylated counterpart (UAG) is almost inactive at GHSR1a. A truncated, nonfunctional receptor, GHSR1b, derives from the same gene. We have critically evaluated evidence for effects of ghrelin receptor ligands that are not consistent with actions at GHSR1a. Effects of ghrelin are observed in cells or tissues where the expression of GHSR1a is not detectable or after the Ghsr gene has been inactivated. In several, effects of ghrelin are mimicked by UAG, and ghrelin binding is competitively reduced by UAG. Effects in the absence of GHSR1a and sites at which ghrelin and UAG have similar potency suggest the presence of novel nonspecific ghrelin receptors (ghrelin receptor-like receptors [GRLRs]). A third class of receptor, the UAG receptors, at which UAG, but not ghrelin, is an agonist has been proposed. None of the novel receptors, with the exception of the glycoprotein CD36, which accounts for ghrelin action at a limited number of sites, have been identified. GHSR1a and GHSR1b combine with other G protein-coupled receptors to form heterodimers, whose pharmacologies differ from their components. Thus, it is feasible some GRLRs and some UAG receptors are heterodimers. Effects mediated through GRLRs or UAG receptors include adipocyte lipid accumulation, myoblast differentiation, osteoblast proliferation, insulin release, cardioprotection, coronary artery constriction, vascular endothelial cell proliferation, and tumor cell proliferation. The molecular identification and pharmacologic characterization of novel ghrelin receptors are thus important objectives.
Collapse
Affiliation(s)
- Brid Callaghan
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, Australia
| | - John B Furness
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
27
|
Khatib N, Gaidhane S, Gaidhane AM, Khatib M, Simkhada P, Gode D, Zahiruddin QS. Ghrelin: ghrelin as a regulatory Peptide in growth hormone secretion. J Clin Diagn Res 2014; 8:MC13-7. [PMID: 25302229 DOI: 10.7860/jcdr/2014/9863.4767] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 06/12/2014] [Indexed: 12/19/2022]
Abstract
BACKGROUND Ghrelin is a type of growth hormone (GH) secretagogue that stimulates the release of GH. It is a first hormone linking gastrointestinal-pituitary axis. OBJECTIVE This review highlights the interaction of ghrelin with GHRH and somatostatin to regulate the secretion of GH and intends to explore the possible physiological role of the ghrelin-pituitary-GH axis linkage system. OBSERVATION Ghrelin is highly conserved among species and is classified into octanoylated (C8:0), decanoylated (C10:0), decenoylated (C10:1) and nonacylated,ghrelin. Acylated ghrelin is the major active form of human ghrelin. The primary production site of ghrelin is the stomach, and it interacts with stomach ghrelin as well as hypothalamic GHRH and somatostatin in the regulation of pituitary GH secretion. Ghrelin stimulate GH release through the GHS receptor to increase intracellular Ca2+ ([Ca2+] levels via IP3 signal transduction pathway. Ghrelin is a specific endogenous ligand for the GHS receptor and provides a definitive proof of the occurance of a GHS-GHS receptor signalling system in the regulation of GH secretion. CONCLUSION Studies suggests that ghrelin is a powerful pharmacological agent that exerts a potent, time-dependent stimulation of pulsatile secretion of GH.
Collapse
Affiliation(s)
- Nazli Khatib
- Associate Professor, Department of Physiology, Datta Meghe Institute of Medical Sciences , Sawangi (Meghe), Wardha, India
| | - Shilpa Gaidhane
- Assistant Professor, Department of Community Medicine, Datta Meghe Institute of Medical Sciences , Sawangi (Meghe), Wardha, India
| | - Abhay M Gaidhane
- Professor, Department of Community Medicine, J N Medical College, Datta Meghe Institute of Medical Sciences , Sawangi (Meghe), Wardha, India
| | - Mahanaaz Khatib
- Pharmacovigilance Co-ordinator, i3global , Pune Maharashtra, India
| | - Padam Simkhada
- Senior Lecturer, International Health School of Health and Related Research (ScHARR),University of Sheffield , UK
| | - Dilip Gode
- Vice Chancellor, Datta Meghe Institute of Medical Sciences , Sawangi (Meghe), Wardha, India
| | - Quazi Syed Zahiruddin
- Associate Dean, Professor, Department of Community Medicine, Datta Meghe Institute of Medical Sciences , Sawangi (Meghe), Wardha, India
| |
Collapse
|
28
|
Tian XL, Li Y. Endothelial cell senescence and age-related vascular diseases. J Genet Genomics 2014; 41:485-95. [PMID: 25269674 DOI: 10.1016/j.jgg.2014.08.001] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 07/31/2014] [Accepted: 08/06/2014] [Indexed: 10/24/2022]
Abstract
Advanced age is an independent risk factor for ageing-related complex diseases, such as coronary artery disease, stroke, and hypertension, which are common but life threatening and related to the ageing-associated vascular dysfunction. On the other hand, patients with progeria syndromes suffer from serious atherosclerosis, suggesting that the impaired vascular functions may be critical to organismal ageing, or vice versa. However, it remains largely unknown how vascular cells, particularly endothelial cell, become senescent and how the senescence impairs the vascular functions and contributes to the age-related vascular diseases over time. Here, we review the recent progress on the characteristics of vascular ageing and endothelial cell senescence in vitro and in vivo, evaluate how genetic and environmental factors as well as autophagy and stem cell influence endothelial cell senescence and how the senescence contributes to the age-related vascular phenotypes, such as atherosclerosis and increased vascular stiffness, and explore the possibility whether we can delay the age-related vascular diseases through the control of vascular ageing.
