1
|
Yang Q, Su S, Luo N, Cao G. Adenine-induced animal model of chronic kidney disease: current applications and future perspectives. Ren Fail 2024; 46:2336128. [PMID: 38575340 PMCID: PMC10997364 DOI: 10.1080/0886022x.2024.2336128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024] Open
Abstract
Chronic kidney disease (CKD) with high morbidity and mortality all over the world is characterized by decreased kidney function, a condition which can result from numerous risk factors, including diabetes, hypertension and obesity. Despite significant advances in our understanding of the pathogenesis of CKD, there are still no treatments that can effectively combat CKD, which underscores the urgent need for further study into the pathological mechanisms underlying this condition. In this regard, animal models of CKD are indispensable. This article reviews a widely used animal model of CKD, which is induced by adenine. While a physiologic dose of adenine is beneficial in terms of biological activity, a high dose of adenine is known to induce renal disease in the organism. Following a brief description of the procedure for disease induction by adenine, major mechanisms of adenine-induced CKD are then reviewed, including inflammation, oxidative stress, programmed cell death, metabolic disorders, and fibrillation. Finally, the application and future perspective of this adenine-induced CKD model as a platform for testing the efficacy of a variety of therapeutic approaches is also discussed. Given the simplicity and reproducibility of this animal model, it remains a valuable tool for studying the pathological mechanisms of CKD and identifying therapeutic targets to fight CKD.
Collapse
Affiliation(s)
- Qiao Yang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Songya Su
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Nan Luo
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Gang Cao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
2
|
Choi J, Choi MS, Jeon J, Moon J, Lee J, Kong E, Lucia SE, Hong S, Lee JH, Lee EY, Kim P. In vivo longitudinal 920 nm two-photon intravital kidney imaging of a dynamic 2,8-DHA crystal formation and tubular deterioration in the adenine-induced chronic kidney disease mouse model. BIOMEDICAL OPTICS EXPRESS 2023; 14:1647-1658. [PMID: 37078028 PMCID: PMC10110322 DOI: 10.1364/boe.485187] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/01/2023] [Accepted: 03/20/2023] [Indexed: 05/03/2023]
Abstract
Chronic kidney disease (CKD) is one of the most common renal diseases manifested by gradual loss of kidney function with no symptoms in the early stage. The underlying mechanism in the pathogenesis of CKD with various causes such as high blood pressure, diabetes, high cholesterol, and kidney infection is not well understood. In vivo longitudinal repetitive cellular-level observation of the kidney of the CKD animal model can provide novel insights to diagnose and treat the CKD by visualizing the dynamically changing pathophysiology of CKD with its progression over time. In this study, using two-photon intravital microscopy with a single 920 nm fixed-wavelength fs-pulsed laser, we longitudinally and repetitively observed the kidney of an adenine diet-induced CKD mouse model for 30 days. Interestingly, we could successfully visualize the 2,8-dihydroxyadenine (2,8-DHA) crystal formation with a second-harmonics generation (SHG) signal and the morphological deterioration of renal tubules with autofluorescence using a single 920 nm two-photon excitation. The longitudinal in vivo two-photon imaging results of increasing 2,8-DHA crystals and decreasing tubular area ratio visualized by SHG and autofluorescence signal, respectively, were highly correlated with the CKD progression monitored by a blood test showing increased cystatin C and blood urea nitrogen (BUN) levels over time. This result suggests the potential of label-free second-harmonics generation crystal imaging as a novel optical technique for in vivo CKD progression monitoring.
