1
|
De Santis GA, De Ferrari T, Parisi F, Franzino M, Molinero AE, Di Carlo A, Pistelli L, Vetta G, Parlavecchio A, Torre M, Parollo M, Mansi G, Tamborrino PP, Canu A, Grifoni G, Segreti L, Di Cori A, Viani SM, Zucchelli G. Ranolazine Unveiled: Rediscovering an Old Solution in a New Light. J Clin Med 2024; 13:4985. [PMID: 39274195 PMCID: PMC11396555 DOI: 10.3390/jcm13174985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/13/2024] [Accepted: 08/20/2024] [Indexed: 09/16/2024] Open
Abstract
Ranolazine is an anti-anginal medication that has demonstrated antiarrhythmic properties by inhibiting both late sodium and potassium currents. Studies have shown promising results for ranolazine in treating both atrial fibrillation and ventricular arrhythmias, particularly when used in combination with other medications. This review explores ranolazine's mechanisms of action and its potential role in cardiac arrhythmias treatment in light of previous clinical studies.
Collapse
Affiliation(s)
- Giulia Azzurra De Santis
- Cardiology Unit, Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy
| | - Tommaso De Ferrari
- Cardiology Unit, Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy
| | - Francesca Parisi
- Clinical Cardiology and Heart Failure Unit, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (ISMETT), 90127 Palermo, Italy
| | - Marco Franzino
- S.C. Cardiologia, Ospedale Sant'Andrea, 13100 Vercelli, Italy
| | - Agustin Ezequiel Molinero
- Cardiology Unit, Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy
| | - Alessandro Di Carlo
- Cardiology Unit, Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy
| | - Lorenzo Pistelli
- Second Division of Cardiology, Cardio-Thoracic and Vascular Department, Pisa University Hospital, 56124 Pisa, Italy
| | - Giampaolo Vetta
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, 1050 Brussels, Belgium
| | - Antonio Parlavecchio
- Cardiology Unit, Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy
| | - Marco Torre
- Second Division of Cardiology, Cardio-Thoracic and Vascular Department, Pisa University Hospital, 56124 Pisa, Italy
| | - Matteo Parollo
- Second Division of Cardiology, Cardio-Thoracic and Vascular Department, Pisa University Hospital, 56124 Pisa, Italy
| | - Giacomo Mansi
- Second Division of Cardiology, Cardio-Thoracic and Vascular Department, Pisa University Hospital, 56124 Pisa, Italy
| | - Pietro Paolo Tamborrino
- Second Division of Cardiology, Cardio-Thoracic and Vascular Department, Pisa University Hospital, 56124 Pisa, Italy
| | - Antonio Canu
- Second Division of Cardiology, Cardio-Thoracic and Vascular Department, Pisa University Hospital, 56124 Pisa, Italy
| | - Gino Grifoni
- Second Division of Cardiology, Cardio-Thoracic and Vascular Department, Pisa University Hospital, 56124 Pisa, Italy
| | - Luca Segreti
- Second Division of Cardiology, Cardio-Thoracic and Vascular Department, Pisa University Hospital, 56124 Pisa, Italy
| | - Andrea Di Cori
- Second Division of Cardiology, Cardio-Thoracic and Vascular Department, Pisa University Hospital, 56124 Pisa, Italy
| | - Stefano Marco Viani
- Second Division of Cardiology, Cardio-Thoracic and Vascular Department, Pisa University Hospital, 56124 Pisa, Italy
| | - Giulio Zucchelli
- Second Division of Cardiology, Cardio-Thoracic and Vascular Department, Pisa University Hospital, 56124 Pisa, Italy
| |
Collapse
|
2
|
Bazoukis G, Tse G, Letsas KP, Thomopoulos C, Naka KK, Korantzopoulos P, Bazoukis X, Michelongona P, Papadatos SS, Vlachos K, Liu T, Efremidis M, Baranchuk A, Stavrakis S, Tsioufis C. Impact of ranolazine on ventricular arrhythmias - A systematic review. J Arrhythm 2018; 34:124-128. [PMID: 29657587 PMCID: PMC5891418 DOI: 10.1002/joa3.12031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 11/29/2017] [Indexed: 12/15/2022] Open
Abstract
Ranolazine is a new medication for the treatment of refractory angina. However, except its anti-anginal properties, it has been found to act as an anti-arrhythmic. The aim of our systematic review is to present the existing data about the impact of ranolazine in ventricular arrhythmias. We searched MEDLINE and Cochrane databases as well clinicaltrials.gov until September 1, 2017 to find all studies (clinical trials, observational studies, case reports/series) reported data about the impact of ranolazine in ventricular arrhythmias. Our search revealed 14 studies (3 clinical trials, 2 observational studies, 8 case reports, 1 case series). These data reported a beneficial impact of ranolazine in ventricular tachycardia/fibrillation, premature ventricular beats, and ICD interventions in different clinical settings. The existing data highlight the anti-arrhythmic properties of ranolazine in ventricular arrhythmias.