Collapse
Affiliation(s)
- Xiao-Li Tian
- Department of Human Population Genetics and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine (IMM), Peking University, Beijing 100871, China.
| | - Yang Li
- Department of Human Population Genetics and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine (IMM), Peking University, Beijing 100871, China
| |
Collapse
|
29
|
Docanto MM, Yang F, Callaghan B, Au CC, Ragavan R, Wang X, Furness JB, Andrews ZB, Brown KA. Ghrelin and des-acyl ghrelin inhibit aromatase expression and activity in human adipose stromal cells: suppression of cAMP as a possible mechanism. Breast Cancer Res Treat 2014; 147:193-201. [PMID: 25056185 DOI: 10.1007/s10549-014-3060-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 07/10/2014] [Indexed: 01/10/2023]
Abstract
Aromatase converts androgens into estrogens and its expression within adipose stromal cells (ASCs) is believed to be the major driver of estrogen-dependent cancers in older women. Ghrelin is a gut-hormone that is involved in the regulation of appetite and known to bind to and activate the cognate ghrelin receptor, GHSR1a. The unacylated form of ghrelin, des-acyl ghrelin, binds weakly to GHSR1a but has been shown to play an important role in regulating a number of physiological processes. The aim of this study was to determine the effect of ghrelin and des-acyl ghrelin on aromatase in primary human ASCs. Primary human ASCs were isolated from adipose tissue of women undergoing cosmetic surgery. Real-time PCR and tritiated water-release assays were performed to examine the effect of treatment on aromatase transcript expression and aromatase activity, respectively. Treatments included ghrelin, des-acyl ghrelin, obestatin, and capromorelin (GHSR1a agonist). GHSR1a protein expression was assessed by Western blot and effects of treatment on Ca(2+) and cAMP second messenger systems were examined using the Flexstation assay and the Lance Ultra cAMP kit, respectively. Results demonstrate that pM concentrations of ghrelin and des-acyl ghrelin inhibit aromatase transcript expression and activity in ASCs under basal conditions and in PGE2-stimulated cells. Moreover, the effects of ghrelin and des-acyl ghrelin are mediated via effects on aromatase promoter PII-specific transcripts. Neither the GHSR1a-specific agonist capromorelin nor obestatin had any effect on aromatase transcript expression or activity. Moreover, GHSR1a protein was undetectable by Western blot and neither ghrelin nor capromorelin elicited a calcium response in ASCs. Finally, ghrelin caused a significant decrease in basal and forskolin-stimulated cAMP in ASC. These findings suggest that ghrelin acts at alternate receptors in ASCs by decreasing intracellular cAMP levels. Ghrelin mimetics may be useful in the treatment of estrogen-dependent breast cancer.
Collapse
Affiliation(s)
- Maria M Docanto
- Metabolism & Cancer Laboratory, MIMR-PHI Institute of Medical Research, Clayton, VIC, 3168, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Stevanovic DM, Grefhorst A, Themmen APN, Popovic V, Holstege J, Haasdijk E, Trajkovic V, van der Lely AJ, Delhanty PJD. Unacylated ghrelin suppresses ghrelin-induced neuronal activity in the hypothalamus and brainstem of male rats [corrected]. PLoS One 2014; 9:e98180. [PMID: 24852945 PMCID: PMC4031147 DOI: 10.1371/journal.pone.0098180] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 04/29/2014] [Indexed: 01/03/2023] Open
Abstract
Ghrelin, the endogenous growth hormone secretagogue, has an important role in metabolic homeostasis. It exists in two major molecular forms: acylated (AG) and unacylated (UAG). Many studies suggest different roles for these two forms of ghrelin in energy balance regulation. In the present study, we compared the effects of acute intracerebroventricular administration of AG, UAG and their combination (AG+UAG) to young adult Wistar rats on food intake and central melanocortin system modulation. Although UAG did not affect food intake it significantly increased the number of c-Fos positive neurons in the arcuate (ARC), paraventricular (PVN) and solitary tract (NTS) nuclei. In contrast, UAG suppressed AG-induced neuronal activity in PVN and NTS. Central UAG also modulated hypothalamic expression of Mc4r and Bmp8b, which were increased and Mc3r, Pomc, Agrp and Ucp2, which were decreased. Finally, UAG, AG and combination treatments caused activation of c-Fos in POMC expressing neurons in the arcuate, substantiating a physiologic effect of these peptides on the central melanocortin system. Together, these results demonstrate that UAG can act directly to increase neuronal activity in the hypothalamus and is able to counteract AG-induced neuronal activity in the PVN and NTS. UAG also modulates expression of members of the melanocortin signaling system in the hypothalamus. In the absence of an effect on energy intake, these findings indicate that UAG could affect energy homeostasis by modulation of the central melanocortin system.
Collapse
Affiliation(s)
- Darko M. Stevanovic
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
- Institute of Medical Physiology, School of Medicine, University of Belgrade, Belgrade, Serbia
- * E-mail: (DS); (PJDD)
| | - Aldo Grefhorst
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Axel P. N. Themmen
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Vera Popovic
- Institute of Endocrinology, Diabetes and Diseases of Metabolism, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Joan Holstege
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Elize Haasdijk
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Vladimir Trajkovic
- Institute of Microbiology and Immunology, School of Medicine, University of Belgrade, Belgrade, Serbia
| | | | - Patric J. D. Delhanty
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
- * E-mail: (DS); (PJDD)
| |
Collapse
|
31
|
Prodam F, Filigheddu N. Ghrelin gene products in acute and chronic inflammation. Arch Immunol Ther Exp (Warsz) 2014; 62:369-84. [PMID: 24728531 DOI: 10.1007/s00005-014-0287-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 03/21/2014] [Indexed: 12/27/2022]
Abstract
Ghrelin gene products--the peptides ghrelin, unacylated ghrelin, and obestatin--have several actions on the immune system, opening new perspectives within neuroendocrinology, metabolism and inflammation. The aim of this review is to summarize the available evidence regarding the less known role of these peptides in the machinery of inflammation and autoimmunity, outlining some of their most promising therapeutic applications.