Collapse
Affiliation(s)
- Jieun Choi
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Min-Sun Choi
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, 31151, Republic of Korea
- BK21 Four Project, College of Medicine, Soonchunhyang University, Cheonan, 31151, Republic of Korea
| | - Jehwi Jeon
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jieun Moon
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jingu Lee
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Eunji Kong
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Stephani Edwina Lucia
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Sujung Hong
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Ji-Hye Lee
- Department of Pathology, Soonchunhyang University Cheonan Hospital, Cheonan, 31151, Republic of Korea
| | - Eun Young Lee
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, 31151, Republic of Korea
- BK21 Four Project, College of Medicine, Soonchunhyang University, Cheonan, 31151, Republic of Korea
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, 31151, Republic of Korea
| | - Pilhan Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
3
|
Lee A, Yoo E, Bae Y, Jung SB, Jeon C. Differential identification of urine crystals with morphologic characteristics and solubility test. J Clin Lab Anal 2022; 36:e24707. [PMID: 36164743 PMCID: PMC9701861 DOI: 10.1002/jcla.24707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Urinary crystals are the most diverse forms of urine sediments. Reference images for typical urinary crystals are common, however, but images for interpreting atypical urinary crystals are very rare. The authors reviewed various forms and solubility tests of urine crystals to interpret atypical crystals found in clinical specimens. METHODS We reviewed textbooks on urinary crystals and articles published in PubMed. Some atypical crystals were confirmed using a solubility test. RESULTS The classification, shape, chemical structure, and solubility of the crystals were summarized. In the solubility test, some crystals showed different results; therefore, a new solubility test was proposed based on the literature review. We presented various types of calcium oxalates. CONCLUSIONS These review articles will be helpful in the examination of atypical crystals found in clinical specimens. The solubility test requires additional studies to discriminate the inconsistent results between the authors.
Collapse
Affiliation(s)
- A‐Jin Lee
- Department of Laboratory MedicineDaegu Catholic University School of MedicineDaeguSouth Korea
| | - Eun‐Hyung Yoo
- Department of Laboratory MedicineDaegu Catholic University School of MedicineDaeguSouth Korea
| | - Young‐Cheol Bae
- Department of Laboratory MedicineDaegu Catholic University Medical CenterDaeguSouth Korea
| | - Sang Bong Jung
- Department of Clinical Laboratory ScienceDaekyeung UniversityGyeongsan‐siSouth Korea
| | - Chang‐Ho Jeon
- Department of Laboratory MedicineDaegu Catholic University School of MedicineDaeguSouth Korea
| |
Collapse
|
4
|
Yesodharan J, Seethalekshmy NV, Nair RR. Recurrent DHA nephropathy in renal allograft-revisiting clinicopathological aspects of a rare entity. INDIAN J PATHOL MICR 2021; 64:504-508. [PMID: 34341261 DOI: 10.4103/ijpm.ijpm_441_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Background Adenine phosphoribosyltransferase (APRT) enzyme deficiency is a rare autosomal recessive disorder of purine metabolism affecting mainly the kidneys. It can present at any age with varying degrees of acute and chronic renal damage. Though xanthine dehydrogenase inhibitors offer effective control over the disease process, delay in diagnosis and treatment often lead to compromised function of native and even graft kidneys. Methods We have done a retrospective search of records of renal biopsies reported at our center during the 5-year period from 2014 to 2018 to identify biopsies with 2,8-dihydroxyadenine crystal deposits. The demographic, clinical, and histopathological findings in these cases were studied and reviewed in the light of available literature. Results Of 9059 renal biopsies received during the study period, 3 cases had the rare 2,8- dihydroxyadenine (DHA) crystals. All of them were diagnosed for the first time on allograft biopsies. Conclusion A high index of clinical suspicion together with the characteristic microscopic appearance of crystals on renal biopsy and urine microscopy can clinch the diagnosis of this rare disease. Hence, improving awareness about this entity among clinicians and pathologists is extremely important.