Collapse
Affiliation(s)
- George Bazoukis
- Department of CardiologyCatheterization LaboratoryEvangelismos General Hospital of AthensAthensGreece
| | - Gary Tse
- Department of Medicine and TherapeuticsFaculty of MedicineChinese University of Hong KongHong KongChina
- Li Ka Shing Institute of Health SciencesFaculty of MedicineChinese University of Hong KongHong KongChina
| | - Konstantinos P. Letsas
- Department of CardiologyCatheterization LaboratoryEvangelismos General Hospital of AthensAthensGreece
| | | | - Katerina K. Naka
- Second Department of CardiologySchool of MedicineUniversity of IoanninaIoanninaGreece
| | | | - Xenophon Bazoukis
- Department of CardiologyGeneral Hospital of Ioannina, “G Hatzikosta”IoanninaGreece
| | - Paschalia Michelongona
- Department of CardiologyCatheterization LaboratoryEvangelismos General Hospital of AthensAthensGreece
| | - Stamatis S. Papadatos
- FacultyDepartment of Internal MedicineAthens School of MedicineSotiria General HospitalNational and Kapodistrian University of AthensAthensGreece
| | - Konstantinos Vlachos
- Department of CardiologyCatheterization LaboratoryEvangelismos General Hospital of AthensAthensGreece
| | - Tong Liu
- Department of CardiologyTianjin Institute of CardiologySecond Hospital of Tianjin Medical UniversityTianjinChina
| | - Michael Efremidis
- Department of CardiologyCatheterization LaboratoryEvangelismos General Hospital of AthensAthensGreece
| | - Adrian Baranchuk
- Division of Cardiology, Electrophysiology and PacingKingston General HospitalQueen's UniversityKingstonONCanada
| | | | - Costas Tsioufis
- First Cardiology ClinicHippokration HospitalUniversity of AthensAthensGreece
| |
Collapse
|
3
|
Heijman J, Ghezelbash S, Dobrev D. Investigational antiarrhythmic agents: promising drugs in early clinical development. Expert Opin Investig Drugs 2017; 26:897-907. [PMID: 28691539 PMCID: PMC6324729 DOI: 10.1080/13543784.2017.1353601] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Although there have been important technological advances for the treatment of cardiac arrhythmias (e.g., catheter ablation technology), antiarrhythmic drugs (AADs) remain the cornerstone therapy for the majority of patients with arrhythmias. Most of the currently available AADs were coincidental findings and did not result from a systematic development process based on known arrhythmogenic mechanisms and specific targets. During the last 20 years, our understanding of cardiac electrophysiology and fundamental arrhythmia mechanisms has increased significantly, resulting in the identification of new potential targets for mechanism-based antiarrhythmic therapy. Areas covered: Here, we review the state-of-the-art in arrhythmogenic mechanisms and AAD therapy. Thereafter, we focus on a number of antiarrhythmic targets that have received significant attention recently: atrial-specific K+-channels, the late Na+-current, the cardiac ryanodine-receptor channel type-2, and the small-conductance Ca2+-activated K+-channel. We highlight for each of these targets available antiarrhythmic agents and the evidence for their antiarrhythmic effect in animal models and early clinical development. Expert opinion: Targeting AADs to specific subgroups of well-phenotyped patients is likely necessary to detect improved outcomes that may be obscured in the population at large. In addition, specific combinations of selective AADs may have synergistic effects and may enable a mechanism-based tailored antiarrhythmic therapy.
Collapse
Affiliation(s)
- Jordi Heijman
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine, and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Shokoufeh Ghezelbash
- Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen, Essen, Germany
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen, Essen, Germany
| |
Collapse
|