Collapse
Affiliation(s)
- Flavia Prodam
- Departmant of Health Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara, Italy
| | | |
Collapse
|
32
|
Shimada T, Furuta H, Doi A, Ariyasu H, Kawashima H, Wakasaki H, Nishi M, Sasaki H, Akamizu T. Des-acyl ghrelin protects microvascular endothelial cells from oxidative stress-induced apoptosis through sirtuin 1 signaling pathway. Metabolism 2014; 63:469-74. [PMID: 24486147 DOI: 10.1016/j.metabol.2013.12.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 12/19/2013] [Accepted: 12/21/2013] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Ghrelin is a stomach-derived hormone. Acylation of ghrelin has been essential for its biological activities such as stimulating appetite. On the other hand, the function of des-acyl ghrelin (Des-G) has not been fully elucidated. The aim of the present study is to examine the anti-apoptotic effect of Des-G on endothelial cells. MATERIALS/METHODS After human retinal microvascular endothelial cells (RMECs) were pretreated with or without 100nmol/L Des-G, apoptosis was induced with 0.1mmol/L hydrogen peroxide (H2O2). For pharmacological inhibition of surtuin 1 (SIRT1) catalytic activity, the cells were treated with 10μmol/L Ex-527. Inhibition of SIRT1 with siRNA was also performed. The quantitative estimation of DNA fragmentation was used as a marker of apoptosis. Furthermore, total SIRT activity in nuclear extracts, mRNA and protein levels of SIRT1, manganese superoxide dismutase (MnSOD) and catalase were determined. RESULTS Des-G pretreatment protected RMECs from oxidative stress-induced apoptosis and increased SIRTs deacetylase activity in nuclear extracts. On the other hand, both pharmacological and siRNA mediated inhibition of SIRT1 attenuated the anti-apoptotic effect of Des-G. Moreover, Des-G increased mRNA and protein levels of SIRT1 and antioxidant enzymes such as MnSOD and CAT, which are downstream targets of SIRT1. Although the treatment of Ex-527 did not alter mRNA expression levels of SIRT1, it decreased mRNA expression levels of antioxidant enzymes in the cells with Des-G pretreatment. CONCLUSIONS Our results suggest that SIRT1 signaling pathway contributes to protective effect of Des-G against oxidative stress-induced apoptosis.
Collapse
Affiliation(s)
- Takeshi Shimada
- The First Department of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Hiroto Furuta
- The First Department of Medicine, Wakayama Medical University, Wakayama, Japan.
| | - Asako Doi
- The First Department of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Hiroyuki Ariyasu
- The First Department of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Hiromichi Kawashima
- The First Department of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Hisao Wakasaki
- The First Department of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Masahiro Nishi
- The First Department of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Hideyuki Sasaki
- The First Department of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Takashi Akamizu
- The First Department of Medicine, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
33
|
Hedayatizadeh-Omran A, Rafiei A, Khajavi R, Alizadeh-Navaei R, Mokhberi V, Moradzadeh K. Association between ghrelin gene (Leu72Met) polymorphism and ghrelin serum level with coronary artery diseases. DNA Cell Biol 2014; 33:95-101. [PMID: 24341728 DOI: 10.1089/dna.2013.2218] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Research shows that ghrelin gene polymorphism has some association with coronary artery diseases (CAD). Due to genetic differences among nations and the high prevalence of CAD, we conducted this study to examine the possible association between the polymorphism of ghrelin gene Leu72Met and CAD among an Iranian population. This case-control study was undertaken with patients who were referred to referral heart center, in 2011, with chest pain or a positive exercise test. Patients with risk factors for heart disease or who were surgery candidates, who underwent angiography and echocardiography, were also included. DNA extractions were performed using a modified salting out method, and the ghrelin region was amplified using polymerase chain reaction. The presence of the Leu72Met polymorphism and the serum levels of ghrelin were determined using the restriction fragment length polymorphism method and the enzyme-linked immunosorbent assay, respectively. The results indicated that in CAD patients, the incidence of heart failure was significantly different between the groups with genotypes CC or AA+CA (p=0.041). Mean serum level of ghrelin in the CAD group was significantly higher than that in the control group (p<0.0001). Additionally, there was a significant relationship between the distribution of ghrelin genotypes and serum levels of ghrelin in both the CAD and control groups (p<0.0001). This study indicates that there was a significant association between heart failure in CAD patients and the presence of the polymorphism, as well as an increase in serum levels of ghrelin associated with genotype distribution such that ghrelin levels have an inverse relationship with the frequency of the CC genotype.
Collapse
Affiliation(s)
- Akbar Hedayatizadeh-Omran
- 1 Molecular and Cell Biology Research Center, Mazandaran University of Medical Sciences , Sari, Iran
| | | | | | | | | | | |
Collapse
|
34
|
Togliatto G, Trombetta A, Dentelli P, Cotogni P, Rosso A, Tschöp MH, Granata R, Ghigo E, Brizzi MF. Unacylated ghrelin promotes skeletal muscle regeneration following hindlimb ischemia via SOD-2-mediated miR-221/222 expression. J Am Heart Assoc 2013; 2:e000376. [PMID: 24308935 PMCID: PMC3886736 DOI: 10.1161/jaha.113.000376] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Background Surgical treatment of peripheral artery disease, even if successful, does not prevent reoccurrence. Under these conditions, increased oxidative stress is a crucial determinant of tissue damage. Given its reported antioxidant effects, we investigated the potential of unacylated‐ghrelin (UnAG) to reduce ischemia‐induced tissue damage in a mouse model of peripheral artery disease. Methods and Results We show that UnAG but not acylated ghrelin (AG) induces skeletal muscle regeneration in response to ischemia via canonical p38/mitogen‐actived protein kinase signaling UnAG protected against reactive oxygen species–induced cell injuries by inducing the expression of superoxide dismutase‐2 (SOD‐2) in satellite cells. This led to a reduced number of infiltrating CD68+ cells and was followed by induction of the myogenic process and a reduction in functional impairment. Moreover, we found that miR‐221/222, previously linked to muscle regeneration processes, was up‐regulated and negatively correlated with p57Kip2 expression in UnAG‐treated mice. UnAG, unlike AG, promoted cell‐cycle entry in satellite cells of mice lacking the genes for ghrelin and its receptor (GHSR1a). UnAG‐induced p38/mitogen‐actived protein kinase phosphorylation, leading to activation of the myogenic process, was prevented in SOD‐2–depleted SCs. By siRNA technology, we also demonstrated that SOD‐2 is the antioxidant enzyme involved in the control of miR‐221/222–driven posttranscriptional p57Kip2 regulation. Loss‐of‐function experiments targeting miR‐221/222 and local pre–miR‐221/222 injection in vivo confirmed a role for miR‐221/222 in driving skeletal muscle regeneration after ischemia. Conclusions These results indicate that UnAG‐induced skeletal muscle regeneration after ischemia depends on SOD‐2–induced miR‐221/222 expression and highlight its clinical potential for the treatment of reactive oxygen species–mediated skeletal muscle damage.