Collapse
Affiliation(s)
- Jyotsna Yesodharan
- Department of Pathology, Amrita Institute of Medical Sciences, Kochi, Kerala, India
| | - N V Seethalekshmy
- Department of Pathology, Amrita Institute of Medical Sciences, Kochi, Kerala, India
| | - Rajesh R Nair
- Department of Nephrology, Amrita Institute of Medical Sciences, Kochi, Kerala, India
| |
Collapse
|
5
|
Klinkhammer BM, Djudjaj S, Kunter U, Palsson R, Edvardsson VO, Wiech T, Thorsteinsdottir M, Hardarson S, Foresto-Neto O, Mulay SR, Moeller MJ, Jahnen-Dechent W, Floege J, Anders HJ, Boor P. Cellular and Molecular Mechanisms of Kidney Injury in 2,8-Dihydroxyadenine Nephropathy. J Am Soc Nephrol 2020; 31:799-816. [PMID: 32086278 DOI: 10.1681/asn.2019080827] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 01/05/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Hereditary deficiency of adenine phosphoribosyltransferase causes 2,8-dihydroxyadenine (2,8-DHA) nephropathy, a rare condition characterized by formation of 2,8-DHA crystals within renal tubules. Clinical relevance of rodent models of 2,8-DHA crystal nephropathy induced by excessive adenine intake is unknown. METHODS Using animal models and patient kidney biopsies, we assessed the pathogenic sequelae of 2,8-DHA crystal-induced kidney damage. We also used knockout mice to investigate the role of TNF receptors 1 and 2 (TNFR1 and TNFR2), CD44, or alpha2-HS glycoprotein (AHSG), all of which are involved in the pathogenesis of other types of crystal-induced nephropathies. RESULTS Adenine-enriched diet in mice induced 2,8-DHA nephropathy, leading to progressive kidney disease, characterized by crystal deposits, tubular injury, inflammation, and fibrosis. Kidney injury depended on crystal size. The smallest crystals were endocytosed by tubular epithelial cells. Crystals of variable size were excreted in urine. Large crystals obstructed whole tubules. Medium-sized crystals induced a particular reparative process that we term extratubulation. In this process, tubular cells, in coordination with macrophages, overgrew and translocated crystals into the interstitium, restoring the tubular luminal patency; this was followed by degradation of interstitial crystals by granulomatous inflammation. Patients with adenine phosphoribosyltransferase deficiency showed similar histopathological findings regarding crystal morphology, crystal clearance, and renal injury. In mice, deletion of Tnfr1 significantly reduced tubular CD44 and annexin two expression, as well as inflammation, thereby ameliorating the disease course. In contrast, genetic deletion of Tnfr2, Cd44, or Ahsg had no effect on the manifestations of 2,8-DHA nephropathy. CONCLUSIONS Rodent models of the cellular and molecular mechanisms of 2,8-DHA nephropathy and crystal clearance have clinical relevance and offer insight into potential future targets for therapeutic interventions.
Collapse
Affiliation(s)
| | | | | | | | | | - Thorsten Wiech
- Institute of Pathology, University Hospital Hamburg-Eppendorf, Hamburg, Germany; and
| | | | - Sverrir Hardarson
- Department of Pathology Landspitali-The National University Hospital of Iceland, Reykjavik, Iceland
| | | | - Shrikant R Mulay
- Division of Nephrology, Klinikum der Universität, LMU München, Munich, Germany
| | | | | | | | - Hans-Joachim Anders
- Division of Nephrology, Klinikum der Universität, LMU München, Munich, Germany
| | - Peter Boor
- Institute of Pathology, .,Division of Nephrology and Immunology.,Department of Electron Microscopy, RWTH University Hospital Aachen, Aachen, Germany
| |
Collapse
|
6
|
Factors Affecting the Environmentally Induced, Chronic Kidney Disease of Unknown Aetiology in Dry Zonal Regions in Tropical Countries—Novel Findings. ENVIRONMENTS 2019. [DOI: 10.3390/environments7010002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A new form of chronic tubulointerstitial kidney disease (CKD) not related to diabetes or hypertension appeared during the past four decades in several peri-equatorial and predominantly agricultural countries. Commonalities include underground stagnation of drinking water with prolonged contact with rocks, harsh climatic conditions with protracted dry seasons, and rampant poverty and malnutrition. In general, the cause is unknown, and the disease is therefore named CKD of unknown aetiology (CKDu). Since it is likely caused by a combination of factors, a better term would be CKD of multifactorial origin (CKDmfo). Middle-aged malnourished men with more than 10 years of exposure to environmental hazards are the most vulnerable. Over 30 factors have been proposed as causative, including agrochemicals and heavy metals, but none has been properly tested nor proven as causative, and unlikely to be the cause of CKDmfo/CKDu. Conditions such as, having favourable climatic patterns, adequate hydration, and less poverty and malnutrition seem to prevent the disease. With the right in vivo conditions, chemical species such as calcium, phosphate, oxalate, and fluoride form intra-renal nanomineral particles initiating the CKDmfo. This article examines the key potential chemical components causing CKDmfo together with the risk factors and vulnerabilities predisposing individuals to this disease. Research findings suggest that in addition to drinking water from stagnant sources that contain high ionic components, more than 10 years of exposure to environmental nephrotoxins and micronutrient malnutrition are needed to contract this fatal disease.
Collapse
|