Collapse
|
35
|
Gili M, Orsello A, Gallo S, Brizzi MF. Diabetes-associated macrovascular complications: cell-based therapy a new tool? Endocrine 2013; 44:557-75. [PMID: 23543434 DOI: 10.1007/s12020-013-9936-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 03/20/2013] [Indexed: 01/01/2023]
Abstract
Diabetes mellitus and its ongoing macrovascular complications represent one of the major health problems around the world. Rise in obesity and population ages correlate with the increased incidence of diabetes. This highlights the need for novel approaches to prevent and treat this pandemic. The discovery of a reservoir of stem/progenitors in bone marrow and in mesenchymal tissue has attracted interest of both biologists and clinicians. A number of preclinical and clinical trials were developed to explore their potential clinical impact, as target or vehicle, in different clinical settings, including diabetes complications. Currently, bone marrow, peripheral blood, mesenchymal, and adipose tissues have been used as stem/progenitor cell sources. However, evidences have been provided that both bone marrow and circulating progenitor cells are dysfunctional in diabetes. These observations along with the growing advantages in genetic manipulation have spurred researchers to exploit ex vivo manipulated cells to overcome these hurdles. In this article, we provide an overview of data relevant to stem-progenitors potential clinical application in revascularization and/or vascular repair. Moreover, the hurdles at using progenitor cells in diabetic patients will be also discussed.
Collapse
Affiliation(s)
- Maddalena Gili
- Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy
| | | | | | | |
Collapse
|
36
|
Levetan CS, Pierce SM. Distinctions between the islets of mice and men: implications for new therapies for type 1 and 2 diabetes. Endocr Pract 2013. [PMID: 23186955 DOI: 10.4158/ep12138.ra] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To elucidate why diabetes is so difficult to treat despite the present tools and pharmacologic armamentarium and to provide insights into emerging therapies by describing human and rodent data that demonstrates the ability to transform progenitor cells within the adult pancreas into new islets. METHODS A literature review focused on the distinctions between human and rodent islets. RESULTS We are beginning to elucidate important differences between the architecture and composition of the islets of Langerhans in humans and rodents. In contrast to rodent islets, human islets are more heterogeneous in cellular composition and have more prominent intra-islet vascularity, with smooth muscle-containing blood vessels that are not present in rodent islets. Some studies report that more than 70% of human beta cells have direct physical contact with other cell types, whereas others describe that smaller human islets possess features more typical of rodents, while larger islets exhibit greater vascularity and a cellular distribution distinct from centrally clustered beta cells surrounded by a mantle of alpha and delta cells found in rodents. CONCLUSIONS The differences between the islets of mice and men may influence why treatments hailed as reversing diabetes among rodents have not been successfully translated into humans. Increased understanding of the complexities within the human islet may yield unique insights into reversing diabetes in humans.
Collapse
Affiliation(s)
- Claresa S Levetan
- Division of Diabetes, Endocrinology and Metabolism, Chestnut Hill Hospital, Philadelphia, PA 19118, USA.
| | | |
Collapse
|
37
|
Garin MC, Burns CM, Kaul S, Cappola AR. Clinical review: The human experience with ghrelin administration. J Clin Endocrinol Metab 2013; 98:1826-37. [PMID: 23533240 PMCID: PMC3644599 DOI: 10.1210/jc.2012-4247] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
CONTEXT Ghrelin is an endogenous stimulator of GH and is implicated in a number of physiological processes. Clinical trials have been performed in a variety of patient populations, but there is no comprehensive review of the beneficial and adverse consequences of ghrelin administration to humans. EVIDENCE ACQUISITION PubMed was utilized, and the reference list of each article was screened. We included 121 published articles in which ghrelin was administered to humans. EVIDENCE SYNTHESIS Ghrelin has been administered as an infusion or a bolus in a variety of doses to 1850 study participants, including healthy participants and patients with obesity, prior gastrectomy, cancer, pituitary disease, diabetes mellitus, eating disorders, and other conditions. There is strong evidence that ghrelin stimulates appetite and increases circulating GH, ACTH, cortisol, prolactin, and glucose across varied patient populations. There is a paucity of evidence regarding the effects of ghrelin on LH, FSH, TSH, insulin, lipolysis, body composition, cardiac function, pulmonary function, the vasculature, and sleep. Adverse effects occurred in 20% of participants, with a predominance of flushing and gastric rumbles and a mild degree of severity. The few serious adverse events occurred in patients with advanced illness and were not clearly attributable to ghrelin. Route of administration may affect the pattern of adverse effects. CONCLUSIONS Existing literature supports the short-term safety of ghrelin administration and its efficacy as an appetite stimulant in diverse patient populations. There is some evidence to suggest that ghrelin has wider ranging therapeutic effects, although these areas require further investigation.
Collapse
Affiliation(s)
- Margaret C Garin
- Division of Endocrinology, Diabetes, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, Pennsylvania 19104-5160, USA
| | | | | | | |
Collapse
|
38
|
Chen X, Chen Q, Wang L, Li G. Ghrelin induces cell migration through GHSR1a-mediated PI3K/Akt/eNOS/NO signaling pathway in endothelial progenitor cells. Metabolism 2013; 62:743-52. [PMID: 23218924 DOI: 10.1016/j.metabol.2012.09.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 09/16/2012] [Accepted: 09/24/2012] [Indexed: 01/18/2023]
Abstract
OBJECTIVE The purpose of this research was to investigate the effects of ghrelin on circulating endothelial progenitor cells (EPC) directional migration and its underlying molecular mechanisms involved in this process. MATERIALS/METHODS EPC were isolated from bone marrow of SD rats by using Percoll density gradient centrifugation, and characterized by double positive for acLDL-Dil uptake and FITC-UEA-1 binding and immunocytochemistry for CD34, CD133, vWF and Flk-1. EPC were treated with different concentrations of ghrelin (10(-9)~10(-6)M) with or without GHSR1a inhibitor [D-Lys3]-GHRP-6, PI3K inhibitor LY294002 and endothelial nitric oxide synthase (eNOS) inhibitor L-NAME, migration of EPC was detected by transwell assay, levels of phosphorylated and total Akt and eNOS were determined by Western-blot analysis and Nitric Oxide (NO) production was measured by Griess assay, respectively. RESULTS EPC were successfully obtained by Percoll density gradient centrifugation and ghrelin at 10(-8)M~10(-7)M promoted EPC migration. Ghrelin-induced EPC migration was accompanied by phosphorylation of Akt and eNOS, as well as an increase in NO production. These biochemical events and EPC directional migration induced by ghrelin were completely inhibited by GHSR-1a blocker [D-Lys3]-GHRP-6. PI3K inhibitor LY294002 attenuated ghrelin-induced EPC migration, phosphorylation of Akt and eNOS, and NO production. eNOS inhibitor L-NAME blocked ghrelin-induced EPC migration, phosphorylation of eNOS, and NO production, but had no effect on Akt phosphorylation. CONCLUSIONS These findings suggest that ghrelin stimulates EPC directional migration via GHSR1a-mediated PI3K/Akt/eNOS/NO signal pathway. It indicates that ghrelin may be used as a therapeutic strategy to treat ischemic diseases by promoting EPC directional migration.
Collapse
Affiliation(s)
- Xiaodong Chen
- Department of Geriatrics, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | | | | | | |
Collapse
|
39
|
Trombetta A, Togliatto G, Rosso A, Dentelli P, Olgasi C, Cotogni P, Brizzi MF. Increase of palmitic acid concentration impairs endothelial progenitor cell and bone marrow-derived progenitor cell bioavailability: role of the STAT5/PPARγ transcriptional complex. Diabetes 2013; 62:1245-57. [PMID: 23223023 PMCID: PMC3609587 DOI: 10.2337/db12-0646] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Metabolic profiling of plasma nonesterified fatty acids discovered that palmitic acid (PA), a natural peroxisome proliferator-activated receptor γ (PPARγ) ligand, is a reliable type 2 diabetes biomarker. We investigated whether and how PA diabetic (d-PA) concentrations affected endothelial progenitor cell (EPC) and bone marrow-derived hematopoietic cell (BM-HC) biology. PA physiologic (n-PA) and d-PA concentrations were used. Proliferating cell nuclear antigen content and signal transducer and activator of transcription 5 (STAT5), PPARγ, cyclin D1, and p21(Waf) expression were evaluated. Small interfering RNA technology, gene reporter luciferase assay, electrophoretic mobility shift assay, chromatin immunoprecipitation assay, and coimmunoprecipitation were exploited. In vivo studies and migration assays were also performed. d-PA, unlike n-PA or physiological and diabetic oleic and stearic acid concentrations, impaired EPC migration and EPC/BM-HC proliferation through a PPARγ-mediated STAT5 transcription inhibition. This event did not prevent the formation of a STAT5/PPARγ transcriptional complex but was crucial for gene targeting, as p21(Waf) gene promoter, unlike cyclin D1, was the STAT5/PPARγ transcriptional target. Similar molecular events could be detected in EPCs isolated from type 2 diabetic patients. By expressing a constitutively activated STAT5 form, we demonstrated that STAT5 content is crucial for gene targeting and EPC fate. Finally, we also provide in vivo data that d-PA-mediated EPC dysfunction could be rescued by PPARγ blockade. These data provide first insights on how mechanistically d-PA drives EPC/BM-HC dysfunction in diabetes.
Collapse
Affiliation(s)
| | | | - Arturo Rosso
- Department of Medical Sciences, University of Turin, Turin, Italy
| | | | - Cristina Olgasi
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Paolo Cotogni
- Department of Anesthesiology and Intensive Care, University of Turin, Turin, Italy
| | - Maria Felice Brizzi
- Department of Medical Sciences, University of Turin, Turin, Italy
- Corresponding author: Maria Felice Brizzi,
| |
Collapse
|
40
|
Dentelli P, Barale C, Togliatto G, Trombetta A, Olgasi C, Gili M, Riganti C, Toppino M, Brizzi MF. A diabetic milieu promotes OCT4 and NANOG production in human visceral-derived adipose stem cells. Diabetologia 2013; 56:173-84. [PMID: 23064289 DOI: 10.1007/s00125-012-2734-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 08/30/2012] [Indexed: 01/31/2023]
Abstract
AIMS/HYPOTHESIS Successful outcomes have been obtained by exploiting adipose-derived stem cells (ASCs) in regenerative medicine. NADPH oxidase (NOX)-generated reactive oxygen species (ROS) are known to control stem cell self-renewal. Several high glucose (HG)-mediated effects depend on NOX-generated ROS. In this study, we investigated whether, and how mechanistically, HG concentrations control ASC fate in patients with diabetes. METHODS ASCs from the visceral adipose tissue of non-diabetic (N-ASCs) and diabetic participants (D-ASCs), identified by surface markers, were counted and evaluated for ROS generation and stem cell properties. Their ability to release soluble factors was assessed by BioPlex analysis. To reproduce an in vitro diabetic glucose milieu, N-ASCs were cultured in HG (25 mmol/l) or normal glucose (NG) concentration (5 mmol/l), as control. ASC pluripotency was assessed by in vitro study. The p47(phox) NOX subunit, AKT and octamer-binding transcription factor 4 (OCT4; also known as POU5F1) were knocked down by small-interfering RNA technology. Stem-cell features were evaluated by sphere cluster formation. RESULTS The ASC number was higher in diabetic patients than in non-diabetic controls. Production of OCT4 and NANOG, stem-cell-specific transcription factors, was upregulated in D-ASCs compared with N-ASCs. Moreover, we found that ROS production and AKT activation drove D-ASC, but not N-ASC, secretion. When N-ASCs were cultured in vitro in the presence of HG, they also expressed OCT4/NANOG and formed spheres. By knock-down of the p47(phox) NOX subunit, AKT and OCT4 we demonstrated that NOX-generated ROS and their downstream signals are crucial for HG-mediated ASC de-differentiation and proinflammatory cytokine production. CONCLUSIONS/INTERPRETATION We herein provide a rationale for exploiting D-ASCs in regenerative medicine and/or exploiting HG preconditioning to increase ASCs ex vivo.
Collapse
Affiliation(s)
- P Dentelli
- Department of Medical Sciences, University of Torino, Corso Dogliotti 14, 10126 Torino, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Delhanty PJD, Neggers SJ, van der Lely AJ. Mechanisms in endocrinology: Ghrelin: the differences between acyl- and des-acyl ghrelin. Eur J Endocrinol 2012; 167:601-8. [PMID: 22898499 DOI: 10.1530/eje-12-0456] [Citation(s) in RCA: 170] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Des-acyl ghrelin (DAG) is one of the three preproghrelin gene-encoded peptides. Compared with ghrelin and obestatin, it has not received the attention it deserves. DAG has long been considered an inert degradation product of acyl ghrelin (AG). Recent evidence, however, indicates that DAG behaves like a separate hormone. DAG can act together with AG, can antagonize AG, and seems to have AG-independent effects. Therefore, it is believed that DAG must activate its own receptor and that it may also interact with AG at this receptor. Of potential clinical importance is that an increasing number of studies suggest that DAG might be a functional inhibitor of ghrelin and that DAG can suppress ghrelin levels in humans. Therefore, DAG or DAG analogs might be good candidates for future treatment of metabolic disorders or other conditions in which antagonism of AG actions could be beneficial, such as diabetes, obesity, and Prader-Willi syndrome.
Collapse
Affiliation(s)
- Patric J D Delhanty
- Department of Medicine, Erasmus University MC, CA Rotterdam, The Netherlands
| | | | | |
Collapse
|
42
|
Lombardo MF, Iacopino P, Cuzzola M, Spiniello E, Garreffa C, Ferrelli F, Coppola A, Saccardi R, Piaggesi A, Piro R, Mannino D, Grossi G, Lauro D, Irrera G. Type 2 diabetes mellitus impairs the maturation of endothelial progenitor cells and increases the number of circulating endothelial cells in peripheral blood. Cytometry A 2012; 81:856-64. [DOI: 10.1002/cyto.a.22109] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 06/24/2012] [Accepted: 06/28/2012] [Indexed: 12/18/2022]
|
43
|
Julien M, Kay RG, Delhanty PJD, Allas S, Granata R, Barton C, Constable S, Ghigo E, van der Lely AJ, Abribat T. In vitro and in vivo stability and pharmacokinetic profile of unacylated ghrelin (UAG) analogues. Eur J Pharm Sci 2012; 47:625-35. [PMID: 22841845 DOI: 10.1016/j.ejps.2012.07.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 07/12/2012] [Accepted: 07/16/2012] [Indexed: 12/01/2022]
Abstract
Ghrelin, an endocrine hormone predominantly produced by the stomach, exists in acylated and unacylated forms in the circulation. Unacylated ghrelin (UAG), the more abundant form in blood, possesses similar, independent or opposite physiological actions as acylated ghrelin (AG). AZP502, a linear 8-amino acid peptide from the central region of UAG (UAG(6-13)), and its full (AZP531) and partially (AZP533) cyclised derivatives, exhibit the same pharmacological profile as UAG both in vitro and in vivo, independently of AG receptor binding. We investigated the stability of these three fragments in vitro in human blood samples and in vivo after subcutaneous and intravenous injection in rats and dogs using liquid chromatography-mass spectrometry. In both species, AZP502 is rapidly degraded generating two major metabolites. Partial cyclisation of AZP502 and acylation at its N-terminus (AZP533 peptide) improves its stability in human plasma in vitro. Full cyclisation of AZP502 (AZP531 peptide) also completely protects the peptide from peptidase degradation in vitro in human blood samples. Moreover this cyclisation strongly improves the stability and the bioavailability of this peptide in vivo in both dogs and rats (mean bioavailability of 10-15% and 85-95% for AZP502 and AZP531 respectively). Taken together these results support the rationale for developing AZP531 as a long-acting UAG analogue for subcutaneous injection for the treatment of type 2 diabetes mellitus and other metabolic disorders.
Collapse
Affiliation(s)
- Michel Julien
- Alizé Pharma SAS, 15 Chemin du Saquin, Espace Européen, Building G, 69130 Ecully, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Most cardiovascular diseases (CVDs), as well as age-related cardiovascular alterations, are accompanied by increases in oxidative stress, usually due to increased generation and/or decreased metabolism of ROS (reactive oxygen species; for example superoxide radicals) and RNS (reactive nitrogen species; for example peroxynitrite). The superoxide anion is generated by several enzymatic reactions, including a variety of NADPH oxidases and uncoupled eNOS (endothelial NO synthase). To relieve the burden caused by this generation of free radicals, which also occurs as part of normal physiological processes, such as mitochondrial respiratory chain activity, mammalian systems have developed endogenous antioxidant enzymes. There is an increased usage of exogenous antioxidants such as vitamins C and E by many patients and the general public, ostensibly in an attempt to supplement intrinsic antioxidant activity. Unfortunately, the results of large-scale trails do not generate much enthusiasm for the continued use of antioxidants to mitigate free-radical-induced changes in the cardiovascular system. In the present paper, we review the clinical use of antioxidants by providing the rationale for their use and describe the outcomes of several large-scale trails that largely display negative outcomes. We also describe the emerging understanding of the detailed regulation of superoxide generation by an uncoupled eNOS and efforts to reverse eNOS uncoupling. SIRT1 (sirtuin 1), which regulates the expression and activity of multiple pro- and anti-oxidant enzymes, could be considered a candidate molecule for a 'molecular switch'.
Collapse
|
45
|
Rak-Mardyła A, Gregoraszczuk E, Karpeta A, Duda M. Expression of ghrelin and the ghrelin receptor in different stages of porcine corpus luteum development and the inhibitory effects of ghrelin on progesterone secretion, 3β-hydroxysteroid dehydrogenase (3β-honestly significant difference (HSD)) activity and protein expression. Theriogenology 2012; 77:1505-12. [DOI: 10.1016/j.theriogenology.2011.11.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 11/18/2011] [Accepted: 11/19/2011] [Indexed: 01/28/2023]
|
46
|
Favaro E, Granata R, Miceli I, Baragli A, Settanni F, Cavallo Perin P, Ghigo E, Camussi G, Zanone MM. The ghrelin gene products and exendin-4 promote survival of human pancreatic islet endothelial cells in hyperglycaemic conditions, through phosphoinositide 3-kinase/Akt, extracellular signal-related kinase (ERK)1/2 and cAMP/protein kinase A (PKA) signalling pathways. Diabetologia 2012; 55:1058-70. [PMID: 22231124 PMCID: PMC3296004 DOI: 10.1007/s00125-011-2423-y] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 11/17/2011] [Indexed: 11/25/2022]
Abstract
AIMS/HYPOTHESIS Pancreatic islet microendothelium exhibits unique features in interdependent relationship with beta cells. Gastrointestinal products of the ghrelin gene, acylated ghrelin (AG), unacylated ghrelin (UAG) and obestatin (Ob), and the incretin, glucagon-like peptide-1 (GLP-1), prevent apoptosis of pancreatic beta cells. We investigated whether the ghrelin gene products and the GLP-1 receptor agonist exendin-4 (Ex-4) display survival effects in human pancreatic islet microendothelial cells (MECs) exposed to chronic hyperglycaemia. METHODS Islet MECs were cultured in high glucose concentration and treated with AG, UAG, Ob or Ex-4. Apoptosis was assessed by DNA fragmentation, Hoechst staining of the nuclei and caspase-3 activity. Western blot analyses and pharmacological inhibition of protein kinase B (Akt) and extracellular signal-related kinase (ERK)1/2 pathways, detection of intracellular cAMP levels and blockade of adenylyl cyclase (AC)/cAMP/protein kinase A (PKA) signalling were performed. Levels of NO, IL-1β and vascular endothelial growth factor (VEGF)-A in cell culture supernatant fractions were measured. RESULTS Islet MECs express the ghrelin receptor GHS-R1A as well as GLP-1R. Treatment with AG, UAG, Ob and Ex-4 promoted cell survival and significantly inhibited glucose-induced apoptosis, through activation of PI3K/Akt, ERK1/2 phosphorylation and intracellular cAMP increase. Moreover, peptides upregulated B cell lymphoma 2 (BCL-2) and downregulated BCL-2-associated X protein (BAX) and CD40 ligand (CD40L) production, and significantly reduced the secretion of NO, IL-1β and VEGF-A. CONCLUSIONS/INTERPRETATION The ghrelin gene-derived peptides and Ex-4 exert cytoprotective effects in islet MECs. The anti-apoptotic effects involve phosphoinositide 3-kinase (PI3K)/Akt, ERK1/2 and cAMP/PKA pathways. These peptides could therefore represent a potential tool to improve islet vascularisation and, indirectly, islet cell function.
Collapse
Affiliation(s)
- E. Favaro
- Department of Internal Medicine, University of Turin, Corso Dogliotti 14, 10126 Turin, Italy
| | - R. Granata
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Metabolism, University of Turin, Turin, Italy
| | - I. Miceli
- Department of Internal Medicine, University of Turin, Corso Dogliotti 14, 10126 Turin, Italy
| | - A. Baragli
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Metabolism, University of Turin, Turin, Italy
| | - F. Settanni
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Metabolism, University of Turin, Turin, Italy
| | - P. Cavallo Perin
- Department of Internal Medicine, University of Turin, Corso Dogliotti 14, 10126 Turin, Italy
| | - E. Ghigo
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Metabolism, University of Turin, Turin, Italy
| | - G. Camussi
- Department of Internal Medicine, University of Turin, Corso Dogliotti 14, 10126 Turin, Italy
| | - M. M. Zanone
- Department of Internal Medicine, University of Turin, Corso Dogliotti 14, 10126 Turin, Italy
| |
Collapse
|
47
|
Association of obestatin, ghrelin, and inflammatory cytokines in obese patients with non-alcoholic fatty liver disease. Obes Surg 2012; 21:1750-7. [PMID: 21744131 DOI: 10.1007/s11695-011-0475-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Three protein products of ghrelin gene (acylated ghrelin, des-acylated ghrelin, and obestatin) are involved in appetite stimulation and suppression. Additionally, there is some evidence suggesting their involvement in metabolic and inflammatory pathways which may be implicated in the pathogenesis of non-alcoholic fatty liver disease (NAFLD). The aim of this study was to examine the relationships of ghrelin gene products in patients with NAFLD. METHODS We included 75 morbidly obese patients with biopsy-proven NAFLD (41 with histologic non-alcoholic steatohepatitis (NASH)) with clinical and laboratory data as well as frozen serum samples from the time of liver biopsy. Fasting serum was assayed for obestatin as well as acylated and des-acyl-ghrelin concentrations using ELISA. Bio-Plex inflammatory cytokine assays were used to profile expression of 17 inflammatory mediators, including IL-6, IL-7, IL-8, G-CSF, CCL2, and MIP-1β. RESULTS Patients with NASH had twofold higher concentration of des-acyl-ghrelin than patients with non-NASH (2.58 vs. 1.24 pg/ml, P < 0.02). Ghrelin concentrations in NASH patients with fibrosis stage ≥2 were almost double the concentration of NASH patients with fibrosis stage <2 (8.73 vs. 4.22 pg/ml, P < 0.04). Obestatin levels also increased with the fibrosis stage (2.54 vs. 3.46 pg/ml, P < 0.03). NAFLD patients with higher fibrosis stage had lower IL-7 concentrations (16.89 vs. 10.68 pg/ml, P = 0.014). Obestatin levels at baseline significantly correlated with rate of weight loss after bariatric surgery at various time points. CONCLUSIONS This study suggests that products of the GHRL gene may be important for the pathogenesis of NASH and fibrosis. Additional confirmatory studies are needed.
Collapse
|
48
|
Granata R, Settanni F, Julien M, Nano R, Togliatto G, Trombetta A, Gallo D, Piemonti L, Brizzi MF, Abribat T, van Der Lely AJ, Ghigo E. Des-acyl ghrelin fragments and analogues promote survival of pancreatic β-cells and human pancreatic islets and prevent diabetes in streptozotocin-treated rats. J Med Chem 2012; 55:2585-96. [PMID: 22352743 DOI: 10.1021/jm201223m] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Des-acyl ghrelin, although devoid of binding to ghrelin receptor (GRLN), exerts many biological effects, including regulation of glucose and lipid metabolism. Indeed, des-acyl ghrelin promotes pancreatic β-cell and human islet cell survival and prevents diabetes in streptozotocin (STZ) treated rats. We investigated whether des-acyl ghrelin fragments excluding serine(3), which is essential for binding to GRLN, would display similar actions. Among the different compounds tested, des-acyl ghrelin((6-13)) and des-acyl ghrelin((6-13)) with alanine substitutions or cyclization, but not with d-amino acid substitutions, showed the best survival effect, similar to des-acyl ghrelin. Des-acyl ghrelin((6-13)) even prevented diabetes in STZ-treated rats and protected human circulating angiogenic cells from oxidative stress and senescence, similar to des-acyl ghrelin. These results suggest that not only full-length des-acyl ghrelin but also short des-acyl ghrelin fragments have clear beneficial effects on several tissues in vitro and in vivo.
Collapse
Affiliation(s)
- Riccarda Granata
- Laboratory of Molecular and Cellular Endocrinology, University of Turin, Corso Dogliotti 14, 10126 Turin, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Dysfunction of endothelial progenitor cells under diabetic conditions and its underlying mechanisms. Arch Pharm Res 2012; 35:223-34. [PMID: 22370777 DOI: 10.1007/s12272-012-0203-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 11/18/2011] [Accepted: 11/21/2011] [Indexed: 10/28/2022]
Abstract
Cardiovascular complications have been major concerns in the treatment of diabetes, and up to 80% of all deaths in diabetic patients are linked to cardiovascular problems. Impaired angiogenesis is one of the most serious symptoms associated with diabetes, resulting in delayed wound healing and lower limb amputation. Endothelial progenitor cells (EPCs), a subpopulation of adult stem cells, are recruited from bone marrow to the injured vessel to promote endothelial regeneration and neovascularization, playing an important role in angiogenesis. Interestingly, several clinical studies have showed that the number of recruited EPCs is reduced and their function is decreased under diabetic conditions, implying that diabetic EPC dysfunction may contribute to defective angiogenesis and resultant cardiovascular complications in diabetes. To recover the functional abilities of diabetic EPCs and to address possible application of EPC cell therapy to diabetic patients, some studies provided explanations for diabetic EPC dysfunction including increased oxidative stress, involvement of the inflammatory response, alteration in the nitric oxide pathway and reduced signals for EPC recruitment. This review discusses clinical evidence of impairment of EPC functions under diabetic conditions and the suggested mechanisms for diabetic EPC dysfunction.
Collapse
|
50
|
Beléen C, Martínez-Fuentes AJ, Gracia-Navarro F. Role of SST, CORT and ghrelin and its receptors at the endocrine pancreas. Front Endocrinol (Lausanne) 2012; 3:114. [PMID: 23162532 PMCID: PMC3444847 DOI: 10.3389/fendo.2012.00114] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 09/03/2012] [Indexed: 12/21/2022] Open
Abstract
Somatostatin (SST), cortistatin (CORT), and its receptors (sst1-5), and ghrelin and its receptors (GHS-R) are two highly interrelated neuropeptide systems with a broad range of overlapping biological actions at central, cardiovascular, and immune levels among others. Besides their potent regulatory role on GH release, its endocrine actions are highlighted by SST/CORT and ghrelin influence on insulin secretion, glucose homeostasis, and insulin resistance. Interestingly, most components of these systems are expressed at the endocrine pancreas and are actively involved in the modulation of pancreatic islet function and, consequently influence glucose homeostasis. In addition, some of them also participate in islet survival and regeneration. Furthermore, under severe metabolic condition as well as in endocrine pathologies, their expression profile is severely deregulated. These findings suggest that SST/CORT and ghrelin systems could play a relevant role in pancreatic function under metabolic and endocrine pathologies. Accordingly, these systems have been therapeutically targeted for the prevention or amelioration of certain metabolic conditions (obesity) as well as for tumor growth inhibition and/or hormonal regulation in endocrine pathologies (neuroendocrine tumors). This review focuses on the interrelationship between SST/CORT and ghrelin systems and their role in severe metabolic conditions and some endocrine disorders.
Collapse
Affiliation(s)
- Chanclón Beléen
- Department of Cell Biology, Physiology and Immunology, University of CórdobaCórdoba, Spain
- Instituto Maimónides de Investigación Biomédica de CórdobaCórdoba, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y NutriciónCórdoba, Spain
| | - Antonio J. Martínez-Fuentes
- Department of Cell Biology, Physiology and Immunology, University of CórdobaCórdoba, Spain
- Instituto Maimónides de Investigación Biomédica de CórdobaCórdoba, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y NutriciónCórdoba, Spain
| | - Francisco Gracia-Navarro
- Department of Cell Biology, Physiology and Immunology, University of CórdobaCórdoba, Spain
- Instituto Maimónides de Investigación Biomédica de CórdobaCórdoba, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y NutriciónCórdoba, Spain
- *Correspondence: Francisco Gracia-Navarro, Department of Cell Biology, Physiology and Immunology, University of Córdoba, Campus de Rabanales, Edificio Severo-Ochoa, Planta 3, E-14014 Córdoba, Spain. e-mail:
| |
Collapse
|